
Topology-based Plug-and-Play Key-Setup

Amir Herzberg and Yehonatan Kfir

Dept. of Computer Science Bar-Ilan University, Israel
herzbea@cs.biu.ac.il,yehonatank@gmail.com

Abstract. We present a topology-based key setup protocol (ToBKeS)
to facilitate the plug and play deployment of cryptography, in networks
with known topology. This protocol uses the topology to authenticate
messages of devices.
ToBKeS assumes that there is at least one device that is initialized with
the known network topology, the authentication server, that it has a
known public key and that it shares secret keys with some of the other
devices in the network.
ToBKeS eases the adoption of security by eliminating the need to man-
ually set every device with its own private key. Furthermore, ToBKeS
limits the impact of key exposures by ensuring both perfect forward se-
crecy and proactive key refresh, re-establishing security after exposure.
We analyze the properties of the ToBKeS protocol and show sufficient
topology conditions for its applicability. In addition, we prove its secu-
rity against power-full attacker, that is able to control the route of the
network, as well as an attacker that is able control some of the devices
in the network.

1 Introduction

The use of the topology for sending secret message have already been discuss in
the past. At [4] the researchers uses different routes in the network for transmit-
ting secret messages. Assuming such routes, they define and prove the security
properties, against an attacker that controls multiple device on those routes.

However, there are some gaps in the model of [4]. First, in real networks,
the exact message routing is not always known to both parties. In addition,
those works did not related to the way for finding the different routes, nor did
not related to the routing method the network may have. In addition, they
neglected attackers that are able to change the route of messages. Hence, an
extended topology model is required.

A significant challenge in cryptographic deployment is key setup in networks
that construct from thousands of components. Each component that supports
cryptography needs to be securely initialized with keys. This large-scale initial-
ization is a challenging operation to manage.

In addition, once deployed, if key exposure is suspected, the keys need to be
manually re-initialized. This recovery process is another challenge in deployment
of cryptography.

Fig. 1. The IEEE 9-bus model [10] of a small power network. The topology-based
key setup protocol provides plug-and-play initial key setup and proactive key refresh.
The protocol uses multiple authenticated challenge-response sessions, between a client
(device 5) and several trusted devices (devices 1 and 2). In this way, the network
provides security from an attacker that controls part of the routes between the client
and the trusted devices

We address these challenges by presenting a topology-based key setup scheme
to facilitate the plug and play deployment of cryptography, with proactive key
refresh.

Our topology-based scheme leverages the fact that the topology of several
networks is usually known and quite stable, with considerable redundancy (e.g.
for resilience). This facilitates plug and play deployment, which does not require
manual setup of each device. Our scheme supports proactive key refresh, allowing
a completely automated recovery of devices from private key exposures.

We take advantage of the known topology and disjoint routes to authenticate
messages, and in particular to set up keys. We authenticate the sender by mea-
suring the distance and route from the sender to multiple trusted nodes, based
on standard assumptions about internet routing. This also allows us to perform
proactive key refresh, similar to [2], but without depending on attack-detection
at the device.

At last, we prove the security of the protocol using the extended topology
model we created.

For example, consider the network in Figure 1, which is based on the IEEE
9-bus model [10] - a known topology of power network. This system is built
from 9 communication devices, each one of them represent a communication
device of a power site. For this example, devices 1 and 2 are assumed secure
(and already upgraded). The server knows the topology, as shown in the figure.
As device 5 is upgraded, the server will ask it for evidence that it is connected
with path of length 2, to devices 1 and 2, through edges 1a and 2a, respectively.
Only after receiving this evidence, will the server authenticate device 5 and its
cryptographic keys.

To facilitate our design and analysis, we formalizing the properties of net-
works that applicable to use topology-based key setup. In future works, we will
evaluate the applicability of those assumptions in real world networks, such as
ICS networks:
(1) Known topology: The network topology and the routing method are known.
(2) Trusted nodes: Several highly-secure and trusted nodes.
(3) Known public key: One or more of the trusted nodes has a private key, with
the corresponding public key known to all (upgraded) nodes.
(4) Safe recovery: An adversary may corrupt some nodes, exposing all of their
secrets; however, upon recovery from corruption, nodes return to run the proto-
col as designed, with the correct public key for trusted node(s).
(5) Disjoint paths: Nodes in the networks have (at least) two disjoint shortest
paths to (different) trusted nodes.
(6) Use of IP and TTL: Modern wide-area networks mostly use the Internet
Protocol (IP), with intermediate devices acting as routers, in particular follow-
ing the TTL (hop-count) rules [9], and usually with simple shortest-path routing
without weights, e.g., provided by the RIP protocol [8].

Contributions. We make the following contributions:
(1) A topology-based plug-and-play initial key setup scheme for networks

with known topologies.
(2) A topology-based proactive key refresh scheme, that does not require

(manual) attack-detection capabilities.
(3) Proving the security of the scheme.

1.1 Related Work

Maybe to add more related works regarding the use of topology
The work at [11] presented how that method can be used to create a shared

secret key between two devices in the network. However, they did not present a
recovery mechanism nor a realistic routing model of the communication network.
In addition, our work uses the topology for a short time, just for seting a key
for cryptographic protocols. It does not rely only on the topology for long-term
security.

Formulation of key setup protocols was presented by [1]. In that work, the
researchers formulated the definition of protocols, and specifically key setup pro-
tocols. In addition, they define the execution process of such protocols, and the
definitions of their security. We extend the model in [1] to include the network

topology and routing method. Using our model, we will be able to define the
properties of protocols that are using the network topology and routing method
for key setup.

Our work is related to previous research of [5], as we share the same motiva-
tion for enabling zero-configuration key setup. The method in [5] assumed that
there is an anonymous communication network between the devices that partic-
ipates in the protocol. Our method is different as it is based on the assumption
that the network topology and the network routing method are known to at
least one of the devices that participates in the key-setup protocol.

2 Model

2.1 Network Model

We model the communication network as an undirected hyper-graph, G =
(V,E), where N = |V | denotes the numbers of devices (nodes), and E is a set
of hyper edges representing connections between devices. Some edges are sim-
ple edges representing point-to-point communication, and some are hyper-edges
representing a connection to multiple devices on the same interface.

A device can send messages to other devices. The message may pass through
several intermediary devices that act as routers, before reaching its destination.
Every device can block, pass, or change messages that pass through it.

Every device in the network has an identifier that uniquely represents it in
the network. An example for such an identifier can be a combination of the
device IP and MAC address. For simplicity, we denote the identifier of device
v ∈ V , by v.

Devices and Adversary In every network we assume that there is a group
of devices that do not support cryptographic modules. We call this group of
devices, legacy devices, and we denote it by L ⊂ V .

Another group in the network, are the upgraded devices which support cryp-
tographic modules and need to be initialized with keys. These devices also need
to have a recovery plan to receive a new key in case of (suspected) key leakage.

In case the network uses the IP protocol, we model additional property. IP
packets have a TTL field [9], which defines the number of hops the packet is
allowed to pass. The maximal TTL value that can be set to a packet is 255; for
simplicity, we assume all (non-corrupt) devices initialize the TTL, upon sending
a packet, to 255. We define a TTL-Network as one where devices follow the ‘TTL
rules’, as follows:

Definition 1 [TTL-Network] A network is a TTL-network if: (1) Every non-
compromised device decreases the TTL field of packets that pass through it by 1,
and discards them if TTL=0, and (2) when a non-corrupt device initiates a
message, it uses the initial TTL of 255.

Because availability and security are a primary concern, at least some devices
in the network must be well monitored to ensure (with high probability) that
they will not be compromised. We call these devices trusted devices, T ⊂ V −L.
Since this high level of security requires large operational efforts, often only a
small portion of the upgraded devices are also trusted. Some of the non-trusted
devices may be compromised ; both legacy and upgraded (but not trusted) devices
may be compromised.

Examples of trusted devices are Certificate Authority servers. Since these
servers are critical for the security of the network, they are highly-secure.

One of the trusted devices is the authentication server s, which has a known
public key, s.pu. It also has a shared secret key with each on the trusted and
upgraded devices. Using these keys, the server can send and receive encrypted
and authenticated messages.

On each graph G = (V,E), we define a coloring function φ : V × V →
{Legacy, Upgraded, Trusted, Compromised}, which defines the type for each
device in the network. Using this definition, a Legacy or Upgraded device that
was compromised will change its color to Compromised.

We consider an attacker A, who controls all Compromised devices1. The
attacker tries to disrupt key setup by an upgraded device, to register its own
key for some device, or to learn the key setup in the server for some (upgraded)
device.

We define nA-nodes attacker as an attacker that controls nA devices. From
the coloring function definition it is clear that nA = |A| = |{v ∈ V s.t. φ(v) =
Compromised}| devices.

The attacker is able to initiate, delay, block, or manipulate messages that pass
through its devices. In addition, the attacker is able to eavesdrop on messages
in the entire network, even messages that do not pass through its devices.

Routing Model The routing method defines the way each device forwards
incoming messages. We model the following routing methods:

Source-routing: each device can set the route in the network, for messages
that it initiates, by setting a route in the message. The route contains the se-
quence of devices that relay the message until it reaches its destination. The only
exception is that compromised devices are not obliged to forward the message
as per the route carried in the message.

Shortest-path routing: messages are sent on the shortest-path between the
source and destination device. Routing in a shortest-path network is formulated
as a function <0 : V × V → V , which receives the current device and the desti-
nation, and returns the neighbor of the current device, to which the message is
forwarded <0(current, destination), such that the sequence of forwarding from
source to destination is always the shortest path. If there is more than one
shortest-path route between the source and destination, the shortest-path rout-
ing function consistently chooses the same route.
1 Controlling a device effectively controls all of its links; for simplicity, we do not
discuss an attacker that is able to control only specific links.

Adversarial routing: the routes should have been shortest-path, but they may
have been changed by an attacker. In this network, in addition to the default
shortest-path routing function <0, there is an adversarial routing function <A.
The adversarial routing is not necessarily the shortest path because the network
routing is executed according to the adversarial routing function, <A.

Legacy and Upgraded devices always send messages according to the routing
method: the routing list in source-routing networks; the < function in shortest-
path network; and <A in adversarial routing network. In contrast, Trusted and
Compromised devices are not bound by the routing method and can freely select
the edge from which to forward each message.

2.2 Protocol Model

Our model is based on [1] for message-driven-protocol. For simplicity of our
discussion, we gave a more specific definition for key-setup protocol, and for that,
we extended their model to support several modes of the protocol on different
parties.

A topology-based key setup protocol π is a message-driven-protocol [1] that
has three types of participants in its execution:

Server - A Trusted device that is initialized with a public key s.pu and
correlated private key s.pr. In addition, the server is initialized with the network
topology G = (V,E), the coloring function φ, the routing method ρ ∈ {source,-
shortest-path}, the security parameter 1l, and < for non source-routing networks.
At the end of the protocol execution, the server has three possible outputs: Alert;
Success with a pair (kOUTs ,c) of key kOUTs of device c; and Timeout, when it waits
for messages longer than a predefined time threshold.

Client - An Upgraded device that is initialized with the server’s public key
s.pu, the routing method ρ ∈ {source, shortest-path}, and the security parameter
1l. This is the only the Upgraded device that does not have a shared secret key
with the server. At the end of a successful execution, this device will create and
register such a secret key, kOUTc .

Collaborator - A Trusted or Upgraded device that has a shared secret key
with the server ks,i; this key is different for each collaborator.

The goal of the protocol is to set the same secret key at the server and client:
kOUTs = KOUT

c . The ability to securely set such a shared key with a device
v ∈ V , depends on the topology of the network G = (V,E), the type of each
device φ, the routing method ρ, and the routing function <. Let P (v,G, φ, ρ,<)
be a topology availability predicate that returns 1 if several topology conditions
are met for device v ∈ V .

We define the availability of protocol π with respect to predicate P , as the
fraction of devices that have P (v,G, φ, ρ,<) = 1 from all the devices in the
network.

The server protocol is activated by a key-request message from a client c and
only if P (c,G, φ, ρ,<) = 1. Upon activation, the server s uses messages to/from
a group of collaborating devices, in order to authenticate the client location.

Upon successful authentication, the server registers the client key kc, where kc
is the key of device c.

If the P (c,G, φ, ρ,<) = 1 but the client location cannot be authenticated,
the server output will be an Alert. In that case, the server will not register the
client key.

For every topology-based key setup protocol π, we define several properties,
that will be discussed in Section 3.

3 Problem Formulation

Our problem formulation is based on the execution model by Bellare et al. [1],
and extended to support known topology and routing models.

3.1 Asynchronous Model

Execution of a topology-based key setup protocol depends on the network prop-
erties and on the attacker capabilities. As input, the execution receives the at-
tacker algorithm A, a topology-based key setup protocol π, a topology predicate
P , and a security parameter 1l. We denote this execution by EXEC(A, π, P, 1l).

The details of the topology-based execution are in Algorithm 2.
The execution process is adversarial in the sense that the attacker A chooses

all the network parameters: ρ, φ, and the topology G = (V,E). In addition, the
attacker chooses one Upgraded device as the client and one Trusted device as the
server.

The output of the execution is the attacker state σA, and one of the following
results: (1) "Failure" - if the server registers a key that is not the same as the
client key (probably because of an attacker); (2) "Alert" - if the server detects
an attacker that prevented the key setup; (3) ("Success", kOUTc) - if the server
registers the same key as the client, kOUTc ; and (4) "Timeout" - if the server
output is "Timeout".

We define the following properties of topology-based key setup protocols.
Secrecy. A key-setup protocol ensures Secrecy if no PPT attacker can re-

trieve any information about the key from the protocol messages. In other words,
there is no probabilistic polynomial-time attacker that can distinguish the key
from a randomly-generated string of the same length. Formally:

Definition 2 [Secrecy]
Protocol π ensures Secrecy with respect to predicate P , if |Pr [INDA,A1,π,P (l) = 1]−

1
2 | is a negligible function (in security parameter l), for all PPT attackers A and
A1, and where INDA,A1,π,P (l) is defined in Algorithm 1.

Correctness. A key-setup protocol ensures Correctness, if whenever the
server outputs a key kOUTc for specific client c, then, with overwhelming prob-
ability, c outputs the same key kOUTc . In addition, if the server outputs Alert,
then, with overwhelming probability, there is an attacker in the network (i.e., no
false alerts).

Indistinguishability Experiment INDA,A1,π,P (l)

1. A1 is choosing k0, k1, S0
ID, S

1
ID ← {0, 1}l. With them, it creates two

activation messages m0,m1 s.t. mi = {ki, SiID}.
2. A random bit is chosen, b

$←− {0, 1}
3. A successful execution, with activation message equal to mb, is chosen
randomly, (”Success”, kOUTc , σA)

$←− EXEC(A, π, P, 1l) where minit = mb

4. Return 1 if A1(k
OUT
c , σA) = b, and 0 otherwise.

Algorithm 1: Indistinguishability experiment

In more formal way, we require that any polynomial limited time attacker will
have a negligible probability for preventing key setup, without being detected. In
other words, we require a negligible probability for execution’s output of Failure.

Definition 3 [Correctness] Protocol π ensures Correctness, with respect to
predicate P , if for all PPT attacker A, there exists a negligible function negl
s.t.:

Pr(EXEC(A, π, P, 1l) = (”Failure”, σA)) < negl(l),
where the probability is taken over the random coins used by A and EXEC(A, π, P, 1l).

Guaranteed Key-Setup. A key-setup protocol ensures Guaranteed Key-
Setup with respect to predicate P , if, with overwhelming probability, executions
terminate successfully (and correctly) - even in the presence of an attacker. In
an asynchronous model, the adversary is scheduling message delivery. Hence, it
can prevent completion of the protocol, simply by delaying messages (‘forever’).
Thus, for this property we must make an assumption about the message delivery.

Definition 4 [Eventually Delivering] Attacker A is Eventually Delivering if
it delivers all the messages between non-compromised parties. This attacker can
only permanently block messages that pass through compromised devices.

Using those definitions, we can define the following property:

Definition 5 [Guaranteed Key-Setup] Protocol π ensures Guaranteed Key-
Setup, with respect to predicate P , if for all security parameter 1l and Eventually
Delivering attacker A:

EXEC(A,π,P ,1l) = {”Success”, kOUTc , σA}.

3.2 Asynchronous Execution

For each of the defined properties, the attacker goal is to create an execution
process that its output contradict one of the protocol requirements. In order to
achieve that, the attacker A is allowed to choose all the network conditions: the
network graph, the coloring function, the routing method, the client device c
and the server device s.

Let G = (V,E), φ be the network topology and the coloring function the
attacker choose.

In addition to them, the attacker chooses the client device c ∈ V −T such that
P (c,G, φ, ρ,<)=1. It also chooses the server s to be one of the trusted devices
in the network.

The routing function < is chosen by the attacker, according to the network
routing method.

If the network routing is shortest-path routing, A will choose a shortest-path
tree for the messages routing < = <0.

If the network routing is adversarial, than the attacker will provide its desired
adversarial routing function < = <A, in addition to providing a shortest-path
tree routing <0.

At the initialization phase (Algorithm 3), the server receives the network
properties, with the non-adversarial routing function <0, the security parameter
1l and the topology predicate P . It creates a pair of private and public keys,
s.pr, s.pu. The public key s.pu is given to the client for its initialization process,
in addition to the routing method and the security parameter 1l.

The key-setup execution process consists of a sequence of activation of π
within different devices - which includes the client c and the server s.

The activations are controlled and scheduled by the attacker. It also decides
which incoming messages or external requests the activated party is to receive.

Every message m that is sent by a party contains the sender device IP, the
destination device IP, the next hop device IP, the ttl field and a random string
payload that should reach the destination device. For source-route network, each
message contains also the route of the message.

In order to send a random string payload to device d, a party s adds the
message m to a set of pending messages M. The message next hop device will
be the next device that should receive the message.

Whenever A activates a party v on some incoming message m, it must be
that m is in the set M and that v is the device in the next hop field of message
m. Upon activation, the party adds a group of messages M ′ to M .

Furthermore, m is now deleted from M. If v is not the destination device of
the message m, than a new message m′ will be added to M (Algorithm 4). The
next hop field of m′ will be the neighbour of v that should receive that message,
according to the routing method. The payload, the source and the destination
device of m′ will be identical to m. In ttl-networks, the ttl field will be decreased
by 1, and the message will be added only it the ttl field is greater than 0.
A is not required to maintain the order of the messages, nor is it bound

by any fairness requirement on the activation of parties. By definition 4, an
Eventually Delivering attacker is required to deliver all the messages between
non-compromised parties, and it can only block messages that pass through
compromised devices.

In addition to activating parties, the adversary A can corrupt parties. Upon
corruption A learns the entire current state of the corrupted party. In addition,

from this point on A can add to M any (fake) messages, from the corrupted
party. A can block or change messages that pass through corrupted devices.

EXEC(A,π,P ,1l)

// Initialization - see Algo. 3
{G,φ, ρ,<, A, c, s, σA, σc, σs,mInit, k

OUT
c } = Init_Execution(A,π,P ,1l)

M = ∅
Add_Message(mInit,M) // see Algo. 4
while True do

M ′ = ∅
m̂ = A(σA)
switch φ(M [m̂].next_hop) do

case Compromised do
{M ′, σA} = A(σA,M [m̂]) M [m̂] = ∅

end
case Trusted OR Upgraded do

v = M [m̂].next_hop
{M ′, σv, k

OUT
s , c′, isAlert} = π(σv,M [m̂])

if isAlert then
Return ("Alert",σA)

end
if v = s AND kOUTs 6= NULL AND c = c′ then

if kOUTs = kOUTc then
Return ("Success",kOUTc ,σA)

else
Return ("Failure",σA)

end
end
M [m̂] = ∅

end
case Legacy do

Decrement M [m̂].ttl by 1
if M [m̂].ttl = 0 OR M [m̂].next_hop = M [m̂].destination then

M [m̂] = ∅
else

// The message should be routed to the next device
if ρ = source then

// In source-routing the messages are route according to the
routing list. See section 2.1

M [m̂].next_hop = M [m̂].route[next_hop]
else

// adversarial or shortest-path routing
M [m̂].next_hop = <(M [m̂].next_hop,M [m̂].destination)

end
end

end
end
foreach m ∈M ′ do

Add_Message(m,M)
σA = A(σA,m)

end
end

Algorithm 2: Execution Process

Init_Execution(A,π,P ,1l):

/* The attacker chooses the network properties, the client and the server. */
{G = (V,E), φ, ρ, c ∈ V, s ∈ V, σA} ← A(P, 1l))
s.t.:
φ : V → {Legacy, Trusted, Compromised, Upgraded}
ρ ∈ {source, shortest_path, adversarial}
φ(s) = Trusted
P (c,G, φ, ρ) = 0 AND φ(c) = Upgraded

{σs, s.pr, s.pu} ← π.Init_Server(G,φ, ρ, P, 1l)

k, SID
$←− {0, 1}l

mInit
$←− {k, SID} OR receives as an input (for the Secrecy proof only).

{σc, kOUTc } ← π.Init_Client(s.pu, k, ρ, 1l)

/* The server public key is known to the attacker */
σA ← σA ∪ {s.pu}

/* Shared keys with the server are loaded on each trusted device */
foreach {t ∈ V |φ(t) = Trusted, t 6= s} do

kAUTHt
$←− {0, 1}l

σt ← kAUTHt

σs = σs ∪ kAUTHt

end

if ρ ∈ {shortest_path, adversarial} then
A → <0 : V × V → V
Validate <0 is shortest path routing. If not, return 0.
σA = σA ∪ <0 σs = σs ∪ <0

if ρ = adversarial then
<A ← A, s.t.<A : V × V → V
σA = σA ∪ <A
< = <A

else
< = <0

end
end

Return {G,φ, ρ,<, A, c, s, σA, σc, σs,mInit, k
OUT
c }

Algorithm 3: Initializing Process Execution

3.3 Synchronous Model

In the synchronous model, every sender is measuring the time passed from send-
ing the message. As that time reached a timeout value, the sender will no longer
wait for response for that message. All the parties in this model have synchro-
nized clocks, which proceed in the same rate.

We denote a synchronous executionEXECSYN = EXECSYN (A,π,P ,1l,t0)),
were t0 denote the starting time of the execution. A synchronous execution has
all the outputs as the asynchronous model, with additional output of Timeout.

We denote the maximal network delay between two devices as Tdelay. For
simplicity, we assume that the processing time of messages in the devices, is
bounded by this value.

The longest route a message can pass is a route that includes all the devices
in the network. Thus, the maximal time delay of a message from a sender to a
receiver device is |V |Tdelay. We assume that the processing time of a message,

Procedure Add_Message(m,M)
Add to M element with:

source = m.source
destination = m.destination
payload = m.payload
ttl = m.ttl
if ρ = source then

route = m.route
next_hop = m.route[m.source]

else
next_hop = <(m.source,m.destination)

end

Algorithm 4: Message Handling

at each device, is zero. Thus, the maximal time that will be passed from sending
a message till receiving response is Tmax = 2 |V |Tdelay. For simplicity, we will
assume that every device in the network waits that period for receiving response,
even if the routes for its message’s destination is shorter that the maximal route.

Using the synchronous model we define the Bounded Termination property:
Bounded Termination. - A key-setup protocol ensures Bounded Termina-

tion if the protocol1’s execution time is bounded, possibly as a function of the
network topology G = (V,E).

Definition 6 [Bounded Termination] Let t0 be the time the execution game
started and G = (V,E) the network topology.

Protocol π ensures Bounded Termination, if there exists TEXEC(G) s.t. for
every attacker A, and the execution is finished after the time t0 + TEXEC(G) :

EXECSYN(A,π,P ,1l,t0)) ∈ {”Alert”, ”Success”, ”Failure”, ”Timeout”}

Perfect Forward Secrecy. - We use the definition from [3]. A key-setup
protocol ensures Forward Secrecy if disclosure of long-term secret keying material
does not compromise the secrecy of the exchanged keys from earlier times.

Proactive Security. - A key-setup protocol ensures Proactive Security if
it has a mechanism for periodically recovering from key compromises, and the
recovery process is faster than the time it takes to the attacker to compromise
devices. In that way, the protocol helps in resisting to an attacker that tries to
increase the number of compromised devices.

In more formal words, we divide the network’s coloring function φ into time
slots. Each time slot is TP long. At the start of each period, the protocol execute
a refreshment protocol that change the keys of all devices in the network. We
denote the coloring function at time t as φt.

During each period, the attacker is able to control (maximum of) nA devices.
While receiving control on a device, the attacker is able to retrieve this device
key. This key information is known to the attacker, even after he release control
from the device.

Definition 7 [Proactive Security]
Protocol π ensures Proactive Security, if for every nA − node attacker there

exists NA, such that for all t:

|{ v ∈ V s.t. φt+TP (v) = Compromised }| − |{ v ∈ V s.t. φt(v) =
Compromised }| < NA

4 Topology-based Key-Setup Protocol (TobKeS)

In this section, we present an implementation for a topology-based key setup,
called ToBKeS.

The goal of the ToBKeS protocol is to provide cryptographic keys to up-
graded devices, without requiring manual installation. The protocol is executed
whenever new keys are needed, and specifically upon upgrading a device or to
recover from (possible) compromise of the secret keys of the device.

The protocol uses a public key encryption scheme ξ and a MAC schemeM,
as defined at [7] . We denote a ToBKeS that uses these schemes as ToBKeSξ,M.
In cases we would like to emphasize that M is not relevant for the discussion,
we will omit it.

After creating the symmetric key k, the server authenticates the key holder’s
identity. Using challenge-response sessions, the server validates that the key
holder is the client that it claims to be. The challenge-response sessions validate
the topological location of the key holder. By that, under several conditions that
will be discussed, the key holder is authenticated.

k The random generated key at the client. Will be used for deriving the other keys.
kOUTc The key the will be registered for the client, kOUTc = PRFk(”Client_Key”).
kAUTHc The key the will be used during topology-based key setup execution, to authenticate messages

between the server and the client, kAUTHc = PRFk(”Authentication”).
ξs.pu{·} Asymmetric encryption with scheme ξ and public key s.pu
{ }kAUTHc

Symmetric authenticated-encryption with key k
s.pr, s.pu The authentication server private and public keys
G = (V,E) The ICS network graph, where V are the devices and E are the connections between them.

L Group of legacy devices, L ⊂ V
T Group of trusted devices, e.g. devices which share private key with the server, and attacker is not

able to control. T ⊂ V − L.
<0 The shortest-path routing function.
φ The coloring function, representing the device types. φ :V × V → {Legacy,Trusted,Compromised,

Upgraded}
ρ The routing method. ρ ∈ {source,shortest_path,adversarial}
σv State of device v

k
$←− {0, 1}l Choose k randomly from {0, 1}l

Fig. 2. Frequently used notations

4.1 Protocol Design

Before initiating the protocol, the client c ∈ V is loaded with the server’s public
key s.pu, and the security parameter 1l. In order to initiate the protocol, the
client generates a random key k $←− {0, 1}l.

Fig. 3. Example for a successful key-setup session, for the network in Figure 1. Device 5
receives keys, after two challenge-response sessions, with device 1 and device 2. Device
1 is the authentication server.

In addition, the server is loaded with the network graph G = (V,E), the
device-type (coloring) function φ , the routing <, and the number of compromised
devices that it should handle, nA.

The client activates the protocol session by sending an activation message,
mInit, to the server. The activation message contains a randomly chosen session
ID SID and the device random key k. In addition, the client sends its previous
key shared with the server kOUTc . If it is the first time the client is requesting a
key, kOUTc will be set to Null. These values are sent encrypted using ξ with the
server public key s.pu. In addition, the client sends its identification (e.g., its IP
address, as described in Section 2.1), unencrypted.

Using the device identifications, the server finds the location of the device in
the topology. These identifications are not considered trusted and the server will
have to validate the claimed device location.

Using the generated key k, and a pseudo-random-function (PRF), the server
and client derive a new symmetric authentication key kAUTHc = PRFk(”Authentication”),
as well as a shared secret key kOUTc = PRFk(”Client_Key”). kAUTHc will be
used with the MAC scheme M to authenticate all the messages between the
server and the client during the key setup protocol. kOUTc will be used as the
registered of the client.

After generating kAUTHc , the server selects a group of 2nA + 1 collaborators
from the trusted and upgraded devices, Tc ⊂ T , that are placed on disjoint route
between the server and the client.

If there are no 2nA+1 such collaborators, then the server will simply selects a
group of nA+1 collaborators. One of the collaborators can be the authentication
server itself.

If the number of available collaborators is below nA + 1, the server will not
continue with the protocol execution and will neglect the client request for key
setup.

In order to validate the client location, the server sends the client the identifi-
cation of the chosen collaborators Tc. For each collaborator, the client sends the
session ID as a challenge. In response, each collaborator sends back the session
ID and the client identification, authenticated with the key the collaborator has
with the server.

After the client receives all the responses, it sends them to the server.
A challenge-response session is defined successful, if (1) the session ID and

the client ID in the responses are as expected; (2) all the messages between the
server and the client are authenticated with the key kAUTHc ; (3) each response
is authenticated with the appropriate collaborator key kAUTHi .

The protocol behavior is defined relative to the number of devices that can
be under control of the attacker nA. Using this parameter, the protocol defines
three behaviors:

Key Registry at the Server: If nA + 1 sessions succeeded, the server will
register the key kOUTc for device c, and will send an ACK message to the client,
through all of the collaborators. The ACK message contains the string "ACK",
the session ID SID, and the key lifetime. After the lifetime period, the key will
no longer be used to authenticate messages between the server and the client.
Henceforth the client will have to initiate new key setup sessions with the server.

Key Registry at the Client: Upon receiving one ACK message from the
server and that ACK message is authenticated with the key kAUTHc , the client
will register its long time key kOUTc .

In the Synchronous Model we define additional properties and condition:
We denote the maximal network delay between two devices as Tdelay. For

simplicity, we assume that the processing time of messages in the devices is zero.
Alerting: The server will wait up to 4Tmax time after sending the challenges

to the client. The server output will be Alert if there are no nA + 1 successful
challenge-response sessions.

An example for a successful key setup session for nA = 1 can be seen in
Figure 3.

4.2 Protocol Analysis

In this section we will prove that ToBKeS fulfill the requirement from section 2.
For nA-node attacker, we define the following topology-predicates:
Detection-based predicate: PDET (v,G, φ, ρ,<) = 1 only if (1) ρ ∈ {source, shortest−

path}, (2) and v has nA + 1 disjoint routes to Trusted devices. We prove in this
section that if PDET holds for device v, then either v will set up keys successfully
or the server will raise an alert (correctly detecting at least one compromised
device in the network).

Full-availability predicate: PFULL(v,G, φ, ρ,<) = 1 only if (1) ρ ∈ {source, shortest−
path, adversarial}, (2) and v has 2nA + 1 disjoint routes to the security server.
We prove in this section, that if PFULL holds for device v, then v will always
set up keys successfully.

Theorem 1. [Secrecy]:
For every CPA-secure public-key scheme ξ protocol ToBKeSξ ensures Se-

crecy, as defined at Definition 2.

Proof. Assume to the contrary that exists A1,A, s.t. for all negligible function
negl(l):
|Pr [INDA,A1,π,P (l) = 1]− 1

2 | > negl(l)
Using those attackers, we define an attacker on the encryption scheme ξ, Aξ.

Using this attacker, we will prove a contradiction to the CPA-secure property of
ξ.

We denote the PRF that is being used by π as PRF : {0, 1}l → {0, 1}l′ , l < l′

.
Assume that PRF is an ideal random function U, U : {0, 1}l → {0, 1}l′ , l <

l′ . If the property holds for U and not for PRF , then it is easy to build a
distinguisher between PRF and U - which is a contradiction to the assumption
that PRF is a PRF. Thus, it is sufficient to assume that PRF is ideal.

Following the CPA experiment PubKcpa
Aξ,ξ(l) [7] :

1. Keys s.pu, s.pr are chosen randomly.
2. The adversary Aξ is given as input 1l, the public key s.pu and oracle access

to the encryption scheme. Aξ will choose two activation messages m0,m1.

3. A random bit b $←− {0, 1}l is chosen, and then a ciphertext c = ξs.pu(mb)
is computed and given to the adversary Aξ.

4. The adversary Aξ executes the process EXECAξ (A, π, P, 1l,mb) until
the output is "Success". Aξ returns b′ = A1(k, σA).

5. The output of the experiment is 1 if b=b’, and 0 otherwise.
According to the assumption:
| Pr [A1(k

OUT
c , σA) = b] > negl(l)⇒

| Pr [PubKcpa
kOUTc ,Aξ,ξ(l) = 1] > negl(l)

and this is contradiction to the assumption that ξ is CCA secure. Thus, if ξ
is CPA-secure then |Pr [INDA,A1,π,P (l) = 1]− 1

2 | < negl(l).
Thus, for every CPA-secure ξ, protocol ToBKeS ensures secrecy.

Theorem 2. [Correctness]: For every CPA-secure public-key scheme ξ , and
MAC-secure scheme M, and with predicate PDET , protocol ToBKeSξ,M en-
sures Correctness as defined by Definition 3.

Proof. According to the predicate PDET , there are at least nA+1 disjoint routes
between the client client c and the server.

According to protocol design at Key Registry at the Server, if the server
registers a key, it sends the authenticated ACK message, through all of the
collaborators, through at least nA + 1 disjoint routes.

Thus, if the server registers a key kOUTs , at least one ACK message had
reached to the client, and the client registers a key kOUTc . If not, than the attacker
was able to block all the ACK messages from nA+1 disjoint routes, with its nA
devices. Hence, at least one attacker device was at more than one route. This is
contradiction to the disjoint routes assumption.

According to the protocol design atKey Registry at the Client, the client
registers a key if it receives even one authenticated ACK message from the server.

Assume in negative that exist a PPT attackerA s.t. Pr(EXEC(A, π, P, 1l) =
(”Failure”, σA)) > negl(l).

If EXEC(A, π, P, 1l)=Failure, then kOUTc 6= kOUTs . In that case, the server
did not register the same key as the client. Thus, the attacker A was able (1)
to create and authenticate the ACK message without knowing the key kOUTc or
(2) to change and authenticate the key agreement message, or (3) to retrieve the
key kOUTc . Each operation done with non-negligible probability greater than
negl(x).

Assume (1) or (2): Than, the attacker A was able to create message m′
and tag tag′ for message he did not seen before. This is in contradiction to the
assumption thatM is MAC secure.

Assume (3): Then, the attacker was able to retrieve the key kOUTc from the
activation message, and this is contradiction to the Secrecy property.

Thus, for all PPT attacker A there exists negligible function negl(l) s.t.
Pr(EXEC(A, π, P, 1l) = (”Failure”, σA)) < negl(l).

Theorem 3. [Guaranteed Key-Setup]: Protocol ToBKeS , with predicates
PFUL, ensures Guaranteed Key-Setup property, as defined at Definition 5.

Proof. First, we will prove that ToBKeS is bounded protocol by the number: 2
+ 4 |V |.

Let G = (V,E) be the network graph. According to the protocol details,
the client sends a key request message. Than, the server sends the client list of
collaborators. The number of collaborator is limited by the number of devices in
the network, |V |. The client initiate challenge-response session with each collab-
orator. and the number of messages is twice (for challenge and response messages
with each device).

The client send all the responses through all its neighbours, and hence, this
limit the number of messages to |V |. Upon successful authentication at the server,
the server initiate ACK message through all the routes to the device. Those
messages number is also bounded by the number of devices in the network.

Summarizing the upper limit for messages: 1+1+2|V |+ |V |+|V | = 2 + 4|V |.
Thus, ToBKeS is a Bounded Protocol.
We will now prove that ToBKeS with predicate PFUL is always finished with

key setup.
If PFUL(c,G, Φ, ρ,<) = 1, then there are at least 2nA + 1 disjoint routes

between the client c and the server s.
Because of the disjoint routes, attacker that control nA devices will be able

to manipulate or complete maximum nA challenge-response sessions. There will

still be nA + 1 routes between the server and client, without any attacker node.
Using the nA+1 responses, the server will be able to distinguish the client from
the attacker, and to authenticate the client.

Now, it is left to prove that the server will receive the nA + 1 responses.
Since the attacker is eventually delivering, all the messages on the routes that
it does not control, will eventually reach their destination. This includes the
challenge-responses sessions, and the ACK from the server to the client.

This complete the proof.

In the synchronous model we will prove also the Bounded Termination prop-
erty.

Theorem 4. [Bounded Termination]: Protocol ToBKeS ensures Bounded
Termination property, as defined at Definition 6.

Proof. Let t0 be the time the execution process started, and let Tdelay be the
maximal delay of message between neighbor devices. We will prove that the
execution time is bounded by Tbounded = 6 |V |Tdelay.

The longest route a message can pass is a route that includes all the devices
in the network. Thus, the maximal time delay of a message from a sender to a
receiver device is |V |Tdelay. We assume that the processing time of a message, at
each device, is zero. For simplicity, we will assume that every device in the net-
work waits that period for receiving response, even if the routes for its message’s
destination is shorter that the maximal route.

According to the ToBKeS design there are 6 synchronous transactions (can
be seen in Fig. 3). Each transaction, as explained, is bounded by |V |Tdelay.

Thus, the maximal time that it takes to the protocol to execute is: 6 |V |Tdelay

Theorem 5. [Forward Secrecy and Proactive Security]: Protocol ToBKeS,
with respect to predicate PDET , ensures Forward Secrecy and Proactive Security
properties, as defined in Section 3.

5 Adversarial Routing ToBKeS (AR-ToBKeS)

The ToBKeS that was presented in Section 4, does not ensure Correctness
, Forward Secrecy and Proactive Security in networks with adversarial
routing. The reason for that is that the authentication server does not know the
adversarial routing, and hence, can not ensure disjoint routes.

For example, consider an adversarial routing in the network from Figure 4.1.
An attacker that controls device 9, will be able to authenticate as device 5,
simply by routing the responses from devices 1 and 2, to pass through device 9.
In that way, device 9 will be able to provide the needed authenticated responses,
and to authenticate as device 5.

In this section we present AR-ToBKeS, an improvement of ToBKeS for net-
works with adversarial routing.

5.1 Protocol Design

The goal of AR-ToBKeS is to provide cryptographic keys to upgraded devices,
without requiring manual installation. As we describe AR-ToBKeS ensures Cor-
rectness and Proactive Security in networks with adversarial routing.

AR-ToBKeS assumes a TTL-network as in Definition 1. The topology au-
thentication is based on an authentication of the TTL field of the challenges
that were received by the collaborators, and comparing them to their expected
values according to the topology. As we describe, comparing the authenticated
TTL field to the expected value, limits the capabilities of an attacker in networks
with adversarial-routing.

Fig. 4. AR-ToBKeS message sequence, with the additional TTL field, for the network
in Figure 1.

The protocol messages and design are based on topology-based key setup.
The protocol activation and sequence is similar to topology-based key setup. In
this section we describe only the differences.

First difference is that all the messages that are sent from the client, are
sent with the maximal value of TTL, ttlMAX . Those messages route through the
network, to the collaborators or to the authentication server. During the routing,
the TTL fields are decreased, according to the TTL-network assumption. We
denote the TTL value of the message that reach to collaborator i by ttli.

A collaborator in AR-ToBKeS can be trusted device or even upgraded device.
The only requirement is that the collaborator will execute the protocol, and have
a shared-secret key with the server.

As a collaborator i receives a challenge, it check the value of the TTL field,
ttli. The collaborator responses with an authenticated messages that contains
the TTL value of the received message, in addition to the client identification
and the session ID SID). The response is authenticated with the collaborator
shared key with the authentication server.

After the client receives all the responses, it sends them to server.
A AR-ToBKeS challenge-response session is defined successful, if (1) it is

a successfull session in ToBKeS as defined at Subsection 4.1; and (2) the ttl-
fields in all the authenticated responses aligned with the distance between the
collaborator and the client.

The protocol behavior is defined relative to the number of devices that can
be under control of the attacker nA. The behavior is similar to ToBKeS.

5.2 Protocol Properties

In this section we present the topology conditions necessary to ensure that the
AR-ToBKeS protocol has the properties defined in Section 3. Formal proofs are
available in the full version of the paper [6].

Let T be the group of Trusted devices, and let c1, ..., cNc be the group of
Collaborators (which can be Trusted or Upgraded devices).

We denote the group of non-trusted devices that located at distance smaller
or equal to l from collaborator ci as Vl,ci . We denote the length of the shortest
path between the client c to collaborator ci as lc,ci .

Lemma 1. A response from collaborator ci that has TTL of ttli, indicates that
the sender of the challenge (the client device or a compromised device) is not far
than 255− ttli + 1 hops from ci.

Proof. Every device in the network that processes the packet must decrease the
TTL that was sent by the sender by amount of at least one,4i ≥ 1. The maximal
TTL for a packet is 255. Hence,

ttl = 255−
N∑
i=1

4i + 1 ≤ 255−N + 1

=⇒ N ≤ 255− ttl + 1

where N is is the distance of the sender in hop count.

According to Lemma 1, an attacker can produce the same ttl as the client,
only if there is a compromised device that is located at a distance that is equal
or less than the distance between the client and the collaborator.

Hence,for a given network properties G,φ, ρ,<, and for each collaborator
ci, the group Vlc,ci ,ci can provide the same ttl as the client c. We require that
there will be no more than nA − 1 devices, that are part of Vlc,ci ,ci , for all the
collaborators.

We denote by Av the minimal number of devices that can provide the same
ttl fields, as a device v, for a given group of Trusted and Upgraded devices.

For nA − node attacker, we define the following topology-predicates:
Detection-based Adversarial-route predicate: PDET−ROUTE(v,G, φ, ρ,<) = 1

only if (1) ρ ∈ {adversarial}, (2) and |Av| > nA
The correctness property is based on the topology properties of the client

devices in the network. Every device v ∈ V that has |Av| > nA, can be authen-
ticate securely. The reason is that the attacker has only nA devices, which do
not allow him to provide all the required ttl-fields. Thus, at least one message
from the original client will be received at the server. If an attacker attempts to
register such a device, the server will detect different attempts for key registra-
tions for the same client. Different keys for the same device will cause the server
to raise an alert.

Theorem 6. [Correctness]: For every CPA-secure public-key scheme ξ , and
MAC-secure schemeM, and with predicate PDET−ROUTE, protocol AR− ToBKeSξ,M
ensures Correctness as defined by Definition 3.

Since AR-ToBKeS is build on ToBKeS, it uses the same key-refresh mecha-
nisms. However, the Correctness property of ToBKeS was not ensured in adversarial-
routing. Hence, the periodic key-setup could not be executed. Since AR-ToBKeS
ensures Correctness, the periodic key setup will ensure Forward Secrecy and
Proactive Security, simply by renewing the keys of devices after a period of
time.

Theorem 7. [Forward Secrecy and Proactive Security]: Protocol AR-ToBKeS,
with respect to predicate PDET−ROUTE, ensures Forward Secrecy and Proactive
Security properties, as defined in Section 3.

work that processes the packet must decrease the TTL that was sent by the
sender by amount of at least one, 4i ≥ 1. The maximal TTL for a packet is 255.
Hence,

ttl = 255−
N∑
i=1

4i + 1 ≤ 255−N + 1

=⇒ N ≤ 255− ttl + 1

where N is is the distance of the sender in hop count.

6 Conclusions

We present a model for topology-based key setup. The model extend previous
works that use topology for sending secret messages in several ways: (1) adding
a formal model for shortest-path routing networks, as well as source-route net-
works; (2) defining security properties against an attacker that is able to control
the route of messages in the network.

Using the formal model, we present and prove the security of ToBKeS; a
novel method for plug-and-play key setup in networks with known topology.
The method is based on authenticating the sender location, using authenticated
challenge-response sessions. We discussed that ToBKeS has the following prop-
erties: Secrecy, Correctness, Guaranteed Key-Setup, Bounded Termination, For-
ward Secrecy, and Proactive Security.

At last, we present an extension for ToBKeS that uses the ttl-field of IP
packets, for preserving the security of ToBKeS in the presence of attacker that
is able to control the route of messages in the network.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 419–428.
ACM, 1998.

2. Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated commu-
nication in the presence of break-ins. J. Cryptology, 13(1):61–105, 2000.

3. Whitfield Diffie, Paul C Van Oorschot, and Michael J Wiener. Authentication
and authenticated key exchanges. Designs, Codes and cryptography, 2(2):107–125,
1992.

4. Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure mes-
sage transmission. Journal of the ACM (JACM), 40(1):17–47, 1993.

5. Yossi Gilad and Amir Herzberg. Plug-and-play IP security. In Computer Secu-
rity–ESORICS 2013, pages 255–272. Springer, 2013.

6. Amir Herzberg and Yehonatan Kfir. Technical report 15-02, bar ilan university - de-
partment of computer science,http://u.cs.biu.ac.il/ herzbea/security/15-02-tbks.

7. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
Press, 2014.

8. G Malkin. Rfc 2453: Rip version 2. Request for Comments, 2453, 1998.
9. Jon Postel. Rfc 791: Internet protocol, september 1981. Darpa Internet Protocol

Specification, 1990.
10. A. B. Smith. IEEE std c37. 1-1994, IEEE standard definition, specification, and

analysis of systems used for supervisory control, data acquisition, and automatic
control. IEEE Power Engineering Society, 1994.

11. Sencun Zhu, Shouhuai Xu, Sanjeev Setia, and Sushil Jajodia. Establishing pair-
wise keys for secure communication in ad hoc networks: a probabilistic approach.
In Network Protocols, 2003. Proceedings. 11th IEEE International Conference on,
pages 326–335. IEEE, 2003.

