
Balloon Hashing: Provably Space-Hard Hash Functions
with Data-Independent Access Patterns

Henry Corrigan-Gibbs
Stanford University

Dan Boneh
Stanford University

Stuart Schechter
Microsoft Research

January 14, 2016

Abstract. We present the Balloon family of pass-
word hashing functions. These are the first crypto-
graphic hash functions with proven space-hardness
properties that: (i) use a password-independent ac-
cess pattern, (ii) build exclusively upon standard
cryptographic primitives, and (iii) are fast enough
for real-world use. Space-hard functions require a
large amount of working space to evaluate efficiently
and, when used for password hashing, they dramat-
ically increase the cost of offline dictionary attacks.
The central technical challenge of this work was to
devise the graph-theoretic and linear-algebraic tech-
niques necessary to prove the space-hardness proper-
ties of the Balloon functions (in the random-oracle
model). To motivate our interest in security proofs,
we demonstrate that it is possible to compute Ar-
gon2i, a recently proposed space-hard function that
lacks a formal analysis, in less than the claimed re-
quired space with no increase in the computation
time.

1 Introduction

The theft of personal data from websites and online
services has become routine. In 2015 alone, attack-
ers stole files containing users’ login names, password
hashes, and contact information from LastPass [97],
Harvard [54], E*Trade [75], ICANN [51], Costco [47],
T-Mobile [92], the University of Virginia [90], and
a staggering number of other organizations [80]. In
this environment, systems administrators must oper-
ate under the assumption that attackers will eventu-
ally gain access to sensitive authentication informa-
tion, such as password hashes and salts, stored on
their computer systems.

After a compromise of this sort, the security of a
user’s password rests on the cost to an attacker of
“cracking” the password’s encoding. Well-designed

systems store the cryptographic hash of each pass-
word with a user-specific salt. (Salting prevents at-
tackers from using pre-computed rainbow tables to
invert the password hashes with little computational
effort [46, 67].) To crack a salted password hash, the
attacker repeatedly guesses candidate passwords and
calculates the hash of each guessed password with the
user’s salt. The attacker then checks if the resulting
hash matches the hash obtained from the user’s com-
promised account record. If the two values do not
match, the attacker repeats the process with another
candidate password.

The cost to crack each user’s password is thus
the number of guesses required times the cost of
calculating the cryptographic hash function. This
formulation suggests two ways to increase the at-
tacker’s cost: either increase the average number of
guesses required, by strengthening the user-chosen
passwords [18, 20, 39, 52, 53, 85], or increase the cost
of each guess, by strengthening the cryptographic
hash function. We focus on the latter goal.

Ideally, the attackers’ cost per guess would be equal
to the cost that the authentication system pays to
validate a user’s password. However, authentication
systems typically run on general-purpose computing
hardware, whereas attackers can use special-purpose
machines designed for password-cracking. Attack-
ers computing traditional hash functions using spe-
cialized circuits need not pay for components unre-
lated to hashing, such as DRAM, disks, and high-
speed I/O systems. By stripping off this superfluous
hardware, attackers can obtain a massive cost sav-
ings over using general-purpose hardware. Dedicated
hardware for SHA-256 hashing, for example, yields
roughly a million-fold cost savings over commodity
servers [32]. Even off-the-self GPUs yield formidable
speed-ups over general-purpose CPUs in paralleliz-
able hash computations [89].

1

To minimize attackers’ potential economic advan-
tage, hash-function designers now augment the re-
sources required for computation to include random-
access memory [1, 34]. Like logic circuits, high-speed
random-access memory circuits are expensive to build
and power. Space-hard hash functions, functions that
require access to large memory buffers during their
execution, thus steeply increase the cost of password-
cracking attacks.

A popular space-hard password-hashing function
is scrypt, designed by Percival in 2009 [73]. We seek
to improve on three shortcomings of scrypt. First,
scrypt’s memory-access pattern depends on the value
being hashed. If an attacker can use a cache-timing
side channel attack to learn the first few cache lines
accessed when scrypt hashes a user’s password, the
attacker could cheaply rule out candidate passwords
by inspecting the memory behavior of the first few
steps of the hash computation on those candidates.
Second, there are time-space trade-offs against scrypt
that may give a cost advantage to attackers using
GPUs [30]. Third, scrypt’s security analysis relies on
properties of BlockMix, a non-standard and other-
wise unstudied hash function. A password-hashing
design competition [70] has yielded interesting alter-
natives to scrypt [3, 15, 42], though these new space-
hard designs do not offer sort of rigorous security
guarantees we provide (and prove).

In this paper, we introduce the Balloon family of
space-hard cryptographic hash functions. These are
the first password hashing functions to simultane-
ously satisfy four important design goals [70]:
• [Proven] Space-Hardness Properties. The

Balloon hash functions are moderately hard to
compute with N bits of space but are pro-
hibitively expensive to compute with much less
space than that (e.g., N/8 bits). We prove, in
the random-oracle model [10], the precise space-
hardness properties of the Balloon functions.
Most prior constructions have no formal secu-
rity analysis, in the random oracle model or oth-
erwise.
• Built from Standard Primitives. The Bal-

loon hashes require only a standard crypto-
graphic hash function (e.g., SHA-3 or SHA-512)
as a subroutine so they need not rely on new and
unstudied cryptographic primitives.
• Resistant to Cache Attacks. The memory

access pattern of each Balloon hash function
is independent of the password being hashed.
Thus, an adversary who can observe the mem-

ory access patterns of a Balloon computation,
e.g. via cache side-channels [22, 68, 93] on a
multi-user system, learns no information about
the password.

• Practical. The Balloon hash functions are easy
to implement and are fast enough to support
hundreds of authentications per second while us-
ing using all of the high-speed (L2) memory on
a modern CPU core.

Achieving all of these properties at once is surpris-
ingly difficult. Argon2 [15], the winner of the recent
Password Hashing Competition [70], achieves the lat-
ter three design goals but lacks a formal analysis
of its claimed space-hardness properties. To moti-
vate our interest in space-hardness proofs, we show
in Appendix A that it is possible for an adversary
to reduce the space usage of single-pass Argon2i by
a factor of five without paying any penalty in com-
putation time. A similar analysis of multiple-pass
Argon2i (the recommended mode) yields a factor of
e ≈ 2.72 space savings. By providing a formal se-
curity analysis of the Balloon functions, we preclude
similar small-space attacks against them.

We introduce three distinct Balloon functions, each
of which sits at a different point on a security-speed
curve (see Table 1). Our fastest function consumes
the most working space per unit time but offers rela-
tively weak formal space-hardness guarantees. Our
strongest function (in terms of its space-hardness
guarantees) fills memory at a slightly slower rate.

The three Balloon functions all use a similar de-
sign principle: they first fill up a large buffer with
pseudo-random bytes derived from the password and
salt. Next, they “mix” the buffer contents by read-
ing pseudo-randomly selected bytes out of the buffer,
hashing them together, and writing them back in.
Finally, they extract a few bytes from the buffer as
output. As this description indicates, the Balloon
functions are essentially “modes of operation” for an
underlying non-space-hard cryptographic hash func-
tion.

We prove the security of the first two Balloon vari-
ants using pebble games, which are arguments about
the structure of the data-dependency graph of the un-
derlying computation [56, 72, 86]. To prove the secu-
rity of the third construction, we use a novel analysis
that relates the structure of certain matrices to the
space-hardness of computing the linear transforma-
tions they represent (reminiscent of Valiant’s classic
depth lower bounds [96]). Both analyses are in the
random-oracle model [10].

2

To demonstrate that the Balloon functions are fast
enough for real-world use, we implement each of the
three variants and compare their performance to that
of existing schemes. A four-core server using our
fastest construction with a 1 MiB buffer can compute
115 hashes per second and can compute our strongest
construction (in terms of the security bounds) with
a 1 MiB buffer at the rate of 19.5 hashes per sec-
ond. For comparison, our server computes PBKDF2-
HMAC-SHA512 hashes (using 105 iterations) at the
rate of 17.3 hashes per second.

Contributions. Our primary contribution in this
work is the design and analysis of the Balloon func-
tions, the first space-hard hash functions that use
a password-independent access pattern, build upon
standard cryptographic primitives, and run at speeds
competitive with existing password-hashing func-
tions. We also advance the state of the art in space-
hard hash function design by: (1) introducing and
studying a new class of directed acyclic graphs, which
may be useful in future time-space analyses, (2) ap-
plying novel linear-algebraic techniques to analyze
time-space trade-offs in the random-oracle model,
and (3) investigating the space-hardness of Argon2i
(see Appendix A). With this work, we aim to show
that space-hard functions can be at once practically
efficient and provably secure.

2 Related Work

Password Hashing. The problem of how to se-
curely store passwords on shared computer systems
is nearly as old as the systems themselves. In a 1974
article, Evans et al. described the principle of stor-
ing passwords under a hard-to-invert function [40].
A few years later, Robert Morris and Ken Thomp-
son presented the now-standard notion of password
salts and explained how to store passwords under a
moderately hard-to-compute one-way function to in-
crease the cost of dictionary attacks [64]. Their DES-
based crypt design became the standard for password
storage for over a decade [57] and even has a formal
analysis by Wagner and Goldberg [98].

In 1989, Feldmeier and Karn found that hardware
improvements had driven the cost of brute-force pass-
word guessing attacks against DES crypt down by
five orders of magnitude since 1979 [41, 52]. Poul-
Henning Kamp introduced the costlier md5crypt to
replace crypt, but hardware improvements also ren-
dered that design outmoded [28].

Provos and Mazières realized that, in the face of
ever-increasing processor speeds, any fixed password
hashing algorithm would eventually become easy to
compute and thus ineffective protection against dic-
tionary attacks. Their solution, bcrypt, is a password
hashing scheme with a variable “hardness” parame-
ter [81]. By periodically ratcheting up the hardness,
a system administrator can keep the time needed to
compute a single hash roughly constant, even as hard-
ware improves. A remaining weakness of bcrypt is
that it exercises only a small fraction of the CPU’s
resources—it barely touches the L2 and L3 caches
during its execution [61]. To increase the cost of cus-
tom password-cracking hardware, Reinhold’s HEKS
hash [82] and Percival’s popular scrypt routine con-
sume an adjustable amount of storage space [73], in
addition to time, as they compute a hash.

The Balloon functions, like scrypt, aim to be hard
to compute in little space. Unlike scrypt, however,
we require that our functions’ data access pattern be
independent of the password to avoid leaking infor-
mation via cache-timing attacks [22, 68, 93]. Our
functions also prevent certain time-space trade-offs
against scrypt [30] and use only standard crypto-
graphic primitives, whereas scrypt’s analysis relies on
a new primitive built from the Salsa20 core [13].

The recent Password Hashing Competition mo-
tivated the search for space-hard password-hashing
functions that use data-independent memory access
patterns [70]. The Argon2 family of functions, which
have excellent performance and an appealingly sim-
ple design, won the competition [15]. The Argon2
functions lack a theoretical analysis of the feasible
time-space trade-offs against them. As we discuss in
Appendix A, without such an analysis it is difficult
to know what the exact space-hardness properties of
the Argon functions are.

The Catena family of hash functions [42], which
became finalists in the Password Hashing Competi-
tion, are space-hard functions whose analysis applies
pebbling arguments to classic graph-theoretic results
of Lengauer and Tarjan [56]. The faster of the two
Catena constructions had a flawed security analysis
and corresponding attack [17] and the other has some
practical limitations: when using N blocks of work-
ing space, the Catena hash requires Θ(N logN) invo-
cations of a cryptographic compression function per
round, compared with Θ(N) for our schemes. In
addition, the Catena security theorems do not rule
out many interesting small-space attacks (e.g., an at-
tacker using N/16 space).

3

The other competition finalists included a number
of interesting designs that differ from ours in im-
portant ways. Makwa [79] supports offloading the
work of password hashing to an untrusted server
but is not space-hard. Lyra [3] is a space-hard
function but lacks proven space-time lower bounds.
Yescrypt [74] is an extension of scrypt and uses a
password-dependent data access pattern.

Other Studies of Password Protection. Concur-
rently with the design of hashing schemes, there has
been theoretical work from Bellare et al. on new secu-
rity definitions for password-based cryptography [9]
and from Di Crescenzo et al. on an analysis of pass-
words storage systems secure against adversaries that
can steal only a bounded number of bits of the pass-
word file [31]. Other ideas for modifying password
hashes include the key stretching schemes of Kelsey
et al. [50] (variants on iterated hashes), a proposal
by Boyen to keep the hash iteration count (e.g.,
time parameter in bcrypt) secret [23], a technique of
Canetti et al. for using CAPTCHAs in concert with
hashes [25], and a proposal by Dürmuth to use pass-
word hashing to do meaningful computation [33].

In recent theoretical work, Alwen and Serbinenko
introduce the notion of parallel-space hardness [4]:
functions that use a lot of space not only at some
point during a computation but during most points
in a computation. Applying their analysis techniques
to the Balloon functions presents an interesting and
important challenge for future work.

Proofs of Space. Abadi et al. [1] introduced “proofs
of space” as more effective alternatives to traditional
proofs-of-work in heterogeneous computing environ-
ments [7, 35]. There exist theoretically analyzed
proof-of-space schemes [5, 34, 37] (many relying also
on pebbling arguments) and others with heuristic
hardness [58, 94]. Applications of proofs-of-space to
crypto-currencies, like Dogecoin, Litecoin [21], and
the newly proposed Spacecoin [69] have renewed in-
terest in the area. By making the currency mining
process space-hard, these currencies aim to decrease
the economic advantage of industrial-scale miners us-
ing custom mining hardware.

Two features distinguish a proof-of-space from a
space-hard password hashing function. First, a proof-
of-space may access memory in a pattern that de-
pends on the input to the proof. In the context of
password hashing, we prefer to avoid data-dependent
addressing to prevent cache attacks. Second, proofs-
of-space must be efficiently checkable—the verifier of
the proof should be quite efficient while the prover

need not be. We need no such asymmetry in our set-
ting: computing a hash should be moderately hard
for all parties.

Time-Space Trade-Offs. The techniques we use
to analyze the Balloon functions draw on exten-
sive prior work on computational time-space trade-
offs. We use pebbling arguments, which have seen
application to register allocation problems [86], to
the analysis of the relationships between complexity
classes [12, 26, 48, 91], and to prior cryptographic
constructions [36, 37, 38, 42]. Pebbling has also been
a topic of study in its own right [56, 72]. Savage’s
text gives a clear introduction to graph pebbling [84]
and Nordström surveys the vast body of pebbling re-
sults in depth [66]. In the latter part of the paper,
we use properties of linear transformations to prove
time-space lower bounds. This connection is remi-
niscent of the techniques of Leslie Valiant [96] and
Yaacov Yesha [99].

3 Goals

This section summarizes the high-level security and
functionality goals of a password hashing function in
general and the Balloon functions in particular. We
draw these aims from prior work on password hash-
ing [73, 81] and also from the requirements of the
recent Password Hashing Competition [70].

3.1 Syntax

Each of our password hash functions takes four in-
puts: a password, salt, time parameter, and space
parameter. The output of each function is a bitstring
of fixed length (e.g., 256 or 512 bits). The password
and salt are standard [64], but we elaborate on the
role of the latter parameters below.

Time Parameter (Number of Rounds). Our
functions take as input a parameter r that determines
the number of “rounds” of computation they perform.
As in bcrypt [81], the larger the time parameter, the
longer the hash computation will take. As computa-
tional power increases, users can increase this time
parameter to keep the number of wall-clock seconds
required to compute each hash near-constant.

Space Parameter (Buffer Size). The space pa-
rameter indicates how many bytes of working space
the hash function will require during the course of
its computation, as in scrypt [73]. Computing the

4

Balloon functions with much less than than the spec-
ified amount of buffer space incurs a huge slow-down
in the computation time. We make the exact time-
space trade-offs precise later on.

For execution on multi-core processors, two of the
three Balloon functions allow a limited and config-
urable amount of parallelism. By using all available
compute cores, the defender (i.e., legitimate authen-
tication server) can increase the amount of space the
Balloon functions consume per unit time. Allowing
for limited parallelism is a common feature of space-
hard password hashing functions [15, 42, 73, 74].

3.2 Security Properties

The high-level security goals of the Balloon functions
are as follows.

Space-Hardness. The Balloon functions are space
hard. Informally, that means that they are “easy”
to compute with N + O(1) blocks of storage space
but are “hard” to compute with “many fewer than” N
blocks of space. To make this definition precise, we
use the number of random oracle queries needed to
compute a function as a proxy for the function’s time
complexity [10]. A computer with N + O(1) blocks
of working space available can compute the Balloon
functions with roughly c ·r ·N random-oracle queries,
where r is the number of rounds and c is a small
constant—less than 20, say. For algorithms using a
constant fraction less space (e.g., N/8 block of work-
ing space), we prove lower bounds on the running
time of any algorithm computing these functions with
high probability (Table 1). Thus, we can make state-
ments of the form: “Computing the r-round single-
buffer Balloon function withN/8 k-bit blocks of space
requires time at least 2rN .”

In many cases, small-space strategies for comput-
ing our functions result in a computational slowdown
that is exponential in the number of rounds r. From
a theoretical perspective, if one chooses the number
of rounds r to be a function of N , then the time
required to compute the Balloon functions in small
space can be super-polynomial (e.g., if r = log2N)
or even sub-exponential in N (e.g., if r =

√
N) [71].

Password-Independent Access Pattern. A first-
class design goal of the Balloon functions is that their
memory access patterns be independent of the pass-
word being hashed. (We allow the data-access pat-
tern to depend on the salt, since the salts can be
public.) As mentioned above, employing a password-

independent access pattern reduces the risk that in-
formation about the password will leak to other
users on the same machine via cache or other side-
channels [22, 68, 93]. This may be especially im-
portant in cloud-computing environments, in which
many mutually distrustful users share a single phys-
ical host [83].

Creating a space-hard function with a password-
independent access pattern presents a technical chal-
lenge: since the data access pattern depends only
upon the salt, which an adversary who steals the pass-
word file knows, the adversary can compute the en-
tire access pattern in advance of a password-guessing
attack. With the access pattern in hand, the ad-
versary can expend a huge amount of effort to find
an efficient strategy for computing the hash func-
tion in small space. Although this pre-computation
might be expensive, the adversary can amortize its
cost over billions of subsequent hash evaluations. A
function that is space-hard and that uses a password-
independent data access pattern must be impervious
to all small-space strategies for computing the func-
tion so that it maintains its strength in the face of
these pre-computation attacks.

Collision Resistance, etc. If necessary, we can
modify the Balloon hash functions so that they pro-
vide the standard properties of second-preimage re-
sistance and collision resistance [62]. It is pos-
sible to achieve these properties in a straightfor-
ward way by composing a Balloon function B
with a standard cryptographic hash function H as
H(password, salt, B(password, salt)), so we focus our
attention on the space-hardness properties of the Bal-
loon functions.

4 Constructions

In this section, we present the three Balloon functions
and we defer the security analysis of the construc-
tions to latter sections. Each of the Balloon functions
uses a standard (non-space-hard) cryptographic hash
function H : {0, 1}2k → {0, 1}k as a subroutine. All
constructions use a large memory buffer as working
space and we divide this buffer into contiguous blocks.
The size of each block is equal to the output size of
the hash function H. Our analysis is agnostic to the
choice of hash function, except that, to prevent is-
sues described later on (in Section 5.3), the internal
state size of H must be at least as large as its output
size. Since H maps blocks of 2k bits down to blocks

5

of k bits, we sometimes refer to H as a cryptographic
compression function.

The Balloon functions operate in three steps:

1. Expand. In the first step, the Balloon functions
fill up a large buffer with pseudo-random bytes
derived from the password and salt. The current
implementation uses a stream cipher (e.g., AES-
CTR on machines with hardware AES support)
to fill this buffer initially. Repeatedly invoking
the compression function H with the password,
salt, and a counter as input would also work.

2. Mix. In the second step, the Balloon functions
perform a “mixing” operation on the pseudo-
random bytes in the memory buffer. The user-
specified round parameter r determines how
many rounds of mixing take place.

3. Extract. In the last step, the Balloon functions
extract the final output value from the memory
buffer, either by outputting the last block of the
buffer or by outputting some function of the en-
tire buffer (this steps differs with each construc-
tion).

Notation. Throughout this paper, Greek symbols
(α, β, γ, λ, etc.) typically denote constants greater
than one. For convenience, we often implicitly as-
sume that a certain number (e.g., n/α) is integral.
We use log2(·) to denote a base-two logarithm and
log(·) to denote a logarithm when the base is irrele-
vant. For strings x and y, we write their concatena-
tion as x‖y. We use F to denote an arbitrary finite
field with |F| elements, Fk to denote the unique field
of k elements, and Fm×n to denote an m-by-n matrix
whose elements are in F. The notation polylog x in-
dicates a fixed polynomial in log x. For a finite set S,
the notation x←R S indicates sampling an element of
S uniformly at random and assigning it to the vari-
able x.

Construction I: Single-Buffer
The first member of the Balloon function family op-
erates on a single buffer of N memory blocks (Fig-
ure 1). The function first fills up the buffer with
pseudo-random bytes derived from the inputs. Next,
it runs the mixing operation r times. At each mixing
step, for each block i in the buffer, the routine up-
dates the contents of block i to be equal to the hash of
block (i−1) mod N , block i, and δ = 20 other blocks
chosen “at random” from the buffer. (The choice of

func balloon_single(char passwd[], char salt[],
int s_cost, // Space cost (main buffer size)
int t_cost): // Time cost (num. of rounds)

int delta = 20; // Num. of dependencies
int cnt = 0; // A counter (used in sec. proof)
block_t buf[s_cost]; // The main buffer

// Step 1. Expand input into buffer.
for m in range(s_cost):

buf[m] = hash(cnt++, passwd, salt);

// Step 2. Mix buffer contents.
for t in range(t_cost):

for m in range(s_cost):
// Step 2a. Hash last and current blocks.
block_t prev = buf[(m-1) % s_cost];
buf[m] = hash(cnt++, prev, buf[m]);

// Step 2b. Hash in pseudorandomly
// chosen blocks.
for i in range(delta):

int other = random_index(t, m, i, salt);
buf[m] = hash(cnt++, buf[m], buf[other]);

// Step 3. Extract output from buffer.
return buf[s_cost-1];

Figure 1: Pseudo-code of the single-buffer Balloon
hash function.

the constant δ is important in the security analysis, as
we explain in Section 7.) Since the Balloon functions
are deterministic functions of their arguments, the
dependencies are not chosen truly at random but are
sampled using a pseudorandom stream of bits gen-
erated from the user-specific salt. After mixing the
buffer for r rounds, the routine returns the last block
of the buffer as its output.

This construction provides very strong protection
against time-space trade-offs: computing the func-
tion’s output with high probability in N blocks of
space requires a number of calls to the underlying
hash function that is linear in r and N . Computing
the function with much less than N blocks of space,
e.g., N/8 blocks of space, causes the time required to
compute the function to increase by a factor of 2r.

A limitation of the single-buffer construction is
that it does not allow even limited parallelism, since
the value of the ith block computed always depends
on the value of the (i − 1)th block. The next mem-
ber of the Balloon function family weakens this re-
striction to increase the rate at which the Balloon
functions can fill memory on multi-core machines.

6

Small-Space Computation Time (r rounds)
Parallel Hash Calls S < N/4 S < N/8 S < N/16 S < N/32 S < N/128

Argon2i (one pass) ! N N ? ? ? ?
Single-Buffer (δ = 20) 20N r2N/4 2rN 3r+1N/4 4r+1N/6 4r+1N/6

Double-Buffer (δ = 20) ! 10N r2N/4 r2N/4 2rN 3r+1N/4 4r+1N/6

Linear (Thm. 27, w = 10) ! N/2 2rN

Table 1: Comparison of the three hash constructions when used with an N -block buffer. The values in
the right half of the table indicate the minimum computation time for each function, measured in terms of
number of random oracle calls. (Per Remark 14, it is possible to strengthen the single- and double-buffer
bounds with extra analysis.)

Construction II: Double-Buffer

The double-buffer construction modifies the construc-
tion above to allow all three steps of the hash com-
putation to be parallelized, to more fully take ad-
vantage of the processing power on multi-core ma-
chines. Although it would be possible to achieve p-
fold parallelism by just running p parallel instances
of Construction I, allowing different threads of exe-
cution to read from the same buffer yields stronger
space-hardness properties with the same speed-up.

The double-buffer variant modifies the single-buffer
construction by splitting the main N -block memory
buffer into two pieces of N/2 blocks each. We call
one of these buffers the “source” buffer and one the
“destination” buffer.

In the expansion step of the computation, which is
already parallelizable, the routine fills up the source
buffer with pseudorandom bytes as before (see Fig-
ure 1, Step 1). The mixing step of the computa-
tion proceeds differently. Rather than update the
buffer in place, each thread now treats the “source”
buffer as read-only and writes into a thread-private
segment of the “destination” buffer. For each block
in the destination buffer, the routine picks δ = 20
neighboring blocks in the source buffer, hashes them
together, and writes the result into the destination
buffer. Many threads can perform this mixing oper-
ation concurrently since they read from a read-only
buffer and their writes never conflict. Once the desti-
nation buffer is full, the routine swaps the source and
destination buffers. Finally, in the extraction step,
the routine outputs the hash of all of the blocks in
the last-written buffer as the output of the function
overall.

The construction we implement is a bit more com-
plicated, in that we force the value of ith block in
each thread-private segment to depend on the value
of the (i− 1)th block. We also force the first block in

Expand(passwd, salt)

multiplication by M

multiplication by M

multiplication by M

H H H H H H H

H H H H H H H

+ + + + + + +

...
...

output

Figure 2: The linear construction alternates a lin-
ear transformation on the blocks of the buffer with a
hashing step.

each segment in the “destination” buffer to depend
on the last block in each segment of the “source”
buffer. These tweaks limit the amount of parallelism
(so that the attacker’s parallelism does not exceed the
defender’s).

The primary limitation of the double-buffer con-
struction is still performance: each mixing iteration
requires making roughly 20(N/2) = 10N calls to the
underlying hash function.

Construction III: Linear

The main performance bottleneck of the double-
buffer construction is that for each block of mem-
ory written, the function must invoke the underlying
cryptographic hash function roughly 20 times. That

7

is, we hash together the 20 input blocks from the
source buffer to produce the single output block that
we will write into the destination buffer.

A simpleminded way to speed this step up would
be to read the 20 blocks of memory from the source
buffer, XOR them together, and run the resulting
value through the cryptographic compression func-
tion to obtain the output block that we write to the
destination buffer. This optimization would reduce
the number of cryptographic compression function
calls down to one—instead of 20—per block written,
but would the resulting scheme still be secure?

With some work, we show in Section 9 that it is.
Indeed, we show that the resulting scheme is secure
for a large class of linear transformations, including
the transformation represented by XORing 20 blocks
together per block written. As in the double-buffer
design, this construction uses two parallel buffers.
The expansion step (Step 1) proceeds exactly as in
the double-buffer construction. The mixing and ex-
traction steps (Steps 2 and 3) differ, as we describe
below.

Let us first introduce a bit of notation. If each
block of memory in the buffer is k bits long, we can
view each block as an element of the finite field F2k .
The source and destination buffers contain N blocks
total, or n = N/2 blocks each. Thus we can treat the
state of each buffer as a vector in the space Fn2k .

The mixing step requires a public matrix M ∈
Fn×n
2k

, the properties of which we describe later on. In
each step of mixing, the routine computes the prod-
uct of the matrix M with the vector consisting of the
state of the source buffer, and stores the result in
the destination buffer. The routine hashes each value
in the destination buffer in place and swaps the two
buffers (Figure 2). To extract the output, the algo-
rithm computes the block-wise XOR of all blocks in
the final buffer (Figure 3).

The finesse comes in choosing the matrix M . For
now, let us say that a random n×nmatrix over F2k in
which 10 independently chosen entries per row are set
to 1, and all other entries are 0, is a suitable choice.
We will return to this topic in Section 9.

The design of our linear construction bears resem-
blance to the design of certain block ciphers that
alternate a linear transformation with a non-linear
step [2]. Exploring whether there are deeper connec-
tions between these two areas of cryptography may
be worthy of further study.

matrix_t M; // A public matrix
int cnt = 0; // A counter (used in sec. proof)
block_t src[s_cost/2], dst[s_cost/2];
...
// Step 2. Mix from src to dst buffer.
for t in range(t_cost):

// Perform a matrix-vector mulitply.
dst = matrix_multiply(M, src)
// Write result back into src buffer.
for m in range(s_cost/2):

src[m] = hash(cnt++, dst[m]);
...

Figure 3: Pseudo-code for the mixing step of the lin-
ear construction.

5 Pebble Games
In this section, we introduce pebble games and ex-
plain how to use them to analyze the first two Balloon
functions. Pebble games are a technique from the
theoretical computer science literature for analyzing
computational time-space trade-offs [48, 56, 72, 77,
86, 96] and space-hard functions [4, 36, 37, 42].

5.1 Rules of the Game

The pebble game is a one-player game that takes place
on a directed acyclic graph G = (V,E). If there is an
edge (u, v) ∈ E, we say that v is a successor of u in
the directed graph and that u is a predecessor of v.
We refer to nodes of the graph with in-degree zero as
source nodes and nodes with out-degree zero as sink
nodes—edges point from sources to sinks. At each
time step in the pebble game, the player may:

• place a pebble on a sink vertex,

• remove a pebble from any pebbled vertex, or

• place a pebble on a non-sink vertex if and only
if all of its successor vertices are pebbled.1

The goal of the game is to place a pebble on a par-
ticular source node of the graph in as few moves as
possible.

Definition 1 (Legal Pebbling). A sequence of peb-
bling moves is legal if each move in the sequence obeys
the rules of the game.

1The pebble game is often defined in the opposite direction,
in which pebbles move from sources to sinks, but this modified
version simplifies our discussion later on.

8

The pebble game typically begins with no pebbles
on the graph, but in our analysis we will occasion-
ally define partial pebblings that begin in a particu-
lar configuration C, in which some some vertices are
already pebbled.

The pebble game is a useful model of oblivious
computation, in which the data access pattern is in-
dependent of the value being computed [78]. Edges
in the graph correspond to data dependencies, while
vertices correspond to intermediate values needed in
the computation. Sink nodes represent input values
(which have no dependencies) and source nodes rep-
resent output values. The pebbles on the graph cor-
respond to values stored in the computer’s memory
at a point in the computation. The three possible
moves in the pebble game then correspond to: (1)
loading an input value into memory, (2) deleting a
value stored in memory, and (3) computing an inter-
mediate value from the values of its dependencies.

5.2 Pebbling in the
Random-Oracle Model

Dwork, Naor, and Wee [36] demonstrated that there
is a close relationship between the pebbling problem
on a graph G and the problem of computing a certain
function fG in the random-oracle model [10]. This
observation became the basis for the design of the
Catena space-hard hash function family [42] and is
useful for our analysis as well.

Since the relationship between G and fG will be
important for our construction and security proofs,
we will summarize here the transformation of Dwork
et al. [36], as modified by Alwen and Serbinenko [4].
The transformation from directed acyclic graph G =
(V,E) to function fG works by assigning a label to
each vertex v ∈ V , with the aid of a cryptographic
hash function H. We write the vertex set of G topo-
logically {v1, . . . v|V |} such that v1 is a sink and v|V |
is a source and, to simplify the discussion, we assume
that G has a unique source node.

Definition 2 (Labeling). Let G = (V,E) be a
directed graph with maximum out-degree δ and a
unique source vertex, let x ∈ {0, 1}k be a string, and
let H : Z|V | × {0, 1}kδ → {0, 1}k be a function, mod-
eled as a random oracle. We define the labeling of G
relative to H and x as:

labelx(vi) =

{
H(i, x,⊥, . . . ,⊥) if vi is a sink
H(i, labelx(z1), . . . , labelx(zδ)) o.w.

where z1, . . . , zδ are the successors of vi in the graph
G. If vi has fewer than δ successors, a special “empty”
label (⊥) is used as placeholder input to H.

The labeling of the graphG proceeds from the sinks
to the unique source node source: first, the sinks of G
receive labels, then their predecessors receive labels,
and so on until finally the unique source node receives
a label. To convert a graph G into a function fG :
{0, 1}k → {0, 1}k, we define fG(x) as the function
that outputs the label of the unique source vertex
under the labeling of G relative to a hash function H
and an input x.

Dwork et al. demonstrate that any valid pebbling
of the graph G with S pebbles and T placements
immediately yields a method for computing fG with
Sk bits of space and T queries to the random oracle.
Thus, upper bounds on the pebbling cost of a graph
G yield upper bounds on the computation cost of the
function fG. In the other direction, they show that
with high probability, an algorithm for computing fG
with space Sk and T random oracle queries yields a
pebbling strategy for G using roughly S pebbles and
T placements [36, Lemma 1].2 Thus, lower bounds on
the pebbling cost of the graph G yield lower bounds
on the space and time complexity of the function fG.

We use a version of their result due to Dziembowski
et al. [38]. The probabilities in the following theorems
are over the choice of the random oracle and the ran-
domness of the adversary.

Theorem 3 (Adapted from Theorem 4.2 of Dziem-
bowski et al. [38]). Let G, H, and k be as in Def-
inition 2. Let A be an adversary making at most
T random-oracle queries during its computation of
fG(x). Then, given the sequence of A’s random ora-
cle queries, it is possible to construct a pebbling strat-
egy for G with the following properties:

1. The pebbling is legal with probability 1− T/2k.

2. If A uses at most Sk bits of storage then, for
any λ > 0, the number of pebbles used is at most
Sk+λ

k−log2 T
with probability 1− 2−λ.

3. The number of pebble placements (i.e., moves in
the pebbling) is at most T .

2This piece of the argument is subtle, since an adversarial
algorithm for computing fG could store parts of labels, might
try to guess labels, or might use some other arbitrary strategy
to compute the labeling. Showing that every algorithm that
computing fG with high probability yields a pebbling requires
handling all of these possible cases.

9

Proof. The first two parts are a special case of Theo-
rem 4.2 of Dziembowski et al. [38]. The third part of
the theorem follows immediately from the pebbling
they construct in the proof: there is at most one
pebble placement per oracle call. There are at most
T oracle calls, so the total number of placements is
bounded by T .

Informally, the lemma states that an algorithm us-
ing Sk bits of space will rarely be able to generate a
sequence of random oracle queries whose correspond-
ing pebbling places more than S pebbles on the graph
or makes an invalid pebbling move.

The essential point, as captured in the following
theorem, is that if we can construct a graph G that
takes a lot of time to pebble when using few pebbles,
then we can construct a function fG that requires a
lot of time to compute with high probability when
using small space, in the random oracle model.

Theorem 4. Let G and k be as in Definition 2 with
the additional restriction that there is no pebbling
strategy for G using S∗ pebbles and T ∗ pebble place-
ments, where T ∗ is less than 2k − 1. Let A be an
algorithm that makes T random oracle queries and
uses σ bits of storage space. If

T < T ∗ and σ < S∗(k − log2 T
∗)− k,

then A correctly computes fG(·) with probability at
most T+1

2k
.

Proof. Fix an algorithm A as in the statement of the
theorem. By Theorem 3, from a trace of A’s execu-
tion we can extract a pebbling of G that:

• is legal with probability at least 1− T/2k,

• uses at most σ+k
k−log2 T

∗ pebbles with probability
at least 1− 2−k, and

• makes at most T pebble placements.

By construction of G, there does not exist a peb-
bling of G using S∗ pebbles and T ∗ pebble place-
ments. Thus, whenever A succeeds at computing
fG(·) it must be that either (1) the pebbling we ex-
tract from A is invalid, (2) the pebbling we extract
from A uses more than S∗ pebbles, or (3) the peb-
bling we extract from A uses more than T ∗ moves.
From Theorem 3, the probability of the first event is
at most T/2k, the probability of the second event is
at most 1/2k, and the probability of the third event
is zero.

. . .
. . .

. . .

Figure 4: A graph requiring n+ 1 pebbles to pebble
in the random-oracle model (left) requires O(1) stor-
age to compute when using a Merkle-Damgård hash
function (right).

By the Union Bound, we find that:

Pr[A succeeds] ≤ Pr[pebbling is illegal]
+ Pr[pebbling uses > S∗ pebbles]

+ Pr[pebbling uses > T ∗ time steps].

Substituting in the probabilities of each of these
events derived from Theorem 3, we find

Pr[A succeeds] ≤ T

2k
+

1

2k
=
T + 1

2k
.

5.3 Dangers of the Pebbling Paradigm
The beauty of the pebbling paradigm is that it al-
lows us to reason about the space-hardness of cer-
tain functions by simply reasoning about the prop-
erties of graphs. That said, applying the pebbling
model requires some care. For example, it is com-
mon practice to model an infinite-domain hash func-
tion H : {0, 1}∗ → {0, 1}k as a random oracle and
then to instantiate H with a concrete hash function
(e.g., SHA-256) in the actual construction.

When using a random oracle with an infinitely
large domain in this way, the pebbling analysis can
give misleading results. The reason is that Theorem 3
relies on the fact that when H is a random oracle,
computing the value H(x1, . . . , xn) requires that the
entire string (x1, . . . , xn) be written onto the oracle
tape (i.e., be in memory) at the moment when the
machine queries the oracle.

In practice, the hash function H used to construct
the labeling of the pebble graph is not a random or-
acle, but is often a Merkle-Damgård-style hash func-
tion [29, 63] built from a two-to-one compression
function C : {0, 1}2k → {0, 1}k as

H(x1, . . . , xn) = C(xn, C(xn−1, . . . , C(x1,⊥) . . .)).

If H is one such hash function, then the computation
of H(x1, . . . , xn) requires at most a constant number

10

of blocks of storage on the work and oracle tapes at
any moment, since the Merkle-Damgård hash can be
computed incrementally.

The bottom line is that pebbling lower bounds sug-
gest that the labeling of certain graphs, like the one
depicted in Figure 4, require Θ(n) blocks of storage to
compute with high probability in the random oracle
model. However, when H is a real Merkle-Damgård
hash function, these functions actually take Õ(1)
space to compute. The use of incrementally com-
putable compression functions has led to actual secu-
rity weaknesses in candidate space-hard functions in
the past [16, Section 4.2], so these theoretical weak-
nesses have bearing on practice.

This failure of the random oracle model is one of
the very few instances in which a practical scheme
that is proven secure in the random oracle model
becomes insecure after replacing the random oracle
with a concrete hash function (other examples in-
clude [8, 24, 45, 65].) While prior works study vari-
ants of the Merkle-Damgård construction that are in-
differentiable from a random oracle [27], they do not
factor these space usage issues into their designs.

To sidestep this issue entirely, we use the random
oracle only to model compression functions with a
fixed finite domain (i.e., two-to-one compression func-
tions) whose internal state size is as large as their
output size. For example, we model the compression
function of SHA-512 as a random oracle, but do not
model the entire [infinite-domain] SHA-512 function
as a random oracle.

6 Avoider Graphs

In this section, we introduce avoider graphs, a type
of graph that has a very rich connectivity structure
and yet can be quite sparse. We show that “stacks”
of avoider graphs are difficult to pebble with few peb-
bles and few moves. As a result, if the data depen-
dency graph for a particular computation is a stack
of avoiders, then executing that computation with
a small amount of storage space will inevitably re-
quire a lot of time. We use arguments along these
lines to prove the space-hardness of Constructions 1
and 2. Throughout this section, we use n to indicate
the number of distinguished source and sink nodes in
the graph—n does not refer to the total number of
vertices in the graph.

6.1 Expander Graphs
We will use expanders in the rest of this section, so
we recall their definition.

Definition 5. A directed bipartite graph G = (A ∪
B,E) with n = |A| = |B| is an (α, β)-bipartite ex-
pander with source nodes A, sink nodes B, and left-
degree δ if:

1. every vertex in A has out-degree at most δ, every
vertex in B has out-degree zero, and

2. for every subset A′ ⊆ A such that |A′| = n/α,
the set A′ has more than n/β successors in B.

Consider a bipartite graph generated by choosing,
for every vertex v ∈ A, δ successors independently
and uniformly at random from B, collapsing parallel
edges. Pinsker [76] demonstrated that, as long as the
degree δ is a large enough constant, a graph generated
according to this process will be an expander with
good probability.

Theorem 6 (Pinsker [76]). For all α, β, λ, n > 1, a
random bipartite graph with left-degree δ, n sources,
and n sinks is an (α, β)-bipartite expander with prob-
ability greater than 1− 2−λ if:

δ ≥ α

log2 β

[
Hb(1/α) +Hb(1/β) +

λ

n

]
.

Here, Hb(·) denotes the binary entropy function.

Theorem 6 implies a randomized construction of
expanders that is extremely simple to implement,
provides good expansion, and fails with exponen-
tially small probability. For these reasons, the ran-
domized construction is likely the best choice for a
real-world implementation. That said, we use bipar-
tite expanders only in a “black box” way, so it would
be possible to use a deterministically constructed ex-
pander instead in all of our constructions (see Gol-
dreich [44]).

6.2 Defining Avoiders
An avoider graph is a directed graph with n sources,
n sinks, and potentially many non-source non-sink
(“middle”) vertices. The key property of an avoider
graph is that every small number of sources has paths
to a large number of sinks, even if some of these paths
are blocked. The name “avoider” comes from the no-
tion that there is always a set of source-sink paths
that avoids the blocking vertices. Our definition of
avoiders is related to, but weaker than, the definition
of Valiant’s f(r)-grates [96].

11

A

M

B

. . .

. . .

A′S

Figure 5: A graph with
sources A, sinks B, and
middle nodes M . There
are four S-avoiding sink-
distinct source-sink paths
beginning in A′ (illustrated
with thickened edges).

The avoider property
is useful to us because
it is invariant under
certain transformations
of the graph. For
example, we show that
an avoider graph with
out-degree at most δ
can be transformed
into an equally good
avoider graph with
out-degree at most
2. To our knowledge,
no existing class of
switching graphs (ex-
panders, concentrators,
super-concentrators, etc. [76, 95, 96]) maintains the
properties we need under the transformations we
use.

We say that a path p = (v1, . . . , vk) in a graph
avoids a set of vertices S if no vertex in p is in the
set S. For a graph with distinguished source and sink
vertices, we say that a source-sink path is a path be-
ginning at a source node and terminating at a sink
node. Since the sink nodes in our graphs have out-
degree zero, there are never two sink nodes along a
path in these graphs. We say that a set of source-sink
paths is sink-distinct if no two paths in the set termi-
nate at the same sink (see Figure 5 for an example).

Definition 7. An (α, β, γ)-avoider is a directed
acyclic graph G = (A∪B∪M,E), with source nodes
A, sink nodes B, and middle nodes M such that:

1. G has has n sources and n sinks, with all sinks
having out-degree zero,

2. for every set A′ ⊆ A of size n/α and for every set
S ⊆ (A ∪M) of size at most n/γ, there exists a
set of at least n/β sink-distinct source-sink paths
from A′ to B, avoiding the set of vertices S.

For an avoider graph to exist, we must have α < γ.
If not, then the set of vertices S “to avoid” is larger
than the set of sources nodes A′. In this case, for
every set A′ ⊆ A of size n/α there exists a set S ⊆ A
such that A′ ⊆ S. In this case, there can never be a
set of S-avoiding paths from A′ to B.

A first point to see is that a bipartite expander
is also an avoider, for an appropriate setting of the
parameters.

Claim 8. Let α > 2. If G = (A∪B,E) is an (α, β)-
bipartite expander with sources A and sinks B, then
G is an (α/2, β, α)-avoider with sources A, sinks B,
and no middle nodes (M = ∅).

Proof. The first property of an avoider holds by con-
struction. To show the second property, fix a subset
A′ ⊆ A of size 2n/α and a subset S ⊆ A of size
n/α (since G has no middle nodes, the blocking set
S consists only of source nodes). There are at least
2n/α−n/α = n/α nodes of A′ outside of S and since
G is an (α, β)-expander, these nodes must have at
least n/β successors. Thus, there are least n/β sink-
distinct S-avoiding source-sink paths from A′ to B
in G.

6.3 Transformations on Avoiders
One useful aspect of the definition of avoiders is that
a bipartite expander graph is still an avoider under
a “localizing” transformation. Consider a bipartite
graph G on 2n vertices a1, . . . , a2n, such that edges
flow from the last n vertices to the first n vertices.
The localized graph L(G) we construct has the prop-
erty that (1) if G is an expander, then L(G) is an
avoider and (2) the successors of vertex ai are a sub-
set of the set {ai−1, . . . , ai−n}. In this sense, G’s
edges are “local”—no edge of G points to a vertex too
far from its origin. As Figure 6 demonstrates, the lo-
calized graph L(G) is not necessarily bipartite, even
though the original graph G was.

We use this localizing transformation to make more
efficient use of buffer space in Construction 1. It is
possible to pebble a localized bipartite expander in
linear time with n + O(1) pebbles, whereas a non-
localized bipartite expander can require as many as
2n pebbles in the worst case. This transformation
makes computing the space-hard hash function easier
for anyone using n space, while maintaining the prop-
erty that the function is hard to compute in much
less space. (Smith and Zhang find a similar locality
property useful context of leakage-resilient cryptog-
raphy [88].)

Definition 9. Let G = (A ∪ B,E) be a bipartite
graph with A = (a1, . . . , an), B = (b1, . . . , bn) and
all edges flowing from A to B. The localized graph
L(G) = (U ∪ V,E′) is a graph (not necessarily bipar-
tite) with |U | = |V | = n and with the edge set:

E′ =
{(ui, vi) | i ∈ {1, . . . , n}} ∪
{(ui, vj) | (ai, bj) ∈ E and i ≤ j} ∪
{(ui, uj) | (ai, bj) ∈ E and i > j}

12

A

B b1

a1

b2

a2

b3

a3

b4

a4 U

V v1

u1

v2

u2

v3

u3

v4

u4

Figure 6: A bipartite graph G (left) and the corre-
sponding localized graph L(G) (right).

Claim 10. If G is an (α, β)-bipartite expander with
source nodes A and sink nodes B with α > β and α >
2, then the localized graph L(G) is an (α/2, β′, α)-
avoider with source nodes U and sink nodes V , for
β′ = αβ/(α− β).

Proof. The first property of an avoider holds by con-
struction. To show the second property, we must
show that for every subset U ′ ⊆ U of size 2n/α and
for every subset S ⊆ U of size at most n/α, there are
at least n/β′ S-avoiding sink-distinct paths from U ′

to V . Fix subsets U ′ and S. At most n/α of the ver-
tices of U ′ are in S, which leaves n/α vertices of U ′
outside of S. By the expansion of G, these vertices
of U ′ must have at least n/β distinct sinks of G as
successors.

Thus, there is a set of indices I ⊆ {1, . . . , n} of
size at least n/β such that ui or vi (or both) have a
predecessor in the set U ′. At most n/α of the vertices
ui can be in S. Thus, the set I \ {i | ui ∈ S} must
have size at least n/β − n/α. In other words, there
are at least n/β−n/α distinct integers i ∈ {1, . . . , n}
such that vi has a predecessor in U ′ or ui 6∈ S and ui
has a predecessor in U ′. Since there is a (ui, vi) edge
in L(G) for all i, this implies that there are at least
(1/β − 1/α)n = α−β

αβ n = n/β′ S-avoiding paths from
vertices in U ′ to distinct sinks in V .

The last bit of preliminary work we must do is to
show that by adding auxiliary nodes to an avoider
graph with out-degree δ we can produce an equally
good avoider with out-degree two (similar to the tech-
nique of Paul and Tarjan [71]).

Reducing the degree of the graph allows us to in-
stantiate our construction with a standard two-to-one
compression function and avoids the issues raised in
Section 5.3.

Definition 11. Let G = (V,E) be a directed acyclic
graph. We say that the degree-reduced graph D(G) is
the graph in which each vertex v in G of out-degree δ
is replaced with a path “gadget” that has out-degree
at most 2. The original vertex v is at the head of

A

B

A

B

Figure 7: A bipartite graph G (left) and the cor-
responding degree-reduced graph D(G) (right). We
indicate the gadgets with dashed ovals.

the path, there are δ − 1 internal nodes on the path,
and the δ original successors of v are connected to
the internal nodes of the path (see Figure 7).

By construction, nodes in D(G) have out-degree at
most two and if G has n sources and n sinks, then
D(G) also has n sources and n sinks. If the graph G
had out-degree at most δ, then the vertex and edge
sets of D(G) are at most a factor of (δ−1) larger than
in G, since each gadget has at most (δ−1) nodes. The
degree-reduced graph D(G) has extra “middle” nodes
(non-source non-sink nodes) consisting of the internal
nodes of the degree-reduction gadgets (Figure 7).

Claim 12. If G is an (α, β, γ)-avoider with sources
A and sinks B then D(G) is an (α, β, γ)-avoider with
sources A and sinks B.

Proof. The first property of an avoider holds by con-
struction, so we focus on the second property. By
way of contradiction, assume that there exists some
set A′D of size n/α and some set SD of size at most
n/γ in D(G) such that there are fewer than n/β sink-
distinct paths from A′ to B in D(G) avoiding SD.
Since |SD| ≤ n/γ, the vertices in the set SD consist
of vertices on at most n/γ distinct degree-reduction
gadgets in D(G). Let S be the set of vertices in G cor-
responding to the degree-reduction gadgets in D(G)
that SD touches.

Now we know that for every set of vertices A′ ⊆ A
in G of size n/α, there are at least n/β sink-distinct
source-sink paths in G avoiding S (since G is an
avoider). Every such set A′ in G corresponds to
an equivalent set A′ in D(G) and every set of sink-
distinct source-sink paths avoiding S in G corre-
sponds to a set of sink-distinct source-sink paths in
D(G) avoiding the gadgets in SD. Thus, for every
set A′D and SD in D(G) as above, there must be at
least n/β SD-avoiding sink-distinct source-sink paths
in D(G). This is a contradiction.

13

L3

L2

L1

L0

Figure 8: A stack of d = 3 bipartite graphs. The
sinks of the stack are at level L0 and the sources are
at level L3.

6.4 Hard-to-Pebble Graphs
from Avoiders

The core of our analysis involves stacks of avoider
graphs. Given an avoider graph with n sources and n
sinks, we denote a depth-d stack of such avoiders by
Gn,d. We can view the graph Gn,d as consisting of d+
1 layers, each of n nodes, possibly with the avoiders’
middle nodes sitting between the layers. The sink
nodes of the level-zero avoider sit at the very top of
the stack and the source nodes of last avoider sit at
the very bottom of the stack (Figure 8).

Following Paul and Tarjan [71], we show that if
the graph at each level of the stack is a good avoider,
then pebbling a large subset of the vertices on the last
level of stack with few pebbles requires many moves.

Theorem 13. Let Gn,d be a graph constructed from a
stack of (α, α/ω, γ)-avoiders for some integer ω ≥ 1.
Let C be some configuration of at most n/γ pebbles
on Gn,d and let A be a set of n/α vertices on layer
i of the graph. Then every legal sequence of pebbling
movesM that

• begins in configuration C,

• never uses more than n/γ pebbles, and

• places a pebble on each vertex in the set A at
some point

must contain at least (1
α −

1
γ)(ωi + i)n pebble place-

ments on levels {0, . . . , i} of the graph, irrespective of
the starting configuration C.

Before proving the theorem, let us consider an in-
stantiation of it, to make its meaning slightly more
concrete.

Example. Let B be an (8, 2)-bipartite expander. By
Claim 8, B is a (4, 2, 8)-avoider. Construct a graph
Gn,d as a stack of d copies of B. Now applying The-
orem 13 with ω = 2 asserts that every sequence of

moves that pebbles some n/4 nodes on level d of Gn,d
using at most n/8 pebbles must require making at
least (2d + d)n/8 pebble placements on the graph.

Now we return to prove the theorem.

Proof of Theorem 13. The proof proceeds by induc-
tion on i, the level of the graph.

Base Case (i = 0). At the start of the sequence of
moves, there are at most n/γ pebbles on the graph
and thus at most n/γ pebbles on level zero. If each
of n/α vertices on level zero receives a pebble during
the sequence of moves, then there must be at least
n/α− n/γ = (1/α− 1/γ)n level-zero placements.

Induction Step. LetM be a legal sequence of peb-
bling moves and let A be a set of n/α vertices on level
i. At the start of the sequence of moves, there are at
most n/γ pebbles on the graph and thus there are at
most n/γ pebbles on level i of the graph.

Since each layer of Gn,d consists of an (α, α/ω, γ)-
avoider graph, every set of n/α nodes on the ith level
of Gn,d must connect to at least ωn/α nodes on level
i− 1 of the graph by paths avoiding the initial posi-
tions of the n/γ pebbles on the graph. SinceM is a
sequence of legal pebbling moves, at some point dur-
ingM, all of these ωn/α dependencies on level i− 1
must receive pebbles. We can now write M as the
concatenation of ω legal sequences of pebbling moves:
M = (M1‖ . . . ‖Mω).

We defineM1 to be the sequence of moves begin-
ning in configuration C during which the first n/α
dependencies on level i − 1 receive pebbles. At the
end ofM1, the pebbles on the graph are in some con-
figuration C1 with at most n/α pebbles on the graph.
We defineM2 to be the sequence of moves beginning
in configuration C1 during which the next n/α peb-
bles on level i− 1 receive pebbles. At the end ofM2,
the pebbles on the graph are in some configuration
C2. Continuing in this fashion, we can divideM into
ω valid sequences of pebbling moves (M1, . . . ,Mω).

Each sub-sequenceMj is a legal sequence of peb-
bling moves beginning in a configuration of at most
n/γ pebbles. Further,Mj never uses more than n/γ
pebbles (since the entire sequenceM never does) and
duringMj at least n/α vertices in level i − 1 of the
graph receive pebbles. Thus the induction hypothesis
applies to each of the ω sequences.

By the induction hypothesis, each sequence
of moves (M1, . . . ,Mω) must contain at least
(1/α− 1/γ) (ωi−1+i−1)n pebble placements on lev-
els {1, . . . , i − 1} of the graph. In total, the entire

14

sequence of movesM must then contain at least

ω · [(1/α− 1/γ) (ωi−1 + i− 1)n]

placements on levels {1, . . . , i− 1} of the graph.
In addition, since there are n/α vertices on level i

that receive pebbles duringM and there are at most
n/γ pebbles on the graph in the initial configuration,
M must contain at least (1/α − 1/γ)n pebblings of
vertices on level i. ThusM pebbles at least

(1/α− 1/γ) (ωi + ω(i− 1) + 1)n

vertices on levels {1, . . . , i} of the graph. Since i, ω ≥
1, this quantity is at least (1/α− 1/γ) (ωi + i)n.

Remark 14. The lower bound of Theorem 13 is
not the best possible when G is a stack of degree-
reduced graphs (see Definition 11). By keeping track
of which degree-reduction gadgets are pebbled, in-
stead of which vertices are pebbled, in the proof of
the theorem we can improve the lower-bound of The-
orem 13 to (δ−1)(1/α−1/γ)(ωi+ i)n, where δ is the
degree of the graph G before degree-reduction. This
factor of (δ−1) is important in practice, but we omit
the analysis for the sake of brevity.

Finally, we show that adding a few extra edges to
a stack of avoiders strengthens the lower-bound.

Corollary 15. Let Gn,d be a stack of (α, α/ω, γ)-
avoiders. If edges are added to the graph such that
there is a path from every vertex on level i to every
vertex on level i − 1, for all i ∈ {1, . . . , d}, then the
number of moves required to pebble all vertices on the
last level of the graph with at most n/γ pebbles is at
least:

T ≥
(

1− α

γ

)
n

d∑
i=0

(ωi + i).

Proof. For i ∈ {0, . . . , d}, every vertex on level i −
1 of the graph must be pebbled before every vertex
on level i of the graph. To pebble all n vertices on
the last level of the graph thus requires completely
pebbling each vertex on each layer of the graph at
least once. By Theorem 13, we know that pebbling
a set of n/α vertices on level i using at most n/γ
pebbles takes time at least: Ti ≥ (1/α−1/γ)(ωi+i)n
so pebbling all n vertices on level i takes time αTi.
Thus pebbling all n vertices on all d levels takes time
at least T ≥

∑d
i=0 αTi. Substituting in the expression

for Ti proves the corollary.

7 From Pebbling
to Space-Hardness

In this section, we complete the security analysis of
the single- and double-buffer Balloon constructions.
The space-hardness results of Table 1 follow from re-
peated application of a single proof technique. To il-
lustrate the general principle behind the analysis, we
walk through the proof of the claim there is no strat-
egy for computing the N -block r-round single-buffer
Balloon function that (1) uses much less than N/16
space, (2) makes many fewer than 3r+1N/4 random
oracle queries, and (3) succeeds with high probabil-
ity. The other results of Table 1 for the single-buffer
constructions (for space N/4, N/8, etc.) follow from
an almost identical analysis.

Theorem 16. Let k denote the block size (in bits)
of the underlying cryptographic hash function used
in the Balloon constructions. Any algorithm A that
computes the output of the single-buffer N -block r-
round Balloon construction, makes T < 3r+1N

4 ran-
dom oracle queries, and uses fewer than

N
16 (k − log2(3r+1N

4))− k

bits of storage space succeeds with probability at
most T+1

2k
+ r

280 over the choice of the random oracle,
provided that N ≥ 210 and 3r+1N

4 < 2k − 1.

As Theorem 16 demonstrates, computing the
single-buffer Balloon function with high probability
with a very small amount of space causes the time
required to blow up exponentially in the number of
mixing rounds. Even for a small constant number of
mixing rounds (e.g., 5 or 8), the time penalties can
be prohibitive.

Before proving Theorem 16, we define the data-
dependency graph of a Balloon computation and then
lay out a sequence of claims towards proving the the-
orem.

Definition 17 (Data-Dependency Graph). We
let Gsingle,x = (V,E) denote the directed data-
dependency graph for the N -block r-round single-
buffer Balloon function computed on input x. The
vertex set V contains a vertex for each of the N val-
ues stored in the main memory buffer at each of the r
rounds of mixing: {v(t)1 , . . . , v

(t)
N | t = 0, . . . , r}. There

is an edge (v
(t)
i , v

(t′)
i′) in Gsingle,x if the ith value in the

buffer at mixing round t depends on the i′th value in
the buffer in mixing round t′.

15

Claim 18. When N ≥ 210, the data-dependency
graph of one round of the single-buffer Balloon con-
struction is an (8, 83 , 16)-avoider with probability at
least 1− 2−80.

Proof. To prove the claim, write out the data-
dependency graph for a round of mixing. There are
three types of edges in the graph. See Figure 9 for a
visual depiction of the dependencies and see the refer-
enced steps in Figure 1 for a programmatic depiction.
The types are:

• edges pointing to pseudo-randomly chosen neigh-
boring blocks (Step 2b),

• edges pointing to the prior state of the current
block (Step 2a), and

• edges pointing to the prior buffer block (Step 2a).

The value generated during ith step of the tth round
of mixing depends on δ = 20 other values in the main
memory buffer. Now, the union of the first two sets
of edges in Figure 9 are just the edges of a localized
bipartite graph with left-degree δ. (We introduced
localized bipartite graphs in Section 6.3.)

By Claim 10, as long as δ is large enough to en-
sure that a random bipartite graph with left-degree
δ is a good expander, the data dependency graph for
one round of mixing will be a good avoider with high
probability. By Theorem 6, a random bipartite graph
with left-degree 20 is a (16, 167)-expander with prob-
ability at least 1− 2−80 for N ≥ 210, so by Claim 10
one such graph is an (8, 83 , 16)-avoider with probabil-
ity at least 1 − 2−80. Thus, the graph representing
the tth mixing round fails to be a good avoider with
probability at most 1

280 .

We cheated a bit in our definition of the data-
dependency graph since we did not account for the
fact that each node in the true data dependency
graph actually has out-degree two. This is so be-
cause the random oracle we use in the construction
takes only two data blocks as input so each value
computed during the Balloon computation depends
only on two other values. We can modify the data-
dependency graph of Figure 9 to account for the in-
termediate values generated while hashing each of
the δ blocks together using our two-to-one compres-
sion function. This process corresponds exactly to
the degree-reduction transformation of Definition 11.
Claim 12 demonstrates that the avoider property of
a graph is invariant under degree-reduction, so the
degree-reduced data-dependency graph is also a good
avoider.

Claim 19. The graph Gsingle,x is a depth-r stack of
(8, 83 , 16)-avoiders with probability at least 1− r

280 .

Proof. By Claim 18, the probability that the data-
dependency graph for a single layer of mixing fails
to be an avoider is at most 1

280 . The entire data-
dependency graph consists of a stack of r of these
graphs, and the probability that there exists one of
them that fails to be a good avoider is, by the Union
Bound, at most r

280 .

Claim 20. Each vertex on level t of the Gsingle,x
stack of avoiders has a path to every vertex on level
t− 1 of the stack.

Proof. Each value stored in the buffer depends on the
prior value generated during the computation. These
edges are depicted in the center panel of Figure 9.
These edges create a path from every vertex on level
t of the graph to every vertex on level t − 1 of the
graph.

Claim 21. Conditioned on the event that the graph
Gsingle,x is a depth-r stack of (8, 83 , 16)-avoiders, there
is no pebbling strategy for Gsingle,x that uses S∗ <
N/16 pebbles and T ∗ < 3r+1N/4 pebbling moves.

Proof. By Claims 19 and 20, Gsingle,x is a stack of
avoiders satisfying the hypothesis of Corollary 15.
Applying the corollary with ω = 3 lets us conclude
that pebblingGsingle,x graphs with at mostN/16 peb-
bles requires at least

T ≥
(

1− 8

16

)
N

r∑
i=0

(3i + i)

=
(
3r+1 + r(r + 1)− 1

) N
4

moves, which is greater than 3r+1N/4 for r ≥ 1.

Claim 22. The output of the single-buffer Balloon
construction is the labeling, in the sense of Defini-
tion 2, of Gsingle,x.

Proof. Follows by inspection of the single-buffer Bal-
loon algorithm (Figure 1).

Now we return to prove Theorem 16.

Proof of Theorem 16. Fix an algorithm A as in the
statement of Theorem 16. Conditioned on the event
that the graphGsingle,x is a depth-r stack of (8, 83 , 16)-
avoiders, Claim 21 indicates that there is no pebbling
strategy for Gsingle,x using S∗ < N/16 pebbles and

16

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(a) Pseudo-random edges.

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(b) Backwards edges.

•

•

•

•

•

•

•

•

v
(t−1)
1

v
(t)
1

v
(t−1)
2

v
(t)
2

v
(t−1)
3

v
(t)
3

v
(t−1)
4

v
(t)
4

(c) In-place edges.

Figure 9: Components of the data-dependency graph for one single-buffer mixing round. Here, v(t)i represents
the value stored in the ith block in the main memory buffer at the tth mixing round.

T ∗ < 3r+1N/4 pebbling moves. By Claim 22, A out-
puts the labeling of Gsingle,x. By hypothesis of The-
orem 16, A makes at most T < 3r+1N/4 < 2k − 1
random-oracle queries and uses at most (N/16)(k −
log2(3r+1N/4))− k bits of storage space. Theorem 4
then implies that A succeeds with probability at most
(T + 1)/2k.

Let E denote the event that Gsingle,x is a stack of
(8, 83 , 16)-avoiders. Then we have:

Pr[A succeeds] = Pr[A succeeds|E] · Pr[E]

+ Pr[A succeeds|¬E] · Pr[¬E].

Using the fact that probabilities are at most 1,

Pr[A succeeds] ≤ Pr[A succeeds|E] + Pr[¬E].

From Claim 19, Pr[¬E] ≤ r/280 and from the dis-
cussion of the prior paragraph, Pr[A succeeds|E] ≤
(T + 1)/2k. So we have:

Pr[A succeeds] ≤ T + 1

2k
+

r

280
,

which proves the theorem.

Double-Buffer Construction. The analysis of the
double-buffer construction proceeds exactly as above,
except that we skip the localizing step in our analysis
of the data-dependency graph.

8 Inflexible Matrices

In this section, we introduce inflexible matrices,
which we will need for our analysis of the linear
Balloon functions (Construction III). As the special
properties of avoider graphs allowed us to prove peb-
bling lower bounds in Section 7, the special properties

of inflexible matrices will allow us to prove time-space
lower bounds for the linear construction.

The characteristic property of an inflexible matrix
is that all of its submatrices of a particular size have
relatively large rank. This property will be crucial in
proving that using the linear transformation defined
by an inflexible matrix as the core of Construction 3
yields a space-hard function.

Terminology. In the discussion that follows, when
v = (v1, . . . , vn) ∈ Fn is a vector and i ∈ {1, . . . , n}
is an index, we say that vi is the ith component of v.
We say that a standard basis vector in Fn is a vector
that has value one in a single coordinate and is zero in
all other coordinates. For example, the vectors (010)
and (100) are two standard basis vectors in F3

2.

8.1 Definition and Properties

Definition 23 (Inflexible Matrix). For constants
α, β, ρ > 1, we say that a matrix M ∈ Fn×n is
(α, β, ρ)-inflexible if all submatrices formed from n/α
rows and n − n/β columns of M are of rank greater
than n/ρ over the field F.

For example, a (4, 2, 8)-inflexible matrixM ∈ Fn×n
has the property that every submatrix formed from
some n/4 rows and n/2 columns of M has rank
greater than n/8 (Figure 10). Similar properties, like
the (m,α)-mixing property of Yesha [99], have been
useful in prior work on time-space trade-offs.

Inflexible matrices are useful because they repre-
sent linear transformations that are “not too lossy,”
even in the presence of side-information. To see
what this means, consider the matrix-vector prod-
uct y = Mx, for a matrix M ∈ Fn×n and vector
x ∈ Fn×1. If M is any matrix in Fn×n with no spe-
cial properties, then seeing some set of components of
y does not necessarily reveal any information about x.

17

For example, if M is the all-zeros matrix, the vector
y = Mx reveals nothing about x.

M ′
n/α

n− n/β

rank(M ′) > n/ρ

Figure 10: Inflexible matrix.

In contrast, if
M is of full rank,
then seeing some
n/2 components
of y reveals n/2
linear relations on
the components
of x. However,
if you already
have some partial
information about
x, seeing n/2
components of y
may not give you any extra information about x.
For example, if M is the identity matrix and if you
already know the first n/2 components of x, then
seeing the first n/2 components of y gives you no
new information about x.

This is where inflexible matrices help: if M is a
(4, 2, 8)-inflexible matrix, then no matter which n/2
components of x you already know, you are guaran-
teed that all sets of n/4 components of y = Mx will
give you some extra information about x. In partic-
ular, you are guaranteed to learn at least n/8 addi-
tional linear relations on the components of x, beyond
those you already know. The following lemma, which
we use in the proof of security of the linear hash con-
struction, formalizes this notion.

Lemma 24. Let (b1, . . . , bn/β) be a set of n/β dis-
tinct standard basis vectors over Fn and let B be an
n/β × n matrix formed from these rows. Let R be a
matrix formed from some n/α rows of an (α, β, ρ)-
inflexible matrix. Then the (n/β + n/α) × n matrix
A =

(
B
R

)
has rank greater than (n/β + n/ρ).

Proof. Any set of distinct standard basis vectors is
linearly independent, so the first n/β rows of A form
a linearly independent set. There are n−n/β columns
in which the standard basis vectors in B are all zero;
let R′ be the submatrix formed from these columns
of R. Pick some set of n/ρ + 1 linearly independent
row vectors of R′—such vectors are guaranteed to
exist by the properties of an inflexible matrix—and
let {r1, . . . , r(n/ρ), r(n/ρ+1)} be the rows of the wider
matrix R corresponding to these rows of R′.

Now, we claim that for all i ∈ {1, . . . , (n/ρ + 1)},
the set of row vectors B ∪ {r1, . . . , ri} is a linearly
independent set. To prove this claim, append each
vector ri to B one at a time. Towards a contradiction,
assume that adding some vector ri introduces a linear

dependency into the set. Then ri can be written as a
linear combination of the B vectors and the vectors
{r1, . . . , ri−1}. It is always possible to zero out n/β
coordinates of ri using some combination of the basis
vectors in B. However, this still leaves the other n−
n/β coordinates of ri to zero out. If there were some
linear combination of the vectors {r1, . . . , ri−1} that,
when added to ri, summed to zero, then there would
be a corresponding linear dependency in R′ involving
the vector ri. This contradicts the construction of ri.

We claimed above that inflexible matrices repre-
sent linear transformations that are “not too lossy,”
even in the presence of side-information. To restate
this claim in term of the lemma: let x be a length-
n vector and let M be an (α, β, ρ)-inflexible n-by-n
matrix. We now consider the linear transformation
y = Mx. The lemma asserts that even if you know
the values of some n/β coordinates of x, every subset
of n/α coordinates of y will give you more than n/ρ
additional independent linear relations on the remain-
ing components of x. In the statement of the lemma,
the standard basis vectors represent the indices of the
n/β known components of x and the rows R represent
the n/α components you are given of y. The rank of
the resulting linear system, which we have proven is
greater than n/β + n/ρ, represents the total number
of independent linear relations you have after seeing
the extra components of y = Mx.

8.2 A Simple Probabilistic
Construction

The simplest construction of inflexible matrices is a
probabilistic one: a random matrix over F2 is inflex-
ible with high probability.

Lemma 25 ([59], Section 6.3.1). For large enough
n and for all constants α, β ≥ 4, a uniformly ran-
dom matrix in Fn×n2 is (α, β, 2α)-inflexible with high
probability.

The proof of the lemma uses the incompressibility
method (see Li and Vitányi for the proof [59, Lemma
6.1.3]). If a random matrix contained a large subma-
trix of low rank with good probability, then it would
be possible to describe a random n×nmatrix in fewer
than n2 bits (asymptotically).

Although these inflexible matrices are easy to gen-
erate, they yield an inefficient hash construction over-
all. Our space-hard function repeatedly multiplies

18

an inflexible matrix M by a vector x. If we mea-
sure the cost of a matrix-vector product by the num-
ber of reads an algorithm must make from the main
memory buffer to compute it, a completely random
matrix yields a Θ(n2)-time matrix-vector product.
By choosing M as a structured or sparse matrix, we
can decrease the computation time from quadratic to
O(n polylog n) or even linear time.

8.3 Constructions from
Error-Correcting Codes

Generator matrices for certain types of error-
correcting codes yield inflexible matrices that are
deterministically constructible and allow for sub-
quadratic-time matrix-vector multiplication. We
cannot do justice to the theory of error-correcting
codes here, so we simply state the relevant theorem:

Theorem 26 (MacWilliams and Sloane, p. 321 [60]).
Let I be the n × n identity matrix over a finite field
F and let G = (I|M) be an n × 2n matrix over F.
The matrix G is the generator matrix of a maximum
distance separable code if and only if every square sub-
matrix of M is of full rank.

Thus, if the matrix M generates the parity-check
bits for a systematic maximum distance separa-
ble code (e.g., a Reed-Solomon code), M is an
(α, α

α−1 , α)-inflexible matrix for all α > 1. One
way to construct such codes is via Cauchy matri-
ces [19]. Let F be a finite field with |F| ≥ 2n and
let a = (a1, . . . , an) and b = (b1, . . . , bn) be 2n dis-
tinct components of the field. Then the ijth entry of
the n× n Cauchy matrix is:

C(a, b)ij =
1

ai + bj
.

Another way to construct such codes is via the
product of Vandermonde matrices [55]. Further,
Shokrollahi et al. show that the generator matrices
of good algebraic-geometric codes give rise to ma-
trices with similar properties over a fixed field (one
whose size does not vary with n) [87]. Cauchy and
Vandermonde matrices have an O(npolylog n)-time
matrix-vector product [43], but with sparse matrices,
we can get a strictly linear-time construction.

8.4 Fast Probabilistic Construction
With a more nuanced analysis, we can show that a
very sparse random binary matrix—one with O(n)

non-zero entries—is still inflexible. Computing a
matrix-vector product with these matrices takes ex-
pected linear time, which is much better than the
quadratic-time product given by random matrices.

Let Pn,w denote the distribution that samples a
vector v in Fn2 by choosing w random indices, with
replacement, in {1, . . . , n}, setting those components
in v to 1, and setting all other components to 0.

Then we have the following theorem:

Theorem 27. Let w, ρ > 0 be scalars satisfying

ρ1/ρ
(

1

2
+

1.1

ρ

)w(1/4−1/ρ)

< 2−1.82. (1)

For n > 20wρ, letM be an n×n matrix over F2 whose
rows are sampled independently from Pn,w. Then M
is (4, 2, ρ) inflexible with probability at least 1− c−n,
for some absolute constant c > 1.005.

The proof of this theorem appears in Appendix B.
We give a few examples of (w, ρ) pairs satisfying

the hypothesis of Theorem 27:

w 8 9 10 11 12 . . . 21 28 97
ρ 117 49 32 25 20 . . . 10 8 5

Note that the inequality can never hold when w < 8.
The theorem gives us a way to construct an n × n
matrix with roughly 10n non-zero entries that is still
quite inflexible. With all but negligible probability, a
matrix sampled from the distribution of Theorem 27
with w = 10 will be such that all n/4-by-n/2-size
submatrices have rank at least n/32.

Since this construction gives relatively inflexible
matrices with a linear-time matrix-vector product,
we primarily use this class of matrix for instantiat-
ing Construction 3.

8.5 Working over Extension Fields

Later in the analysis, we will work over F2k , where
k is the block length of our underlying compression
function. Since we have constructed our inflexible
matrices over F2, we first show that moving to the
extension field does not weaken the inflexibility prop-
erty of a binary matrix.

Definition 28 (Extension of a Matrix). Let M be a
matrix over F2. For every integer k ≥ 1, the degree-k
extension of M is the unique 0-1 matrix M̃ over F2k

such that M̃ has a one in every cell in which M has
a one and is zero everywhere else.

19

Lemma 29. For all k ≥ 1, if M is a matrix over
F2 and M̃ is the degree-k extension of M , then
rank(M) = rank(M̃).

Proof. Towards a contradiction, assume that there
exists a set of rows (~r1, . . . , ~r`) that are linearly de-
pendent in M̃ but not in M . There must exist a
vector of coefficients (α1, . . . , α`) ∈ F`2k such that∑
i αi~ri = ~0 ∈ Fn2k , where n denotes the number of

columns in M . Since the elements of ~ri are either
zero or one by construction, the jth component of
the sum is equal to

∑
(i s.t. ~ri[j]=1) αi = 0 ∈ F2k . By

considering only the least significant bit of the α’s we
obtain a linear dependency in the rows (~r1, . . . , ~r`)
over F2. Thus, the linear dependency in M̃ yields
a corresponding linear dependency in M , which is a
contradiction.

In the other direction: every linear dependency in
M is also a dependency in M̃ . This is because a
dependency of the rows in M is just a subset of the
rows that, when summed together in F2, equals the
zero vector. For any such linear dependency in M ,
the same property holds in M̃ and thus the set of
vectors is also a linear dependency in M̃ .

Corollary 30. Let M be an (α, β, ρ)-inflexible ma-
trix over F2. For all k ≥ 1, the degree-k extension of
M is an (α, β, ρ)-inflexible matrix over F2k .

Note that the binary matrix resulting from such a
transformation still has a fast matrix-vector product:
since each of its entries is either zero or one, comput-
ing the product simply requires XOR operations.

9 Analysis of the
Linear Construction

In this section, we analyze the linear Balloon func-
tion. The mixing step of the linear Balloon function
alternates between two operations: a linear transfor-
mation and a hashing step. As depicted in Figure 2,
we can think of these alternating computation steps
in terms of layers. Our general strategy is to argue
that if an algorithm computes the output of linear
Balloon function with little space, then the algorithm
cannot possibly store all of the information it needs
to produce the vector at the ith layer of the construc-
tion without recomputing some values it needs at the
(i − 1)th layer. By the same argument, it must also
need to recompute values at the (i − 2)th layer and
the (i − 3)th layer, and so on, all the way down to

the first layer. Using an argument along the lines of
Theorem 13, we can show that these recomputations
incur a time cost that is exponential in r, the number
of rounds.

9.1 Preliminary Lemmata
We will need the following lemma of Dwork et al. [36],
which we state without proof. The lemma general-
izes the fact that any algorithm that tries to guess
the value of an n-bit string with an (n− 1)-bit “hint”
about the string can never succeed with probability
better than 1/2. Without loss of generality, we re-
quire the hint function h to be deterministic since h
can always output the hint that maximizes the pre-
dictor’s success probability. In the lemma, H is the
space of all possible hints.

Lemma 31 ([36, 38]). Let x be a uniformly random
vector in Fn. For all deterministic functions h : Fn →
H and for all randomized algorithms P : H → Fn, the
probability, over the choice of x and randomness of P,
that P(h(x)) = x is at most |H|/|F|n.

The following lemma, which underpins the secu-
rity of our construction, states that if M is an in-
flexible matrix and x is a random vector, producing
many components of the matrix-vector product Mx
requires making many queries to the components of x.

Lemma 32. Let M ∈ Fn×n be an (α, β, ρ)-inflexible
matrix and let x ←R Fn×1. Let A be a randomized
algorithm that takes as input an “hint” in some hint
space H (the hint may depend on x and M), makes
at most n/β adaptive queries for the components of
x, and finally outputs:

• a matrix R formed from n/α distinct rows of M
and

• a guess ŷ of the value of the vector y = Rx,

then Pr[y = ŷ] ≤ |H|/|F|(n/ρ)+1, over x and A.

Proof. Towards a contradiction, assume that such an
algorithm A exists. Then we can use A to build a
predictor that guesses some components of x with
impossibly high probability, contradicting Lemma 31.

The predictor takes as input a hint in H, which
it passes to A. Algorithm A requests at most n/β
components of x and produces a vector ŷ ∈ Fn/α such
that y = ŷ with probability p > |H|/|F|(n/ρ)+1. We
can assume A requests exactly n/β components of x,
since the predictor can make the remaining queries
on A’s behalf.

20

Assuming that A’s output is correct (i.e., that
y = ŷ), let us write out the linear relations that the
predictor now has on the components of x. The an-
swer ai to A’s ith query for a component of x can
be written as the inner product of a standard basis
vector (000 · · · 010 · · · 0) with x. We can collect the
n/β query vectors into an (n/β)-by-n matrix B.

Finally, the predictor has the following linear sys-
tem, where the unknown is the random vector x ∈
Fn×1, the vector a ∈ F(n/β)×1 consists of the re-
sponses to the adversary’s queries, and the vector
y ∈ F(n/α)×1 consists of the adversary’s output:(
B
R

)
· x =

(
a
y

)
. By Lemma 24, the matrix on the left

side of this equation has rank at least (1/ρ+1/β)n+1.
The predictor now has a linear system with (1/ρ+

1/β)n + 1 independent linear equations and n un-
knowns. If we assume that A’s output is correct,
then the predictor can make a random choice for the
remaining components of x, consistent with the lin-
ear constraints it already has. The probability that
A succeeds will be:

Pr[P succeeds | y = ŷ] =
|F|(n/ρ)+(n/β)+1

|F|n
.

The predictor’s probability of success overall is:

Pr[P succeeds] = Pr[y = ŷ] · Pr[P succeeds | y = ŷ]

>
|H|

|F|(n/ρ)+1
· |F|

(n/ρ)+(n/β)+1

|F|n

=
|H| · |F|n/β

|F|n
.

But this contradicts Lemma 31, since the predictor
takes a hint inH×Fn/β (the hint along with the query
responses) and guesses the value of the vector x with
probability better than allowed by the lemma.

9.2 The Main Theorem
Recall that the computation of the linear Balloon
function involves repeated operations on a vector
x ∈ Fn. Each round of mixing involves computing
the matrix-vector product y ← Mx and then hash-
ing the resulting vector. In practice, the matrix M
is the degree-k extension of an inflexible matrix con-
structed over F2. That is, M is a 0/1 matrix defined
over F2k . By Corollary 30, M is an inflexible matrix.
Note that the matrix-vector product Mx computed
in each step of the algorithm requires only XORs,
since M is a 0/1 matrix over F2k . If M is sparse (as
the matrices we construct are), computing Mx will
be quite fast.

Let the operator hi : Fn2k → Fn2k denote the
operation of hashing each component in a vector:
hi(x) = (H(i, 1, x1), . . . ,H(i, n, xn)). To facilitate
the analysis, define:

x(0) ← h0(IV)

y(i) ←Mx(i) ; x(i+1) ← hi(y
(i))

Here IV ∈ Fn2k is the initial vector derived from the
password and salt and x(0) is the output of the “ex-
tract” step of the computation. The sequence of vec-
tors generated during the course of the computation
is then: x(0), y(0), x(1), y(1), x(2),

Fix a random oracle H and an input to the con-
struction x. At the ith mixing iteration, the jth invo-
cation of the random oracle has the form H(i, j, y

(i)
j),

where y(i)j is the jth coordinate of the vector y(i).
We say that a random oracle query is correct (with
respect to the oracle H and input x) if it has the
form H(i, j, σ), where σ = y

(i)
j and we say that

a random oracle query is incorrect otherwise. We
call a query of the form H(i, ·, ·), a level-i query
to the random oracle. We say that a set of level-
i queries {H(i, j1, ·), H(i, j2, ·), . . . } is distinct if the
values {j1, j2, . . . } are distinct.

The intuition behind the security of our construc-
tion is that every small-space algorithm that can
make many correct level-i queries will have to make
many correct level-(i − 1) queries with high proba-
bility. Using an argument along the lines of that in
Section 7, we show that every strategy for comput-
ing the outputs at the last level with small-space will
cause the time cost to blow up.

We model the adversarial algorithm A as a Tur-
ing machine with oracle access to a hash function
H : {0, 1}k → {0, 1}k. When we say that the state
of A can be described in a certain number of bits,
we mean that the entire configuration of the Turing
machine fits into this many bits (as in the analysis of
Dziembowski et al. [38]).

The statement of the theorem is necessarily prob-
abilistic: there is always some chance that an algo-
rithm will get lucky and guess the output to the linear
Balloon function without doing much computation.

Theorem 33. Let k denote the output size of the
random oracle, in bits. Let the linear Balloon func-
tion be instantiated with an (α, α/ω, ρ)-inflexible ma-
trix M ∈ Fn×n

2k
, for some integer 1 ≤ ω < α such that

α ·ω < n. Let A be an algorithm whose state at every
step can be described in at most nk

2ρ bits.

21

For all i ∈ {0, . . . , d}, let Qi be a random variable
representing the ordered sequence of random oracle
queries that A makes on levels {0, . . . , i} in some se-
quence of consecutive time steps. Then for all inte-
gers qi such that (a) qi < ωin/α, (b) qi < 2

αk
2ρ , and

(c) Pr
[
|Qi| = qi

]
> 0, we have that

Pr

 Qi contains at
least n/α correct

distinct level-i queries

∣∣∣∣ |Qi| = qi

 ≤ qi
2k
,

over the randomness of A and the random oracle H.

Proof. By induction on i.

Base Case (i = 0). In this case, the statement
is vacuously true, since if A makes q0 < n/α oracle
queries during some time period, its probability of
making n/α queries during this same time period is
zero.

Induction Step. Let Ci denote the event that the
adversary makes n/α correct distinct level-i queries.
By way of contradiction, assume that there exists an
adversary A and a constant qi as in the theorem such
that A makes qi queries at or below level i (such that
at least n/α of these queries are correct and distinct)
with non-zero probability pwin and that

pwin = Pr
[
Ci
∣∣ |Qi| = qi

]
>
qi
2k
. (2)

In the following discussion, all probabilities are im-
plicitly conditioned on |Qi| = qi.

Let Ci−1 denote the event that Qi contains ωn/α
correct distinct queries on level-(i− 1). We can then
write the probability that the adversary succeeds as:

pwin = Pr [Ci|Ci−1] · Pr[Ci−1]

+ Pr [Ci|¬Ci−1] · Pr[¬Ci−1]. (3)

Towards bounding the probability pwin, we prove
the following claim:

Claim. The probability Pr[Ci|¬Ci−1] is bounded by

Pr [Ci|¬Ci−1] ≤ 2−k. (4)

Proof of Claim. To prove the claim, we show that
if there exists a small-space algorithm A for which
Pr[Ci|¬Ci−1] > 2−k, then there exists an algorithm
B that contradicts Lemma 32.

To apply Lemma 32, define the vector x as the
vector in Fn2k consisting of the n strings that the ran-
dom oracle would output in response to the n correct

level-(i− 1) queries. (The correct queries are always
distinct, since we prepend each query with a counter
indicating the index of the query.) Define the vec-
tor y as the vector in Fn/α

2k
consisting of the n/α re-

sponses to the correct level-i queries that A makes
of the random oracle. Since the vector x consists of
outputs of the random oracle on distinct queries, it
is a uniformly random vector over Fn2k . By the con-
struction of x and y, we can write y = Rx, where
R is a matrix in F(n/α)×n

2k
consisting of the n/α rows

of the inflexible matrix M corresponding to the n/α
outputs of A.

The algorithm B takes as a hint (1) the state ofA at
the beginning of the sequence of time steps defined
in the statement of the theorem, and (2) a list of
n/α integers in the range {1, . . . , qi}. These integers
indicate to the predictor which n/α of the adversary’s
level-i queries are correct (without these hints, the
predictor could not distinguish correct level-i queries
from incorrect ones).

By the hypothesis of the theorem, the state ofA fits
into nk

2ρ bits. Also by the hypothesis of the theorem,
and the number of queries qi has an upper bound of
2
αk
2ρ . The entire hint space thus has size at most

2
nk
2ρ · q

n
α
i = 2

nk
2ρ · (2

αk
2ρ)

n
α = 2

nk
ρ .

The predictor B runs by first executing the algo-
rithm A. Whenever A makes a random oracle query,
B forwards the query to the random oracle. Since
B faithfully simulates A’s real interaction with the
random oracle, A will, over the course of its execu-
tion, make n/α correct level-i queries with probability
greater than 2−k.

The algorithm B then uses the n/α integers in the
hint to determine which n/α of A’s level-i queries
were correct. Given these integers, B learns both the
indices at which A made the correct level-i queries
and the values of these queries. The algorithm B then
can produce a subset R of n/α rows of the inflexible
matrix M and a guess ŷ ∈ Fn/α of the value Rx.
The algorithm B succeeds with exactly the probabil-
ity that algorithm A does, which is greater than 2−k.

To derive a contradiction, we apply Lemma 32 with
|F| = 2k and |H| ≤ 2

nk
ρ to bound the success proba-

bility of B. Lemma 32 applies because the algorithm
A, and thus the predictor B, makes at most wn/α cor-
rect level-(i−1) queries. (The predictor B may make
many more incorrect level-(i − 1) queries than this,
but incorrect queries give B no information about the
bits it is trying to predict.) By Lemma 32, B’s success

22

probability is at most

|H|
|F|(n/ρ)+1

=
2
nk
ρ

2
nk
ρ 2k

=
1

2k
.

But this is a contradiction since we assumed that
A, and therefore B, have success probability greater
than 2−k.

Thus we conclude that Pr [Ci|¬Ci−1] ≤ 2−k and
this completes the proof of the claim.

Now we return to the proof of Theorem 33. By
Equations (3) and (4), we now have:

pwin ≤ Pr [Ci|Ci−1] · Pr[Ci−1] + 2−k

and by applying Bayes’ Theorem, we get:

= Pr[Ci−1|Ci] · Pr[Ci] + 2−k

≤ Pr[Ci−1|Ci] + 2−k. (5)

To complete the argument we need only to bound
Pr[Ci−1|Ci]. We do so with the following claim:

Claim. The probability Pr[Ci−1|Ci] is bounded by:

Pr[Ci−1|Ci] ≤
qi − n/α

2k
. (6)

Proof of Claim. Our strategy is to splitQi into pieces
in such a way that we can apply the induction hypoth-
esis to each piece. Towards this goal, we first observe
that, conditioned on Ci, at least n/α of the queries
in Qi are correct distinct level-i queries.

Conditioned on Ci, the set of queries Qi−1 on levels
{0, . . . , i− 1} then has size at most

|Qi−1| = qi−1 ≤ qi − n/α
< ωin/α− (n/α)

after removing the level-i queries.
We can define integers (q

(1)
i−1, . . . , q

(ω)
i−1) such that

(i) q(1)i−1 + · · ·+ q
(ω)
i−1 = qi−1 and

(ii) q(j)i−1 < ωi−1n/α for all j ∈ {1, . . . , ω}. (Here we
used the fact that αω < n.)

Towards applying the induction hypothesis,
we now define a set of ω random variables
(Q(1)

i−1, . . . ,Q
(ω)
i−1). We define Q(1)

i−1 to be the ran-
dom variable representing the first q(1)i−1 random ora-
cle queries in Qi−1. We define Q(2)

i−1 to be the next
q
(2)
i−1 random oracle queries in Qi−1. We continue the

definitions this way until defining Q(ω)
i−1 to be the last

q
(ω)
i−1 random oracle queries in Qi−1.
We know that the total size of all subsets (qi−1 =∑ω
j=1 |Q

(j)
i−1|) is at most qi − n/α.

Let Sj be the event that Q(j)
i−1 contains at least n/α

correct distinct level-(i − 1) queries. At least one of
the events (S1, . . . , Sω) must occur for Ci−1 to occur,
so we can use the Union Bound to state:

Pr[Ci−1|Ci] ≤ Pr[S1|Ci] + · · ·Pr[Sω|Ci].

We now apply the induction hypothesis to bound the
sum on the right-hand side. For any set Q(j)

i−1, we
can apply the induction hypothesis on level i − 1 to
conclude that: Pr[Sj |Ci] ≤ q(j)i−1/2k, so

Pr[Ci−1|Ci] ≤
1

2k

(
ω∑
i=1

q
(j)
i−1

)
≤ qi−1

2k
≤ qi − n/α

2k
.

This concludes the proof of the claim.

We now substitute Inequality (6) into Equation (5)
to give:

pwin ≤
qi − n/α

2k
+

1

2k
≤ qi

2k
.

This is a contradiction to our assumption (2) on A
and proves the theorem.

9.3 Putting It All Together
The last step of the security analysis is to relate the
statement of Theorem 33 back to the design of Con-
struction 3.

Theorem 34. Let k, M , and n be as in Theorem 33.
In particular, M is an (α, α/ω, ρ)-inflexible matrix in
Fn×n
2k

, for some integer 1 ≤ ω < α such that α·ω < n.
Let A be an algorithm that uses at most nk

2ρ bits
of storage space and that makes at most q random
oracle queries during its execution. Then, provided
that q < ωrn−α, and q < α(2

αk
2ρ − 1), the probability

that A correctly computes output of the r-round n-
block linear Balloon function is at most q+1

2k
.

Proof. Let C denote the event thatAmakes n correct
distinct level-r queries during its execution. We can
write:

Pr[A succeeds] = Pr[A succeeds|C] · Pr[C]

+ Pr[A succeeds|¬C] · Pr[¬C]

≤ Pr[C] + Pr[A succeeds|¬C].

23

Conditioned on ¬C, the adversary’s probability of
success is at most 2−k. This is because the output of
the linear Balloon function consists of the n outputs
of the correct level-r queries summed modulo two.
If the adversary makes fewer than n correct distinct
level-r queries, it has at best a 2−k chance of guessing
the correct value. So we have:

Pr[A succeeds] ≤ Pr[C] + 2−k. (7)

We can now use Theorem 33 to bound Pr[C].
To apply the theorem, divide the sequence of A’s
random oracle queries into α distinct subsequences:
Q1, . . . ,Qα. We choose the subdivisions such that
for i ∈ {1, . . . , α}, (a) Qi contains fewer than ωrn/α
queries and (b) Qi contains fewer than 2

αk
2ρ queries.

Such a subdivision is possible since the size of the
entire sequence of queries Q is bounded by the hy-
pothesis of the theorem.

We can apply Theorem 33 to each of the subse-
quences Q1, . . . ,Qα. For each subsequence Qi, The-
orem 33 asserts that the probability that Qi contains
at least n/α correct distinct level-r queries is bounded
by |Qi|/2k. By the Union Bound, the probability that
there exists some i ∈ {1, . . . , α} such that Qi contains
more than n/α distinct correct level-r queries is at
most

|Q1|+ · · ·+ |Qα|
2k

=
q

2k
.

Thus, Pr[C] ≤ q
2k
. Substituting this expression for

Pr[C] into Equation (7) gives:

Pr[A succeeds] ≤ q + 1

2k
.

To complete the analysis, we show how to apply
Theorem 34 to obtain the space-hardness result of
Table 1. The following theorem demonstrates that
if an adversary tries to compute the linear Balloon
function with fewer than N/128 blocks of storage
space, then the adversary will need to make at least
(roughly) min{2r−1N, 2 k8+3} queries to compute the
function with better than miniscule probability.

Theorem 35. Let the linear Balloon function be
instantiated with an N -block main memory buffer,
where each block is k bits in length. Let n = N/2
and let n ≥ 1024. Let M be an n × n matrix over
Fn×n
2k

sampled from the distribution in which w = 10
ones are placed independently and uniformly at ran-
dom into each row.

Let A be an algorithm that uses at most N
128 bits

of storage space and that makes at most q random
oracle queries during its execution. Then, provided
that q < 2r−1N−8, and q < 8(2

k
8 −1), the probability

that A correctly computes output of the r-round N -
block linear Balloon function is at most q+1

2k
+ 2−128.

Here, N is the total amount of space required for
the main memory buffer. Since the linear construc-
tion actually uses two buffers—a source and destina-
tion buffer—the size of each of these buffers is only
n = N/2 blocks. Thus the matrix M used in the
construction is only an n× n matrix.

We prove a straightforward claim before proving
Theorem 35.

Claim 36. The matrix M is a (4, 2, 32)-inflexible
matrix with probability at least 1− 2−128.

Proof. First use Theorem 27 with w = 10 and n ≥
1024 to show that an n×nmatrix over F2 with 10 ones
thrown independently and uniformly at random into
each row is a (4, 2, 32)-inflexible matrix with proba-
bility at least 1 − 2−128. Then apply Corollary 30
to show that the corresponding matrix over F2k is
equally inflexible with the same probability.

Proof of Theorem 35. Let E be the event that the
matrix M is a (4, 2, 32)-inflexible matrix. We can
write:

Pr[A succeeds] = Pr[A succeeds|E] · Pr[E]

+ Pr[A succeeds|¬E] · Pr[¬E].

By Claim 36, we know that Pr[E] ≥ 1− 2−128, so:

Pr[A succeeds] ≤ Pr[A succeeds|E] + 2−128. (8)

Conditioned on M being an inflexible matrix, we
can apply Theorem 27 to bound the probability that
A succeeds at computing the output of the r-round
N -block linear Balloon function. We apply Theo-
rem 27 with α = 4, ω = 2, and ρ = 32. Under the
conditions of Theorem 35, Theorem 27 gives that:

Pr[A succeeds|E] ≤ q+1
2k
.

Substituting this inequality into (8) completes the
proof.

10 Experimental Evaluation
In the prior sections, we have argued that the Bal-
loon functions are space-hard. In this section, we

24

argue that they are also practical. To compare the
performance of the Balloon hash functions with the
state-of-the-art methods for password hashing, we
implemented the three Balloon variants and evalu-
ated them on a number of benchmarks.

Experimental Set-up. For the initial “extract” step
in all constructions, we hash the input and then use
AES-256 in CTR mode to fill the buffer initially. We
used the OpenSSL implementations (version 1.0.1f)
of SHA-512 and AES-256 and we used the reference
implementations of the other compression functions.
We compiled the code for our timing results with
clang version 3.4.1 using the -O3 option. We use opti-
mized versions of the underlying cryptographic prim-
itives where available, but the core Balloon hash code
is written entirely in C. Our source code is available at
https://crypto.stanford.edu/balloon/ under the ISC
open-source license.

We used a workstation running an Intel Core i7-
6700 CPU at 3.40 GHz with 8 GiB of RAM for our
performance benchmarks. This CPU uses uses the
most recent Intel microarchitecture (Skylake). Since
our operating system does not yet support accessing
the performance counters on Skylake processors, we
recorded the L1 and L2 cache miss rates (right side,
Figure 13) on an older machine with an Intel Xeon
E5620 CPU at 2.40 GHz (Westmere) with 48 GiB of
RAM. Both CPUs support the AES-NI instructions.

We set the parameters of the schemes so as to
achieve the bounds listed in Table 1 and we average
all of our measurements over 32 trials.

10.1 Authentication Throughput

The goal of a space-hard password hash function is
to use as much working space as possible quickly as
possible over the course of its computation. To eval-
uate the effectiveness of the Balloon hashes on this
metric, we measured the rate at which a server can
check passwords (in hashes per second) for various
buffer sizes on a single core.

Figure 11 shows the minimum buffer size required
to compute each hash function with high probabil-
ity with no computational slowdown, for a variety of
password hashing functions. We configure the Bal-
loon and Argon2i functions to use SHA-3 (Keccak-
1600, rate = 1344) as their underlying cryptographic
compression function. We set the block size of the
construction to be equal to the block size of the un-
derlying compression function, to avoid the issues dis-
cussed in Section 5.3. We prefer Keccak-1600 because

1 KiB 16 KiB 256 KiB 4 MiB

Minimum buffer size required

100

101

102

103

104

H
as
he
s/
se
c
(o
ne

co
re
)

Balloon (Linear)
Argon2i
Balloon (Double)
Balloon (Single)

PBKDF2
bcrypt

Bett
er

Figure 11: Throughput of the Balloon schemes and
standard password hashing schemes, as the minimum
required buffer size varies. Argon2i and Balloon func-
tions make three passes over the memory (r = 3).

1 2 3 4

Threads

0

40

80

120

H
as
he
s/
se
c

Lin
ear Ideal

Double

Figure 12: Hashing speeds for the linear Balloon con-
struction (1 MiB buffer, three mixing rounds) as the
number of threads varies.

it has a large internal state size (1600 bits) and thus
allows us to use a large block size to maximize data
locality.

The charted results for Argon2i incorporate the
fact that an adversary can compute three-pass Ar-
gon2i in a factor of e ≈ 2.72 less working space than
the defender must allocate for the computation (see
Appendix A). For comparison, we also plot the space
usage of two non-space-hard password hashing func-
tions, bcrypt [81] (with cost = 12) and PBKDF2-
SHA512 [49] (with 105 iterations).

If we assume that an authentication server must
perform 100 hashes per second per core, Figure 11
shows that it would be possible to use our linear con-
struction with a 256 KiB buffer, running the con-
struction for three rounds. At the same authenti-
cation rate, Argon2i requires the attacker to use a

25

https://crypto.stanford.edu/balloon/

16 KiB 256 KiB 4 MiB

Buffer size

226

227

228

229

230

231

232

B
yt
es

w
ri
tt
en
/s
ec

0

1

2

3

L1
m
is
s Single

Linear
Double
Argon2i

16 KiB 256 KiB 4 MiB

Buffer size

0

1

2

3

L2
m
is
s

Figure 13: Hashing throughput (left) and the normalized number of cache misses (right) for the three Balloon
variants. The dashed vertical lines indicate the sizes of the L1, L2, and L3 cache.

smaller buffer (roughly 100 KiB), which is on par
with the performance of the double-buffer Balloon
construction. By exploiting all four compute cores
at once, our linear construction can handle a 1 MiB
buffer at roughly 115 hashes per second (Figure 12).
When using all cores, the linear construction can fill
each core’s L2 cache (256 KiB) simultaneously at 489
hashes per second.

10.2 Balloon Mixing Variants

The left-hand chart in Figure 13 shows the rate at
which the Balloon functions can fill memory, as the
size of the buffer varies. Our linear construction is
comparable with Argon2i construction in terms of
memory write throughput. As expected, the compu-
tational overhead of invoking the compression func-
tion 10N or 20N times per mixing round slows down
the double- and single-buffer constructions relative
to the linear construction. As long as the size of the
entire buffer fits in L3 cache, the rate at which the
functions can fill memory is roughly constant. Once
the buffer spills into main memory, the performance
rapidly degrades due to the latency of memory reads.

The right-hand side of Figure 13 shows the aver-
age number of L1 and L2 cache misses during each
algorithm’s execution, normalized by the number of
bytes written during the computation. The dashed
vertical lines in Figure 13 indicate the sizes of the
L1, L2, and L3 caches in the machine on which we
ran the experiments. The Balloon hashes make many
more random reads to memory than the Argon2i hash
function does (by roughly a factor of 20×), which ex-
plains why the Balloon hashes cause relatively many
cache misses. That said, the fact that the Balloon
hashes make many random reads to memory is crit-

16 KiB 256 KiB 4 MiB

Buffer size (bytes)

228
229
230
231
232
233
234

B
yt
es

w
ri
tt
en
/s
ec ArgonHash

SHA-3
Blake2b
ECHO
SHA-512

Figure 14: Throughput for the linear Balloon variant
when instantiated with different compression func-
tions.

ical to its space-hardness properties, so the increase
in cache misses may be inevitable to some extent.

10.3 Compression Function

Finally, Figure 14 shows the result of instantiat-
ing the Balloon linear construction with five differ-
ent compression functions: SHA-3 [14], Blake2b [6],
SHA-512, ECHO (a SHA-3 candidate that exploits
the AES-NI instructions) [11], and ArgonHash (the
custom compression function defined in the Argon
specification [15]). ArgonHash operates on 8192-bit
blocks, SHA-3 (with rate = 1344) operates on 1344-
bit blocks, and we configure the other hash functions
to use 512-bit blocks. As Figure 14 demonstrates,
the compression functions with larger block sizes dra-
matically outperform the compression functions using
smaller blocks.

The reason is locality: increasing the block size de-
creases the number of random reads required to take

26

a pass over a fixed-size buffer. For example, con-
sider a buffer of N ×B-bit blocks. One mixing itera-
tion of our single-buffer construction requires making
roughly 20N random reads to the buffer. If we in-
crease the block size to B′ = 2B while holding the
buffer size constant at NB bits, the number of ran-
dom reads decreases to: 20NBB′ = 10N . If we double
the block size again, we can cut the number of ran-
dom reads down by another factor of two.

Although ArgonHash is the fastest of the cryp-
tographic compression functions, we hesitate to use
it because (1) it is non-standard so has not been
the subject of public cryptanalysis and (2) it is
much weaker than a traditional cryptographic hash
function. In particular, ArgonHash is not collision-
resistant [15, Section 5.3], so modeling it as a ran-
dom oracle seems particularly problematic. That
said, it is possible to instantiate the Balloon hash
functions with any cryptographic compression func-
tion, so users who have confidence in the ArgonHash
design can deploy the Balloon construction with Ar-
gonHash.

11 Conclusions and
Open Questions

In this paper, we have introduced the Balloon family
of hash functions. These are the first space-hard func-
tions that are provably space-hard, are based on stan-
dard cryptographic primitives, exhibit a password-
independent memory access pattern, and are prac-
tically efficient. With novel analysis techniques, we
have shown that it is possible reconcile the need for
fast password-hashing functions with the desire for a
formal security analysis.

This work raises a number of open questions:

Space-Hardness Under Batching. We prove that it
is hard to compute a single instance of the Balloon
functions in a small amount of working space. An
important—and apparently non-trivial—next ques-
tion is whether computing P instances of the Bal-
loon functions in parallel requires at least a factor of
P more space or a factor of P more time than com-
puting a single instance.

Space-Hardness Over Time. We prove that comput-
ing the Balloon functions quickly requires a large
amount of storage space at some point during the
computation. A stronger, and more desirable, prop-
erty to prove would be that the Balloon functions use

a large amount of storage space at most points during
the computation.

Space-Hardness with Parallelism. Our proofs use
a sequential model of computation, in which each
query to the random oracle happens in sequence.
To model an attacker who uses multiple hashing en-
gines running in parallel, it would be ideal to exe-
cute show space-hardness properties in the parallel
random-oracle model. With an involved argument,
Alwen and Serbinenko are able to prove this sort of
“space-hardness with parallelism” property for a cer-
tain type of function [4]. Their analysis also addresses
the issues of batching-resistance and space-hardness
over time discussed in the prior two paragraphs. Un-
fortunately, the function that they define is efficient
in an asymptotic sense but is not practical. Is it possi-
ble to apply their analysis techniques to our (or other
practically efficient) functions?

Analysis of Argon. Are there better small-space
strategies for computing Argon2i than the ones of
Appendix A? Or can we use pebbling arguments to
prove a time-space lower bound for Argon?

Inflexible Matrices. Are there constructions of inflexi-
ble matrices with a linear-time product that have bet-
ter constants than the ones given in Theorem 27? It
might also be possible to replace the sparse matrix of
the linear construction with a linear-sized circuit that
implements an inflexible [linear] transformation. Do
such circuits yield linear transformations with better
efficiency or inflexibility properties?

As these open problems demonstrate, the study of
practical space-hard functions provides a forum for
the fruitful interplay of theory and practice. With the
design and implementation of the Balloon functions,
we have endeavored to build space-hard password-
hashing functions that are both practically and prov-
ably good.

Acknowledgements

We would like to thank Josh Benaloh, Bryan Parno,
Yan Michalevsky, Sergey Yekhanin, and Greg Za-
verucha for comments on early versions of this work.
Greg Valiant offered helpful advice on how to prove
the matrix properties needed for the linear construc-
tion and Ali Mashtizadeh gave useful tips on the ex-
perimental set-up. Joe Bonneau, Greg Hill, David
Mazières, Keith Winstein gave suggestions that im-
proved the writing.

27

This work was funded in part by an NDSEG Fel-
lowship, NSF, DARPA, a grant from ONR, and the
Simons Foundation. Opinions, findings and conclu-
sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of DARPA.

References
[1] Martín Abadi, Mike Burrows, Mark Manasse, and

Ted Wobber. Moderately hard, memory-bound func-
tions. ACM Transactions on Internet Technology,
5(2):299–327, 2005.

[2] Martin R. Albrecht, Benedikt Driessen, Elif Bilge
Kavun, Gregor Leander, Christof Paar, and Tolga
Yalçın. Block ciphers–focus on the linear layer (feat.
PRIDE). In CRYPTO, pages 57–76. Springer, 2014.

[3] Leonardo C. Almeida, Ewerton R. Andrade, Paulo
S. L. M. Barreto, and Marcos A. Simplicio Jr. Lyra:
Password-based key derivation with tunable mem-
ory and processing costs. Journal of Cryptographic
Engineering, 4(2):75–89, 2014.

[4] Joël Alwen and Vladimir Serbinenko. High parallel
complexity graphs and memory-hard functions. In
STOC, pages 595–603, 2015.

[5] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio,
and Nicola Galesi. Proofs of space: When space is of
the essence. In Security and Cryptography for Net-
works, pages 538–557. Springer, 2014.

[6] Jean-Philippe Aumasson, Samuel Neves, Zooko
Wilcox-O’Hearn, and Christian Winnerlein.
BLAKE2: simpler, smaller, fast as MD5. In
Applied Cryptography and Network Security, pages
119–135. Springer, 2013.

[7] Adam Back. Hashcash–a denial of service counter-
measure. http://www.cypherspace.org/hashcash/,
May 1997. Accessed 9 November 2015.

[8] Mihir Bellare, Alexandra Boldyreva, and Adriana
Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In EURO-
CRYPT 2004, pages 171–188. Springer, 2004.

[9] Mihir Bellare, Thomas Ristenpart, and Stefano Tes-
saro. Multi-instance security and its application to
password-based cryptography. In CRYPTO, pages
312–329, 2012.

[10] Mihir Bellare and Phillip Rogaway. Random oracles
are practical: A paradigm for designing efficient pro-
tocols. In CCS, pages 62–73. ACM, 1993.

[11] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles
Macario-Rat, Thomas Peyrin, Matt Robshaw, and
Yannick Seurin. SHA-3 proposal: ECHO. Submis-
sion to NIST (updated), 2009.

[12] Charles H Bennett. Time/space trade-offs for re-
versible computation. SIAM Journal on Computing,
18(4):766–776, 1989.

[13] Daniel J Bernstein. The Salsa20 family of stream
ciphers. In New stream cipher designs, pages 84–97.
Springer, 2008.

[14] Guido Bertoni, Joan Daemen, Michaël Peeters, and
Gilles Van Assche. Keccak sponge function family.
Submission to NIST (Round 2), 2009.

[15] Alex Biryukov, Daniel Dinu, and Dmitry Khovra-
tovich. Argon2 design document (version 1.2.1), Oc-
tober 2015.

[16] Alex Biryukov, Daniel Dinu, and Dmitry Khovra-
tovich. Fast and tradeoff-resilient memory-hard func-
tions for cryptocurrencies and password hashing.
Cryptology ePrint Archive, Report 2015/430, 2015.
http://eprint.iacr.org/.

[17] Alex Biryukov and Dmitry Khovratovich. Tradeoff
cryptanalysis of memory-hard functions. Cryptol-
ogy ePrint Archive, Report 2015/227, 2015. http:
//eprint.iacr.org/.

[18] Matt Bishop and Daniel V Klein. Improving system
security via proactive password checking. Computers
& Security, 14(3):233–249, 1995.

[19] Johannes Blömer, Malik Kalfane, Marek Karpinski,
Richard Karp, Michael Luby, and David Zucker-
man. An XOR-based erasure-resilient coding scheme.
Technical Report TR-95-048, ICSI, August 1995.

[20] Joseph Bonneau. Guessing human-chosen secrets.
PhD thesis, University of Cambridge, 2012.

[21] Joseph Bonneau, Andrew Miller, Jeremy Clark,
Arvind Narayanan, Joshua A. Kroll, and Edward W.
Felten. SoK: Research perspectives and challenges
for Bitcoin and cryptocurrencies. May 2015.

[22] Joseph Bonneau and Ilya Mironov. Cache-collision
timing attacks against AES. In CHES 2006, pages
201–215. Springer, 2006.

[23] Xavier Boyen. Halting password puzzles. In USENIX
Security, 2007.

[24] Ran Canetti, Oded Goldreich, and Shai Halevi. The
Random Oracle Methodology, revisited. Journal of
the ACM, 51(4):557–594, 2004.

28

http://www.cypherspace.org/hashcash/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[25] Ran Canetti, Shai Halevi, and Michael Steiner. Mit-
igating dictionary attacks on password-protected lo-
cal storage. In CRYPTO 2006, pages 160–179.
Springer, 2006.

[26] Siu Man Chan. Just a pebble game. In IEEE Confer-
ence on Computational Complexity, pages 133–143.
IEEE, 2013.

[27] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Ma-
linaud, and Prashant Puniya. Merkle-damgård revis-
ited: How to construct a hash function. In CRYPTO,
pages 430–448, 2005.

[28] CVE-2012-3287: md5crypt has insufficient al-
gorithmic complexity. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-3287, 2012. Ac-
cessed 9 November 2015.

[29] Ivan Bjerre Damgård. A design principle for hash
functions. In CRYPTO, pages 416–427, 1989.

[30] Solar Designer. scrypt time-memory tradeoff, July
2011.

[31] Giovanni Di Crescenzo, Richard Lipton, and Shabsi
Walfish. Perfectly secure password protocols in the
bounded retrieval model. In Theory of Cryptography,
pages 225–244. Springer, 2006.

[32] Jacob Donnelly. Bitmain announces launch of
next-generation Antminer S7 Bitcoin miner.
https://bitcoinmagazine.com/articles/bitmain-
announces-launch-next-generation-antminer-s7-
bitcoin-miner-1440958100, August 2015. Accessed 9
November 2015.

[33] Markus Dürmuth. Useful password hashing: how to
waste computing cycles with style. In New Security
Paradigms Workshop, pages 31–40. ACM, 2013.

[34] Cynthia Dwork, Andrew Goldberg, and Moni Naor.
On memory-bound functions for fighting spam. In
CRYPTO, pages 426–444. Springer, 2003.

[35] Cynthia Dwork and Moni Naor. Pricing via pro-
cessing or combatting junk mail. In CRYPTO 1992,
pages 139–147. Springer, 1993.

[36] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Peb-
bling and proofs of work. In CRYPTO, pages 37–54,
2005.

[37] Stefan Dziembowski, Sebastian Faust, Vladimir Kol-
mogorov, and Krzysztof Pietrzak. Proofs of space.
In CRYPTO, 2015.

[38] Stefan Dziembowski, Tomasz Kazana, and Daniel
Wichs. One-time computable self-erasing functions.
In Theory of Cryptography, pages 125–143. Springer,
2011.

[39] Serge Egelman, Andreas Sotirakopoulos, Ildar Mus-
lukhov, Konstantin Beznosov, and Cormac Herley.
Does my password go up to eleven?: the impact
of password meters on password selection. In CHI,
pages 2379–2388. ACM, 2013.

[40] Arthur Evans Jr, William Kantrowitz, and Edwin
Weiss. A user authentication scheme not requiring
secrecy in the computer. Communications of the
ACM, 17(8):437–442, 1974.

[41] David C. Feldmeier and Philip R. Karn. UNIX pass-
word security–ten years later. In CRYPTO 1989,
pages 44–63. Springer, 1990.

[42] Christian Forler, Stefan Lucks, and Jakob Wenzel.
Catena: A memory-consuming password-scrambling
framework. Cryptology ePrint Archive, Report
2013/525, 2013. http://eprint.iacr.org.

[43] I. Gohberg and V. Olshevsky. Complexity of multi-
plication with vectors for structured matrices. Linear
Algebra and Its Applications, 202:163–192, 1994.

[44] Oded Goldreich. Candidate one-way functions based
on expander graphs. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay be-
tween Randomness and Computation, pages 76–87.
Springer, 2011.

[45] Shafi Goldwasser and Yael Tauman Kalai. On the
(in)security of the Fiat-Shamir paradigm. In FOCS,
pages 102–113. IEEE, 2003.

[46] Martin E. Hellman. A cryptanalytic time-memory
trade-off. Information Theory, Transactions on,
26(4):401–406, 1980.

[47] Solarina Ho. Costco, Sam’s Club, oth-
ers halt photo sites over possible breach.
http://www.reuters.com/article/2015/07/21/us-
cyberattack-retail-idUSKCN0PV00520150721, July
2015. Accessed 9 November 2015.

[48] John Hopcroft, Wolfgang Paul, and Leslie Valiant.
On time versus space. Journal of the ACM (JACM),
24(2):332–337, 1977.

[49] Burt Kaliski. PKCS #5: Password-based cryptogra-
phy specification, version 2.0. IETF Network Work-
ing Group, RFC 2898, September 2000.

[50] John Kelsey, Bruce Schneier, Chris Hall, and David
Wagner. Secure applications of low-entropy keys. In
Information Security, pages 121–134. Springer, 1998.

[51] Jeremy Kirk. Internet address overseer
ICANN resets passwords after website breach.
http://www.pcworld.com/article/2960592/security/
icann-resets-passwords-after-website-breach.html,
August 2015. Accessed 9 November 2015.

29

https://bitcoinmagazine.com/articles/bitmain-announces-launch-next-generation-antminer-s7-bitcoin-miner-1440958100
https://bitcoinmagazine.com/articles/bitmain-announces-launch-next-generation-antminer-s7-bitcoin-miner-1440958100
https://bitcoinmagazine.com/articles/bitmain-announces-launch-next-generation-antminer-s7-bitcoin-miner-1440958100
http://eprint.iacr.org
http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://www.reuters.com/article/2015/07/21/us-cyberattack-retail-idUSKCN0PV00520150721
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html
http://www.pcworld.com/article/2960592/security/icann-resets-passwords-after-website-breach.html

[52] Daniel V. Klein. Foiling the cracker: A survey of, and
improvements to, password security. In Proceedings
of the 2nd USENIX Security Workshop, pages 5–14,
1990.

[53] Saranga Komanduri, Richard Shay, Patrick Gage
Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman.
Of passwords and people: measuring the effect of
password-composition policies. In CHI, pages 2595–
2604. ACM, 2011.

[54] Laura Krantz. Harvard says data breach oc-
curred in June. http://www.bostonglobe.com/
metro/2015/07/01/harvard-announces-data-
breach/pqzk9IPWLMiCKBl3IijMUJ/story.html,
July 2015. Accessed 9 November 2015.

[55] Jérôme Lacan and Jérôme Fimes. Systematic MDS
erasure codes based on Vandermonde matrices. IEEE
Communications Letters, 8(9):570–572, 2004.

[56] Thomas Lengauer and Robert E. Tarjan. Asymp-
totically tight bounds on time-space trade-offs in a
pebble game. Journal of the ACM, 29(4):1087–1130,
1982.

[57] Philip Leong and Chris Tham. UNIX password en-
cryption considered insecure. In USENIX Winter,
pages 269–280, 1991.

[58] Sergio Demian Lerner. Strict memory hard hashing
functions. https://bitslog.files.wordpress.com/2013/
12/memohash-v0-3.pdf, January 2014. Accessed 9
November 2015.

[59] Ming Li and Paul Vitányi. An Introduction to Kol-
mogorov Complexity and Its Applications. Springer,
1997.

[60] Florence Jessie MacWilliams and Neil James Alexan-
der Sloane. The Theory of Error-Correcting Codes.
North-Holland Publishing Company, 1981.

[61] Katja Malvoni, Solar Designer, and Josip Kne-
zovic. Are your passwords safe: Energy-efficient
bcrypt cracking with low-cost parallel hardware. In
USENIX Workshop on Offensive Technologies, 2014.

[62] Alfred J. Menezes, Paul C. Van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC press, 1996.

[63] Ralph C. Merkle. One way hash functions and DES.
In CRYPTO, pages 428–446, 1989.

[64] Robert Morris and Ken Thompson. Password secu-
rity: A case history. Communications of the ACM,
22(11):594–597, 1979.

[65] Jesper Buus Nielsen. Separating random oracle
proofs from complexity theoretic proofs: The non-
committing encryption case. In CRYPTO 2002,
pages 111–126. Springer, 2002.

[66] Jakob Nordström. New wine into old wineskins: A
survey of some pebbling classics with supplemental
results. http://www.csc.kth.se/~jakobn/research/
PebblingSurveyTMP.pdf, March 2015. Accessed 9
November 2015.

[67] Philippe Oechslin. Making a faster cryptanalytic
time-memory trade-off. In CRYPTO, pages 617–630.
Springer, 2003.

[68] Dag Arne Osvik, Adi Shamir, and Eran Tromer.
Cache attacks and countermeasures: the case of
AES. In CT-RSA 2006, pages 1–20. Springer, 2006.

[69] Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg
Fuchsbauer, and Peter Gazi. Spacecoin: a cryptocur-
rency based on proofs of space. Technical report,
Cryptology ePrint Archive, Report 2015/528, 2015.

[70] Password hashing competition. https://password-
hashing.net/.

[71] Wolfgang J. Paul and Robert Endre Tarjan. Time-
space trade-offs in a pebble game. Acta Informatica,
10(2):111–115, 1978.

[72] Wolfgang J. Paul, Robert Endre Tarjan, and
James R. Celoni. Space bounds for a game on graphs.
Mathematical Systems Theory, 10(1):239–251, 1976.

[73] Colin Percival. Stronger key derivation via sequential
memory-hard functions. In BSDCan, May 2009.

[74] Alexander Peslyak. yescrypt. https://password-
hashing.net/submissions/specs/yescrypt-v2.pdf,
October 2015. Accessed 13 November 2015.

[75] Andrea Peterson. E-Trade notifies 31,000 customers
that their contact info may have been breached in
2013 hack. https://www.washingtonpost.com/news/
the-switch/wp/2015/10/09/e-trade-notifies-31000-
customers-that-their-contact-info-may-have-been-
breached-in-2013-hack/, October 2015. Accessed 9
November 2015.

[76] Mark S. Pinsker. On the complexity of a concen-
trator. In 7th International Teletraffic Conference,
1973.

[77] Nicholas Pippenger. A time-space trade-off. Journal
of the ACM (JACM), 25(3):509–515, 1978.

[78] Nicholas Pippenger and Michael J. Fischer. Relations
among complexity measures. Journal of the ACM,
26(2):361–381, 1979.

30

http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
http://www.bostonglobe.com/metro/2015/07/01/harvard-announces-data-breach/pqzk9IPWLMiCKBl3IijMUJ/story.html
https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
https://password-hashing.net/
https://password-hashing.net/
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://password-hashing.net/submissions/specs/yescrypt-v2.pdf
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/
https://www.washingtonpost.com/news/the-switch/wp/2015/10/09/e-trade-notifies-31000-customers-that-their-contact-info-may-have-been-breached-in-2013-hack/

[79] Thomas Pornin. The Makwa password hashing func-
tion. http://www.bolet.org/makwa/, April 2015.
Accessed 13 November 2015.

[80] Privacy Rights Clearinghouse. Chronology of
data breaches. http://www.privacyrights.org/data-
breach. Accessed 9 November 2015.

[81] Niels Provos and David Mazières. A future-adaptable
password scheme. In USENIX Annual Technical
Conference, pages 81–91, 1999.

[82] Arnold Reinhold. HEKS: A family of key stretch-
ing algorithms (draft g). http://world.std.com/
~reinhold/HEKSproposal.html, July 2001. Accessed
13 November 2015.

[83] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds. In CCS, pages 199–212. ACM, 2009.

[84] John E. Savage. Models of computation: Exploring
the Power of Computing. Addison-Wesley, 1998.

[85] Stuart Schechter, Cormac Herley, and Michael
Mitzenmacher. Popularity is everything: A new
approach to protecting passwords from statistical-
guessing attacks. In HotSec, pages 1–8. USENIX As-
sociation, 2010.

[86] Ravi Sethi. Complete register allocation problems.
SIAM journal on Computing, 4(3):226–248, 1975.

[87] Mohammad Amin Shokrollahi, Daniel A. Spielman,
and Volker Stemann. A remark on matrix rigidity.
Information Processing Letters, 64(6):283–285, 1997.

[88] Adam Smith and Ye Zhang. Near-linear time,
leakage-resilient key evolution schemes from ex-
pander graphs. IACR Cryptology ePrint Archive,
Report 2013/864, 2013.

[89] Martijn Sprengers and Lejla Batina. Speeding up
GPU-based password cracking. In SHARCS Work-
shop, 2012.

[90] Rudy Takala. UVA site back online after chinese
hack. http://www.washingtonexaminer.com/uva-
site-back-online-after-chinese-hack/article/2570383,
August 2015. Accessed 9 November 2015.

[91] Martin Tompa. Time-space tradeoffs for computing
functions, using connectivity properties of their cir-
cuits. In STOC, pages 196–204. ACM, 1978.

[92] Abigail Tracy. In wake of T-Mobile and Experian
data breach, John Legere did what all CEOs
should do after a hack. http://www.forbes.com/
sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-

and-experian-data-breach-john-legere-did-what-
all-ceos-should-do-after-a-hack/, October 2015.
Accessed 9 November 2015.

[93] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Ef-
ficient cache attacks on AES, and countermeasures.
Journal of Cryptology, 23(1):37–71, 2010.

[94] John Tromp. Cuckoo Cycle: a memory-hard proof-
of-work system. IACR Cryptology ePrint Archive,
2014:59, 2014.

[95] Leslie G Valiant. On non-linear lower bounds in com-
putational complexity. In STOC, pages 45–53. ACM,
1975.

[96] Leslie G. Valiant. Graph-theoretic arguments in low-
level complexity. In Jozef Gruska, editor, Mathemat-
ical Foundations of Computer Science, volume 53 of
Lecture Notes in Computer Science, pages 162–176.
Springer Berlin Heidelberg, 1977.

[97] Steven J. Vaughan-Nichols. Password site LastPass
warns of data breach. http://www.zdnet.com/
article/lastpass-password-security-site-hacked/,
June 2015. Accessed 9 November 2015.

[98] David Wagner and Ian Goldberg. Proofs of security
for the Unix password hashing algorithm. In ASI-
ACRYPT 2000, pages 560–572. Springer, 2000.

[99] Yaacov Yesha. Time-space tradeoffs for matrix mul-
tiplication and the discrete Fourier transform on any
general sequential random-access computer. J. Com-
puter and System Sciences, 29(2):183–197, 1984.

A Analysis of Argon2
In this section, we demonstrate that, after a linear-
time pre-computation step, it is possible to compute
the single-pass variant of the Argon2i password hash-
ing function [15], the function that won a recent pass-
word hashing competition [70], using between a quar-
ter and a fifth of the desired space with no computa-
tional penalty.

After running the pre-computation step once, it is
possible to compute many Argon2i password hashes,
on different salts and different passwords using our
small-space computation strategy. Thus, the cost of
the pre-computation is amortized over many subse-
quent hash computations.

Our findings apparently contrast with those of the
Argon design documents, which seem to claim that
computing N -block single-pass Argon2i with N/4
space incurs a 7.3× computational penalty [15, Table

31

http://www.bolet.org/makwa/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://world.std.com/~reinhold/HEKSproposal.html
http://world.std.com/~reinhold/HEKSproposal.html
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.washingtonexaminer.com/uva-site-back-online-after-chinese-hack/article/2570383
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.forbes.com/sites/abigailtracy/2015/10/02/in-wake-of-t-mobile-and-experian-data-breach-john-legere-did-what-all-ceos-should-do-after-a-hack/
http://www.zdnet.com/article/lastpass-password-security-site-hacked/
http://www.zdnet.com/article/lastpass-password-security-site-hacked/

2]. Increasing the number of passes over the memory
ameliorates this weakness but does not eliminate it:
we show that computing the multiple-pass variant of
Argon2i requires only roughly N/e < N/2.71 blocks
of storage in expectation.

We analyze a idealized version the Argon2i algo-
rithm, which is slightly simpler than that proposed
in the Argon2 v1.2.1 specification [15]. Our ideal-
ized analysis underestimates the efficacy of our small-
space computation strategy, so the strategy we pro-
pose is actually more effective at computing Argon2i
than the analysis suggests. The idealized analysis
yields an expected N/4 storage cost, but as Figure 15
demonstrates, empirically our strategy allows com-
puting single-pass Argon2i with only N/5 blocks of
storage. This analysis focuses on the single-threaded
instantiation of Argon2i—we have not tried to extend
it to the many-threaded variant.

Background on Argon. At a high level, the Ar-
gon2i hashing scheme operates by filling up an N -
block buffer with pseudo-random bytes, one 1024-
byte block at a time. The first two blocks are derived
from the password and salt. For i ∈ {2, . . . , N − 1},
the block at index i is derived from two blocks: the
block at index (i − 1) and a block selected pseudo-
randomly from the set of blocks generated so far. If
we denote the contents of block i as xi, then Argon2i
operates as follows:

x0 = H(passwd, salt ‖ 0)

x1 = H(passwd, salt ‖ 1)

xi = H(xi−1, xri) where ri ∈ {0, . . . , i− 1}

Here, H is a cryptographic compression function
mapping two blocks into one block. The random in-
dex ri is sampled from a non-uniform distribution
over Si = {0, . . . , i−1} that has a heavy bias towards
blocks with larger indices. We model the index value
ri as if it were sampled from the uniform distribu-
tion over Si. Our small-space computation strategy
performs better under a distribution biased towards
larger indices, so our analysis is actually somewhat
conservative.

The single-pass variant of Argon2i computes
(x0, . . . , xN−1) in sequence and outputs bytes derived
from the last block xN−1. Computing the function in
the straightforward way requires storing every gener-
ated block for the duration of the computation—N
blocks total

The multiple-pass variant of Argon2i works as
above except that it computes pN blocks instead of

Time
0

N/5

N/4

M
em

or
y
in

us
e Predicted

Actual

Figure 15: Space used by our algorithm for comput-
ing single-pass Argon2i during a single hash compu-
tation.

just N blocks, where p is a user-specified integer in-
dicating the number of “passes” over the memory the
algorithm takes (e.g., the default is 3). In multiple-
pass Argon2i, the contents of block i are derived from
the prior block and one of the most recent N blocks.
The output of the function is derived from the value
xpN−1. When computing the multiple-pass variant of
Argon2i, one need only store the latest N blocks com-
puted (since earlier blocks will never be referenced
again), so the storage cost of the straightforward al-
gorithm is still roughly N blocks.

Our analysis splits the Argon2i computation into
discrete time steps, where time step t begins at the
moment at which the algorithm invokes the compres-
sion function H for the tth time.

Small-Space Strategy. Our strategy for computing
p-pass Argon2i with fewer than N blocks of memory
is as follows:

• Pre-computation Phase. We run the en-
tire hash computation once—on an arbitrary
password and salt—and write the memory ac-
cess pattern to disk. For each memory block
i, we pre-compute the time ti after which
block i is never again accessed and we store
{t0, . . . , t(pN−1)} in a read-only array. The to-
tal size of this table on a 64-bit machine is 8pN
bytes.3

3 On an FPGA or ASIC, this table can be stored in rel-
atively cheap shared read-only memory and the storage cost
can be amortized over a number of compute cores. Even
on a general-purpose CPU, the table and memory buffer for
the single-pass construction together will only require 8N +
1024(N/4) = 8N + 256N bytes when using our small-space
computation strategy. Argon2i normally requires 1024N bytes
of buffer space, so our strategy still yields a significant space
savings.

32

Since the Argon2i memory-access pattern does
not depend on the password or salt, it is possi-
ble to use this same pre-computed table for many
subsequent Argon2i hash computations (on dif-
ferent salts and passwords).

• Computation Phase. We compute the hash
function as usual, except that we delete blocks
that will never be accessed again. After reading
block i during the hash computation at time step
t, we check whether the current time t ≥ ti. If
so, we delete block i from memory and reuse the
space for a new block.

Analysis of One-Pass Argon2i. We now analyze
the space consumption of our algorithm. We are in-
terested in the algorithm’s expected space usage at
time step t—call this function S(t).4 At each step of
the algorithm, the expected space usage S(t) is equal
to the number of memory blocks generated so far mi-
nus the expected number of blocks in memory that
will never be used after time t. Let Ai,t be the event
that block i is never needed after time step t in the
computation. Then S(t) = t−

∑t
i=1 Pr[Ai,t].

To find S(t) explicitly, we need to compute the
probability that block i is never used after time t. We
know that the probability that block i is never used
after time t is equal to the probability that block i is
not used at time t + 1 and is not used at time t + 2
and [. . .] and is not used at time N . Let Ui,t denote
the event that block i is unused at time t. Then:

Pr [Ai,t] = Pr

[
N⋂

t′=t+1

Ui,t′

]
=

N∏
t′=t+1

Pr[Ui,t′] (9)

The equality on the right-hand side comes from the
fact that Ui,t′ and Ui,t′′ are independent events for
t′ 6= t′′.

To compute the probability that block i is not
used at time t′, consider that there are t′ − 1 blocks
to choose from and t′ − 2 of them are not block i:
Pr[Ui,t′] = t′−2

t′−1 . Plugging this back into Equation 9,
we get:

Pr [Ai,t] =

N∏
t′=t+1

(
t′ − 2

t′ − 1

)
=

t− 1

N − 1

4 As described in the prior section, the contents of block i
are derived from the contents of block i−1 and a block chosen
at random from the set ri ←R {1, . . . , i − 1}. Throughout our
analysis, all probabilities are taken over the random choices of
the ri values.

Now we substitute this back into our original expres-
sion for S(t):

S(t) = t−
t∑
i=1

(
t− 1

N − 1

)
= t− t(t− 1)

N − 1

Taking the derivative S′(t) and setting it to zero al-
lows us to compute the value t for which the ex-
pected storage is maximized. The maximum is at
t = N/2 and the expected number of blocks required
is S(N/2) ≈ N/4.

Larger in-degree. A straightforward extension of
this analysis handles the case in which δ random
blocks—instead of one—are hashed together with the
prior block at each step of the algorithm. Our analy-
sis demonstrates that, even with this strategy, single-
pass Argon2i is vulnerable to pre-computation at-
tacks. The maximum space usage comes at t∗ =
N/(δ+1)1/δ, and the expected space usage over time
S(t) is:

S(t) ≈ t− tδ+1

Nδ
so S(t∗) ≈ δ

(δ + 1)1+1/δ
N .

Analysis of Many-Pass Argon2i. One idea for
increasing the minimum memory consumption of Ar-
gon2i is to increase the number of passes that the al-
gorithm takes over the memory. Unfortunately, even
after many passes over the memory, the Argon2i al-
gorithm sketched above still uses many fewer than N
blocks of memory, in expectation, at each time step.

To investigate the space usage of the many-pass
Argon2i algorithm, first consider that the space usage
will be maximized at some point in the middle of
its computation—not in the first or last passes. At
some time step t in the middle of its computation
the algorithm will have at most N memory blocks in
storage, but the algorithm can delete any of these N
blocks that it will never need after time t.

Let Bi,t denote the event that block i in the stor-
age buffer is never needed after time t. Then we claim
Pr[Bi,t] = (N−1N)i. To see the logic behind this cal-
culation: notice that, at time t, the first block in the
buffer can be accessed at time t+1 but by time t+2,
the first block will have been deleted from the buffer.
Similarly, the second block in the buffer at time t can
be accessed at time t+1 or t+2, but not t+3 (since by
then it will have been deleted from the buffer). Sim-
ilarly, block i can be accessed at time steps (t + 1),
(t+ 2), . . . , (t+ i) but not at time step (t+ i+ 1).

33

The total storage required is then:

S(t) = N −
N∑
i=1

E[Bi,t] = N −
N∑
i=1

(
N − 1

N

)i
≈ N −N

(
1− 1

e

)
Thus, even after many passes over the memory, Ar-
gon2i can still be computed in roughly N/e space
with no time penalty.

B Proof of Theorem 27

We prove Theorem 27 in a sequence of lemmata.

Lemma 37. Let V ⊆ Fn be a linear space of dimen-
sion d. For w ≤ n, there are at most

(
d+w−1
w

)
·(|F|−1)

vectors of exact weight w in V .

Proof. Let S1 ⊆ V be a set of distinct vectors of exact
weight w. To prove the lemma, we put an upper
bound on the size of S1 by constructing a sequence
of sets: S1, S2, . . . , Sv.

To construct Si+1 from Si, arrange the vectors in
Si in an (|Si|×n) matrixMi. Let ci be the number of
non-zero columns in this matrix. There are w|Si| non-
zero cells in Mi and therefore there must exist a non-
zero column in Mi with at most |Si|(w/ci) non-zero
cells. Let ki be the index of that column. Remove all
the vectors from Si that are non-zero in component
ki and let Si+1 be the remaining vectors.

First, we know that

|Si+1| ≥ |Si| − |Si| ·
w

ci
= |Si| ·

ci − w
ci

. (10)

Second, we know that |Si+1| < |Si|, since we have
removed at least one vector from Si. Finally, we know
that rank(Si+1) < rank(Si), since Si contains at least
one vector that is outside of the span of the set Si+1

(i.e., a vector that is non-zero in coordinate ki).
Since the rank of each set we construct is strictly

less than the rank of the previous set, after construct-
ing at most d−1 such sets, we reach a set Sv (for some
v ≤ d) such that the vectors of Sv span a space of di-
mension one. Then |Sv| ≤ |F| − 1. Moreover, from
Equation (10) we know that

|S1| ≤
c1

c1 − w
· |S2| ≤ · · · ≤

c1
c1 − w

· · · cv−1
cv−1 − w

· |Sv|

≤ c1
c1 − w

· · · cv−1
cv−1 − w

· (|F| − 1) (11)

where c1 > c2 > · · · > cv−1 > w. The quantity in
(11) is maximized when

cv−1 = w+ 1, cv−2 = w+ 2, . . . , c1 = w+ v− 1

and therefore

|S1| ≤
(
w + v − 1

v − 1

)
·(|F|−1) =

(
w + v − 1

w

)
·(|F|−1)

as required.

As an immediate corollary, we obtain a bound on
the number of vectors of weight w in an affine space.

Corollary 38. Let V ⊆ Fn be a linear space of di-
mension d. For a vector v ∈ V , the affine space
V + v contains at most

(
d+w
w

)
(|F | − 1) vectors of ex-

act weight w.

Proof. Let S ⊆ V + v be a set of vectors of exact
weight w. Then S−v ⊆ V and therefore (S−v)∪{v}
spans a spaceW of dimension at most d+1. Since S is
contained in W , and W has dimension at most d+ 1,
it follows by Lemma 37 that |S| ≤

(
d+w
w

)
(|F | − 1) as

required.

For the next lemma it is convenient to introduce
the following notation: For a set S ⊆ {1, . . . , n} and
a vector v ∈ Fn, let vS denote the vector v after
removing all the columns whose index is not in S,
so that vS ∈ F|S|. For example, (1, 0, 1, 0, 1){1,3,4} =
(1, 1, 0).

Recall that Pn,w denotes the distribution that sam-
ples a vector v ∈ Fn2 by choosing w random indices,
with replacement, in {1, . . . , n} and setting these
components of v to 1 (v is zero elsewhere).

Lemma 39. Let n,w, ρ be as in Theorem 27. Let
S ⊆ {1, . . . , n} be a set of size n/2. Let v ∈ Fn2 be a
vector sampled from Pn,w and let V ⊆ Fn/22 be some
linear space of dimension at most n/ρ. Then

Pr
[
vS ∈ V

]
<

(
1

2
+

1.1

ρ

)w
Proof. Let z ∈ Fn2 be some fixed vector such that zS
has weight k ≤ w. The probability that vS is equal
to zS is at most

k!

nk

(
w

k

)
·
(

1

2
+
k

n

)w−k
(12)

To see why, we choose k of the w non-zero positions
in vS to match the non-zero positions in zS and this

34

matching can be done k! ways. The remaining w− k
non-zero positions of vS must either fall outside the
set S or on one of the k non-zero positions in zS .

Let r = n/ρ. By Lemma 37 the number of vectors
of weight k in V is bounded by(

r + k − 1

k

)
≤ (r + k)k

k!
≤ (r + w)k

k!
(13)

Combining (12) and (13) we obtain:

Pr
[
vS ∈ V

]
≤

w∑
k=0

(
w

k

)(
r + w

n

)k
·
(

1

2
+
w

n

)w−k
=

(
1

2
+
r + 2w

n

)w
where the last equality is an application of the bino-
mial theorem. Since r = n/ρ and by the assump-
tion on n imposed in the statement of the theorem
(n > 20wρ) we have:

(r + 2w)/n < 1.1/ρ,

so that

Pr
[
vS ∈ V

]
<

(
1

2
+

1.1

ρ

)w
as required.

Lemma 40. With the notation of Theorem 27, let
A be an (n/4)× n matrix obtained by selecting some
n/4 rows of M . Then A is (1, 2, ρ) inflexible with
probability at least 1− 2−0.82n.

Proof. Fix some set of n/2 columns of A and call the
resulting n/4× n/2 matrix A1/2. We first argue that
rank(A1/2) > n/ρ with overwhelming probability.

For convenience, let m = n/4 and r = n/ρ. For
all i = 1, . . . ,m, let Ii be the indicator variable that
is one if the ith row of A1/2 is outside of the span of
the top i− 1 rows of A1/2, and is zero otherwise. We
show that

Pr [rank(A1/2) > r] = Pr

[
m∑
i=1

Ii > r

]
> 1− 2−1.82n (14)

or equivalently, that

Pr

[
m∑
i=1

Ii ≤ r

]
< 2−1.82n. (15)

Once we prove that (14) holds, we can apply the
union bound over all

(
n
n/2

)
choices for A1/2 to prove

the lemma:

Pr

[
A is (1, 2, ρ)
inflexible

]
> 1−

(
n

n/2

)
· 2−1.82n

> 1− 2n · 2−1.82n = 1− 2−0.82n.

It remains to prove (15). Let A(i)
1/2 be the i × n/2

matrix obtained from the top i rows of A1/2. By
Lemma 39 we have that

Pr
[
Ii+1 = 0

∣∣∣ rank(A
(i)
1/2) ≤ n/ρ

]
<

(
1

2
+

1.1

ρ

)w
To complete the proof of (15) first observe that the

event I1 + . . .+ Im ≤ r is the same as the event that
some set of m − r indicator variables is 0. We first
bound the probability that a specific set of m − r
indicator variables is 0. Without loss of generality
we can focus on the last m − r variables Ir, . . . , Im
since the bottom rows of A1/2 are the ones most likely
to be linearly dependent on the previous rows. Since
the first r − 1 rows of A1/2 have rank at most r − 1
we have:

Pr

[
m⋂
i=r

(Ii = 0)

]
= Pr[Ir = 0] · Pr[Ir+1 = 0 | (Ir = 0)] · · ·

· · ·Pr[Im = 0 | (Ir = 0) ∧ · · · ∧ (Im−1 = 0)]

<

(
1

2
+

1.1

ρ

)w(m−r)

=

(
1

2
+

1.1

ρ

)w(1/4−1/ρ)n

We now prove (15) by a union bound over all sets
of m− r indicator variables:

Pr

[
m∑
i=1

Ii ≤ r

]
<

(
m

m− r

)
·
(

1

2
+

1.1

ρ

)w(1/4−1/ρ)n

Using the inequality
(
a
b

)
< (a·eb)b we obtain(

m

m− r

)
=

(
m

r

)
=

(
n/4

n/ρ

)
<
e · ρ

4

n/ρ
< ρn/ρ

Therefore,

Pr

[
m∑
i=1

Ii ≤ r

]
<

[
ρ1/ρ

(
1

2
+

1.1

ρ

)w(1/4−1/ρ)
]n

< 2−1.82n

where the last inequality follows from the require-
ments on w and ρ in the statement of Theo-
rem 27. This proves (15) and completes the proof
of Lemma 40.

35

Theorem 27 now follows directly from Lemma 40.

Proof of Theorem 27. The proof is by a union bound
over the n-choose-n/4 possible choices for the n/4
rows of M . We know that(

n

n/4

)
< 2Hb(1/4)n < 20.812n,

where Hb(p) = −p log2 p − (1 − p) log2(1 − p) is the
binary entropy function. We have applied the fact
that Hb(1/4) < 0.812.

Using Lemma 40, the matrix M in Theorem 27 is
(4, 2, ρ) inflexible with probability at least

1−
(
n

n/4

)
· 2−0.82n > 1− 20.812n × 2−0.82n

= 1− 2−0.008n > 1− 1.0055−n

as required.

36

	Introduction
	Related Work
	Goals
	Syntax
	Security Properties

	Constructions
	Pebble Games
	Rules of the Game
	Pebbling in theRandom-Oracle Model
	Dangers of the Pebbling Paradigm

	Avoider Graphs
	Expander Graphs
	Defining Avoiders
	Transformations on Avoiders
	Hard-to-Pebble Graphsfrom Avoiders

	From Pebblingto Space-Hardness
	Inflexible Matrices
	Definition and Properties
	A Simple ProbabilisticConstruction
	Constructions fromError-Correcting Codes
	Fast Probabilistic Construction
	Working over Extension Fields

	Analysis of theLinear Construction
	Preliminary Lemmata
	The Main Theorem
	Putting It All Together

	Experimental Evaluation
	Authentication Throughput
	Balloon Mixing Variants
	Compression Function

	Conclusions and Open Questions
	Analysis of Argon2
	Proof of Theorem 27

