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Abstract

We introduce a new cryptographic primitive: Proofs of Space-Time (PoSTs) and construct a practical protocol
for implementing these proofs. A PoST allows a prover to convince a verifier that she spent a “space-time” resource
(storing data—space—over a period of time). Formally, we define the PoST resource as a trade-off between CPU
work and space-time (under reasonable cost assumptions, a rational user will prefer to use the lower-cost space-time
resource over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the “difficulty” can be increased by extending
the time period over which data is stored without increasing computation costs. Our definition is very similar to
“Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike the previous definitions, takes into account amortization
attacks and storage duration. Moreover, our protocol uses a very different (and simpler) technique, making use of the
fact that we explicitly allow a space-time tradeoff, and doesn’t require any non-standard assumptions (beyond random
oracles).

1 Introduction
A major problem in designing secure decentralized protocols for the internet is a lack of identity verification. It is
often easy for an attacker to create many “fake” identities that cannot be distinguished from the real thing. Several
strategies have been suggested for defending against such attacks (often referred to as “sybil attacks”); one of the most
popular is to force users of the system to spend resources in order to participate. Creating multiple identities would
require an attacker to spend a correspondingly larger amount of resources, making this attack much more expensive.

Any bounded resource can be used as the “payment”; one of the more common is computing resources, since they
do not require any additional infrastructure beyond that already needed to access the Internet. In order to ensure that
users actually do spend the appropriate resource payment, the users must employ a “proof of work”.

Proofs of work have been used for reducing spam [6], for defending against denial-of-service attacks [15] and
fairly recently, as the underlying mechanism for implementing a decentralized bulletin-board—this is the technical
heart of the Bitcoin protocol [11].

While effective, proofs-of-work have a significant drawback; they require energy in direct proportion to the re-
source used (i.e., the amount of electricity required to run the CPU during the proof of work generally depends linearly
on the amount of work being performed). This is especially problematic in the context of the Bitcoin protocol, since
the security of the system relies on all honest parties constantly performing proofs of work. In addition to having an
environmental impact, this also sets a lower bound on transaction fees (since rational parties would only participate in
the protocol if their reward exceeds their energy cost). Motivated in large part by the need to replace proofs-of-work
as a basis for crypto-currencies, two (very similar) proposals for Proofs of Space (PoS) have been published [7, 2].
Park et al. also designed an alternative crypto-currency that is based on Proofs of Space [12].

A PoS is a two-phase protocol1: it consists of an initialization phase and (sometime later) an execution phase. In
an (N0,N1,T )-PoS the prover shows that she either (1) had access to at least N0 storage between the initialization and
execution phases and at least N1 space during the execution phase, or (2) used more than T time during the execution
phase.

At first glance, this definition might seem sufficient as a replacement for proof-of-work. However, in contrast to
work, space can be reused. Using the PoS definition as a “resource payment” scheme thus violates two properties we
would like any such scheme to satisfy:
∗IDC Herzliya. Email: talm@idc.ac.il. Supported by ISF grant no. 1790/13 and Bar-Ilan Cyber-center grant no.
†Outbrain
1We use the formal definitions of [7], which are more general than those in [2]
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1. Amortization-Resistance: A prover with access to max (N0,N1) space can, without violating the formal PoS se-
curity guarantee, generate an arbitrary number of different (N0,N1,T )-PoS proofs while using the same amount
of resources as an honest prover generating a single proof; thus, the amortized cost per proof can be arbitrarily
low.

2. Rationally Stored Proofs: Loosely speaking, in a rationally stored proof a verifier is convinced that a rational
prover has expended a space resource over a period of time. There may exist a successful adversarial strategy
that does not require the adversary to expend space over time, but this strategy will be more costly than the
honest one. If we are interested in designing a crypto-currency that replaces CPU work with a space-based
resource, our proof of resource consumption must be a rationally stored proof, otherwise rational parties will
prefer to use the adversarial strategy, and we can no longer claim that the crypto-currency is energy-efficient.

The cost of storage is proportional to the product of the storage space and the time it is used (e.g., in most
cloud storage services, it costs the same to store 10TB for two months or 20TB for one month2). Under the PoS
definition, a prover can pay an arbitrarily small amount by discarding almost all stored data after the initialization
phase and rerunning the initialization in the execution phase (the prover only needs to store the communication
from the verifier in the initialization phase). More generally, a rational prover will prefer to use computation
over storage whenever the cost of storing the data between the phases is greater than the cost of rerunning the
initialization; when this occurs the PoS basically devolves into a standard proof-of-work in terms of energy
usage.

Even if we ignore energy use, this is a problem if the PoS is used in a protocol where the prover must generate
many proofs, but only some will be verified: the dishonest prover will not have to expend resources on the
unverified proofs in this case.

Although the protocols of [7, 2] are not completely undermined by these attacks, they are more than just a defi-
nitional problem. In particular, in the suggested PoS protocols based on graph pebbling, the work performed by the
honest prover in the initialization phase is proportional to the work required to access the graph (i.e., O(N0)). It’s not
clear how to increase the initialization costs without increasing either the memory size or verification cost linearly.
This strongly bounds the time that can be allowed between the initialization and execution phases if we want rational
provers to use space resources rather than CPU work. In the Spacemint protocol, for example, the authors suggest
running the proofs every minute or so [12]. If one wanted to run a proof only once a month, a rational miner might
prefer to rerun the initialization phase each time.

1.1 Our Contributions
“Fixed” Definition. In this paper, we define a new proof-of-resource-payment scheme: a “Proof of Spacetime”
(PoST), that we believe is better suited as a scalable energy-efficient replacement for proof-of-work. Our definition is
similar to a Proof of Space, but addresses both amortization and rationality of storage.

In a PoST, we consider two different “spendable” resources: one is CPU work (i.e., as in previous proofs-of-work),
and the second is “spacetime”: filling a specified amount of storage for a specified period of time (during which
it cannot be used for anything else); we believe spacetime is the “correct” space-based analog to work (which is a
measure of CPU power over time). Like work, spacetime is directly convertible to cost.

Rational Storage vs. Space Rather than require the prover to show exactly which resource was spent in the
execution phase, we allow the prover to choose arbitrarily the division between the two, as long as the total amount of
resources spent is enough.

That is, the prover convinces a verifier that she either spent a certain amount of CPU work, or reserved a certain
amount of storage space for some specified period of time or spent some linear combination of the two. However,
by setting parameters correctly, we can ensure that rational provers will prefer to use spacetime over work; when
this is the case we say that a PoST is Rationally Stored (we give a formal definition in Section 2.2.4). In situations
where it is reasonable to assume rational adversaries (such as in crypto-currencies), our definition opens the door to
new constructions that might not satisfy the PoS requirements. For example, the PoS definition essentially requires a
memory-hard function, while our construction is rationally stored but is not memory-hard!

2Of course, this is also true for a local disk; during the interval in which we are using the disk to store data A, we can’t use it to store anything
else, so our “cost” is the utility we could have gained over the same period (e.g., by renting out the disk to a cloud-storage company).
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Novel Construction. We construct a PoST based on incompressible proofs-of-work (IPoW); a variant of proofs-
of-work for which we can lower-bound the storage required for the proof itself. We give a candidate construction
based on the standard “hash preimage” PoW. Our protocols and proofs use a very different technique than the Proofs
of Space protocols, and we believe they are simpler to implement.

Standard Assumptions. Our constructions (and proofs) are in the random oracle model (like most previous
work on memory-hard functions and proofs of space). Unlike the existing PoS constructions, our analysis does not
require any non-standard assumptions (we use an information-theoretic argument to reduce breaking the soundness to
compressing a random string).

Different Parameter Regimes. In comparison with [7], we think of the time between the initialization and proof
phases as weeks rather than minutes (this could enable, for example, a crypto-currency in which the “miners” could
be completely powered off for weeks at a time). One can think of our constructions as complementary to the existing
PoS constructions for different parameter regimes—On the one hand, the proof phase of our PoST protocol is less
efficient (it requires access to the entire storage, so a proof might take minutes rather than seconds, as is the case for
the pebbling-based constructions). This means it is not as well suited to very short periods between proofs. On the
other hand—unlike the existing PoS constructions—the computational difficulty of our initialization phase is tunable
independently of the amount of space, so it is possible to use it to prove reasonable storage size over long periods (e.g.,
weeks or months). In this parameter regime, a proof that takes several minutes would be reasonable.

Improvements to Spacemint. Finally, we propose a modification to the Spacemint crypto-currency protocol that
removes some restrictions on the types of PoS protocols it can use—allowing it to use PoSTs rather than the specific
PoS constructions it is currently based on (see Section 5)

1.2 Related Work
Memory-Bound Functions One of the inspirations for our protocol is the memory-bound function defined by
Dwork, Goldberg and Naor [5]. The goal in designing a memory-bound function is to make the performance bot-
tleneck for function evaluation the memory latency rather than CPU speed. The DGN design uses a “pointer-chasing”
technique in a random table to prove that an adversary who computes the function must touch many entries. Our
protocol is based on a similar idea. However, since our security goals are different (e.g., we do not need to ensure the
protocol actually uses a large amount of space, but do need to enforce a tradeoff between space and work) our protocol
(and proof techniques) are different.

Memory-Hard Functions Loosely speaking, a memory-hard function is a function that requires a large amount of
memory to evaluate [13, 1]. One of the main motivations for constructing such functions is to construct proofs-of-
work that are “ASIC-resistant” (based on the assumption that the large memory requirement would make such chips
prohibitively expensive). Note that the proposed memory-hard functions are still proofs-of-work; the prover must
constantly utilize her CPU in order to produce additional proofs. PoSTs, on the other hand, allow the prover to “rest”
(e.g., by turning off her computer) while still expending space-time (since expending this resource only requires that
storage be filled with data for a period of time).

Proofs of Storage/Retrievability In a proof-of-storage/retrievability a prover convinces a verifier that she is cor-
rectly storing a file previously provided by the verifier [8, 4, 3, 9, 14]. The main motivation behind these protocols is
verifiable cloud storage; they are not suitable for use in a PoST protocol due to high communication requirements (the
verifier must send the entire file to the server in the first phase), and because they are not publicly verifiable. That is,
if the prover colludes with the owner of the file, she could use a very small amount of storage space and still be able
to prove that she can retrieve a large amount of pseudorandom data.

Permacoin Miller, Juels, Shi, Parno and Katz proposed a the Permacoin protocol, a cryptocurrency that includes,
in addition to the standard PoWs, a special, distributed, proof of retrievability that allows the cryptocurrency to serve
as a distributed backup for useful data [10]. In strict contrast to PoSTs, the Permacoin construction is amortizable by
design—an adversary who stores the entire dataset can reuse it for as many clients as it wishes. Thus, Permacoin still
requires regular PoWs, and cannot be used to replace them entirely with a storage-based resource. Also by design,
clients require a large amount of communication to retrieve the data they must store, in contrast to PoSs and PoSTs in
which clients trade computation for communication.
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2 Proofs of Spacetime
A PoST deals in two types of resources: one is processing power and the other is storage. All our constructions are in
the random oracle model—we model processing power by counting the number of queries to the random oracle.

Modeling storage is a bit trickier. Our purpose is to allow an energy-efficient proof-of-resource-consumption for
rational parties, where we assume that the prover is rewarded for each successful proof (this is, roughly speaking, the
case in Bitcoin). Thus, simply proving that you used a lot of space in a computation is insufficient; otherwise it would
be rational to perform computations without pause (reusing the same space). Instead, we measure spacetime—a unit
of space “reserved” for a unit of time (and unusable for anything else during that time). To model this, we separate
the computation into two phases; we think of the first phase as occurring at time t = 0 and the second at time t = 1
(after a unit of time has passed). After executing the first phase, the prover outputs a state σ ∈ {0, 1}∗ to be transferred
to the second phase; this is the only information that can be passed between phases. The size of the state |σ| (in bits)
measures the space used by the prover over the time period between phases;

Informally, the soundness guarantee of a PoST is that the total number of resource units used by the adversary is
lower bounded by some specified value—the adversary can decide how to divide them between processing units and
spacetime units.

We give the formal definition of a PoST in Section 2.2, in Section 3 we present a simple construction of a PoST,
and in Section 3.1 we prove its security.

2.1 Units and Notation
Our basic units of measurement are CPU throughput, Space and Time. These can correspond to arbitrary real-world
units (e.g., 230 hash computations per minute, one Gigabyte and one minute, respectively). We define the rest of our
units in terms of the basics:

• Work: CPU×time; A unit of CPU effort expended (e.g., 230 hash computations).

• Spacetime: space×time; A space unit that is “reserved” for a unit of time (and unusable for anything else during
that time).

In our definitions, and in particular when talking about the behavior of rational adversaries, we would like to
measure the total cost incurred by the prover, regardless of the type of resource expended. To do this, we need to
specify the conversion ratio between work and spacetime:

Real-world Cost We define γ to be the work-per-spacetime cost ratio in terms of real-world prices. That is, in the
real-world one spacetime unit costs as much as γ work units (the value of γ may change over time, and depends on the
relative real-world costs of storage space and processing power).

We define the corresponding cost function, the real-world cost of a PoST to be a normalized cost in work units: a
PoST that uses |σ| spacetime units and x work units has real-world cost c = γ|σ| + x.

2.2 Defining a PoST Scheme
A PoST scheme consists of two phases, each of which is an interactive protocol between a prover P and a verifier V .3

Both parties have access to a random oracle H.

Initialization Phase Both parties receive as input an id string id ∈ {0, 1}k. At the conclusion of this phase, both the
prover and the verifier output state strings (σP ∈ {0, 1}∗ and σV ∈ {0, 1}∗, respectively):

(σP, σV )←
〈
PH(id),VH(id)

〉
.

Execution Phase Both parties receive the id and their corresponding state from the initialization phase. At the end of
this phase, the verifier either accepts or rejects (outV ∈ {0, 1}, where 1 is interpreted as “accept”). The prover
has no output:

(·, outV )←
〈
PH(id, σP),VH(id, σV )

〉
.

3Although the definition allows general interaction, in our construction the first phase is non-interactive (the prover sends a single message) and
the second consists of a single round.
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The execution phase can be repeated multiple times without rerunning the initialization phase. This is critical,
since the initialization phase requires work, while the execution phase is energy-efficient. Thus, although a single
execution of the PoST does not give any advantage over proof-of-work, the amortized work per execution can
be made arbitrary low.

2.2.1 PoST Parameters

A PoST has three parameters: w, the Honest Initialization Work, m, the Honest Storage Space, and f , the Space-time
Tradeoff Function,

Honest Initialization Work We denote w the expected work performed by the honest prover in the initialization
phase. This should be “tunable” to ensure that storing the output remains the rational choice rather than recomputing
the initialization as the space-time to work cost ratio changes.

If the cost of the initialization phase is too low, the adversary can generate a proof more cheaply than an honest
prover by deleting all data after initialization, then rerunning the initialization just before the proof phase. In this
case, the adversary does not store any data between phases, so does not pay any space-time cost. We formalize this
in Definition 2.8 as a rationality attack. Note that this is a general attack that also applies to PoS schemes—hence
they must also have a lower bound on the work required for initialization.

Honest Storage Space This is the amount of storage the honest prover must expend during the period between the
initialization and execution phases (and between successive execution phases).

Space-time Tradeoff Function We define f to be the work/spacetime tradeoff bound for a PoST proof. f (s) lower-
bounds the expected work the prover needs to succeed in the execution phase if it stores up to s bits. Note that f need
not be linear. In fact, the optimal f is exponential: f (s) = w/2s. This is because f (0) ≤ w (since we can always just
run the initialization phase again), and 2 f (i + 1) ≤ f (i)—we can always do with one bit less of storage, and try both
options.

Definition 2.1 (PoST). A protocol (P,V) as defined above is a (w,m, ε, f )-PoST if it satisfies the properties of com-
pleteness and (ε, f )-soundness defined below.

2.2.2 Completeness

Definition 2.2 (PoST Completeness). We say that a PoST is (perfectly) complete if for every id ∈ {0, 1}poly(k) and
every oracle H,

Pr
[
outV = 1 : (σP, σV )←

〈
PH(id),VH(id)

〉
, (·, outV )←

〈
PH(id, σP),VH(id, σV )

〉]
= 1 .

Note that the probability is exactly 1 and hence the completeness is perfect.

2.2.3 Soundness

We define a security game with two phases; each phase has a corresponding adversary. We denote the adversary
A = (A1,A2), whereA1 andA2 correspond to the first and the second phases of the game. A1 andA2 can coordinate
arbitrarily before the beginning of the game, but cannot communicate during the game itself (or between phases).

Definition 2.3 (PoST n-Security Game). Each phase of the security game corresponds to a PoST phase:

1. Initialization. A1 chooses a set of ids {id1, . . . , idn} where idi ∈ {0, 1}∗. It then interacts in parallel with n
independent (honest) verifiers executing the initialization phase of the PoST protocol, where verifier i is given
idi as input. Let σA be the output ofA1 after this interaction and (σV1 , . . . , σVn ) be the outputs of the verifiers.

2. Execution. The adversary A2(id1, . . . , idn, σA ) interacts with n independent verifiers executing the execution
phase of the PoST protocol, where verifier i is given (idi, σVi ) as input.4

4Each of the verifiers runs a copy of the honest verifier code with independent random coins; A2, however, can correlate its sessions with the
verifiers.
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We say the adversary has succeeded if all of the verifiers output 1 (we denote this event Succn)

For a party P, let q#
P be the number of queries P makes to the oracle H.

Definition 2.4 (PoST (ε, f )-Soundness). We say a PoST protocol is (ε, f )-sound if for all s > 0 and all n ≥ 1, every
adversaryA = (A1,A2) that uses at most s storage must satisfy the following conditions in the PoST security game:

1. Rational Storage: E
[
q#
A1
|Succn

]
≥ ε · w · n .

2. Space-Time Trade-Off : E
[
q#
A2
|Succn

]
≥ n · f (s/n).

The first condition checks that the adversary spends at least an ε fraction of the honest work in the initialization
phase. This prevents the adversary from launching a “rationality attack”: if the initialization phase requires very little
computational effort, the prover can “throw out” the stored data from the initialization phase and rerun the phase to
regenerate any needed data during the execution phase. This would make its total space-time cost negligible (since the
“time” component vanishes).

The second condition bounds the trade-off between space-time and work. Intuitively, an PoST satisfying this
definition forces an adversary to trade space for queries. The use of n ids rather than just one prevents an amortization
attack, wherein the adversary reuses the same space for different proofs. Naı̈vely, to generate n proofs the prover
would require n times the queries, splitting the storage equally between them, hence the n · f (s/n). Ideally f would
meet these bounds exactly, However, we allow imperfect soundness, in which case the bound implied by f can be
worse than those given by the naı̈ve approach.

2.2.4 Rationally Stored Proofs of Work

Our high-level goal in this paper is to construct energy-efficient proofs, by forcing provers to use storage rather than
work. Unfortunately, our definitions (and contructions) don’t allow a prover to prove they used storage (this is actually
impossible if the adversary can simulate the initialization phase without a lot of storage—which is always the case
unless communication in the initialization phase is proportional to storage or we use non-standard assumptions).
However, we can still give conditions under which a rational prover (whose goal is to minimize expected total cost)
would prefer to use storage. As long as these conditions are met, it seems reasonable to assume that real-world
users would choose storage over work (especially in a crypto-currency setting, where profit is the main motive for
participating).

Definition 2.5 ((γ, ε′)-Rationally-Stored PoST). We say a (w,m, ε, f )-PoST is (γ, ε′)-rationally stored if for all n ≥ 1:

1. The optimal execution strategy is storing an ε′-fraction of the honest storage:

s∗ = arg min
s

(n · f (s/n) + γs) ≥ ε′ · n · m

2. Rerunning initialization is costlier than storage:

ε · n · w + n · f (0) ≥ ε′ · γ · n · m⇔ γ ≤
εw + f (0)

ε′m

In a protocol satisfying this definition, when the real-world cost of a space unit is less than γ, the optimal strategy
for reducing real-world cost is to store at least ε′ compared to the honest storage cost. Note that we omit the initial-
ization cost in Condition 1. This is because it is only incurred once, while the cost of the execution phase is incurred
repeatedly. If we run the PoST execution phase k times, the total cost to the adversary would be lower-bounded by
k(n · f (s∗/n) + γs∗) + ε · n · w ≥ k · ε′ · n · m + ε · n · w, while the honest cost would be k · n · m + n · w; thus, for any
constants ε,w and m, the ratio is lower-bounded by

k · ε′ · n · m + ε · n · w
k · n · m + n · w

=
ε′ · m

m + 1
k · w

+
1
k

ε · w
m + k · w

k→∞
−−−−→ ε′
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2.2.5 Comparison with the PoS definition

As we remarked in the introduction, an (N0,N1,T )-PoS does not give any security guarantees with respect to the PoST
definition (even if we ignore amortization), since it does not address postponement attacks at all. In the other direction,
even an optimal (w,m, 1,w/2−s)-PoST can’t guarantee a (x, x,w)-PoS, for any x ∈ (0,w) (e.g., our construction allows
an adversary to easily trade space for work). Thus, the parameters are not truly comparable.

One can think of the two definitions as being targeted at different “regimes”: a PoS forces the prover to use a lot of
space, but is not well suited to long periods between the initialization and execution phases, while the PoST definition
does allow long periods of elapsed time (with a suitably hard initialization step), but relies on the rationality of the
adversary to enforce use of storage rather than work.

2.3 Constructing a PoST: High-Level Overview
Our proof of spacetime has each prover generate the data they must store on their own. To ensure that this data is
cheaper to store than to generate (and to allow public verifiability), we require the stored data to be a proof-of-work.
We construct our protocol using the abstract notion of an incompressible-proof-of-work (IPoW); this is a proof-of-
work (PoW) that is non-compressible in the sense that storing n different IPoWs requires n times the space compared
to storing one IPoW (we define them more formally below; see Section 2.4).

As long as the cost of storing an IPoW proof is less than the cost of recomputing it, the prover will prefer to store
it. However, this solution is very inefficient: it requires the prover to send its entire storage to the verifier. In order to
verify the proof with low communication, instead of one large proof of work, we generate a table containing T entries;
each entry in the table is a proof of work that can be independently verified.

Why the Naı̈ve Construction Fails At first glance, it would seem that there is an easy solution for verifying that the
prover stored a large fraction of the table:

1. In the initialization phase: the prover commits to the table contents (using a Merkle tree whose leaves are the
table entries)

2. In the execution phase: the verifier sends a random set of indices to the prover, who must then respond with the
corresponding table entries and commitment openings (merkle paths to the root of the tree).

Unfortunately, this doesn’t work: the prover can discard the entire table and reconstruct only those entries requested
by the verifier during the execution phase.

Instead of challenging the prover on random table entries, we use a trick from Dwork et al.’s memory-bound
function construction [5]: the challenge provided by the verifier defines multiple sets of entries. The prover must
search through the table to find a set of entries that satisfies a “probing criterion”. We set the difficulty of the probing
criterion to ensure the prover must read a large fraction of the table in order to find a satisfying set; thus, the prover
must either have stored or recomputed a large fraction of the table.

In a little more detail: for a challenge ch, every nonce nonce selected by the prover will define the set of k entries
H(nonce||ch||1), . . . ,H(nonce||ch||k), where the output of the random oracle is interpreted as a pointer to the table. We
use the random oracle for the probing criterion too; setting p∗ = Θ(k/T ) to be the probability of success, for each set
of entries (X1, . . . , Xk) the prover must compute H(X1, . . . , Xk), interpret the output of the oracle as a real fraction in
[0, 1) and check if it is less than p∗.

Intuitively, the only thing the prover can do is try many different nonces until one succeeds (in expectation 1/p∗ =

Ω(T/k) attempts), but because the entries defined by each nonce are random and independent, with high probability
the attempts will cover most of the table. Essentially, by setting p∗ low enough, we force the prover to read the most
of the table, even though the final output consists of only k entries and their Merkle paths to the root of the tree used
to commit the table (k can be polylogarithmic in the table size).

2.4 Incompressible Proofs of Work
The standard definitions of PoWs do not rule out an adversary that can store a small amount of data and can use it to
regenerate an entire table of proofs with very low computational overhead. Thus, to ensure the adversary must indeed
store the entire table we need a more restrictive definition:

An Incompressible Proof of Work (IPoW) can be described as a protocol between a verifier V and a prover P:
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1. The prover P is given a challenge ch as input, and outputs a “proof” π:

2. The verifier receives (ch, π) and outputs 1 (accept) or 0 (reject).

For simplicity, we denote IPoW (ch) the output of the honest prover on challenge ch (this is a random variable that
depends on the random oracle and the prover’s coins).

2.4.1 Defining an IPoW

Let q#
P denote the number of oracle calls made by P in the protocol (this is a random variable that depends on ch and

the random coins of P).

Definition 2.6 ((w′,m, f )-IPoW). A protocol is a (w′,m, f )-IPoW if:

1. E
[
q#

P

]
≤ w′ (the honest prover’s expected work is bounded by w′),

2. |π| ≤ m (the honest prover’s storage is bounded by m) and

3. The IPoW is complete (c.f. Definition 2.7) and f -sound (c.f. Definition 2.8)

Definition 2.7 (IPoW Completeness). An IPoW protocol is complete if, for every challenge ch, the probability that
the verifier rejects is negligible in the security parameter (the probability is over the coins of the prover and the random
oracle).

Definition 2.8 (IPoW f (x)-Soundness). Let A(n,s) = (A(n,s)
1 ,A(n)

2 ) be an adversary such that A(n,s)
1 outputs a string σ

with length |σ| ≤ s, whileA(n,s)
2 gets σ as input and outputs n pairs (ch1, π1, . . . , chn, πn). Denote Succ the event (over

the randomness of A(n,s) and the random oracle) that all the challenges are distinct and ∀i ∈ [n] : V(chi, πi) = 1. An
IPoW protocol is f -sound if for every adversary and all n ≥ 1, s ≥ 0,

E
[
q#
A

(n,s)
2
|Succ

]
≥ n · f (s/n)

As in the PoST definition, this condition bounds the trade-off between space-time and work for the IPoW adversary.
Note that we don’t restrict the number of queriesA(n,s)

1 makes to the oracle.

2.4.2 Rationally Stored IPoWs

As for rationally-stored PoSTs, we define a condition which implies that for small enough γ, a rational adversary’s
optimal strategy is storage. Since we aren’t concerned with postponement attacks, the definition for IPoWs is a little
simpler:

Definition 2.9 ((γ, ε)-Rationally-Stored IPoW). We say a (w′,m, f )-IPoW is (γ, ε)-rationally stored if for all n ≥ 1

arg min
s

(n · f (s/n) + γs) ≥ ε · n · m

3 Our PoST Construction: The Details
Formally, we describe the protocol in the presence of several random oracles, denoted by Hi ; for i , j, Hi and H j are
independent random oracles. This is just for convenience of notation, we can implement them all using a single oracle
by assigning a unique prefix to the oracle queries (e.g., Hi (x) = H(i||x)).

The formal PoST protocol description appears as Protocol 1. To construct it, we use a (w′,m, f )-IPoW. Our
soundness proof requires that the amount of work per IPoW verification is at most 1

10 · w′. We construct such a
hash-based IPoW scheme in Section 4.
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Protocol 1 Table-PoST (for γ∗ = w′/m)

Public Parameters: k - security parameter, T - table size and IPoW (ch) is a (w′,m, f )-IPoW. Denote p∗ = k/T

Storing Phase: (Performed by the prover P)

Inputs: id ∈ {0, 1}∗.

1. Generate an array G of size T as follows:
For each 0 ≤ i < T , set G[i] def

= IPoW (id||i)

2. Generate a commitment com on G using a Merkle tree (i.e., construct a Merkle tree whose leaves are labeled
with the entries of G, and each internal node’s label is the output of the random oracle on the concatenation of
its children’s labels; com is the root label).

3. Publish the string id and the commitment com.

Proof Phase: (Performed by the prover P)
Upon receiving a challenge ch from the verifier V:

1: for all j ∈ {1, . . . , k} do
2: count ← 0
3: repeat
4: count ← count + 1 // Increment counter
5: Set nonce j ← count
6: for all t ∈ {1, . . . , k} do
7: Compute i j,t = H1 (nonce j||ch|| j||t) mod T
8: end for
9: Let πdecommit( j) be the Merkle paths from the table entries

{
G[i j,1], . . . ,G[i j,k]

}
.

10: Compute pathprobe← H2 (i j,1||G[i j,1]|| · · · ||i j,k ||G[i j,k]||πdecommit( j))
11: until pathprobe < p∗ // happens with prob. p∗

12: end for
13: Output to V the list (nonce1, . . . , noncek) and

{
πdecommit(1), . . . , πdecommit(k)

}
.

Proof Phase: (Performed by the verifier V)
Generate a random challenge ch and send it to the prover. Wait to receive the list (nonce1, . . . , noncek) and{
πdecommit(1), . . . , πdecommit(k)

}
.

1: for all j ∈ {1, . . . , k} do
2: for all t ∈ {1, . . . , k} do
3: Compute i j,t = H1 (nonce j||ch|| j||t) mod T
4: Verify using πdecommit( j) that G[i j,t] has a valid commitment opening.
5: Verify that G[i j,t] is a valid IPoW for the challenge id||i j,t.
6: end for
7: Compute pathprobe← H2 (i j,1||G[i j,1]|| · · · ||i j,k ||G[i j,k]||πdecommit( j))
8: Verify that pathprobe < p∗

9: end for

9



3.1 Security Proof Sketch
Theorem 3.1 (Informal). If the challenge ch is chosen with high min-entropy, Protocol 1 is a sound PoST protocol

Proof. For simplicity of the proof, we assume that ε = 1/4 Recall that Definition 2.3 offers the adversary two ways to
win in the security game; we treat each case separately.

1. Suppose there exists an adversary that wins with non-negligible probability under the first condition (i.e. a
postponement attack). In this case, the adversary cannot have solved more than half of the table entries’ proofs
of work. Therefore, when given a new random challenge it will either have to find a path that exists entirely in
the half of the table it did solve, or break the Merkle commitment. Note that searching for a path of length k that
falls entirely in one half of the table is equivalent to flipping k coins until they all return 1—the choice of nonce
determines the entire path (given the challenge and existing table entries), and the random oracle ensures that
each index in the path is chosen randomly and independently of the previous links. Thus, the adversary would
require a number of random oracle queries exponential in k to succeed (with high probability) (This argument
is formalized in Lemma 3.2.)

2. We analyze the second case (spacetime attack) by reducing from the incompressibility of IPoW; if there exists
an adversary that can beat the work+space trade-off, we can use this adversary to violate the IPoW soundness
guarantee. The idea is to use the adversary as a subroutine in a program that can reconstruct a large fraction
of the table. To compress, we run the adversary’s initialization phase. To decompress, we run the adversary’s
execution phase, simulating the oracle H2 (·). Each path probe query (query to H2 (·)) should correspond to a set
of k table entries and their commitment openings; we can use this query to “reconstruct” those table entries. (we
can ignore path probe queries that don’t have the right format—those are “useless”, since they are independent
of anything the verifier queries).

Since the prover must output k good nonces and the oracle queries to H2 (·) are independent for each nonce, with
high probability it will have to make Ω(1/p∗) path probe queries. Moreover, since the table indices are chosen
i.i.d. for each different nonce and challenge, if the adversary has previously asked about less than 1/4 of the
table entries, with high probability at least 1/2 of the indices in each path probe query will be new. Thus, each
path-probe query will add at least 1/2k new table entries. By setting p∗ = Ω(k/T ), we can ensure that with high
probability at least one quarter of the table entries will be reconstructed.

The total space we need to store is just the output of the adversary’s initialization phase. Moreover, the number
of work oracle queries we make while reconstructing the table is exactly the number of queries made by the
adversary’s execution phase. By our assumption about the adversary’s winning strategy, the normalized total (of
space+queries) is less than the total needed to honestly reconstruct 1/4 of the entries. Thus, we violate IPoW
soundness. (This argument is formalized in Lemma 3.3.)

�

3.2 Security Proof for Table-PoST
For simplicity of the proof, we assume that ε = 1/4. Recall that Definition 2.3 offers the adversary two ways to win in
the security game; we treat each case separately.

First, assume that the adversary is deterministic (this is w.l.o.g. since the adversary is computationally unbounded).

Let A = (A1,A2) be an adversary in the PoST security game (defined in Definition 2.3) such that E
[
q#
A1
|Succn

]
<

εwn.
Let q#

ver be the number of oracle queries required to verify a single IPoW.

Lemma 3.2. If the underlying IPoW is a (w′,m, f )-IPoW and q#
ver ≤

1
10 f (0) then for all n ≥ 1 and every adversary

A = (A1,A2) that makes at most a polynomial number of queries, it holds that

E
[
q#
A1
|Succn

]
≥

8
10
· Tn · f (0) .

Proof. We will construct an IPoW adversary,A(IPoW) = (A(IPoW)
1 ,A(IPow)

2 ), that makes the almost the same number of
queries asA1, uses no space and outputs Ω(Tn) valid IPoWs.
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1. A(IPoW)
1 does nothing.

2. A(IPoW)
2 runsA1, recording all the oracle queries.

3. WhenA1 sends com1, . . . , comn, supposedly the roots of the Merkle trees,A(IPoW)
2 can reconstruct the complete

trees by checking the recorded queries to see the preimage of each tree node.

4. A(IPoW)
2 then runs the IPoW verifier on each of the leaves.

5. A(IPoW)
2 outputs the valid IPoW leaves (note that for this attack, the communication between A1 and A2 is

irrelevant, since both are executed byA(IPoW)
2 ).

Denote S the set of valid IPoW entries in the committed tables (i.e., the ones reconstructed by A(IPoW)
2 ). The

list of table entries generated by A2 in a winning response to the challenge must be contained in S (except with
negligible probability in the length of the Merkle oracle), otherwise either the IPoW verification would fail or the
Merkle commitment verification would fail (in contradiction to the response being a “winning” response). We claim
that this implies, in almost every instance in whichA wins the PoST security game, that |S | > 9

10 Tn.
To see why, assume in contradiction that |S | ≤ 9

10 Tn. Then there must be at least one table that does not have
9
10 T valid entries. In particular, since all the verifiers accepted, there must be at least one accepting PoST whose
corresponding table had less than 9

10 T . Let S ′ be the entries belonging to that table. The probability (over the choice of
the random oracle) that for a given nonce all k entries H1 (nonce||ch||1), . . . ,H1 (nonce||ch||k) are in S ′ is (|S ′|/T )k ≤ 2−k.
Let Succnonce be the event that this test succeeded for nonce. Since entries of the random oracle are independent, the
events Succnonce for different nonces are independent. Hence, the probability that an adversary can succeed with less
than 2k/k oracle queries to H1 is bounded by a negligible function in k (using the Chernoff bound).

So except with negligible probability, ifA is successfulA(IPoW)
2 outputs 9

10 Tn valid IPoWs. A(IPoW)
2 runsA1 once,

making exactly the same number of queries. In addition it runs the verifier on all the n tables’ entries. Thus, by the
IPoW soundness,

E
[
q#
A1
|Succn

]
= E

[
q#
A(IPoW2) |Succ

]
− q#

ver · T · n ≥
9
10

Tn · f (0) − q#
ver · T · n ≥

8
10

Tn · f (0) .

�

Lemma 3.3. If the underlying IPoW is a (w′,m, f )-IPoW then for all n ≥ 1 and every adversary A = (A1,A2) that
makes at most a polynomial number of queries and uses s bits of storage

E
[
q#
A2
|Succn′

]
≥

1
4

n′ · T · f (s/(n′ · T/4))

Proof. We construct an IPoW adversary that runsA once, uses the same amount of space and makes the same number
of queries to the work oracle. The IPoW adversary,A(IPoW) = (A(IPoW)

1 ,A(IPow)
2 ), works as follows:

1. A(IPoW)
1 runsA1. For every Merkle oracle query corresponding to an invalid IPoW,A(IPoW)

1 intercepts the oracle
call and replaces the answer with a random string (this will cause it to be invalid with high probability). If asked
again, it answers consistently. (A(IPoW)

1 can ask the IPoW verification oracle, since in the IPoW soundness attack
we don’t care about the number of queries made byA(IPoW)

1 ). The output ofA(IPoW)
1 is σ (where σ is the output

ofA1).

2. A(IPoW)
2 runsA2(σ), keeping track of queries to the oracle.

3. For each path-probe query (to H2 ) made by A2, A(IPoW)
2 parses the query as a set of k table entries and their

commitment openings, and verifies the commitment openings. Note thatA(IPoW)
1 ensured that any validly opened

entries are also valid IPoWs.

4. A(IPoW)
2 outputs the set of valid IPoWs collected during the execution ofA2.

11



A
(IPoW)
2 makes the same number of queries to the work oracle as A2, and A(I poW) uses the same amount of storage

(plus an additional PRF key of size k). It remains to show the the set of valid IPoWs it outputs is at least of size 1
4 n · T .

To do this, we require that for every PoST table for which A(IPoW)
2 reconstructed less half of the entries, A2 will

fail to convince a verifier with high probability. Thus, there must be at least n′ tables with 1
2 T “good” entries.

Let S be the entries of one of the tables output byA2, such thatA(IPoW)
2 reconstructed less than 1

2 |S | of the entries.
Since A(IPoW)

2 will reconstruct any entry that was a valid IPoW and was included in a path-query, this means A2 did
not make path-queries about at least half of the entries in the table. However, in order to convince the verifier,A2 must
output k “good” nonces—that is, paths for which H2 (·) returned value less than p∗ = k/T and all corresponding IPoW
entries were valid. Consider the array nonce1 . . . , noncek of nonces output for this table by A2. For each nonce, the
probability of finding a good path with less than 1

2p∗ queries to H2 (·) is at most 1
2 . Since H2 (·) queries are independent

for different nonces, if there are more than 1
2 k of the nonces for which less than 1

2p∗ queries were made, the probability
that all of the nonces are good is at most 2−k/2. (Note that H2 (·) is entirely independent of the view ofA1 (and hence
of σ, since we used an internally simulated oracle in A2. This is ok because the challenge was chosen with high
min-entropy, so the probability thatA1 could have queried H2 (·) on the same challenge prefix is negligible.)

Hence, we can assume that at least 1
2p∗ ·

k
2 = k

4p∗ path-probes were made. Denote P1, . . . , P` the paths queries,
where we can think of each Pi as a set of indices). Suppose P1, . . . , Pi were already generated. Note that every set
S ⊆ [T ] and nonce nonce, the events {H(nonce||i) mod T ∈ S }i∈[k] are i.i.d and hold with probability |S |/T ). By the
Chernoff inequality,

Pr
[
|{H(nonce||1) mod T, . . . ,H(nonce||k) mod T } ∩ S | >

2k|S |
T

]
< e−k |S |3T .

Since by our assumption
∣∣∣⋃i

j=1 P j

∣∣∣ < T/4, for any nonce, the probability that the nonce generates a patch Pi+1 such
that

∣∣∣Pi+1 \
⋃i

j=1 P j

∣∣∣ < k/2 is at most e−k/12. Thus, sinceA1 runs in expected polynomial time, except with negligible

probability it must be that for every i ∈ [k], at least k/2 new indices are added. So,
∣∣∣∣∣⋃ k

4p∗

j=1 P j

∣∣∣∣∣ > k
2 ·

k
4p∗ ≥ T/4, so

A(IPoW) outputs at least n′ · T/4 valid IPoWs.
By the soundness property of the IPoW, and since A(IPoW) uses the same space and makes the same number of

queries as A, we have that for A, E
[
q|S uccess

]
≥ n′ f ((s)/n′). (We note that the queries to random oracles that

are independent of H (such as H1 , H2 and the Merkle oracle) don’t matter, since the IPoW soundness should still
hold). �

Theorem 3.4. A Table-PoST based on an (w′,m, f )-IPoW with q#
ver <

1
10 w′ is a (w′ · T,m · T, ε = 8

10
f (0)
w′ , f ′(s) =

T
4 · f ( 4

T · s))-PoST

Proof. The honest work and storage requirements follow from the protocol constructing a table of T IPoWs. The
value of ε follows directly from Lemma 3.2, while the value of f ′ follows from Lemma 3.3. �

Corollary 3.5. The Table-PoST protocol, used with our construction of the hash-preimage IPoW gives a (w′ · T,m ·
T, ε = 8

160 , f ′(s) = T
64 · w

′ · 2−
4
T ·s)-PoST protocol

Proof. By Theorem 4.2, our construction gives a (w′, log w′, 1
16 · w′ · 2−s)-IPoW. Together with Theorem 3.4, this

implies a (w′ · T,m · T, ε = 8
160 , f ′(s) = T

64 · w
′ · 2−

4
T ·s)-PoST (We note that the constants in the analysis are not tight;

in fact both ε and f ′ give better bounds in practice.) �

4 Hash-Preimage IPoW
One of the most popular proofs of work is the hash-preimage PoW: given a challenge ch ∈ {0, 1}k, interpret the random
oracle’s output as a binary fraction in [0, 1] and find x ∈ {0, 1}k s.t.

H(ch||x) < p (4.1)

p is a parameter that sets the difficulty of the proof. For any adversary, the expected number of oracle calls to
generate a proof-of-work of this form is at least 1/p.
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At first glance, this might seem to be an incompressible PoW already—after all, the random oracle entries are
uniformly distributed and independent, so compressing the output of a random oracle is information-theoretically
impossible. Unfortunately, this intuition is misleading. The reason is that we need the proof to be incompressible even
with access to the random oracle. However, given access to the oracle, it’s enough to compress the input to the oracle.
Indeed, the hash-preimage PoW is vulnerable to a very simple compression attack: Increment a counter x until the
first valid solution is found, but don’t store the zero prefix of the counter. Since the expected number of oracle calls
until finding a valid x is only 1/p, on average that means only log 1

p bits need to be stored (rather than the full length
of an oracle entry).

We show that this is actually an optimal compression scheme. Therefore, to make this an incompressible PoW,
we instruct the honest user to use this strategy, and store exactly the

⌈
log 1

p

⌉
least significant bits of the counter. We

note that 1
p is the expected number of attempts—in the worst case the prover may require more; thus, we allow the

prover to search up to k
p entries; the verifier will check k possible prefixes for the log 1

p bits sent by the prover (with
overwhelming probability, there will be a valid solution in this range). Thus, the verifier may have to make k oracle
queries in the worst case in order to check a proof (however, in expectation it will be only slightly more than one).5

Formally,

Definition 4.1 (w′-Hash-Preimage IPoW). The honest prover and verifier are defined as follows: Set p = 1/w′.

Prover Given a challenge y, calls H on the inputs {y||x}
x∈{0,1}log k

p
in lexicographic order, returning as the proof π the

least significant log 1
p bits of the first x for which H(y||x) < p.

Verifier Given challenge y and proof π, verifies that |π| ≤ log 1
p and that there exists a prefix z of length log k such that

H(y||z||π) < p (where π is zero-padded to the maximum length).

Theorem 4.2. The w′-hash-preimage protocol is a (w′, log w′, f (s) = 1
16 ·

w′
2s )-IPoW.

To prove Theorem 4.2, we will first show that this IPoW is indeed incompressible. This is captured in Lemma 4.3:
For an adversary A = (A1,A2), let denote Ech,H

[
q|Succ

]
the expected number of queries made by A2, conditioned

on the verifier accepting (where the expectation is over the random oracle). The following lemma lower-bounds this
expectation as a function of the storage used by the adversary and the total number of IPoWs:

Lemma 4.3. For every adversary,A = (A1,A2), such thatA1 outputs at most s bits and all n ≥ 1,

E
H

[
q|Succ

]
≥

1
41+1/n · nw · 2−s/n ≥

1
16
· nw · 2−s/n

Proof. To simplify the proof, we’ll assume that the hardness parameter for the hash PoW is a power of two (i.e.,
w = 1/p = 2m for some m ∈ N).

Suppose, in contradiction to the lemma statement, that EH
[
q|Succ

]
< n·w

4·2(s+2)/n . We will show how to use the
adversary to compress a random string. The adversary is computationally unbounded, so we can assume w.l.o.g. that
it is deterministic, and probabilities are only over the random string.

For the adversary to be successful,A2 must output n distinct challenges ch1, . . . , chn and n outputs x1, . . . , xn such
that ∀i ∈ [n] : H(chi||xi) < 2−m.

The compression algorithm is described in Protocol 2. Given a random string of length 2`k, it interprets the
string as the random oracle, H : {0, 1}` 7→ {0, 1}k, uses an adversary that violates the lemma to compress the string.
By observation, we can see that the corresponding decompression algorithm (Protocol 3) decodes perfectly with no
errors.

Let Z be the storage size for the compressed data. Using the storage analysis in Protocol 2 the expected number of
bits stored by the compression algorithm is at most

E [Z] ≤ Pr
[
q ≤ 2E

[
q|Succ

]
∧ Succ | Succ

]
·

(
2`k + s + 1 − n(m − 2 − log

2E
[
q
]

n
)
)

+

(
1 − Pr

[
q ≤ 2E

[
q|Succ

]
∧ Succ | Succ

]) (
2`k + 1

)
.

5We note that this computation can be performed by the prover instead, but it will simplify our analysis to assume the verifier performs the
checks.
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For every non-negative r.v. X, it holds that Pr [X > 2E [X]] ≤ 1
2 . Since q is non-negative,

Pr
[
q ≤ 2E

[
q|Succ

]
∧ Succ|Succ

]
= Pr

[
q ≤ 2E

[
q|Succ

]
|Succ

]
≥

1
2
.

Thus,

x ≤ Pr
[
q ≤ 2E

[
q|Succ

]
∧ Succ|Succ

]
·

(
2`k + s + 2 − n(m − 2 − log

2E
[
q
]

n
)
)

+

(
1 − Pr

[
q ≤ 2E

[
q|Succ

]
∧ Succ|Succ

]) (
2`k

)
Our assumption, EH

[
q|Succ

]
< n·w

4·2(s+2)/n , implies that

2`k + s + 2 − n(m − 2 − log
2E

[
q
]

n
) < 2`k

hence E [Z] < 2`k. However, the total entropy of the input string is 2`k, so this violates Shannon’s source-coding
theorem. �

We can now complete the proof:

Proof of Theorem 4.2. The honest prover uses w′ expected queries, by the setting of p = 1/w′ and stores m = log 1
p =

log w′ bits. By Lemma 4.3, this protocol is sound. �

4.1 Hash-Proof Rationality
Theorem 4.4. For all ε ∈ (0, 1), the w′-Hash-Preimage IPoW is a (2−5 · (w′)ε, 1 − ε) rationally-stored IPoW.

This means that if w′ >
(
γ · 25

)(1/ε)
then the optimal storage strategy for the hash-preimage-based IPoW is to store

at least (1 − ε) of the honest amount.

Proof. Suppose an adversary uses s < n log w′ storage. Then by Lemma 4.3 the expected cost to the adversary is at
least:

γs + E
[
q
]
≥ γs +

1
4(1+1/n) · nw′ · 2−s/n .

Taking the derivative
∂

∂s

(
γs +

1
4(1+1/n) · nw′ · 2−s/n

)
= γ −

ln 2
4(1+1/n) · w

′ · 2−s/n

which is monotone increasing as a function of s, and is negative when s < n(log w′ + log ln 2 − log γ − 2(1 + 1/n)),
hence an adversary minimizing cost will take s = n(log w′ + log ln 2 − log γ − 2(1 + 1/n)) ≥ n(log w′ − log γ − 5).

Since γ < 2−5 · (w′)ε, it follows that a rational adversary will store at least

n(log w′ − ε log w′) = (1 − ε)n log w′

bits of storage, where an honest prover uses n log w′ bits. �

5 Using PoSTs in Spacemint
Spacemint is a crypto-currency based on PoSs rather than PoWs [12]. Spacemint was designed to be used with the
pebbling-based PoS constructions; our PoST construction is not a drop-in replacement. However, we believe some
simple modifications to Spacemint would allow it to be used with PoSTs as well (and thus provide an option for an
even more “restful” crypto-currency). Below, we briefly sketch the main problem encountered in using the unmodified
Spacemint with PoSTs, and how we overcome it. (We note that the Spacemint construction is fairly complex, and we
do not include an in-depth description here. For more details on Spacemint, we refer the reader to [12].)
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Protocol 2 Compression algorithm
1: RunA1 to get σ. // Assume w.l.o.g that |σ| = s
2: RunA2 with σ and H as input.
3: Let X = (ch1||x1, . . . , chn||xn) be the outputs ofA2, sorted lexicographically.
4: Let Q = (q1, . . . , q|Q|) be the set of oracle queries made byA2, sorted lexicographically.
5: if |Q| ≤ 2E

[
q
]

and ∀i, the m MSBs of H(chi||xi) are all 0s then // the output ofA2 verifies
6: Let X′ = X ∩ Q = (x′1, . . . , x

′
|X′ |), the subset of outputs that were also queried.

7: for all j ∈ {1, . . . , |X′|} do
8: Denote idx( j) the index of x′j in Q (i.e., qidx( j) = x′j).
9: Let ∆ j = idx( j) − idx( j − 1) // we define idx(0) = 1

10: end for
11: Let ∆|X′ |+1 = 2E

[
q
]
−

∑|X′ |−1
j=1 ∆ j //

∑|X′ |
j=1 ∆ j = E

[
q
]

12: Output (1, σ,∆1, . . . ,∆|X′ |,∆|X′ |+1,H(q1), . . . ,H(q|Q|),H|X\Q,H|¬(X∪Q))

• We will represent ∆ j in the following way:

–
⌊

∆ j

2E [q]/n

⌋
represented in unary (between 0 and n one bits)

– a zero bit.
– ∆ j mod (2E

[
q
]
/n) represented in binary (log 2E [q]

n bits)

Since
∑

j ∆ j ≤ 2E
[
q
]
, the total number of bits in the unary representations is at most n. Thus, in total

we use at most n + |X′|(1 + log 2E [q]
n ) bits.

• We represent H(qi) as follows:

– If qi ∈ X′, we store the k − m LSBs of H(qi)
– Otherwise, we store the full k bits.

In total, this uses |X′|(k − m) + (|Q| − |X′|)k bits.

• We represent H|X\Q by storing the k − m LSBs of each entry. The entries are stored consecutively
without padding. This uses (n − |X′|)(k − m) bits.

• We will represent H|¬(X∪Q) by storing the full entries. The entries are stored consecutively without
padding. This uses (2` − n − |Q| + |X′|)k bits.

All together, since |X′| ≤ n, the length of the encoding is at most

Z = 1 + s + n + |X′|(1 + log
2E

[
q
]

n
) + |X′|(k − m)+

(|Q| − |X′|)k + (n − |X′|)(k − m) + (2` − n − |Q| + |X′|)k

≤ 2`k + s + 1 − n(m − 2 − log
2E

[
q
]

n
) .

13: else
14: Output (0,H).
15: end if
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Protocol 3 Decompression algorithm
1: if The stored data has the form (0,H) then
2: Output H.
3: else
4: data has the form (1, Bits). Treat Bits as a stream.
5: Reconstruct X̂ = {i|qi ∈ X′} from ∆1, . . . ,∆|X′ |: X̂i =

∑
j = 1i∆i. (note: we know when we’ve reached ∆|X′ |+1

when the sum is exactly 2E
[
q
]
)

6: ExecuteA2 with σ as input

• For the ith query made byA2(σ):

– If i ∈ X̂ then reconstruct H(qi) by reading the k − m next bits and treating them as a k-bit value with m
zero MSBs

– If i ∈ X̂ then reconstruct H(qi) by reading the k next bits

The execution will give Q and X as output.
7: Reconstruct H|X \ Q by reading the next (n − |X′|)(k − m) bits and treating them as (n − |X′|) values
8: Reconstruct H|¬(X∪Q) by reading the next (2` − (n + |Q| − |X′|))k bits.
9: end if

Like Bitcoin, Spacemint is based on a blockchain, in which blocks are generated by “lottery”; the winner of the
lottery is allowed to add her block to the chain and claim the associated rewards. In Bitcoin, the winner is the first
miner to solve a hash-puzzle. Thus, the probability of winning depends on the ratio between the miner’s hashrate
and that of the entire network. In Spacemint, the winner of the lottery is the miner whose answer (i.e., proof) to a
PoS challenge has the best “quality”. To prevent all miners from flooding the network with their proofs, miners first
test their proof against a basic “quality threshold”, and only if it passes do they post the entire proof. Like the hash
difficulty, the quality threshold can be set so that the expected communication is constant, and does not depend on the
total number of miners.

Unfortunately, this solution runs into a problem when replacing their PoS construction with our PoST: Unlike the
pebbling-based PoS, our PoST construction allows many valid proofs for each challenge. Thus, rational users would
“grind”, wasting computational power on finding a good proof.

5.1 The Alternative Lottery Mechanism
Our alternative lottery mechanism uses two new ideas:

Two-phase challenge We separate the lottery into two challenge phases: In the first challenge phase, an initial
challenge is revealed, and every miner must generate a PoST proof using that challenge. The miners then publish a
commitment to their proof (and must do so before the second phase). In the second challenge phase, a second challenge
is revealed, and miners use this second challenge to test the quality of their proof (e.g., by hashing the proof together
with the second challenge). As in the original Spacemint, the valid proof with the highest quality wins, and all miners
with a proof that passes the quality threshold will publish their entire proofs.

Since we allow each miner only a single commitment, and miners must commit before learning the second chal-
lenge, griding is useless—there is no way to determine the quality of a proof when generating it.

Note that the challenges themselves can be generated in the same manner as Spacemint. Here we benefit from the
fact that the challenge in Spacemint is produced ahead of the actual block generation time; this allows us to run the
two-phase protocol without delaying block generation.

Initial quality filter The two-phase challenge, by itself, still requires all miners to send a commitment, making the
total communication at least linear in the number of miners. To reduce the communication, we propose a further
modification: a pre-filter that does not use the PoST at all—just the commitment to the stored data. The idea is that
the first challenge will be used to select a subset of entries in the stored data table. Only if the hash of these entries
is greater than an initial “quality” filter will the miner be eligible to generate a proof and participate in the full lottery
(the miners will prove they are eligible by sending the relevant entries together with a Merkle path opening).
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This reduces communication, and also greatly increases the time between PoST proofs (since miners who don’t
pass the initial filter will not have to run the PoST proof phase); here we make strong use of the fact that it is rational
to store the PoST data for long periods rather than rerun the initialization phase.

6 Discussion and Open Questions
One of the apparent drawbacks of our IPoW construction is that the tradeoff between work and space is fixed, and
exponential. However, this can be overcome by defining a “composite” IPoW made up of several IPoWs in sequence
(e.g., with challenges formed by appending an index to the original challenge). This allows us to create a (t · w′, t ·
m, t · f (s/t))-IPoW from a (w′,m, f (s))-IPoW, giving much more flexibility in the space/time tradeoff, at the cost of
increased verification time.

Constructing additional IPoW constructions using different techniques is also an interesting open question.
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