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Recently, the problem of quantum position-verification has been extensively analyzed in the 

formal notion but all existing ceremonial single-round position-verification schemes are 

insecure. We propose here a different notion for position-verification where distant verifiers 

determine the actions of the prover through quantum non-local correlations generated by local 

measurements at the provers’ site: instead of sending challenge encoded over flying qubits, one 

of the verifiers teleports the challenge to the prover while prover is required to perform single 

qubit measurements as well as Bell state measurements and return the outcomes. It allows 

controlling the prover’s actions and bound him/her to receive challenge from one of the verifiers, 

measure in known basis, teleport to another verifier, and return the measurement outcomes to all 

verifiers simultaneously. Here, no-signaling principle assures that any group of dishonest 

provers, not at the position to be verified, cannot simulate their actions with the prover who is 

supposed to be at the specified position. The scheme enables verifiers to trace the origin of 

received information and hence identify dishonest provers with very high probability
n2/11−≥ρ , 

where n is the number of entangled pairs used.  
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1. Introduction 

Position-based cryptography [1] is the art of protecting information from adversaries through 

cryptographic schemes based solely on positioning. That is, information-theoretic security is 

tried to be achieved while the only credential of communicating parties is their positions; sender 

and receiver have no pre-shared data. Position-based cryptography has many practical 

applications such as secure communication between military bases at specified positions, 

communication between a bank and its customers in nearby vicinity, automatic toll collection 

when vehicles enter at some specified locations etc. To make such applications secure against 

adversaries not at the specified position, it is customary to devise unconditionally secure 

position-verification (PV) schemes.  

In formal notion of PV scheme, a set of distant and trusted verifiers {V0,Vi; i=1,2,…n} 

ascertain that the prover P is communicating from his/her claimed position; Verifier V0 sends 

encrypted challenge while rest of the verifiers Vi send pieces of corresponding decryption key to 

the prover such that both challenge and key reach at Prover’s site concurrently. Prover decrypts 

the challenge and sends outcome to all verifiers simultaneously. A secure PV scheme enables the 

verifiers to validate position jointly if the prover operates from the claimed position and replies 

the certified outcome to all verifiers in time. However, if the prover P or a set of his/her 

dishonest agents {Pi; i=0,1,2,…n} operate form position other than claimed one and try to 

convince verifiers that they are at the specified position, a secure PV scheme enables the verifiers 

to reject it with high probability. 

An unconditionally secure PV scheme is impossible in classical cryptography where 

classical data can be copied [1]. A large number of quantum position-verification (QPV) 

schemes [2-8]
 
in formal notion have also been proposed but unfortunately all these schemes are 
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proved to be insecure later. Currently it is known in the literature that if the position of the prover 

is his/her only credential and he/she does not have any pre-shared data with the verifiers then 

unconditionally secure PV in formal notion is impossible [7-9]. That is, security of any QPV 

scheme constructed in formal notion can be destroyed by coalition of dishonest provers through 

teleporting quantum states back and forth and performing instantaneous non-local quantum 

computation, an idea introduced by Vaidman [10]. S. Beigi and R. Konig showed that if 

dishonest provers posses an exponential (in n) amount of entanglement then they can 

successfully attack any formal QPV scheme where n qubits are communicated [11]. Burrman et 

al have also shown that the minimum amount of entanglement needed to perform a successful 

attack on any formal QPV scheme must be at least linear in the number of communicated qubits 

[8,12].  

However, some weaker models of formal QPV are possible; either if dishonest provers 

have bounded amount of pre-shared entanglement or the prover and the verifiers have pre-shared 

classical/quantum data. Single-round QPV schemes PVBB84 and its EPR version ε
84BBPV  [8,13] 

are secure only in the No-PE model; dishonest provers do not have pre-shared entanglement. 

QPV scheme [14] is secure where the prover and one of the verifiers have pre-shared classical bit 

string unknown to dishonest provers. The secret classical data is then used as a key to 

authenticate the communication. Key-based QPV can also be securely achieved if verifiers and 

the prover have pre-shared entangled states [15]. The verifiers and the prover obtain secret keys 

through entanglement swapping [16,17] and later use these keys for authentication of secret 

messages. Although schemes [14,15] are not standard for positioning alone, these schemes can 

be useful for providing a second layer of security, along with usual cryptographic techniques.  

We propose here a different notion for QPV where one of the verifiers, instead of sending 

challenge encoded over flying qubits (entangled or not), teleports the challenge to the prover 

while prover is required to perform single qubit measurements as well as Bell state 

measurements (BSM) [18] and return the outcomes. It allows controlling the prover’s actions and 

bound him/her to receive challenge from one of the verifiers, measure in known basis, teleport to 

another verifier, and return the measurement outcomes to all verifiers simultaneously. In this 

setting, no-signaling principle assures that any group of dishonest provers, not at the position to 

be verified, cannot simulate their actions with the prover who is supposed to be at the specified 

position. Proposed scheme guarantees secure positioning with standard conditions: (i) Verifiers 

have no pre-shared quantum/classical data with the prover, (ii) Dishonest provers have arbitrary 

amount of pre-shared entanglement and there is no bound on their computational powers.  

In quantum information science, it has been demonstrated successfully that quantum non-

local correlations have wide range of applications in quantum computing [19], quantum 

communication [17,20], quantum cryptography [21-25], and crucial impacts on the foundation of 

quantum mechanics [26-28]. Moreover, no-signaling principle along with methods of quantum 

mechanics has advanced quantum cryptography in multiple ways [29-42]. Our proposed QPV 

scheme, based on the combination of quantum non-local correlations and no-signaling principle, 

is different from formal notion for PV in its construction; bounding prover to receive, measure, 

and teleport challenge simultaneously allows constructing PV scheme where all the verifiers and 

the prover are on the same space-like hyper surface. In this setting, verifiers can trace the origin 

of received measurement outcome, to be sent at speed of light, and hence differentiate between 

the position of prover and dishonest provers. On the other hand, all previous quantum/classical 

PV schemes in formal notion were built upon null-like hyper surfaces; verifiers send challenge 
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and key to the prover who then replies outcome while being on the intersection of null-like hyper 

surface connecting him/her with the verifiers and hence insecure [31]. 

 

2. Teleportation 

Teleportation is the most important step in our proposed scheme for secure positioning. In 

general teleportation works as follows [17]: Suppose Alice and Bob share a maximally entangled 

state in Bell basis 

                                                       

( )
2

1110 bb
a

ab

⊕−+
=β

                                                   
(1) 

where }1,0{, ∈ba and ⊕  denotes addition with mod 2. Bob can send an arbitrary quantum state 

10 βαψ +=
 
to Alice instantly by performing BSM on ψ  and his half of entangled pair. If 

Bob gets classical 2-bit string bb ′ , Alice’s entangled half instantly becomes one of the four 

possibilities: 

                                                               ψσσψ k
z

k
x

′
=′                                                         (2) 

where k  and k′  depend upon Bob’s MSB result bb ′ as well as Bell state abβ
 
shared between 

Alice and Bob. For example, if they share a Bell state 00β  then bk =  and bk ′=′ . If shared Bell 

state is 01β
 
then bk =

 
and bk ′⊕=′ 1 . If they share Bell state 10β

 
then bk ⊕= 1 and bk ′=′

 

while for 11β , bk ⊕= 1 and bk ′⊕=′ 1 . If Bob sends two classical bits bb ′  to Alice who knows 

the identity of entangled state abβ , she can easily recover ψ  by applying suitable unitary 

operators. However, without knowing shared entangled state abβ
 
or BSM result bb ′  of Bob, 

ψ ′  remains totally random to Alice and we use this fact in our scheme for secure positioning. 

 

3. Setup for position-verification 

We assume that the sites of the prover and verifiers are secure from adversary; enabling them to 

store and hide the quantum data and process. We also assume that the verifiers can communicate 

both classical and quantum information securely with each other. However, all the 

quantum/classical channels between verifier(s) and the prover are insecure. Moreover, there is no 

bound on pre-shared entanglement, storage, computing, receiving and transmitting powers of 

dishonest provers. They can interfere or jam communication of the prover without being 

detected. In short, dishonest provers have full control of environment except sites of the prover 

and verifiers.  

All verifiers and the prover have fixed positions in Minkowski spacetime. Both quantum 

and classical signals can be sent between prover and verifiers at the speed of light while the time 

for information processing at their sites is negligible. For simplicity, we consider only two 

verifiers V0 and V1 at distant reference stations collinear with prover P, such that the prover is at 

a distance x from both reference stations.  

Since prover P is required to return decrypted challenge to both verifiers in the second 

half of every QPV, so either measurement basis must be publically known or one of the verifiers 

needs to send information of measurement basis to P. This allows P to make copies of decrypted 

challenge and send to multiple verifiers. To make the analysis simple and consistent with both 

formal (section 4 and 5) and proposed notions of QPV (section 6 and 7), we assume that 

measurement basis are publically known as follows (i) single qubit systems will always be 
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measured in },{ 10 δδ basis where ( ) 2/100 i+=δ
 
and ( ) 2/101 i−=δ . (ii) two-qubit systems 

will always be measured in Bell basis.  Moreover, quantum systems sent to the prover P by 

verifiers V0 and V1 will always be denoted by Hilbert space representation 
0pH and 

1pH

respectively.  

 

4. Formal notion of position-verification 

To introduce the formal notion of QPV in detail, we describe a general procedure for single-

round QPV scheme and then a number of its variants. We conclude that all these formal schemes 

are proved to be insecure against entanglement-based attacks [7-9]. This section contains a 

partial review of QPV, suitable for our proposed scheme in next section. 

In the formal notion of QPV scheme, a set of distant verifiers {V0,Vi; i=1,2,…n} 

ascertain that the prover P is communicating from his/her claimed position by sending both 

challenge encoded over quantum system and corresponding decryption classical information to 

the prover. That is, Verifier V0 (say) sends encrypted challenge while rest of the verifiers Vi send 

pieces of corresponding decryption information to the prover P such that both quantum and 

classical information reach at the site of P concurrently. The prover P decrypts the quantum 

challenge and sends outcome k to all the verifiers simultaneously. Formal notion of QPV with 

two verifiers V0 and V1 is shown in figure 1. 

 
Figure 1: Formal position verification: Verifier V0 sends challenge to the prover P while verifier 

V1 sends decrypting key such that both challenge and key reach at P’s site concurrently. Prover 

decrypts the challenge and sends outcome to both verifiers simultaneously. 

 

4.1 QPV-I: Suppose verifiers V0 and V1 priorly agree on secret classical information V0 and V1 

and challenge },{ 10 δδψ ∈
 
unknown to the prover P. The classical information V0 and V1 

correspond to unitary operators 
0vU

 
and 

1vU  respectively such that IUU vv =
10

.  The operators 

0vU
 
and 

1vU
 
can be rotation operators )( 00

θvR
 
and )( 11

θvR
 
respectively such that 01 θθ −=  with 

publically known value for θ . Here 0θ denotes clockwise while that of 1θ  counterclockwise 

rotation about x-axis on Bloch 2-sphere. 
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1). At time t=0, verifier V0 sends encoded challenge 
00 pv HU ∈ψ

 
while V1 sends classical 

information V1 encoded over single qubit state 
11 pHv ∈ to P. 

2). At time t=x/c, P receives V1 by measuring 1v , applies corresponding unitary operation 
1vU

 
on ψ

0vU , measures ψ , and returns the outcome to both V0 and V1. Remember, P performs all 

single qubit measurements in },{ 10 δδ  basis. 

3). At time t=2x/c, verifiers V0 and V1 authenticate the position of P if he/she returns valid 

outcome within allocated time otherwise abort.  

4.2 QPV-II: QPV-I is the simplest version of PVBB84 [8], publically known orthogonal basis are 

used instead of non-orthogonal BB84 basis. It can easily be generalized to a scheme similar to 

that of EPR version ε
84BBPV  [8,13] as follows: Suppose verifiers V0 and V1 priorly agree on 

secret classical information V0 and V1 and a Bell state 
00 pvab HH ⊗∈β  unknown to the prover 

P. Here abβ
 
and V0 are kept by V0 while V1 is possessed by V1. The classical information V0 

and V1 correspond to unitary operators 
0vU

 
and 

1vU  respectively such that UUU vv =
10  

where 

00 δ=U and 11 δ=U . If we consider 
0vU

 
and 

1vU
 
as rotation operators )( 00

θvR
 
and 

)( 11
θvR

 
respectively

 
on Bloch 2-sphere, then 2/10 πθθ =+ . 

1). At time t=0, verifier V0 applies 
0vUU ⊗
 
on 

00 pv HH ⊗ and sends )(
00 pv HU

 
to P. Similarly, 

V1 sends classical information V1 encoded over single qubit state 
11 pHv ∈ to P.  

2). At time t=x/c, P applies unitary operation 
1vU

 
on )(

00 pv HU , measures )(
001 pvv HUU  in 

},{ 10 δδ basis, and returns the outcome to both V0 and V1.  

3). At time t=2x/c, verifiers V0 and V1 authenticate the position of P if he/she returns valid 

outcome within allocated time otherwise abort.   

4.3 QPV-III: The scheme QPV-II turns out to be a Malaney’s scheme [4] now with modified 

construction as follows: Suppose verifiers V0 and V1 priorly agree on secret 2-bits 

}11,10,01,00{∈ab
 
unknown to the prover P encoded over pre-shared Bell state 

10 ppab HH ⊗∈β

among them. Verifiers also agree on classical information V0 and V1 that correspond to unitary 

operators 
0vU

 
and 

1vU  respectively.  

1). At time t=0, verifier V0 sends )(
00 pv HU

 
while V1 sends )(

11 pv HU to P. Simultaneously, both 

V0 and V1 send classical information V0 and V1 to P respectively such that both quantum and 

classical information reach at P’s site concurrently.  

2). At time t=x/c, P applies unitary operators †

0v
U

 
and †

1v
U on respective qubits, performs BSM on 

))((
110010

††
pvpvvv

HUHUUU ⊗⊗ , and returns the outcome bak ′′=  to both V0 and V1 immediately.  

3). At time t=2x/c, verifiers V0 and V1 authenticate the position of P if he/she returns valid 

outcome, abba =′′ , within allocated time otherwise abort. 

  

5. Security analysis-I: Entanglement-based quantum attacks  

If the verifiers and the prover have no pre-shared data while the dishonest provers have pre-

shared entanglement, QPV schemes I-III and a number of their variants [6] constructed over 
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formal notions are proved to be insecure against entanglement-based attacks relying on non-local 

instantaneous quantum computations by dishonest provers [8,9,11,12].  

For example, the general structure of formal notion for QPV schemes can be summarized 

as follows: the prover P receives a quantum system )(
00 pv HU  from the verifier V0 and a system 

)(
11 pv HU  from V1. Here 

0pH
 
and 

1pH can be components of some larger quantum system 

1010 vvpp HHHHH ⊗⊗⊗= . The prover then applies some unitary transformations 

†††

10 vv
UUU ⊗=  on )()(

110010 pvpvpp HUHUH ⊗=
 
depending upon the classical information V0 

and V1 obtained from V0 and V1 respectively and replies the outcome to both V0 and V1. In this 

notion, the verifiers validate the exact position of the prover P if he replies correct information

)(
10

†
ppHU , consistent with V0 and V1 and hence larger quantum system H , within allocated 

time. Such a general notion for formal QPV schemes with two verifiers V0 and V1 is shown in 

figure 2(a). 

Such formal QPV schemes are not secure against group of dishonest provers {P0, P1} at 

positions different from the one to be verified figure 3(a). Suppose P0 is between V0 and P at 

position (x-δ,0) while P1 is between V1 and P at position (x+δ,0) respectively. Here δ<< x is the 

radius of prover’s site. Moreover, suppose P0 and P1 also have arbitrary amount of pre-shared 

entanglement denoted by
1010 pppp HHH ′′′′ ⊗= . Dishonest provers P0 and P1 can obtain both 

quantum systems )(
00 pv HU and )(

11 pv HU as well as classical information V0 and V1 respectively 

before the prover P, at time t=(x-δ)/c. By consuming pre-shared entanglement
10 ppH ′′ , specially 

separated P0 and P1 can transform system 
10 ppH
 
to )(

10

†
ppHU

 
instantaneously by applying

†

0v
U

and
†

1v
U locally without any communication. As a result, by exchanging their measurement 

outcomes, they can agree upon a definite outcome of transformation )(
10

†
ppHU at time 

t=(x+δ)/c. Hence, they can reply exact information
 

to both verifiers within time, t=2x/c. The 

verifiers cannot differentiate whether they received outcome from the prover P or dishonest 

provers {P0, P1}. 

 

6. Proposed QPV scheme based on non-local quantum correlations 

Instead of sending both quantum system  
10 pp HH ⊗
 
and classical information V0 and V1 to the 

prover simultaneously, verifiers V0 and V1 send only quantum systems 
0pH  and

1pH respectively 

on null-like hyper surfaces connecting them with the prover. Later, at space-like hyper surface 

t=x/c, V0 teleports the challenge },{ 10 δδψ ∈
 
to the prover who first measures 

0pH in known 

},{ 10 δδ basis as well as performs BSM on 
10 pp HH ⊗ and returns the measurement outcomes to 

both V0 and V1. Explicit procedure of our proposed quantum scheme for secure positioning is 

shown in figure 2(b) and described below. 

1). At time t=0, verifiers V0 and V1 secretly prepare EPR pairs 
0000 pvpv HH ⊗∈β and 

1111 pvpv HH ⊗∈β
 
respectively and each sends second half to P.  



7 

 

2). At time t=x/c, V0 teleports state },{ 10 δδψ ∈  to P. As a result V0 gets classical information 

}11,10,01,00{∈′vv  while the P’s half becomes ψσσψ k
x

k
z

′
=′  where values of  k  and k′

 
depend 

on vv ′  and 
00 pvβ  only known to V0. At the same time t=x/c, P measures his half

 
in },{ 10 δδ  

basis and teleports outcome ψ ′
 to V1 over EPR channel 

11 pvβ . Entangled half in possession of 

V1 becomes ψσσψ ′=′′ ′l
x

l
z  where values of l  and l′

 
depend on P’s BSM result 

}11,10,01,00{∈′pp  and identity of 
11 pvβ . Simultaneously, P sends classical bit ppk ′⊕=  and 

quantum state  ψ ′  to both V0 and V1.    

3). At time t=2x/c, verifier V1 verifies whether ψ ′
 
and ψ ′′  are consistent with BSM result 

ppk ′⊕= of P or not. Similarly V0 validates whether ψ
 
and ψ ′

 
are consistent with his BSM 

result vv ′  or not. If both V0 and V1 receive verified information from P, they exchange their 

measurement outcomes somewhere in their causal future and verify the position of P if P has 

replied authenticated outcome within allocated time; at t=2x/c. 

 
Figure 2: Comparison of formal and proposed QPV schemes: Solid arrows represent quantum 

states, dotted arrows show teleportation while dashed arrows represent classical communication. 

(a) Formal notion of QPV schemes where verifiers send both quantum challenge as well as 

classical decryption information to the prover who replies back to verifiers with classical 

information. (b) Proposed QPV scheme where verifiers send entangled halves carrying no 

information and later, at time t=x/c, V0 teleports challenge to the prover while prover teleports 

again to V1 and replies measurement outcome to both V0 and V1. 
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In the proposed scheme, classical communication from the prover to verifiers is reduced 

to single bit only; }1,0{∈′⊕= ppk , because },{ 10 δδψ ∈
 
and hence },{ 10 δδψ ∈′ . In this 

setting, Pauli encodings  },{ xz

l

x

l

z I σσσσ ∈
′

 give same outcome ψσσψ ′=′′ ′l
x

l
z  

at V1 site up to 

overall phase factor. Similarly, },{ zx

l

x

l

z σσσσ ∈
′

 give same outcome ψ ′′ . For example, if 

{ }1100 ,
11

βββ ∈pv  
, then P’s BSM result }11,00{∈′pp

 
will result in },{ xz

l

x

l

z I σσσσ ∈
′

 while 

that of }01,10{∈′pp
 
will generate },{ zx

l

x

l

z σσσσ ∈
′

. Similarly, if { }0110 ,
11

βββ ∈pv  
, then P’s 

BSM result }11,00{∈′pp
 
will result in },{ zx

l

x

l

z σσσσ ∈
′

 while that of }01,10{∈′pp
 
will generate 

},{ xz

l

x

l

z I σσσσ ∈
′

. Hence, instead of sending classical 2-bit string pp ′
 
to verifiers, prover can 

simply announce }1,0{∈′⊕= ppk .  

We assumed that P is equidistant between V0 and V1 to make our analysis simple. 

However, this condition doesn’t make any compromise on the security analysis of proposed 

scheme or any limitations on its practical feasibility. The most crucial step in our construction is 

step 2, where verifiers send (receive) quantum information to (from) prover while being on the 

same space-like hyper surface t=x/c. If this could be arranged, then in step 3 it doesn’t matter 

whether verifiers receive information replied by the prover at same time t=2x/c or not. Both 

verifiers can count round trip time on their own clocks and verify or abort the positioning by 

exchanging their data.  If P is not equidistant between V0 and V1, then V0 and V1 have to send 

their respective entangled halves 
0pH

 
and 

1pH such that both quantum systems reach at the 

prover’s site concurrently. As a result, both verifiers and the prover need to share quantum 

system 
1010 vvpp HHHHH ⊗⊗⊗= at the same space-like hyper surface which is necessary for 

unconditionally secure positioning.  

 

7. Security analysis-II: Proposed QPV scheme 

Here we show that our proposed scheme is secure against entanglement-based attacks discussed 

in section 5: verifiers neither send qubit-wise encrypted quantum systems as a challenge nor 

classical information for decrypting that challenge. Instead, verifiers determine the actions of the 

prover through non-local correlations generated by local measurements from a specific position. 

The verifiers starts the scheme at time t=0 by preparing quantum system 
1100 pvpv HHH ⊗=

where 
0000 pvpv HHH ⊗=  is a maximally entangled system to be shared between V0 and P while 

while 
1111 pvpv HHH ⊗=  is the entangled system to be shared between V1 and P share at time 

t=x/c. Verifiers control the spacetime position where they want to reveal the challenge through 

teleportation. Before that spacetime position (occupied by prover P), dishonest provers cannot 

extract required information from quantum systems 
0pH

 
and 

1pH in the causal past of prover P 

since these quantum systems do not contain information which is required to resend verifiers. 

Suppose dishonest prover P0 is between V0 and P at position (x-δ,0) while P1 is between 

V1 and P at position (x+δ,0) respectively. Now P0 can intercept 
0pH and get entangled with the 

verifier V0 in a state 
00 pvH

 
while P1 shares entangled state 

11 pvH
 
with verifier V1 at t=(x-δ)/c.   

In our proposed scheme, prover P (or dishonest provers) has to reply with both quantum 

state ψ ′
 
and classical bit ppk ′⊕=

 
simultaneously. In other words, P (or dishonest provers) 
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has to receive teleported state ψ ′
 
from V0 and then teleport same state ψ ′

 
to V1. Since verifier 

V0 knows the definite state ψσσψ k
x

k
z

′
=′ from initially prepared EPR pair 

00 pvβ
 
and his BSM 

result vv ′ , hence verifiers V0 and V1 can verify whether the announced state ψ ′ and ppk ′⊕=

from prover P (or dishonest provers) is consistent with ψ and ψσσψ ′=′′ ′l
x

l
z  

or not.  

Moreover, since verifier V0 teleports quantum state ψ
 
over EPR pair 

00 pvβ
 
not before 

time t=x/c, hence specially separated dishonest provers P0 and P1 are restricted from performing 

non-local instantaneous computations during time interval {(x-δ)/c,x/c}; any measurement on 

1010 pppp HHH ⊗=  will collapse the larger system 
1100 pvpv HHH ⊗= . Hence, even if P0 and P1 

have infinite amount of pre-shared entanglement and perform non-local instantaneous 

computations through multiple rounds of teleportation [10] at time t=x/c, P0 and P1 can agree on 

ψσσψ k
x

k
z

′
=′

 
and required classical bit ppk ′⊕=  (BSM) only at time t=(x+2δ)/c. As a 

result, they can send required information to both V0 and V1 not before time t=(2x+δ)/c. 

Proposed QPV scheme in the presence of dishonest provers P0 and P1 is shown in figure 3(b). In 

conclusion, if the verifiers run proposed scheme with n
v CH

⊗= )( 2

0
, n

v CH
⊗= )( 2

1
 and 

nn
ppp CCHHH

⊗⊗ ⊗=⊗= )()( 22

10
, it enables them to identify dishonest provers with very high 

probability; 
n2/11−≥ρ . 

 
Figure 3: Comparison of formal and proposed QPV schemes in the presence of dishonest 

provers P0 and P1: Solid arrows represent qubits; dotted arrow shows teleportation while dashed 

arrows show classical information. (a) Formal notion of QPV and its insecurity against 

entanglement-based quantum attacks. (b) Proposed QPV scheme for secure positioning where 

dishonest provers P0 and P1 cannot simulate their actions with the prover at specified position. 
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8. Discussion 

We proposed here a different notion for secure positioning where distant verifiers do not send a 

secret key to the prover along with challenge, as used to do in insecure formal notion, but the 

actions of the prover are determined through non-local correlations obtained by local 

measurements at the provers’ site. The causality principle insures that the proposed quantum 

position-verification scheme is secure against entanglement-based attacks even if eavesdroppers 

have infinite amount of pre-shared entanglement and power of non-local quantum measurements 

in negligible time.  

In quantum information science, it has been demonstrated successfully that quantum non-

local correlations have wide range of applications in quantum computing, quantum 

communication, quantum cryptography, and crucial impacts on the foundation of quantum 

mechanics. In this connection, the combination of quantum non-local correlations with no-

signaling principle as discussed here promises fascinating advancement in getting unconditional 

security from dishonest users. For example, the receiver can trust the information he receives 

only if the scheme verifies position of the sender and validates sender’s actions in a single round. 

This bounds sender to reveal valid information within allocated time and guarantees him/her that 

the receiver on the other hand will not be able to get information unless sender reveals.  

The proposed scheme for secure-positioning can be efficiently and reliably implemented 

using existing quantum technologies. Since the quantum memory for reliable storage of 

entangled quantum systems is not available yet, we use more practical setup where the prover 

and verifiers can measure quantum information in publically known basis, store outcomes and 

create multiple copies. It would lead to a number of applications where communicating parties 

need to store information and then reveal after arbitrarily long time [29,30]. Proposed scheme for 

positioning would also be an important tool for modern technologies such as driverless quantum 

vehicles; an interesting application of positioning introduced by R. Malaney recently [43]. 

In conclusion, the basic difference between previous proposed position-verification 

schemes based on formal notion and our proposed scheme based on quantum non-local 

correlations is the construction of schemes in Minkowski spacetime [31]. Hopefully, this notion 

of secure positioning would help in broaden the scope of formulating quantum tasks in 

Minkowski spacetime. In the much broader perspective, this notion for secure positioning would 

be useful to understand relativistic quantum theory on the basis of quantum information science. 

For example, proposed setup allows receivers to trace the origin of received information sent 

from somewhere in their causal past at speed of light. 
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