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Abstract—This paper introduces the notion of Architectural
Bias, which can be used to measure the influence of the architec-
ture of Arbiter Physically Unclonable Functions (APUFs) on the
quality of its outputs. A PUF design with less architectural bias is
better than one which has more architectural bias. Architectural
bias is the bias in the challenge-response behavior of a PUF due to
the architectural features of the design itself, independent of the
implementation platform, technology node and external factors.
This bias is different from the bias observed in the APUF outputs
when implemented on Field Programmable Gate Array (FPGA)
platform. This platform induced bias is called as Implementation
Bias. To overcome the effect of implementation bias in classic
APUF, Programmable Delay Line APUF (PAPUF) and Double
APUF (DAPUF) have been proposed as alternatives for APUF on
FPGA platforms. In this work, we provide a comparative analysis
of the architectures of APUF and its two design variants based
on the derived linear additive delay models. Subsequently, these
designs are evaluated with the architectural bias to quantify the
number of good (i.e. usable) PUF instances that it can generate.
We also develop a scheme to perform instance-level comparison
of a pair of randomly selected PUF instances of two different PUF
designs. In addition, we study the impacts of architectural bias
on PUF performance metrics namely uniformity, uniqueness and
reliability. We validate our theoretical findings with simulation
and FPGA-based implementation results. Experimental results
reveal that the classic APUF has the least architectural bias,
followed by the DAPUF and the PAPUF, respectively.

Index Terms—Architectural bias, arbiter PUF (APUF), double
APUF (DAPUF), physically unclonable function (PUF), pro-
grammable delay line (PDL), PDL based APUF (PAPUF).

I. INTRODUCTION

A physically unclonable function (PUF) is a physical ran-
dom function, and its input-output mapping is determined
by static, unpredictable and uncontrollable instance-specific
manufacturing-induced variations. PUFs have been proposed
as important building blocks in various secure applications
since first introduced in [1], [2], e.g. device identification and
authentication [3], binding software to hardware platforms [4],
secure storage of cryptographic secrets [5], secure protocol
design [6] and “keyless” cipher design [7].

The Arbiter PUF (APUF) [2] is one of the most widely
studied delay variation based strong PUF architectures (a
“strong PUF” is one in which the challenge space is large
enough to make trivial attacks infeasible). Principal features
of the APUF are its regular and lightweight design, and easy
to analyze structure. However, inventors of the APUF design
themselves showed that this design can be mathematically
modelled by machine learning techniques, because it follows
a Linear Additive Delay Model [2]. An adversary can build

an accurate mathematical model of a given APUF instance
from a small subset of its challenge-response database, using
machine learning approaches such as Support Vector Machines
(SVM), Logistic Regression (LR) and Evolution Strategy
(ES). This type of mathematical cloning is known as Model
Building Attack [8]–[12], and enables an adversary to predict
the response for a previously unseen challenge with a high
probability of success. In spite of this known vulnerability,
APUFs have been used as building blocks in the design
of various delay PUF variants, namely Exclusive-OR PUF
(XOR PUF), Lightweight Secure PUF (LSPUF) [13], and
Composite PUF [14], [15], mainly because of its relatively
low hardware resource footprint. In these designs, one or more
APUF instances are usually combined with additional non-
linear layer(s) to improve the modeling robustness, although
later it is observed that these designs are also vulnerable to
modeling and side-channel attacks due to the flaw in com-
position schemes [8]–[11], [16], [17]. Along with robustness
to modeling attacks, the suitability of a given PUF variant is
judged based on the evaluation of a few statistical metrics,
the most important among which are: uniformity, uniqueness
and reliability [18], [19]. The versatile applications of APUF
as a fundamental PUF design block motivate us to revisit this
design and its variants proposed for the FPGA platform.

Implementation of APUF on FPGA devices is a challenging
problem due to predefined logic array layout, and relative
lack of designer control on routing offered by existing FPGA
CAD tools. Consequently, implementation induced bias creeps
into the APUFs implemented on FPGAs, and results in APUF
implementation with relatively poor statistical properties. To
overcome the shortcomings, researchers came up with two
APUF design variants specifically targeting FPGA devices:
Programmable Delay Line (PDL) based APUF (PAPUF) [20]
and Double Arbiter PUF (DAPUF) [21], [22]. In PAPUF,
switching stages exploit non-swapping paths to reduce the
design induced bias, in place of swapping paths based switches
in the classic APUF. The DAPUF on the other hand, is a more
elegant construction which does not modify the basic switch
structure, but exploits two separate APUFs to eliminate the
effect of possible implementation bias.

Since their introduction and in spite of their relatively
frequent use, to the best of our knowledge, PAPUF and
DAPUF have not been modelled analytically to elucidate their
strengths and weaknesses. A statistical analysis methodology
similar to the one employed by us in this paper was used
in [23] to analyze delay PUFs. However, that work did not
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consider PAPUF and DAPUF, which are generally claimed
to be more suitable APUF variants for FPGAs. Furthermore,
an exploration of the architectures of these variants enable
us to measure the effect of the architecture on the bias
in PUF behavior. We call this architecture induced bias as
“Architectural Bias” of the PUF design.

Our major contributions in this work are summarized as
follows:

1) We develop analytical delay models for the DAPUF and
PAPUF circuits.

2) We introduce the concept of architectural bias, and
quantitatively estimate it from the analytical delay mod-
els derived.

3) We apply the concept of architectural bias to evaluate
the goodness of a PUF design from the context of the
fraction of “good” (i.e. usable) PUF instances that can
be expected in a given population. As case studies, we
evaluate the APUF, PAPUF and DAPUF designs using
the proposed evaluation scheme. We show that for bias
tolerance parameter ε = 0.1, 99% of APUF instances
are good, but this quantity is 33% for DAPUF and 20%
for PAPUF.

4) We also provide a scheme to perform the instance-level
comparison of PUF designs. Specifically, the proposed
scheme allows one to decide which instance is better
among a given pair of randomly selected PUF instances
of two different PUF designs. In addition, we extend
this instance-level analysis to design-level, so that we
can compare the PUF designs also.

5) We discuss the impact of architectural bias on PUF
quality metrics: uniformity, uniqueness, and reliability.

6) We realize the APUF, PAPUF and DAPUF designs by
using Matlab based simulation and FPGA implementa-
tions, to validate the notion of architectural bias. Our
analysis predicts the classic APUF architecture to have
superior uniformity and uniqueness to PAPUF and DA-
PUF architectures, but inferior reliability. We also show
that DAPUF is comparatively better than the PAPUF
with respect to uniformity, and uniqueness, with lesser
inherent architectural bias. These theoretical trends are
supported by our simulation results.

7) Finally, we provide experimental evaluation of the three
PUF variants on Xilinx FPGA, which establishes that
the DAPUF is a better APUF variant than PAPUF for
FPGAs.

The rest of the paper is organized as follows. In Section II,
we introduce a notation system that will be used throughout
the paper, and we briefly discuss about the important PUF
quality metrics. The notion of bias in PUF challenge-response
behavior is explained in Section III. In Section IV, we revisit
the analytical delay model of the APUF, and develop those for
the PAPUF and DAPUF respectively. Definition of architec-
tural bias, and its application as a metric to evaluate the APUF,
PAPUF and DAPUF designs is discussed in Section V. An
instance-level comparison scheme of PUF designs is developed
in Section VI. In Section VII, we discuss about the impact
of architectural bias on uniqueness and reliability properties.

Experimental results are provided in Section VIII. Concluding
comments and future directions of research are provided
in Section IX.

II. PRELIMINARIES

A. Notations

The following notation system will be used throughout the
paper. A vector is represented by lowercase letter in bold
font, e.g a. A vector with m-components is represented as:
a = (a[0], . . . ,a[i], . . . ,a[m− 1]), where a[i] is the (i+ 1)th
component of the vector. We use a[i : j] as a sub-vector
(a[i], . . . ,a[j]). The normal lowercase letter denotes a scalar,
e.g. n. A set is represented by the calligraphic font, e.g. D,
and its cardinality is denoted as |D|. We denote a random
variable by using a upper-case letter, e.g. X; Pr(X = x) is
used to denote the probability of the event X = x, and µX, σ2

X

are used to denote mean and variance of the random variable
X , respectively. Random variable X following a Gaussian
probability distribution function is denoted as X ∼ N (µ, σ2).
φµ,σ2() and Φµ,σ2() represent the probability density function
(PDF) and cumulative distribution function (CDF) of Gaussian
random variable, respectively; φ() and Φ() represent the PDF
and CDF of standard normal random variable, respectively.

The Hamming weight of a binary vector a is denoted by
HW(a) and the Hamming distance of two vectors a and b is
denoted by HD(a,b).

In the analytical delay models for the PUF variants, the
input to the PUF (“challenge”) follows a bipolar encoding,
i.e. logic-0 is encoded as +1 and logic-1 is encoded as -1.

B. PUF Quality Metrics

Quality evaluation of a given PUF variant is typically
performed based on the collected challenge-response pairs
(CRPs) of several PUF instances of the same type on a specific
platform. The three most popular PUF quality metrics are [18],
[19]: uniformity, uniqueness, and reliability. In this context,
we consider only the PUFs which generate 1-bit response for
a given challenge, and n-bit response string is generated by
evaluating the PUF with respect to n different challenges. Next
we provide a brief description of these quality metrics.

1) Reliability (S): The challenge-response behavior of
PUFs are affected by time-varying dynamic noise that are
generated due to mainly temperature and supply voltage vari-
ations. In addition, variation due to the aging of PUF circuit
modifies the circuit behavior permanently. Together these
factors imply that the behavior of a given PUF instance is not
stable. Typically, golden challenge-response pairs (CRPs) are
defined by employing Majority Voting on the CRPs obtained
from m different evaluations of PUF at normal operating
condition. Let ri,t be a n-bit response of ith PUF instance
at time t = 1, . . . ,m, i = 1, . . . , k. Golden response bits are
formally defined as follows:

ri[j] =

⌊
0.5 +

1

m

m∑
t=1

ri,t[j]

⌋
, (1)

where j = 1, . . . , n.
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Reliability of ith PUF instance is defined as the fraction
of response bits matches with corresponding golden response
bits.

Si = 1− 1

m

m∑
t=1

HD(ri,t, ri)

n
(2)

In case of an ideal PUF, Si = 1, i.e., PUF challenge-response
is perfectly reliable or stable. When expressed as a percentage,
the ideal value of reliability is 100%.

2) Uniformity (B): Since every PUF instance can be treated
as a physical random function, ideally it should be balanced
in the number of 0’s and 1’s in a generated response bitstring.
This property is termed as Uniformity. Uniformity of a PUF
instance is computed based on its golden responses as defined
in Eq. (1). Typically, uniformity (in percentage) of ith PUF
instance is computed as the fraction of 1’s in the n-bit
response:

B =
HW(ri)

n
× 100% (3)

Ideal value of uniformity metric is B = 50%.
3) Uniqueness (U ): Uniqueness is estimated by the average

inter Hamming distance among the responses of a set of
PUF instances of the same type. This metric is used to
estimate to what extent the input-output behavior of instances
of a given type of PUF identify each instance uniquely. The
statistical estimation of this metric needs CRPs of multiple
PUF instances, provided that the same set of challenges is
applied to all the PUF instances. Let ri and rj be the n-bit
responses of ith and jth PUF instances, respectively. Then, the
uniqueness metric (in percentage) is computed by:

U =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(ri, rj)

n
× 100%, (4)

where k is the number of PUF instances. Ideal value of
uniqueness is U = 50%.

III. NOTION OF BIAS IN PUF CHALLENGE-RESPONSE
BEHAVIOR

In case of delay PUFs, the response to a given challenge c
is determined by the delay difference ∆c as:

r =

{
1 if ∆c < 0,

0 otherwise.
(5)

It is desirable that an ideal delay PUF should generate re-
sponses where 0’s and 1’s are equiprobable, i.e.,

B = Pr(r = 1) = Pr(∆ ≤ 0) (6)

=
1

σ∆

√
2π

∫ 0

−∞
e
− (u−µ∆)2

2σ2
∆ du

= Φµ∆,σ2
∆

(0) = Φ

(−µ∆

σ∆

)
,

where ∆ ∼ N (µ∆, σ
2
∆) is a Gaussian random variable

representing the delay differences of a delay PUF instance.
Equation (6) is another way of stating that the ideal value of
PUF uniformity is B = Φ(0) = 0.5 when (−µ∆

σ∆
) = 0. If a

µ∆ 0
∆

B = Pr(r = 1)
= Φµ∆,σ

2
∆

(0)
Pr(r = 0)

Bias b = |0.5−B|

Fig. 1: An example delineating bias in the behavior of a
delay PUF instance. In this case, response generated by a PUF
instance is biased towards ’1’.

PUF design fails to achieve this property, i.e., (−µ∆

σ∆
) 6= 0,

then its challenge-response behavior exhibits a bias. The bias
value can be estimated as:

b = |Φ(0)−B| = |0.5−B| . (7)

Figure 1 shows the behavior of a practical delay PUF instance
where µ∆ < 0, and it results a bias in the behavior of PUF
instance towards ’1’, since the response is defined by Eq. (5).

Two key reasons for this bias can be:
1) Imperfect Implementation. The most important re-

quirement while designing an APUF is symmetric place-
ment and routing of its delay stages, such that the
nominal delay difference between any two delay paths
is zero. In other words, the only factor affecting delay
differences should be process-variation induced device-
level random variations. This requirement is almost
infeasible to achieve in case of the FPGA platform due
to predefined layout. It results in a bias due to non-ideal
implementation of the classic APUF on FPGA. We term
this bias as implementation bias.

2) Architectural Weakness. Some PUF designs might
exhibit bias in their performance, even when their ideal
(bias-free) implementation is feasible. This bias is due
to the inherent architectural weakness of PUF design,
and we term this bias as Architectural Bias.

In this work, we mainly focus on the architectural bias of a
PUF design, and as case studies, we discuss the notion of
architectural bias in the APUF, PAPUF, and DAPUF designs
based on their linear additive delay models. Next we revisit
the delay model of the classic APUF, and derive the delay
models for the PAPUF and the DAPUF.

IV. LINEAR ADDITIVE DELAY MODELS OF APUF, PAPUF
AND DAPUF

A. Delay Model of APUF

Figure 2 shows the classic APUF design, with a cascade
of path-swapping switches and an arbiter at the end. Each
path-swapping switch can be implemented using a pair of 2:1
multiplexors. Starting from a common point, a voltage impulse
propagates along two symmetrical paths defined by the applied
control bits to the switches. The individual stage delays are
randomly determined by device-level process variation effects,
and are unpredictable. The accumulated delay difference along
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Fig. 2: A n-stage classic Arbiter PUF with challenge c ∈
{0, 1}n.

the two paths determines the output of the arbiter circuit,
which is usually an edge-triggered D flip-flop (DFF) or a
SR latch. The control bit string is considered as the applied
challenge, and the output of arbiter is considered as response.

Now, we briefly discuss about the linear additive delay
model of AUF as derived in [2]. Let pi, ri, si and qi be the
four delay components of the ith switching stage of APUF as
shown in Fig. 3a. Let us denote δt(i) and δb(i) as the timing
delays from the starting point to the end of the ith stage of
the top and bottom paths, respectively. Then,

δt(i+ 1) =
1 + c[i+ 1]

2
(pi+1 + δt(i))

+
1− c[i+ 1]

2
(si+1 + δb(i))

δb(i+ 1) =
1 + c[i+ 1]

2
(qi+1 + δb(i))

+
1− c[i+ 1]

2
(ri+1 + δt(i)),

where each challenge bit c[i] ∈ {+1,−1} is bipolar-encoded.
Let ∆(i+ 1) = δt(i+ 1)− δb(i+ 1). Then:

∆(i+ 1) = ∆(i)c[i+ 1] + αi+1c[i+ 1] + βi+1, (8)

where

αi =
pi − qi + ri − si

2
and βi =

pi − qi − ri + si
2

.

Setting ∆(−1) = 0 and using Eq. (8), iteratively we can
define the delay difference of top and bottom paths of APUF
as:

∆(n− 1) = w[0]Φ[0] + w[1]Φ[1] + · · ·+ w[n]Φ[n], (9)

where the feature vector Φ is defined as a parity of challenge
bits:

Φ[i] =

{
1 if i = n,∏n−1
j=i c[j] if i = 0, . . . , n− 1.

(10)

The vector w is defined as follows:

w[i] =


α0 if i = 0,

αi + βi−1 if i = 1, . . . , n− 1,

βn−1, if i = n.

(11)

Hence, ∆(n− 1) = w ·ΦT represents a linear additive delay
model of an APUF.

pi

qi

ri

si

c[i]

(a) APUF stage

pi

si
ri

qi

c[i]

(b) PAPUF stage

Fig. 3: Comparison of delay stages in classic APUF and
PAPUF. Depending on the challenge bit c[i] a pair of delay
elements of similar type (similar shade in figure) is selected
to form a pair of identical paths.

B. Delay Model for PAPUF

Architecturally, the classic APUF and the PAPUF are very
similar. The principal difference between APUF and PAPUF
on FPGAs lies in the design of the switching elements.
Fig. 3 shows the structural difference between the switching
elements of APUF and PAPUF. In contrast to APUFs which
use path-swapping switches, PAPUFs use non-swapping path
based switches to reduce the implementation bias. For a given
challenge, upper MUXes of switches form a path while lower
MUXes form another path. These two paths are independent,
and hence symmetric routing is easier to maintain for them
using the hard macro option in Xilinx CAD tools. Unlike
APUF, the top path and bottom path in PAPUF do not cross
each other along the entire chain of switches, and this is a
major implementation advantage of PAPUF on FPGA devices.

Let ∆(n−1) be the delay difference of top and bottom paths
after the final switch for a given n-bit challenge c, where c
follows a bipolar encoding. The sign of ∆(n− 1) determines
the response for a given challenge, as in the case of the classic
APUF.

Next we develop a linear additive delay model for PAPUF.
Let pi+1 and ri+1 be two delay components of the top MUX
in the (i+1)th stage, and si+1 and qi+1 be the other two delay
components of the bottom MUX in the (i+1)th stage. Let δt(i)
and δb(i) be the propagation delays of the trigger signal along
the top and bottom paths to the input of the (i + 1)th stage
of PAPUF, respectively. For a given challenge c ∈ {+1,−1},
propagation delay of the trigger signal at the output of the
(i+ 1)th stage is given by:

δt(i+ 1) =
1 + c[i+ 1]

2
(δt(i) + pi+1)

+
1− c[i+ 1]

2
(δt(i) + ri+1)

δb(i+ 1) =
1 + c[i+ 1]

2
(δb(i) + si+1)

+
1− c[i+ 1]

2
(δb(i) + qi+1)

Then delay difference between top and bottom paths can be
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estimated as follows:

∆(i+ 1) = δt(i+ 1)− δb(i+ 1) (12)

=
1 + c[i+ 1]

2
(∆(i) + pi+1 − si+1)

+
1− c[i+ 1]

2
(∆(i) + ri+1 − qi+1)

= ∆(i) + αi+1c[i+ 1] + βi+1,

where

αi+1 =
pi+1 − ri+1 − si+1 + qi+1

2
,

βi+1 =
pi+1 + ri+1 − si+1 − qi+1

2
.

To form a compact representation for delay difference ∆(n−1)
after the final stage, we calculate as follows:

∆(−1) = 0 (13)
∆(0) = ∆(−1) + α0c[0] + β0 = α0c[0] + β0

∆(1) = α1c[1] + α0c[0] + β1 + β0

∆(2) = α2c[2] + α1c[1] + α0c[0] + β2 + β1 + β0

· · ·
∆(n− 1) = αn−1c[n− 1] + · · ·+ α0c[0] + (βn−1 + · · ·+ β0)

= w[n]Φ[n] + w[n− 1]Φ[n− 1] + · · ·+ w[0]Φ[0]

= w ·ΦT,

where

w[i] =

{
βn−1 + · · ·+ β0 if i = n

αi if i = 0, . . . , n− 1,

Φ[0 : n− 1] = c[0 : n− 1], and Φ[n] = 1.

Hence, we conclude that the PAPUF follows a linear additive
delay model, very similar to the classic APUF [2]. However,
there are also important differences between the delay models
of the classic APUF and the PAPUF:

1) The feature vector Φ in PAPUF model is the challenge c
itself while Φ in APUF is a challenge parity vector [2].

2) All elements of w (except w[n]) in PAPUF model
depend only on the α values, whereas most of the
elements of w in APUF depend on both α and β values.
In addition, w[n] in APUF depends on the βn−1 value,
but w[n] in PAPUF depends on β0, · · · , βn−1. Later,
this observation will be used to compare the architectural
bias values of APUF and PAPUF.

Next we present a delay model for the DAPUF architecture.

C. Delay Model for DAPUF

In [21], the DAPUF was proposed to reduce the implemen-
tation bias in FPGA-based classic APUF, as shown in Fig. 4. In
this scheme, two APUF instances are evaluated in parallel for
a given challenge, and two 1-bit responses are generated. The
upper paths of both APUF instances are connected to an arbiter
circuit to compare their delays. Similarly, signal propagation
delays of both the lower paths are compared using another
arbiter circuit. The main assumption made for this design
scheme is that FPGA CAD tool maintains similar routing for

1
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0
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Fig. 4: A n-stage Double APUF with challenge c ∈ {0, 1}n.

p1i+1

q1i+1

r1i+1

s1i+1

δ1t (i)

δ1b (i)

δ1t (i + 1)

δ1b (i + 1)

c[i] c[i + 1]

p2i+1

q2i+1

r2i+1

s2i+1

δ2t (i) δ2t (i + 1)

δ2b (i) δ2b (i + 1)

1s
t
A
P
U
F

2n
d
A
P
U
F

Fig. 5: The ith and (i+ 1)th switching stage of DAPUF.

upper paths of both the APUF instances with high probability,
provided that they are placed in physical proximity and with
similar placement constraints. Hence, it is expected that the
two paths will have similar nominal propagation delays. This
also holds for lower paths of both the APUF instances. If the
APUF instances are instantiated twice as quasi-identical using
hard macros (excluding the arbiters), the designer can expect
elimination of the implementation bias.

Let δjt (i) and δjb(i) be the propagation delays of trigger
signal from the starting point to the top and bottom output
lines of the ith switch of jth APUF, respectively. Let pji , q

j
i ,

rji and sji be the values of four delay components of the ith
switching stage of jth APUF, as shown in Fig. 5. Now, we can
derive the delay of the trigger signal at the output of (i+ 1)th
stage with challenge c ∈ {+1,−1} as follows:

δ1
t (i+ 1) =

(1− c[i+ 1])

2

[
δ1
t (i) + p1

i+1

]
(14)
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+
(1 + c[i+ 1])

2

[
δ1
b (i) + s1

i+1

]
δ2
t (i+ 1) =

(1− c[i+ 1])

2

[
δ2
t (i) + p2

i+1

]
+

(1 + c[i+ 1])

2

[
δ2
b (i) + s2

i+1

]
δ1
b (i+ 1) =

(1− c[i+ 1])

2

[
δ1
b (i) + q1

i+1

]
+

(1 + c[i+ 1])

2

[
δ1
t (i) + r1

i+1

]
δ2
b (i+ 1) =

(1− c[i+ 1])

2

[
δ2
b (i) + q2

i+1

]
+

(1 + c[i+ 1])

2

[
δ2
t (i) + r2

i+1

]
In case of DAPUF, we compute the delay difference of

top paths of two APUF instances to generate the response
r[0]. Similarly, r[1] is generated by computing the delay
difference of two bottom paths of APUFs. Below we provide
only the analytical delay model to generate r[0], and the
model for r[1] can be built in similar way. Let ∆t(i) and
∆t(i+1) be the delay differences of two top paths of the two
APUF instances after the ith and (i+ 1)th stages of DAPUF,
respectively. Similarly, let ∆b(i) and ∆b(i+ 1) represent the
delay difference of the two bottom paths after the ith and
(i+ 1)th stages, respectively. Then,

∆t(i+ 1) = δ1
t (i+ 1)− δ2

t (i+ 1) (15)

= ∆t(i)
(1− c[i+ 1])

2
+ ∆b(i)

(1 + c[i+ 1])

2
+ αti+1c[i+ 1] + βti+1,

where

αti+1 =
p2
i+1 − p1

i+1 + s1
i+1 − s2

i+1

2
,

βti+1 =
p1
i+1 − p2

i+1 + s1
i+1 − s2

i+1

2
∆b(i+ 1) = δ1

b (i+ 1)− δ2
b (i+ 1)

= ∆b(i)
(1− c[i+ 1])

2
+ ∆t(i)

(1 + c[i+ 1])

2
+ αbi+1c[i+ 1] + βbi+1,

where

αbi+1 =
q2
i+1 − q1

i+1 + r1
i+1 − r2

i+1

2
,

βbi+1 =
q1
i+1 − q2

i+1 + r1
i+1 − r2

i+1

2
.

To find a compact representation of ∆t(n − 1), we compute
different instances of ∆t(i) as follows:

∆t(−1) = 0

∆b(−1) = 0

∆t(0) = αt0c[0] + βt0

∆b(0) = αb0c[0] + βb0

∆t(1) = ∆t(0)
(1− c[1])

2
+ ∆b(0)

(1 + c[1])

2
+ αt1c[1] + βt1

= c[0]
(αt0 + αb0)

2
+ c[1]

βb0 − βt0 + 2αt1
2

+ c[0]c[1]
(αb0 − αt0)

2
+

(βt0 + βb0 + 2βt1)

2

∆b(1) = ∆t(0)
(1 + c[1])

2
+ ∆b(0)

(1− c[1])

2
+ αb1c[1] + βb1

= c[0]
(αt0 + αb0)

2
+ c[1]

βt0 − βb0 + 2αb1
2

+ c[0]c[1]
(αt0 − αb0)

2
+

(βt0 + βb0 + 2βb1)

2

∆t(2) = c[0]
αt0 + αb0

2
+ c[1]

αt1 + αb1
2

+ c[2]
βb1 − βt1 + 2αt2

2

+ c[1]c[2]
αb1 − αt1 + βt0 − βb0

2
+ c[0]c[1]c[2]

αt0 − αb0
2

+
βt0 + βb0 + βb1 + βt1 + 2βt2

2

∆b(2) = c[1]
αt0 + αb0

2
+ c[1]

αt1 + αb1
2

+ c[2]
βt1 − βb1 + 2αb2

2

+ c[1]c[2]
αt1 − αb1 + βb0 − βt0

2
+ c[0]c[1]c[2]

αb0 − αt0
2

+
βt0 + βb0 + βb1 + βt1 + 2βb2

2

∆t(3) = c[0]
αt0 + αb0

2
+ c[1]

αt1 + αb1
2

+ c[2]
αt2 + αb2

2

+ c[3]
βb2 − βt2 + 2αt3

2
+ c[2]c[3]

αb2 − αt2 + βt1 − βb1
2

+ c[1]c[2]c[3]
αt1 − αb1 + βb0 − βt0

2

+ c[0]c[1]c[2]c[3]
αb0 − αt0

2

+
βt0 + βb0 + βb1 + βt1 + βb2 + βt2 + 2βt3

2

∆b(3) = c[0]
αt0 + αb0

2
+ c[1]

αt1 + αb1
2

+ c[2]
αt2 + αb2

2

+ c[3]
βt2 − βb2 + 2αb3

2
+ c[2]c[3]

αt2 − αb2 + βb1 − βt1
2

+ c[1]c[2]c[3]
αb1 − αt1 + βt0 − βb0

2

+ c[0]c[1]c[2]c[3]
αt0 − αb0

2

+
βt0 + βb0 + βb1 + βt1 + βb2 + βt2 + 2βb3

2

We define:

p[i] =

{∏n
j=i+1 c[i] if 0 ≤ i < n

1 if i = n.

Let us consider another two vectors x[0 : n − 1] and y[0 :
n− 1], which are defined as follows:

xt[i] =

{
αti+α

b
i

2 if 0 ≤ i < n− 1
βi−1
b −βi−1

t +2αti
2 if i = n− 1

yt[0] =

{
αb0−α

t
0

2 if n is even
αt0−α

b
0

2 if n is odd

For 1 ≤ i < n− 1,
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yt[i] =



αbi−α
t
i+β

t
i−1−β

b
i−1

2 if n even and i is odd
αti−α

b
i+β

b
i−1−β

t
i−1

2 if n even and i is even
αti−α

b
i+β

b
i−1−β

t
i−1

2 if n odd and i is odd
αbi−α

t
i+β

t
i−1−β

b
i−1

2 if n odd and i is even

yt[n− 1] =
βt0 + βb0 + · · ·+ βtn−2 + βbn−2 + 2βtn−1

2

So, ∆t(n− 1) can be represented as:

∆t(n− 1) = xt · cT + yt · pT = w ·ΦT, (16)

where w[0 : 2n − 1] = (xt,yt) and Φ[0 : 2n − 1] = (c,p).
Similarly, we can compute ∆b(n− 1), the delay difference of
two bottom paths of DAPUF. We can define the two responses
of DAPUF by using the proposed delay model as follows:

r[0] =

{
1 if ∆t(n− 1) < 0,

0 otherwise.

r[1] =

{
1 if ∆b(n− 1) < 0,

0 otherwise.

The above analysis shows that each individual output of a
DAPUF can be estimated using a linear additive delay model.
In case of DAPUF, the number of delay parameters to be
learned is twice that of an APUF. Also, the delay difference
expression is an inner product involving both the challenge
vector and the parity vector. Thus, we can say that the delay
model of a DAPUF is a combination of those for a classical
APUF and a PAPUF.

Next we evaluate the architectural bias of the three different
PUF variants (classic APUF, PAPUF and DAPUF), using the
delay models derived above.

V. ARCHITECTURAL BIAS AND ITS APPLICATION AS A
METRIC TO EVALUATE APUF, PAPUF AND DAPUF

DESIGNS

Let the delay components pi, qi, ri, si of the ith path-
swapping switch be independent and identically distributed
random variables, each of which follow normal distribution
with mean µ = 0 and variance σ2, i.e., pi, qi, ri, si ∼
N (0, σ2) [2]. Let Z = ∆(n − 1) be a random variable
representing the delay difference of an n stage delay PUF
instance, and Z ∼ N (µZ, σ

2
Z). Based on the models built so

far as in Eqs. (9), (13) and (16), we can write:

Z =

(
k−1∑
i=0

w[i]Φ[i]

)
+ w[k] (17)

= X + Y,

where X =
∑k−1
i=0 w[i]Φ[i], Y = w[k], and k is the size

of weight vector w in the definition of ∆(n − 1). Here,
X ∼ N (0, σ2

X) and Y ∼ N (0, σ2
Y) are Gaussian random

variables. The values of parameters σ2
X and σ2

Y depend on
the architecture of APUF, PAPUF and DAPUF that will be
discussed later in this section. The key difference between X
and Y is that while X depends on the challenge c and process
variations of the device where the PUF is embedded, Y only
depends on the process variations of the device.

Note that for a specific APUF instance, Y = y is a
constant because it depends only on the delay parameters of
PUF instance, and consequently Z = X + y ∼ N (y, σ2

X),
where σ2

Z = σ2
X, assuming equiprobable challenges. According

to Eqs. (5) and (6), an ideal PUF should achieve µZ = 0
instead of µZ = y ( 6= 0), and this shift in µZ happens
due to the architectural weakness of PUF design. We term
this resulting bias in the behavior of a PUF instance as
architectural bias and it is defined as follows:

Definition 1 (Architectural Bias). Let Z be a random vari-
able representing the delay difference of an ideal (without any
implementation-induced bias) PUF instance of a given type,
and suppose it follows N (y, σ2

Z), where y is a particular value
assumed by the random variable Y ∼ N (0, σ2

Y) as defined
in Eq. (17). Then, the value y is the challenge independent,
but architecture dependent and instance-specific component
in delay difference. Architectural bias of a PUF instance is
defined as barchi = |0.5 − B|, where B = Φ(−yσZ

) is the
uniformity metric as defined in Eq. (6). It is desirable that
a good PUF design should have almost zero architecture
induced bias (i.e. barchi ≈ 0), for most of its instances in
a given population.

To simplify the notation, we use b to imply the architectural
bias barchi. We now consider a population of instances of a
given PUF design, and evaluate its quality by estimating the
percentage of “good” and “bad” instances. Since it is difficult
to design a PUF with b = 0, we introduce an acceptable
tolerance in the bias value and we denote it by 0 < ε < 1.
This implies 0 ≤ b ≤ ε or equivalently,

0.5− ε ≤ B ≤ 0.5 + ε. (18)

Based on Eq. (18), we now estimate a range for y that can
ensure 0 ≤ b ≤ ε, as follows:

0.5− ε ≤ B ≤ 0.5 + ε (19)

⇒ Φ−1(0.5− ε) ≤ −y
σZ
≤ Φ−1(0.5 + ε)

⇒ −Φ−1(0.5 + ε) ≤ y

σZ
≤ −Φ−1(0.5− ε)

⇒ −σZΦ−1(0.5 + ε) ≤ y ≤ −σZΦ−1(0.5− ε).

Due to the symmetric nature of the Gaussian distribution, we
can write |σZΦ−1(0.5+ε)| = |σZΦ−1(0.5−ε)|. Let us denote
Ty = σZΦ−1(0.5 + ε) to be the threshold for acceptable y
values. Thus, we have:

−Ty ≤ y ≤ Ty. (20)

In practice, the acceptable uniformity range of a PUF design
is 40% − 60%, and thus practical value of ε = 0.1. Hence,
practical value for Ty is:

Ty = σZΦ−1(0.5 + 0.1) =
σZ

4
. (21)

We now give concrete definition of the goodness of a PUF
instance:

Definition 2 (Good PUF Instance vs. Bad PUF Instance).
For a given instance of a PUF design, if its y value lies in
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[−Ty, Ty], then that instance is called as “Good” instance
with respect to architectural bias; otherwise, PUF instance is
“Bad.”

For a given PUF design, we now estimate the fraction of
“Good” PUF instances. Let us recall the well-known property
of a Gaussian distribution: about 99.7% of values drawn from
a Gaussian distribution lie in the range [µ− 3σ, µ+ 3σ]. So,
the most probable range of y is [−3σY,+3σY], i.e., Pr(y ∈
[−3σY,+3σY]) ≈ 0.997. Let G be the fraction of good PUF
instances, and we compute it based on Ty as:

G =



Φ0,σ2
Y

(Ty)− Φ0,σ2
Y

(−Ty)

= Φ( σZ

4σY
)− Φ(− σZ

4σY
), if Ty < 3σY

Φ0,σ2
Y

(3σY)− Φ0,σ2
Y

(−3σY)

= Φ(3)− Φ(−3) ≈ 0.997, if Ty ≥ 3σY

(22)

Based on the percentage of good and bad PUF instances of
a PUF design, we can define the goodness of a PUF design
as follows:

Definition 3 (Good PUF Design vs. Bad PUF Design).
For a given PUF design M , if the fraction of good PUF
instances GM is greater than some threshold Gth, then PUF
design M is called as “Good” design. Otherwise, design M
is “Bad.” For example, Gth = 0.90, i.e., if the PUF design
M can generate 90% good PUF instances, then design M is
good.

For a pair of PUF designs (M1,M2), if G1 > G2, then
design M1 is considered better than M2.

Next we apply this approach to evaluate APUF, PAPUF and
DAPUF designs with their architectural biases.

A. Architectural Bias of APUF

Let ZA = ∆(n− 1) be a random variable representing the
delay difference of APUF instance and it follows a normal
distribution N (µA, σ

2
A). Based on the modeling of APUF as

in Eq. (9), we can write:

ZA =

(
n−1∑
i=0

w[i]Φ[i]

)
+ w[n]

= XA + YA,

where XA =
∑n−1
i=0 w[i]Φ[i] and YA = w[n]. From Eq. (11),

we have:
1) w[0],w[n] ∼ N (0, 2σ2) and w[i] ∼ N (0, 4σ2), for i =

1, . . . , n− 1,
2) XA ∼ N (0, σ2

A) where σ2
A = (4n − 2)σ2 ≈ 4nσ2 for

moderately large values of n, and
3) YA ∼ N (0, σ2

yA
) where σ2

yA
= 2σ2.

Thus, for a specific APUF instance, YA = yA is a constant
and ZA = XA + yA ∼ N (yA, σ

2
A).

Based on Eq. (19), we can compute the threshold for
acceptable yA values as:

TyA
= σA/4 =

√
nσ/2.

In case of the Gaussian random variable YA, nearly 99.7%
of yA values lies in [−3σyA ,+3σyA ], where 3σyA = 3

√
2σ.

Since TyA > 3σyA for n > 72, the fraction of good APUF
instances, as defined by Eq. (22), is:

GA ≈ 0.997.

Later, we would find from the simulation results in Table II
and Fig. 8, that the distribution of the uniformity BA of APUF
has a mean 0.5, and the variance is significantly small due
to the above facts. Hence, we conclude that the APUF is
relatively free from architectural bias.

B. Architectural Bias of PAPUF

Let ZP = ∆(n − 1) be a Gaussian random variable
representing the delay difference of a PAPUF instance.
From Eq. (13), we can write:

ZP =

(
n−1∑
i=0

w[i]Φ[i]

)
+ w[n]

= XP + YP.

Like APUF, XP is challenge dependent, and YP is chal-
lenge independent. We also have following information
from Eq. (13):

1) w[i] ∼ N (0, 2σ2) for i = 0, . . . , n − 1, and w[n] ∼
N (0, 2nσ2),

2) XP ∼ N (0, σ2
P) where σ2

P = 2nσ2, and
3) YP ∼ N (0, σ2

yP
) where σ2

yP
= 2nσ2.

Thus, for a specific PAPUF instance, YP = yP is a fixed value
and ZP = XP + yP ∼ N (yP, σ

2
P).

Based on Eq. (19), we can compute the threshold for
acceptable yP values as:

TyP
= σP/4 =

√
2nσ/4.

In case of Gaussian random variable YP, nearly 99.7% of yP

values lies in [−3σyP
,+3σyP

], where 3σyP
= 3
√

2nσ. In this
case, we have TyP < 3σyP . Thus, the fraction of good PAPUF
instances, as defined in Eq. (22), is:

GP = Φ(
σP

4σyP

)− Φ(− σP

4σyP

) (23)

= Φ(

√
2nσ

4
√

2nσ
)− Φ(−

√
2nσ

4
√

2nσ
)

= Φ(1/4)− Φ(−1/4) ≈ 0.20.

Thus, it is expected that the distribution of uniformity for the
PAPUF, BP, should have mean close to 0.5 and significantly
large variance, as also supported by our simulation results
reported later in Table II and Fig. 8. Thus, we conclude that
the uniformity property of the PAPUF is relatively poor. To
the best of our knowledge, until now no theoretical explanation
has been provided for this fact, although it was reported based
on experimental observations in [20], [24].
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C. Architectural Bias of DAPUF

Let ZD = ∆(n − 1) be a Gaussian random variable
representing the delay differences of a DAPUF instance.
From Eq. (16), we can write

ZD =

(
2n−2∑
i=0

w[i]Φ[i]

)
+ w[n]

= XD + YD,

From the definition of w[i] in Eq. (16), we have:
1) XD ∼ N (0, σ2

D) where σ2
D = 6nσ2, and

2) YD ∼ N (0, σ2
yD

) where σ2
yD

= 2nσ2.
Thus, for a specific DAPUF instance, YD = yD and ZD =
XD + yD ∼ N (yD, σ

2
D).

Based on Eq. (19), we can compute the threshold of
acceptable yD values as:

TyD
= σD/4 =

√
6nσ/4.

In case of Gaussian random variable YD, nearly 99.7% of yD

values lies in [−3σyD ,+3σyD ], where 3σyD = 3
√

2nσ. In this
case, we have TyD

< 3σyD
. Thus, the fraction of good DPUF

instances, as defined in Eq. (22), is:

GD = Φ(
σD

4σyD

)− Φ(− σD

4σyD

) (24)

= Φ(

√
6nσ

4
√

2nσ
)− Φ(−

√
6nσ

4
√

2nσ
)

= Φ(
√

3/4)− Φ(−
√

3/4) ≈ 0.335.

So, the uniformity property of the DAPUF is poor in general
due to the architectural weakness, though some instances
might show good uniformity individually. Moreover, in case
of DAPUF design, there are 13.5% more “good” instances
compared to PAPUF.

Now, we provide a methodology to compare a given pair
of randomly selected PUF instances from two different PUF
designs using their architectural bias.

VI. INSTANCE-LEVEL COMPARISON OF PUF DESIGNS
WITH ARCHITECTURAL BIAS

In Section V, we have shown how to measure the quality of
a PUF design based on the percentage of good PUF instances
of its. In this section, we introduce a new problem as defined
below.

Problem. Let I1 and I2 be two randomly selected instances
of two different PUF designs P1 and P2, respectively. Let
Z1 ∼ N (y1, σ

2
1) and Z2 ∼ N (y2, σ

2
2) be two random

variables representing the delay differences of PUF instances
I1 and I2, respectively. Based on this information, is it possible
to identify the “better” PUF instance? Can we extend this
instance-level comparison, to design-level comparison of PUF,
using the information of distributions from which y1 and y2

are drawn?

The scheme discussed in Section V cannot be used to
perform the instance-level comparison of two different PUF
designs. In this section, we develop a scheme to deal with
this problem. Let b1 and b2 be the architectural bias of PUF

instances I1 and I2. Let us assume that instance I1 is “better”
than I2, in the sense of the goodness described by us. Then,
we derive a relationship among parameters y1, σ

2
1 , y2, σ

2
2 such

that b2 > b1.
Let R be the relationship among y1, σ

2
1 , y2, σ

2
2 such that

b2 > b1. Based on R, we can compare two PUF designs
using following steps:

1) Firstly, compute the probability of the event that relation
R holds between pair of randomly selected instances
from PUF design P1 and P2. In other words, compute
Pr(R) with respect to P1 and P2.

2) Then, we can make two following decisions:

a) PUF design P1 is better than P2 if Pr(R) > 1
2 ,

and the reverse holds if Pr(R) < 1
2 .

b) PUF designs P1 and P2 are equivalent if Pr(R) =
1
2 .

Next we employ this methodology to perform pairwise
instance-level and design-level comparison of APUF, PAPUF
and DAPUF designs.

A. APUF vs. DAPUF

We use same notations for APUF and DAPUF that we
already used in Section V. Let YD = yD, and YA = yA.
In this case, YA ∼ N (0, 2σ2) and YD ∼ N (0, 2nσ2);
ZA ∼ N (yA, σ

2
A) and ZD ∼ N (yD, σ

2
D); σ2

A = 4nσ2,
σ2

D = 6nσ2 and σ2
D > σ2

A. We compute the bias values of
APUF and DAPUF as:

bD = |1
2
− Φ(

−yD

σD
)| and bA = |1

2
− Φ(

−yA

σA
)|. (25)

Now, we try to find the relation between yA and yD such
that bD > bA, i.e., APUF is better than DAPUF. To find the
relationship between yA and yD, we consider following four
cases with respect to Eq. (25).

CASE-1. In this case, we consider:

Φ(
−yD

σD
) >

1

2
⇒ Φ(

−yD

σD
) > Φ(0)⇒ −yD > 0⇒ yD < 0,

and

Φ(
−yA

σA
) >

1

2
⇒ Φ(

−yA

σA
) > Φ(0)⇒ −yA > 0⇒ yA < 0.

Then, we have:

bD − bA = −1

2
+ Φ(

−yD

σD
) +

1

2
− Φ(

−yA

σA
)

= Φ(
−yD

σD
)− Φ(

−yA

σA
).

If bD − bA > 0, then

−yD

σD
>
−yA

σA
⇒ yD

σD
<
yA

σA
,

where yA, yD < 0.
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CASE-2. In this case, we consider:

Φ(
−yD

σD
) <

1

2
⇒ Φ(

−yD

σD
) < Φ(0)⇒ −yD < 0⇒ yD > 0,

and

Φ(
−yA

σA
) <

1

2
⇒ Φ(

−yA

σA
) < Φ(0)⇒ −yA < 0⇒ yA > 0,

Then, we have:

bD − bA =
1

2
− Φ(

−yD

σD
)− 1

2
+ Φ(

−yA

σA
)

= Φ(
−yA

σA
)− Φ(

−yD

σD
).

If bD − bA > 0, then:

−yA

σA
>
−yD

σD
⇒ yA

σA
<
yD

σD
,

where yA, yD > 0.

CASE-3. In this case, we consider:

Φ(
−yD

σD
) <

1

2
⇒ Φ(

−yD

σD
) < Φ(0)⇒ −yD < 0⇒ yD > 0,

and

Φ(
−yA

σA
) >

1

2
⇒ Φ(

−yA

σA
) > Φ(0)⇒ −yA > 0⇒ yA < 0,

Then, we have:

bD − bA =
1

2
− Φ(

−yD

σD
) +

1

2
− Φ(

−yA

σA
)

= (1− Φ(
−yD

σD
))− Φ(

−yA

σA
)

= Φ(
yD

σD
)− Φ(

−yA

σA
).

If bD − bA > 0, then:

yD

σD
>
−yA

σA
⇒ −yD

σD
<
yA

σA
,

where yA < 0, yD > 0.

CASE-4. In this case, we consider:

Φ(
−yD

σD
) >

1

2
⇒ Φ(

−yD

σD
) > Φ(0)⇒ −yD > 0⇒ yD < 0,

and

Φ(
−yA

σA
) <

1

2
⇒ Φ(

−yA

σA
) < Φ(0)⇒ −yA < 0⇒ yA > 0,

Then, we have:

bD − bA = −1

2
+ Φ(

−yD

σD
)− 1

2
+ Φ(

−yA

σA
)

= Φ(
−yD

σD
)− (1− Φ(

−yA

σA
))

= Φ(
−yD

σD
)− Φ(

yA

σA
).

If bD − bA > 0, then:

−yD

σD
>
yA

σA
⇒ yD

σD
<
−yA

σA
,

where yA > 0, yD < 0.

Hence, considering the four cases, overall if,

|yD/σD| > |yA/σA| or

|yD| >
σD
σA
× |yA| =

√
6nσ√
4nσ

× |yA| =
√

3/2|yA|,

then bias in APUF is less compared to that of DAPUF. It may
be noted that the relation |yD| >

√
3/2|yA| is referred to as

R in this section earlier.
Now we proceed for design-level comparison by computing

Pr(|yD| >
√

3/2|yA|). For the sake of explanation, we denote
X = YD ∼ N (0, 2nσ2) and Y =

√
3/2YA ∼ N (0, 3σ2),

and we compute Pr(|X| > |Y |). We first consider the case
Pr(X > Y |Y > 0), whereby we have:

Pr(X > Y |Y > 0) =

∫ +∞

0

φ0,3σ2(y)

∫ +∞

y

φ0,2nσ2(x) dx dy

=

∫ +∞

0

1√
3σ
φ(

y√
3σ

)Φ(
−y√
2nσ

) dy.

Since we need to compute the above relation with respect to
absolute values of the random variables, remaining cases can
be computed in similar fashion. Hence, we have:

Pr(|X| > |Y |) = 4

∫ +∞

0

1√
3σ
φ

(
y√
3σ

)
Φ

( −y√
2nσ

)
dy.

(26)

Since nearly 99.7% of values drawn from the Gaussian dis-
tribution of a random variable Y are within the ±3σ range
around the mean, we have following observations:

1) φ( y√
3σ

) ≈ 0 when y > 3
√

3σ.
2) Φ( −y√

2nσ
) ≈ Φ(0) = 1/2 when 0 ≤ y ≤ 3

√
3σ and√

2nσ � 3
√

3σ (or n� 27/2 ≈ 14).
Thus, we can rewrite Eq. (26) as given below by splitting

range [0,+∞] of y into [0,+3
√

3σ] and [+3
√

3σ,+∞] :

Pr(|X| > |Y |) = 4

∫ 3
√

3σ

0

1√
3σ
φ

(
y√
3σ

)
Φ

( −y√
2nσ

)
dy

+ 4

∫ +∞

3
√

3σ

1√
3σ
φ

(
y√
3σ

)
Φ

( −y√
2nσ

)
dy

≈ 4

∫ 3
√

3σ

0

1√
3σ
φ

(
y√
3σ

)
Φ

( −y√
2nσ

)
dy

≈ 4× Φ(0)×
∫ 3
√

3σ

0

1√
3σ
φ

(
y√
3σ

)
dy

≈ 4× Φ(0)×
∫ +∞

0

1√
3σ
φ

(
y√
3σ

)
dy

= 4× 1

2
× 1

2
= 1.

Since Pr(|yD| >
√

3/2|yA|) ≈ 1, we can conclude that the
APUF design is better than DAPUF. Without loss of generality,
we provide an example in Fig. 6b for yD < yA < 0.

B. PAPUF vs. DAPUF

In this case, YP, YD ∼ N (0, 2nσ2), ZP ∼ N (yP, σ
2
P),

ZD ∼ N (yD, σ
2
D), where σ2

D = 6nσ2 and σ2
P = 2nσ2.

Proceeding along similar route as used for the “DAPUF vs.
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µZ 0
Z

B = Pr(r = 1)
= ΦµZ,σ

2
Z
(0)

Pr(r = 0)

Bias b = |0.5−B|

(a) Bias: non-uniform distribution of 0’s and 1’s

yD yA Z

ZA
ZD

bA
bD

0

(b) Bias: APUF vs. DAPUF

y 0
Z

ZP
ZD

bP

bD

(c) Bias: PAPUF vs. DAPUF. yP = yD = y.

yP yA Z

ZA
ZP

bA

bP

0

(d) Bias: PAPUF vs. APUF

Fig. 6: Example of instance-level pairwise comparison of APUF, PAPUF and DAPUF designs with respect to delay difference
distribution Z. (a) Depicting bias in the distribution of 0’s and 1’s due to shift in the mean of delay difference distribution
from its ideal value µZ = 0. (b) Showing the bias values of two specific instances of APUF and DAPUF with yA and yD as
the mean values of their delay difference distributions, respectively. (c) Comparison of bias values of two specific instances of
PAPUF and DAPUF with similar mean values for their delay difference distributions, i.e., yP = yD = y. (d) Comparison of
bias values of two specific instances of PAPUF and APUF.

APUF” analysis, we can prove that if |yP| >
√

3|yD|, then
bP > bD. The probability:

Pr
(
|YP| >

√
3|YD|

)
= 4×

∫ +∞

0

1√
2nσ

φ

(
x√
2nσ

)
Φ

( −x√
6nσ

)
dx.

Note that:
1) ∀x > 0, −x√

6nσ
> −x√

2nσ
.

2) If X and Y follow the same normal distributionN (0, σ),
then,

Pr(|X| > |Y |)

= 4×
∫ +∞

0

1

σ
φ
(x
σ

)
Φ

(−x
σ

)
dx = 4× 1

8
=

1

2
.

Thus,

Pr
(
|YP| >

√
3|YD|

)
> 4×

∫ +∞

0

1√
2nσ

φ

(
x√
2nσ

)
Φ

( −x√
2nσ

)
dx =

1

2
.

Since, for large value of n, distance between the prob-
ability density functions of two normal distributions, say
N (0, 6nσ2) and N (0, 4nσ2), is significantly small, we can
have following approximations: N (0, 6nσ2) ≈ N (0, 4nσ2)
and N (0, 2nσ2) ≈ N (0, 4nσ2). Thus, we have:

Pr
(
|YP| >

√
3|YD|

)
≈ 4×

∫ +∞

0

1√
4nσ

φ

(
x√
4nσ

)
Φ

( −x√
4nσ

)
dx =

1

2
.

Thus, we can conclude that DAPUF design is better then
PAPUF, but for the case of large n (challenge size) they seem
to be equivalent. Without loss of generality, a simple example
is provided in Fig. 6c where yP = yD = y < 0.

C. PAPUF vs. APUF

In this case, YA ∼ N (0, 2σ2) , YP ∼ N (0, 2nσ2), ZA ∼
N (yA, σ

2
A), ZP ∼ N (yP, σ

2
P), σ2

P = 2nσ2 and σ2
A = 4nσ2.

With a similar analysis for “DAPUF vs. APUF”, we can
demonstrate bP > bA because Pr(|yP| > |yA|) ≈ 1 when
n� 3. Thus, the APUF is better than PAPUF. Without loss of
generality, we provide an example in Fig. 6d for yP < yA < 0.

VII. IMPACT OF ARCHITECTURAL BIAS ON PUF QUALITY
METRICS

According to Definition 1, uniformity is directly related to
the architectural bias, i.e., a PUF instance with less archi-
tectural bias implies that PUF instance has good uniformity
property. So, in this section, we discuss only the effects of
architectural bias on uniqueness and reliability properties.

A. Uniqueness Metric

The uniqueness metric is used as an estimate of the average
dissimilarity in the challenge-response behavior of the PUF
instances. It can be defined as an average pairwise Hamming
distance between the responses of a population of PUF in-
stances of the same type, for the same set of challenges. Let
P1 and P2 be two PUF instances with uniformity B1 and
B2, respectively. Let r1 and r2 be the responses of P1 and
P2, respectively. Assuming that the two PUF instances are
independent, the uniqueness is computed as follows:

U = Pr(r1 6= r2) (27)
= Pr(r1 = 0 ∧ r2 = 1) + Pr(r1 = 1 ∧ r2 = 0)

= (1−B1)B2 +B1(1−B2) = B1 +B2 − 2B1B2.

We can extend this definition for multiple instances of a PUF
design. As discussed in Section VI, the uniformity of APUF
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is good and the uniformities of PAPUF and DAPUF are poor.
Thus, according to Eq. (27), the uniqueness of an APUF is su-
perior than both ideal DAPUF and PAPUF, and uniqueness of
DAPUF is comparatively better than PAPUF. But in practice,
bias-free design of APUF is almost infeasible on FPGAs; as
a result FPGA based APUF shows poor uniqueness. Note that
FPGA based APUF instances usually exhibit good uniformity,
but poor uniqueness. One reason could be that PUF instances
implemented on the FPGAs are not independent due to imple-
mentation bias. To summarize, from a theoretical (ideal) point-
of-view, none of the the alternative delay PUF design variants
is superior to the APUF with respect to uniqueness, but in
practice, on FPGA platforms DAPUF shows better uniqueness
compared to APUF due to more implementation bias in APUF.

B. Reliability Metric

The reliability of a PUF is the ability to generate the same
response to a given challenge repeatedly over different time
instants and operating conditions, e.g. variations in ambient
temperature and supply voltage. If the delay difference is
significantly small, then the polarity of delay difference for
a given challenge c might change due to noise with high
probability. In addition, the behavior of the arbiter circuit used
also plays an important role in determining the reliability.
Typically, the arbiter is implemented using a D flip-flop (DFF).
If the delay difference is less than the setup time of the DFF,
then DFF enters into a metastable mode, and response to the
challenge becomes noisy. Interested readers are referred to [25]
for more details regarding the reliability of APUF.

In practice, a delay difference range is estimated as shown
in Fig. 7a, to determine the condition under which the PUF
instance might behave unreliably. If the delay difference ∆c

due to a given challenge c lies in the interval ∆c ∈ [−s,+s],
then response to the challenge c is treated as unreliable. Value
of s is decided based on the setup time of the DFF arbiter and
the characterization of PUF at different operating conditions
to observe the change in polarity of delay difference. In [10],
[25], authors discussed about the estimation of parameter s
based on the weight vector of linear delay model obtained
using machine learning modeling of APUF.

Figure 7b depicts an interesting fact that if the mean µZ

of delay difference distribution Z of a PUF instance is shifted
from its ideal value µZ = 0, then the unreliable zone under the
curve of Z is reduced. So, if µZ ≈ 0 for a PUF instance, then
its reliability property is poor compared to the PUF instance
having |µZ| > 0. Based on this fact, now we can compare
the reliability property of APUF (ZA ∼ N (µA, σ

2
A)), PAPUF

(ZP ∼ N (µP, σ
2
P)) and DAPUF (ZD ∼ N (µD, σ

2
D)).

Intuitively, if a PUF instance has more architectural bias,
then it is more reliable. i.e., µZ drifts from its ideal value
0. Since, in case of APUF design, Pr(µA ≈ 0) and
Pr(|µA| < |µP|, |µD|) are significantly large, the reliability of
APUF is significantly poor compared to PAPUF and DAPUF.
In Section VI-B, we have shown that bias in a PAPUF instance
is larger than that of a DAPUF instance when the mean
values of their delay distributions follow |µP| >

√
3|µD|. In

this scenario, PAPUF is more reliable than DAPUF. Again

0
Z

Unreliable Zone

+s−s

(a) Unreliable zone in the delay difference distribu-
tion of a delay PUF instance without architectural
bias.

µZ 0 Z

Unreliable Zone

(b) Reduced unreliable zone under the curve of Z
due to shift in µZ from its ideal value 0. Area filled
with blue color is the amount of reduction happened
in the unreliable zone.

Fig. 7: Demonstration of reliability of a delay PUF instance.
(a) If delay difference ∆c of challenge c lies in [−s,+s], then
response to challenge c is unreliable. This boundary is decided
based on the arbiter setup time and characterization of PUF
at different operating conditions. (b) Showing the shift in the
mean of delay difference distribution Z due to architectural
issue, and it results in the reduction of unreliable area under
the curve of Z (solid-dark line).

TABLE I: Summary of quality metrics of APUF variants for
arbitrary challenge size (n) without any implementation issues

Metric Relation
Arch. Bias bA < bD ≤ bP
Uniformity BA > BD ≥ BP

Uniqueness UA > UD ≥ UP

Reliability SA < SD ≤ SP

according to Section VI-B, for large instances of PAPUF and
DAPUF, they would have similar reliability for most of the
PUF instances.

The relative orders of quality metrics of APUF, PAPUF and
DAPUF are summarized in Table I.

VIII. SIMULATION AND EXPERIMENTAL RESULTS

To validate the notion of architectural bias and its effects
on the quality metrics of APUF, PAPUF and DAPUF, in this
section we present simulation and experimental results (on
FPGA platform) for these three PUF variants.

We simulated the PUFs using Matlab (for challenge sizes
of 64-bit, 128-bit, 256-bit and 512-bit), assuming that each
propagation delay of a delay component follows normal dis-
tribution with µ = 0 and σ = 0.05. In case of simulation,
we directly compare the delays of the top and bottom paths
using an ideal comparator, so there is no impact of the non-
ideal arbiter component on the PUF behavior. This helps to
elucidate the impact of architectural bias, which is the focus
of this paper.
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TABLE II: Uniformity and uniqueness metrics of APUF
design variants

Size PUF
Quality Metrics (µ, σ) [%]
Uniformity Uniqueness

SI
M

U
L

A
T

E
D

64
APUF (49.71,3.60) (50.00,4.01)

DAPUF
(46.89,20.07) (50.01,8.36)
(47.78,20.22) (50.08,8.38)

PAPUF (49.07,31.46) (50.40,19.39)

128
APUF (49.84,2.68) (49.94,2.87)

DAPUF
(48.34,19.55) (50.20,7.65)
(48.52,19.48) (50.23,7.61)

PAPUF (55.41,24.85) (49.60,12.64)

256
APUF (49.57,1.71) (49.98,2.03)

DAPUF
(49.74,16.93) (50.09,5.72)
(48.92,17.35) (50.08,6.00)

PAPUF (50.08,30.14) (50.38,17.69)

512
APUF (50.03,1.23) (50.00,1.49)

DAPUF
(47.26,20.08) (50.01,8.02)
(47.36,19.81) (50.02,7.81)

PAPUF (42.84,29.15) (49.30,17.56)

FP
G

A

64
APUF (54.74,1.12) (3.25,0.27)

DAPUF
(99.60,0.87) (0.79,1.01)
(98.52,1.77) (2.85,1.94)

PAPUF (0,0) (0,0)

128
APUF (51.96,1.49) (3.72,0.53)

DAPUF
(88.32,8.49) (12.09,4.93)
(24.53,18.42) (24.56,12.19)

PAPUF (0,0) (0,0)

Note: DAPUF has two response bits and hence we have
provided two entries for quality metrics.

0 50 100
B

P
ro
b
ab
ili
ty

APUF
DAPUF
PAPUF

(a) 64 Bit

0 50 100
B

P
ro
b
ab
ili
ty

APUF
DAPUF
PAPUF

(b) 512 Bit

Fig. 8: Comparison of uniformity of simulated APUF, DAPUF,
and PAPUF with 64-bit and 512-bit challenge. Difference
between the uniformity properties of 512-bit PAPUF and
DAPUF is reduced with respect to 64-bit variants. It seems
that they would have similar uniformity properties for large
challenge length.

For the simulations, we created 100 instances of each PUF
design, and the uniformity and uniqueness metrics were com-
puted based on these population of PUF instances using 10,000
CRPs. Results of simulated PUF designs are summarized
in Table II. Figure 8 delineates the uniformity comparison with
respect to 64-bit and 512-bit simulated PUF instances, and it
can be observed that number of APUF instances with good
uniformity increases with the increasing challenge length,
whereas numbers of PAPUF and DAPUF instances with good
uniformity decrease with increasing challenge size.

TABLE III: Reliability of APUF, PAPUF and DAPUF on five
Artix-7 FPGAs

Size PUF
Reliability (%)

FPGA-1 FPGA-2 FPGA-3 FPGA-4 FPGA-5

64
APUF 99.78 99.76 99.82 99.76 99.75

DAPUF
99.38 99.99 100.00 100.00 100.00
99.09 99.97 99.86 99.76 99.58

PAPUF 100.00 100.00 100.00 100.00 100.00

128
APUF 99.76 99.63 99.76 99.61 99.67

DAPUF
98.92 99.77 99.67 98.64 99.20
99.14 98.28 98.67 98.80 99.13

PAPUF 100.00 100.00 100.00 100.00 100.00

Note: DAPUF has two response bits and hence we have provided two entries
for reliability.

TABLE IV: Fraction of “good” PUF instances (G) in the
populations of 100 instances of simulated APUF, PAPUF and
DAPUF designs

Size PUF
No. of Good PUF Instances (%)

ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.20

64
APUF 83 100 100 100

DAPUF 19 39 52 65
PAPUF 6 18 26 43

128
APUF 96 100 100 100

DAPUF 21 37 50 58
PAPUF 9 20 34 43

256
APUF 99 100 100 100

DAPUF 12 25 46 62
PAPUF 10 22 35 42

512
APUF 100 100 100 100

DAPUF 21 33 56 68
PAPUF 10 18 29 36

Note: The ε is the bias tolerance parameter as defined in Section V.

We also implemented the same PUF designs on five Xilinx
Artix-7 (XC7A100T) FPGAs (for challenge sizes of 64-bit
and 128-bit). The golden response for each FPGA PUF
instance was estimated by employing majority voting of CRPs
collected over 11 different time instants at normal operating
condition (i.e., at normal room temperature and with standard
supply voltage). For the PAPUF implementation on FPGA,
we excluded the use of tuning elements (that was exploited
to avoid implementation bias in [20], [25]) to accentuate the
impact of architectural bias. We have implemented PAPUF by
using hard macro (HM) to instantiate the top and bottom paths
with reduced implementation bias. Uniformity and uniqueness
metrics of FPGA implemented APUF, PAPUF and DAPUF
are reported in Table II. From these results, it is evident
that the FPGA-implemented PAPUF instances (without tuning
elements) have extremely poor quality, so much so that they
can hardly be termed as PUF instances. Since DAPUF can
be thought to have an architecture which is the combination
of those of the APUF and the PAPUF, its delay difference
distribution follows normal distribution with large variance
compared to PAPUF. Hence, DAPUF has better uniformity and
uniqueness compared to PAPUF, but reliability of the DAPUF
is poor compared to the PAPUF, as reported in Table III.
Following fact can be observed by comparing simulation and
FPGA results: Difference between the qualities of PAPUF and
DAPUF is gradually reducing with the increasing challenge
length for simulation, but this trend is not clearly observed in
FPGA implementation. One reason can be the effects of other
components in system are comparatively more on longer PUF.

In Table IV, we have computed the number of good PUF
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instances (G) in the populations of 100 instances. From this
result, it can be observed that, for ε = 0.1, average values of G
over different challenge sizes for APUF, DAPUF and PAPUF
are 100%, 33.5% and 19.5%, respectively, and it matches
the theory in Section V. Since we have only five FPGA
implemented PUF instances for each design, we exclude this
computation for FPGA implementation.

Although PAPUF and DAPUF were proposed as FPGA
friendly variants of APUFs, actually they are inferior to APUF
(in the absence of tuning elements), except with respect to the
reliability metric. From the point of view of implementation,
DAPUF is a superior than PAPUF because it does not need
to modify the switching logic of APUF, and an APUF design
can easily be modified to the DAPUF structure by instantiating
two instances of the APUF design. It is worth mentioning that
from the traditional machine learning based modeling attack
perspective, all the three variants are vulnerable to modeling
attack.

IX. CONCLUSION

In this work, we have introduced the concept of architec-
tural bias to compare the architectures of APUF, PAPUF and
DAPUF. We have developed the linear additive delay models
of PAPUF and DAPUF to estimate the bias in their challenge-
response behavior due to the weakness in their architectures.
A comparative study of APUF and its two variants – PAPUF
and DAPUF has also been presented with respect to their
architectural bias. It is observed, theoretically, that for bias
tolerance value ε = 0.1, 99.7% instances of a APUF design
are good, while number of good PUF instances for DAPUF
and PAPUF are 33.5% and 20%. Our reported results also
follow this fact. We have also developed a scheme to measure
a given pair of randomly selected instances of two different
PUF designs. To summarize, we have shown that none of the
APUF design variants, ideally, are superior than APUF itself,
except the fact that they are easier to design on FPGA in
their ideal form. From the uniformity and uniqueness aspect,
DAPUF is a better alternative of APUF on FPGA than PAPUF.
However, due to the implementation induced bias on FPGA,
APUF design fails to exhibit its superiority with respect to
uniqueness. From this study, it is evident that architecture of
delay PUF design has a significant impact on its performance;
only easy-to-implement PUF architecture is not sufficient to
be considered as good PUF design, for example PAPUF. As
a future work, we try to apply the notion of architectural bias
on other architectures of strong delay PUFs.
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