
CrypTopology:
Plug, Play and Recover Key Management

Amir Herzberg and Yehonatan Kfir

Dept. of Computer Science Bar-Ilan University, Israel
herzbea@cs.biu.ac.il,yehonatank@gmail.com

Abstract. Research on establishing and maintaining secure communi-
cation, has two distinct categories: using cryptography, with pre-shared or
certified keys, and using known, redundant network topology. We present
the CrypTopology model, combining cryptography with topology, with
benefits over the pure-crypto and pure-topology approaches. The model
also considers deployment challenges, by taking into account legacy de-
vices and routing, an aspect which is very relevant (but so far ignored)
in topology-based protocols.
We use the CrypTopology model to study key setup and management.
We present the CrypTop protocol, that allows easy plug and play key
setup, between new devices and a trusted authentication server (whose
public key is known). Furthermore, CrypTop limits the impact of key
exposures: it ensures proactive key refresh, re-establishing security after
exposure. In addition, CrypTop supports incremental deployment, and
is effective even for partial deployment.
We analyze the properties of the CrypTop protocol and show sufficient
topology conditions for its applicability. We prove its security against
an attacker that is able control some of the devices in the network. We
further present AR-CrypTop, an improvement of CrypTop that is secure
even for Adversarial Routing.

1 Introduction

Cryptography is the main tool for protecting communication against strong eaves-
dropping and MitM adversaries. However, cryptography requires a party to have
a key for each peer, obtained and authenticated directly or with the help of a
trusted third party such as a certification-authority or key distribution center.
This approach relies on computational assumptions, essentially, that the compu-
tational resources of the attacker are limited and cannot ‘break cryptography’.

An alternative, first proposed in the seminal work of Dolev et al. [5], is
to secure communication using knowledge of the network topology, instead of
trusted third party or directly-shared keys (as in cryptographic solutions). This
approach relies on different type of assumptions, namely, that the network is
sufficiently redundant to prevent attacker from controlling ‘too many’ links or
nodes.

It is interesting - and, we believe, useful - to study what can be achieved
by combining cryptography and topology. Namely, we propose the CrypTopol-
ogy model, combining cryptography with topology. This assumes computational-
limitations of the attacker (and hardness of cryptographic functions), together
with knowledge of the topology and limitation on the presence of the adversary
(to a limited subset of the links and nodes).

The CrypTopology model applies to important practical scenarios - and
allows to provide properties not achievable using only cryptography or only
topology. Specifically, we present the CrypTopology-based key setup protocol,
providing ‘plug-and-play’ key setup and refresh, between ‘unkeyed’ devices and
a special authentication server (whose public key is known), assuming known
topology. CrypTopology-based key setup allows recovery from key exposure,
ensuring proactive security. The use of (known, redundant) topology allows
CrypTopology-based key setup to improve security compared to the use of ‘only’
cryptography; and the use of cryptography allows us to significantly reduce the
overhead and redundancy-requirements compared to topology-only solutions.

The CrypTopology model also considers deployment and routing challenges.
Namely, we take into account that the network is likely to contain legacy devices
which do not follow the proposed protocol (in our case, CrypTopology-based key
setup); such devices only provide specific routing functionality. This is in contrast
to existing topology-based works, including [5], which naively assume ‘source-
routing’, where senders can control the path of messages they send. Source rout-
ing is simple and easy to use but rarely available in practical networks. In prac-
tice, networks usually use shortest-path routing; furthermore, routing protocols
may be vulnerable to attacks. We consider routing as part of the CrypTopology
model, and in particular, consider both shortest-path routing as well as adver-
sarial routing.

Support for incremental deployment and realistic routing is critical for prac-
tical applications, and has significant impact on the design and analysis of
topology-based protocols.

Our model and protocols are applicable to practical scenarios, since in many
networks, topology is known and quite stable, with considerable redundancy
(e.g., for resiliency). Key setup is a significant challenge in deploying cryptogra-
phy within such organizational networks. Each device that supports cryptogra-
phy needs to be securely initialized with keys. This large-scale initialization is a
challenging operation to manage.

Possibly even more significant, after deployment, the keys need to be re-
initialized if key exposure is suspected. Many systems support forward security,
which protects the confidentiality of past traffic from later exposure of keys;
but proactive security, i.e., automated recovery of security for communication
after key compromise, is a harder challenge, addressed only by the (theoretical)
solution of [4], which relies on alerting by devices - an unrealistic assumption
for many types of devices. Our method exploits the topology to provide a more
practical solution, allowing completely-automated secure key refresh, and where
detection and alert are done by the authentication server.

Another important requirement we introduce and support is incremental de-
ployment. Namely, it is perfectly possible to deploy the protocols in different
devices at different times, i.e., gradually. This is another aspect of the plug and
play functionality, making our results applicable to deployment of security into
existing networks, with acceptable startup challenge.

Fig. 1. A simple example: the IEEE 9-bus model [14] of a small power communication
network. The CrypTopology-based key setup protocol provides plug-and-play initial key
setup and proactive key refresh. The protocol uses multiple authenticated challenge-
response sessions, between a client (Device 5) and several upgraded devices (Devices 1
and 2). In this way, the network provides security from an attacker that controls part
of the routes between the client and the upgraded devices

One important example for relevant networks, are SCADA and Industrial
Control networks. Those networks present stable and known topology [1], from
one hand, and from the other hand, they include many geographically dis-
tributed, unmanned devices, making it hard to rely on manual process for key
setup and refresh.

For example, consider the network in Figure 1, which is based on the IEEE
9-bus model [14] - a known topology of power networks. This system is built from
9 communication devices, with each one of them representing a communication
device at a power site. For this example, Devices 1 and 2 are assumed to be
upgraded to support the protocol, and Device 1 is the authentication server. The
server knows the topology, as shown in the figure. When Device 5 is upgraded,

the server will ask it for evidence that it is connected with a path of length 2, to
Devices 1 and 2. Only after receiving this evidence, will the server authenticate
Device 5 and its cryptographic keys.

Contributions. This work makes the following contributions:
– We present the CrypTopology model, allowing the use of topology properties

to improve deployability and/or security of cryptographic systems.
– Our model supports incremental deployment with legacy devices, and dif-

ferent routing models, including shortest path and adversarial routing. The
model also supports the TTL mechanism, deployed in IP devices.

– We present the CrypTopology-based key setup plug-and-play key setup and
refresh protocol, allowing setup of cryptographic keys between an authentication-
server and unkeyed, unmanned devices. CrypTopology-based key setup works
for the typical case of shortest-path routing.

– We extend CrypTopology-based key setup to support also adversarial rout-
ing, taking advantage of the TTL mechanism of IP devices.

– Both protocols ensure proactive recovery, i.e., the system remains secure even
if all components may be corrupted by the attacker, as long as the number
of concurrently-corrupted components is appropriately limited.

1.1 Related Work

Several works [2, 6, 7, 11, 15–17] study the use of network topology to create a
shared secret between parties. However, these works assume ‘source routing’,
i.e., senders have complete control over the route, and do not support legacy
devices and realistic routing mechanisms (shortest path and adversarial), and
do not handle key exposures (cf. to our proactive recovery property).

On the other hand, existing proposals for plug-and-play key setup has with
weaker security guarantees, since they do not utilize the topology. Such proposals
include BTNS and other ‘leap of faith’ designs [12], and the use of anonymity
network to detect attacks [8].

Our work also presents a formal model for key-setup, following the seminal
paper of Bellare et al. [3]. We extend their model to include the network topology
and routing method.

2 Model

2.1 Network Model

We model the communication network as an undirected hyper-graph, G =
(V,E), where N = |V | denotes the numbers of devices (nodes), and E is a set of
hyper edges representing the connections between devices. Some edges are sim-
ple edges representing point-to-point communication, and some are hyper-edges
representing a connection to multiple devices on the same interface.

A device can send messages to other devices. The message may pass through
several intermediary devices that act as routers, before reaching its destination.
Every device can block, pass, or change messages that pass through it.

Every device in the network has an identifier that uniquely represents it. An
example of such an identifier can be a combination of the device IP and MAC
address. For simplicity, we denote the identifier of device v ∈ V , by v.

Devices and Adversary In every network, we assume there is a group of
devices that do not support cryptographic modules. We call this group legacy
devices and denote it by L ⊂ V .

Another group in the network contains the upgraded devices, U ⊂ V − L ,
which support cryptographic modules and need to be initialized with keys. These
devices must also have a recovery plan to receive a new key in case of suspected
key leakage.

One of the devices in the network, is the authentication server s, which
has a known public key, s.pu. It also has a shared secret key with each of the
upgraded devices. Using these keys, the server can send and receive encrypted
and authenticated messages. It is assumed that the authentication is the only
device that can not be compromised device 1.

On each graph G = (V,E), we define a coloring function φ : V × V →
{Legacy, Upgraded, Compromised}, which defines the type for each device in
the network. Using this definition, a legacy or upgraded device that was compro-
mised will change its color to show it is compromised.

We consider an attacker A, who controls all compromised devices2. The at-
tacker tries to: disrupt the key setup for an upgraded device, register its own key
for some device, or learn the key setup in the server for some upgraded device.

We define nA-nodes attacker as an attacker that controls nA devices. From
the coloring function definition, it is clear that nA = |A| = |{v ∈ V s.t. φ(v) =
Compromised}| devices.

The attacker is able to initiate, delay, block, or manipulate messages that
pass through its devices. In addition, the attacker can eavesdrop on messages in
the entire network, including messages that do not pass through its devices.

Routing Model The routing method defines the way each device forwards
incoming messages. We consider the following routing methods:

Source-routing: Each device can set the route in the network for messages that
it initiates. The route contains the sequence of devices that relay the message
until it reaches its destination.

Shortest-path routing: Messages are sent on the shortest-path between the
source and destination device. Routing in a shortest-path network is formu-
lated as a function < : V × V → V , which receives the current device and the
destination, and returns the neighbor of the current device, to which the mes-
sage is forwarded <(current, destination), such that the sequence of forwarding

1 Compromised server is discussed in future works. One trivial way to handle that is
to use redundant servers.

2 Controlling a device effectively controls all of its links. For simplicity, we do not
discuss an attacker that is able to control only specific links.

from source to destination is always the shortest path. If there is more than
one shortest-path route between the source and destination, the shortest-path
routing function consistently chooses the same route.

Adversarial routing: The routes should have been shortest-path, but they may
have been changed by an attacker. In this network, in addition to the default
shortest-path routing function <, there is an adversarial routing function <A.

Legacy and upgraded devices always send messages according to the routing
method; this may be the routing list in source-routing networks, the < function
in shortest-path network, or <A in adversarial routing networks. In contrast,
compromised devices are not bound by the routing method and can freely select
the edge from which to forward each message.

2.2 Protocol and Asynchronous Execution Model

Our model is based on that of Bellare et al. [3] for message-driven-protocols.
For simplicity, we use a more specific definition for the key-setup protocol and
extend their model to support several modes of the protocol on different parties.

A CrypTopology-based key setup protocol π is a message-driven-protocol [3]
that has three types of participants in its execution:

Server - A non-compromised device that is initialized with a public key s.pu
and correlated private key s.pr. The server is also initialized with the network
topology G = (V,E), the location of the upgraded devices, the routing method
ρ ∈ {source, shortest-path}, the security parameter 1l, and < for non-source
routing networks. At the end of the protocol execution, the server has three
possible outputs: Alert; and Success with a pair (kOUTs ,c) of key kOUTs of device
c;

Client - An upgraded device that is initialized with the server’s public key
s.pu, the routing method ρ ∈ {source, shortest-path}, and the security parameter
1l. This is the only upgraded device that does not have a shared secret key with
the server. At the end of a successful execution, this device will create and
register such a secret key, kOUTc .

Collaborator - An upgraded device that has a shared secret key with the server
ks,i; this key is different for each collaborator.

The goal of the protocol is to set the same secret key at the server and
client: kOUTs = kOUTc . The ability to securely set such a shared key with a device
v ∈ V , depends on the topology of the network G = (V,E), the type of each
device φ, the routing method ρ, and the routing function <. Let P (v,G, φ, ρ,<)
be a topology availability predicate that returns 1 if several topology conditions
are met for device v ∈ V .

We define the availability of protocol π with respect to predicate P , as the
fraction of all devices in the network that have P (v,G, φ, ρ,<) = 1.

Execution of a CrypTopology-based key setup protocol depends on the net-
work properties and on the attacker capabilities. As input, the execution receives
the attacker algorithm A, a CrypTopology-based key setup protocol π, a topol-
ogy predicate P , and a random key k $←− {0, 1}l. We denote this execution by
EXEC(A, π, P, k).

We describe now the main ideas of the asynchronous execution process. The
details are described in the full version of the paper [9]. In Section 5 we describe
a synchronous execution model in order to describe additional time-depended
properties.

The execution process is adversarial in the sense that the attacker A chooses
all the network parameters: ρ, φ and the topology G = (V,E). In addition, the
attacker chooses one upgraded device as the client c and one non-compromised
device as the server.

The output of the execution is one of the following results: (1) "Failure" - if
the server registers a key that is not the same as the client key (probably because
of an attacker); (2) "Alert" - if the server detects an attacker that prevented the
key setup; (3) ("Success", kOUTc , σA), where σA is the attacker state - if the
server registers the same key as the client, kOUTc or if P (c,G, φ, ρ,<) 6= 1.

2.3 Protocol Properties

We define the following properties of CrypTopology-based key setup protocols.
Secrecy. A key-setup protocol ensures secrecy if no PPT attacker can retrieve

any information about the key from the protocol messages. In other words, there
is no probabilistic polynomial-time attacker that can distinguish the key from a
randomly-generated string of the same length. Formally:

Definition 1 [Secrecy]
Protocol π ensures secrecy with respect to predicate P , if |Pr [INDA,D,π,P (l) = 1]−

1
2 | is a negligible function (in security parameter l), for all PPT attacker A and
PPT distinguisher D, and where INDA,D,π,P (l) is defined in Algorithm 1.

Indistinguishability Experiment INDA,D,π,P (l)

1. D chooses k0, k1
$←− {0, 1}l.

2. A random bit is chosen, b
$←− {0, 1}

3. A successful execution, with key kb, is chosen randomly,
(”Success”, kOUTc , σA)

$←− EXEC(A, π, P, k) where k = kb

4. Return 1 if D(kOUTc , σA) = b, and 0 otherwise.
Algorithm 1: Indistinguishability experiment

Correctness. A key-setup protocol ensures correctness if, whenever the
server outputs a key kOUTc for specific client c, then, with overwhelming prob-
ability, c outputs the same key kOUTc . In addition, if the server outputs Alert,
then, with overwhelming probability, there is an attacker in the network (i.e., no
false alerts).

Formally, we require that any polynomial-limited time-attacker will have a
negligible probability of preventing key setup, without being detected. In other
words, we require a negligible probability of the execution’s output being Failure.

Definition 2 [Correctness] Protocol π ensures correctness, with respect to
predicate P , if for all PPT attackers A, there exists a negligible function negl
s.t.:

Pr(EXEC(A, π, P, k)= ”Failure”) < negl(l),
where the probability is taken over the random coins used by A and EXEC(A, π, P, k).

Guaranteed Key-Setup. A key-setup protocol ensures guaranteed key-
setup with respect to predicate P , if, with overwhelming probability, executions
terminate successfully (and correctly) - even in the presence of an attacker. In
an asynchronous model, the adversary schedules the message delivery. Hence, it
can prevent completion of the protocol simply by delaying messages (‘forever’).
Thus, for this property we must make an assumption about the message delivery.

Definition 3 [Eventually Delivering] Attacker A is eventually delivering if
it delivers all the messages between non-compromised parties. This attacker can
only permanently block messages that pass through compromised devices.

Using these definitions, we can define the following property:

Definition 4 [Guaranteed Key-Setup] Protocol π ensures guaranteed key-
setup, with respect to predicate P , if for all security parameters 1l and eventually
delivering attackers A:

EXEC(A,π,P ,k) = {”Success”, kOUTc , σA}.

3 Crypto-Topology Key-Setup Protocol (CrypTop)

In this section, we present an implementation for a Crypto-Topology protocol,
called CrypTop.

The goal of CrypTop is to provide cryptographic keys to upgraded devices,
without requiring manual installation. The protocol is executed whenever new
keys are needed, and specifically upon device upgrade or to recover from possible
compromise of the device’s secret keys.

The protocol uses a public key encryption scheme ξ and a MAC schemeM,
as defined by Katz and Lindell [10]. We denote a CrypTop that uses these
schemes as CrypTopξ,M. We will omitM when we want to emphasize that it is
not relevant for the discussion.

After creating the symmetric key k, the server authenticates the key holder’s
identity. Using challenge-response sessions, the server validates that the key
holder is the client that it claims to be. The challenge-response sessions vali-
date the topological location of the key holder. In this way, the key holder is
authenticated under several conditions, which will be discussed further.

3.1 Protocol Design

Before initiating the protocol, the client c ∈ V is loaded with the server’s pub-
lic key s.pu and the security parameter 1l. To initiate the protocol, the client
generates a random key k $←− {0, 1}l.

Fig. 2. Example for a successful key-setup session, for the network in Figure 1. Device 5
receives keys, after two challenge-response sessions, with Device 1 and Device 2. Device
1 is the authentication server. In square brackets, proactive fields, which is described
in Section 5

In addition, the server is loaded with the network graph G = (V,E), the
device-type (coloring) function φ , the routing <, and the number of compromised
devices that it should handle, nA.

The client activates the protocol session by sending an activation message,
mInit, to the server. The activation message contains a randomly chosen session
ID SID and the device random key k. The session ID does not consider se-
cure/secret from an attacker. It is used by the server to detect all the messages
from the same authentication session.

All these values are sent encrypted using ξ with the server public key s.pu.
The client also sends its identification (e.g., its IP address, as described in Section
2.1), unencrypted.

Using the device identifications, the server finds the location of the device in
the topology. These identifications are not considered trusted and the server will
have to validate the device’s claimed location.

Using the generated key k, and a pseudo-random-function (PRF), the server
and client derive a new symmetric authentication key kAUTHc = PRFk(”Authentication”),
as well as a shared secret key kOUTc = PRFk(”Client_Key”). kAUTHc will be
used with the MAC scheme M to authenticate all the messages between the

server and the client during the key setup protocol. kOUTc will be used as the
registered key of the client.

After generating kAUTHc , the server selects a group of 2nA + 1 collaborators
from the upgraded devices, Uc ⊂ U , that are placed on disjoint routes between
the server and the client.

If there are no 2nA+1 such collaborators, the server will simply select a group
of nA+1 collaborators. One of the collaborators can be the authentication server
itself.

If the number of available collaborators is below nA + 1, the server will not
continue with the protocol execution and will neglect the client request for key
setup.

In order to validate the client location, the server sends the client the identifi-
cation of the chosen collaborators Uc. For each collaborator, the client sends the
session ID as a challenge. In response, each collaborator sends back the session
ID and the client identification, authenticated with the key the collaborator has
with the server.

After the client receives all the responses, it sends them to the server.
A challenge-response session is defined as successful, if (1) the session ID and

the client ID in the responses are as expected; (2) all the messages between the
server and the client are authenticated with the key kAUTHc ; (3) each response
is authenticated with the appropriate collaborator key kAUTHi .

The protocol behavior is defined relative to the upper bound of devices that
can be under control of the attacker nA. Using this parameter, the protocol
defines three behaviors:

Key Registry at the Server: If nA + 1 sessions succeeded, the server will
register the key kOUTc for device c, and will send an ACK message to the client,
through all of the collaborators. The ACK message contains the string "ACK"
and the session ID SID.

Key Registry at the Client: When one ACK message is received from the
server and that ACK message is authenticated with the key kAUTHc , the client
will register its long time key kOUTc .

We denote the maximal network delay between two devices as Tdelay. For
simplicity, we assume that the processing time of messages in the devices is zero.

Alerting: The server will wait up to 4Tmax time after sending the challenges
to the client. The server output will be Alert if there are no nA + 1 successful
challenge-response sessions.

An example for a successful key setup session for nA = 1 can be seen in
Figure 2.

3.2 Protocol Properties

In this section we present the topology conditions necessary to ensure that the
CrypTop protocol has the properties defined in Section 2.3. Formal proofs are
available in Appendix A.

The properties of the protocol are defined with respect to the network topol-
ogy. For nA-node attacker, we define the following topology-predicates:

Detection-based predicate: PDET (v,G, φ, ρ,<) = 1 only if (1) ρ ∈ {source, shortest−
path}, (2) and v has nA+1 disjoint routes to upgraded devices. In this section, we
explain that if PDET holds for device v, then either v will set up keys successfully
or the server will raise an alert (correctly detecting at least one compromised
device in the network).

Full-availability predicate: PFULL(v,G, φ, ρ,<) = 1 only if (1) ρ = source
and v has 2nA+1 disjoint routes to the security server; or (2) ρ = shortest−path
and v has 2nA+1 disjoint routes that are built from routes to collaborators and
from the collaborators to the authentication server. In this section we explain
that if PFULL holds for device v, then v will always set up keys successfully.

Using these predicates we discuss the properties of the protocol.
The secrecy of the protocol is based on the security of the public encryption

scheme ξ and the MAC scheme M. If ξ is secure against an adversary who
tries to retrieve the key from its encrypted messages, then the CrypTop protocol
ensures that the key kc will not be leaked to the attacker.

The correctness property is based on the topology properties of the client
devices in the network. Devices that have nA + 1 disjoint routes to upgraded
devices can be authenticated securely. The reason is that the attacker has only
nA devices, which do not allow him to be on all of the routes. Thus, at least
one message from the original client will be received at the server. If an attacker
attempts to register such a device, the server will detect different attempts for
key registrations for the same client. Different keys for the same device will cause
the server to raise an alert.

Clients that have 2nA + 1 disjoint routes to the server will always be able
to receive keys. This guaranteed key-setup property is based on the topology
properties. An attacker with nA devices will be able to fulfil only nA challenge-
response sessions and to block the same number of sessions of the client, even in
adversarial-routing. Under the same conditions, the client will be able to fulfil at
least nA+1 sessions. The authentication server will be able to detect the "real"
client as it will have an additional successful challenge-response session.

Following this discussion, we phrase several theorems. The detailed proofs
are in Appendix A:

Theorem 1. [Secrecy]: For every CPA-secure public-key scheme ξ (and every
MAC schemeM), protocol CrypTopξ,M ensures secrecy, as defined in Definition
1.

Theorem 2. [Correctness]: For every CPA-secure public-key scheme ξ, and
MAC-secure scheme M, with respect to predicate PDET , protocol CrypTopξ,M
ensures correctness as defined by Definition 2.

Theorem 3. [Guaranteed Key-Setup]: Protocol CrypTop, with predicates PFULL,
ensures the guaranteed key-setup property, as defined in Definition 4.

Notice that correctness and guaranteed key-setup depend on the topology
predicates; thus, they are not ensured in adversarial networks. We will address
this in the next section.

4 Adversarial Routing CrypTop (AR-CrypTop)

The CrypTop protocol presented in Section 3 does not ensure correctness and
guaranteed key-setup in networks with adversarial routing. This is because the
authentication server does not loaded with the adversarial routing and hence,
cannot ensure disjoint routes.

For example, consider an adversarial routing in the network of Figure 1. An
attacker that controls Device 9 will be able to authenticate as Device 5, simply
by routing the responses from Devices 1 and 2 to pass through Device 9. In this
way, Device 9 can provide the needed authenticated responses and authenticate
as Device 5.

In this section we present AR-CrypTop, an enhancement of CrypTop for
networks with adversarial routing.

For AR-CrypTop discussion, we are assuming that the network is an IP
network, and we use the TTL field [13] of IP packets. We define a TTL-Network
as one in which devices obey the ‘TTL rules’ as follows:

Definition 5 [TTL-Network] A network is a TTL-network if: (1) Every non-
compromised device decreases the TTL field of packets that pass through it by 1,
and discards them if TTL=0, and (2) when a non-corrupt device initiates a
message, it uses the initial TTL of 255.

Following the model of the attacker from Section 2.1, it is clear that in TTL-
network, the attacker is able to change the TTL-field of messages that pass
through Compromised devices.

4.1 Protocol Design

The goal of AR-CrypTop is to provide cryptographic keys to upgraded de-
vices, without requiring manual installation. AR-CrypTop ensures correctness
and proactive security in networks with adversarial routing.

AR-CrypTop assumes a TTL-network as in Definition 5. The topology au-
thentication is based on authenticated TTL field in the responses received from
the collaborators, and comparing their values to the ones expected based on the
topology. As we describe, comparing the authenticated TTL field to the expected
value limits the capabilities of an attacker in networks with adversarial routing.

The protocol messages and design are based on CrypTop , and the protocol
activation and sequence are similar to CrypTop. In this section we describe only
the differences.

The first difference is that all the messages sent from the client include the
maximal value of TTL, ttlMAX . These messages are routed through the network
to the collaborators or to the authentication server. During the routing, the
TTL fields are decreased, based on the TTL-network assumption. We use ttli to
denote the TTL value of the message that reaches collaborator i.

A collaborator in AR-CrypTop is an upgraded device that already has a
shared-secret key with the server.

Fig. 3. AR-CrypTop message sequence with the additional TTL field, based on the
network in Figure 1. Activation and ACK messages are similar to CrypTop.

When collaborator i receives a challenge, it checks the value of the TTL field,
ttli. The collaborator responds with an authenticated messages containing the
TTL value of the received message, in addition to the client identification and
the session ID SID). The response is validated at the authentication server using
the key shared with the collaborator.

After the client receives all the responses, it sends them to the authentication
server.

An AR-CrypTop challenge-response session is defined successful, if: (1) it is
a successful session in CrypTop as defined in Subsection 3.1, and (2) the TTL-
fields in all the authenticated responses are aligned with the distance between
the collaborator and the client.

The protocol behavior is defined relative to the number of devices that can
be under the control of the attacker nA; this is similar to CrypTop.

4.2 Protocol Properties

In this section we present the topology conditions necessary to ensure that the
AR-CrypTop protocol has the properties defined in Section 2.3. Formal proofs
are available in the full version of the paper [9].

Let c1, ..., cNc be the group of collaborators (which are upgraded devices).
We denote the group of devices that are located at a distance smaller than

or equal to l from collaborator ci as Vl,ci . We denote the length of the shortest
path between the client c to collaborator ci as lc,ci .

Lemma 1. A response from collaborator ci that has a TTL of ttli, indicates
that the sender of the challenge (the client device or a compromised device) is
not farther than 255− ttli + 1 hops from ci.

The proof is straightforward from the TTL definition, and it is provided at
Appendix A.

According to Lemma 1, an attacker can produce the same TTL as the client,
only if there is a compromised device that is located at a distance that is equal
to or less than the distance between the client and the collaborator.

Hence, for given network properties G,φ, ρ,<, and for each collaborator ci,
the group Vlc,ci ,ci can provide the same TTL as the client c. We require that
there will be no more than nA − 1 devices, that are part of Vlc,ci ,ci , for all the
collaborators.

We denote by Av the minimal number of devices that can provide the same
TTL fields as a device v, for a given group of upgraded devices.

For attacker nA − node, we define the following topology-predicate:
Detection-based adversarial-route predicate: PDET−ROUTE(v,G, φ, ρ,<) = 1

only if (1) ρ ∈ {adversarial}, (2) and |Av| > nA
The correctness property is based on the topology properties of the client

devices in the network. Every device v ∈ V that has |Av| > nA, can be authen-
ticated securely. The reason is that the attacker has only nA devices, which do
not allow him to provide all the required TTL fields. Thus, at least one message
from the original client will be received at the server. If an attacker attempts to
register such a device, the server will detect different attempts for key registra-
tions for the same client. Different keys for the same device will cause the server
to raise an alert.

Theorem 4. [Correctness]: For every CPA-secure public-key scheme ξ and
MAC-secure schemeM, with predicate PDET−ROUTE, protocol AR− CrypTopξ,M
ensures correctness as defined by Definition 2.

Notice that guaranteed key-setup is not ensured in adversarial routing, even
with AR-CrypTop. In such routing, the attacker can always change the routes
of the messages from the client, so they appear unsuccessful for the server. For
example, it can increase the route those messages take, causing them to have a
TTL of a much more distant device than the client.

5 Preserve Security and Proactive Recovery

5.1 Synchronous Execution Model and Security Definitions

In this section we define important properties that depends on the time param-
eter in the execution. Hence, we add a short description of a synchronous model
of the protocol execution that was described in Section 2.2.

In the synchronous model, every sender measures the time that has passed
since sending the message. When that time reaches a timeout value, the sender

will no longer wait for a response for that message, and will output Timeout.
All the parties in this model have synchronized clocks that proceed at the same
rate.

We denote a synchronous execution EXECSYN (A,π,P ,k,t0), where t0 de-
notes the starting time of the execution. The rest of the parameters are as the
same as in the asynchronous execution that was described in Section 2.2.

In the synchronous model, we divide the network’s coloring function φ into
time slots. Each time slot is TP long. We denote the coloring function at time t
as φt.

We define a nA-active-attacker as follows. During each TP period, the at-
tacker is able to control a maximum of nA devices. While controlling a device,
the attacker can retrieve this device’s key; the key information remains known
to the attacker, even after he releases control of the device.

5.2 Proactive Security

A key-setup protocol ensures proactive security if it has a mechanism for period-
ically recovering from key compromise, without the need to detect an attacker
in the network.

Using proactive mechanism, the protocol is able to limits the maximal num-
ber of devices/keys that can be compromised by nA-active-attacker, and to en-
sure the correctness of the protocol over time. That, even in the presence of a
nA-active-attacker.

First property we define is to preserve the security of the device:
If at some time a device succeed in receiving a key, than in the future, as

long as the attacker did not compromise that device, the server will be able to
provide new key to the device or to detect an attack on that device.

Definition 6 [Preserve Security]
Protocol π ensures preserving security with respect to predicate P , if for ev-

ery time t and for every device v that was not compromised and fulfil: EXECSYN

(A,π,P ,k,t0)=("Success",kOUTc , σA) it holds:
Pr(EXECSYN (A,π,P ,k,t0 + TP)="Failure") < negl(l)

Second property we define is proactively recovering from a compromise of a
device, and, under several topology conditions, providing new secret key to that
device.

Definition 7 [Proactive Recovery]
Protocol π ensures proactive recovery with respect to predicate P , if for every

time t0, it ensures Correctness and Guaranteed Key Setup as defined at 1 at time
t0 + TP , for every device v that fulfil:

φt(v) = Compromise, φt+TP (v) = Upgraded

and P (v) = 1 for all of the period between t0 to t0 + TP .

Notice that a single execution of CrypTop and AR-CrypTop for key setup,
does not ensure security against nA-active-attacker. In presence of nA-active-
attacker, the identity of the compromised devices can be changed over time,
while the key of every device that was compromised will be known to the attacker
even after he release the compromised device. After enough time, the attacker
will be able to retrieve the keys of all the upgraded devices in the network.

5.3 Proactive CrypTop and AR-CrypTop

In order to handle nA-active-attacker and ensure proactive security, we describe
a proactive variant of both protocols. The proactive variant is different in the
following aspects:

Periodical activation - The protocol is re-activated in every device every
TP time-units. We assume that the execution duration time of the protocol is
negligible with respect to TP .

Message authentication of activation message At every re-activation of the
protocol, the activation message sent from the device to the server is authenti-
cated using the shared authentication key exchanged during the previous suc-
cessful run. If the activation message received does not include a valid message
authentication code (MAC), then the recipient detects an attack (‘Alert’ event).

If a device received a key which was not compromised at time t, i.e., a suc-
cessful run, then it will always be able to refresh its key at time t+TP or it will
create an alert. Using the previous key kOUTOld,c, the device will be able to identify
itself in front of the authentication server. If it will not be able to provide enough
successful sessions (probably because of an attacker, since at time t the device
was able to provide enough successful sessions), the server will raise an Alert.

Refreshing the key (whether using the topology or the previous key) provides
proactive security. The new key is always chosen randomly, with no deterministic
way to relate it to the old key. In addition, periodically refreshing the key ensures
that the network will recover from a compromised key, even without detecting
the specific key that was leaked.

Following this discussion, we can phrase the following theorem:

Theorem 5. [Preserve Security and Proactive Security]: Protocols Cryp-
Top and AR-CrypTop, with respect to predicate PFULL, ensures preserve secu-
rity and proactive security properties, as defined in Definitions 6 and 7.

6 Conclusions

We present the CrypTopology model, combining cryptography with topology.
The model considers deployment challenges, by taking into account legacy de-
vices and routing. We use this model to define the CrypTopology-based key setup
task. We then present the CrypTop protocol, that facilitates easy plug and play
key setup and refresh. In addition, we present AR-CrypTop, an improvement of
CrypTop that is secure even against adversarial routing. We analyse the security
of CrypTop, for different routing models.

References

1. Rafael Ramos Regis Barbosa, Ramin Sadre, and Aiko Pras. A first look into scada
network traffic. In Network Operations and Management Symposium (NOMS),
2012 IEEE, pages 518–521. IEEE, 2012.

2. Paolo Barsocchi, Stefano Chessa, Ivan Martinovic, and Gabriele Oligeri. A cyber-
physical approach to secret key generation in smart environments. Journal of
Ambient Intelligence and Humanized Computing, 4(1):1–16, 2013.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages 419–428.
ACM, 1998.

4. Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated commu-
nication in the presence of break-ins. J. Cryptology, 13(1):61–105, 2000.

5. Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure mes-
sage transmission. Journal of the ACM (JACM), 40(1):17–47, 1993.

6. Matthias Fitzi, Matthew Franklin, Juan Garay, and S Harsha Vardhan. Towards
optimal and efficient perfectly secure message transmission. In Theory of Cryptog-
raphy, pages 311–322. Springer, 2007.

7. Jokin Garay, Clint Givens, and Rafail Ostrovsky. Secure message transmission with
small public discussion. Information Theory, IEEE Transactions on, 60(4):2373–
2390, 2014.

8. Yossi Gilad and Amir Herzberg. Plug-and-play IP security. In Computer Secu-
rity–ESORICS 2013, pages 255–272. Springer, 2013.

9. Amir Herzberg and Yehonatan Kfir. Topology-based plug-and-play key-setup
,https://eprint.iacr.org/2016/060. 2015.

10. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
Press, 2014.

11. Kaoru Kurosawa and Kazuhiro Suzuki. Almost secure (1-round, n-channel) mes-
sage transmission scheme. IEICE TRANSACTIONS on Fundamentals of Electron-
ics, Communications and Computer Sciences, 92(1):105–112, 2009.

12. Viet Pham and Tuomas Aura. Security analysis of leap-of-faith protocols. In
SecureComm, volume 96, pages 337–355. Springer, 2011.

13. Jon Postel. Rfc 791: Internet protocol, september 1981. Darpa Internet Protocol
Specification, 1990.

14. A. B. Smith. IEEE std c37. 1-1994, IEEE standard definition, specification, and
analysis of systems used for supervisory control, data acquisition, and automatic
control. IEEE Power Engineering Society, 1994.

15. K Srinathan, Arvind Narayanan, and C Pandu Rangan. Optimal perfectly secure
message transmission. In Advances in Cryptology–CRYPTO 2004, pages 545–561.
Springer, 2004.

16. Matthias Wilhelm, Ivan Martinovic, and Jens B Schmitt. Secure key generation
in sensor networks based on frequency-selective channels. Selected Areas in Com-
munications, IEEE Journal on, 31(9):1779–1790, 2013.

17. Sencun Zhu, Shouhuai Xu, Sanjeev Setia, and Sushil Jajodia. Establishing pair-
wise keys for secure communication in ad hoc networks: a probabilistic approach.
In Network Protocols, 2003. Proceedings. 11th IEEE International Conference on,
pages 326–335. IEEE, 2003.

A Detailed Proofs

Theorem 1

Proof. Assume to the contrary that exists A1,A, s.t. for all negligible function
negl(l):
|Pr [INDA,A1,π,P (l) = 1]− 1

2 | > negl(l)
Using those attackers, we define an attacker on the encryption scheme ξ, Aξ.

Using this attacker, we will prove a contradiction to the CPA-secure property of
ξ.

We denote the PRF that is being used by π as PRF : {0, 1}l → {0, 1}l′ , l < l′

.
Assume that PRF is an ideal random function U, U : {0, 1}l → {0, 1}l′ , l <

l′ . If the property holds for U and not for PRF , then it is easy to build a
distinguisher between PRF and U - which is a contradiction to the assumption
that PRF is a PRF. Thus, it is sufficient to assume that PRF is ideal.

Following the CPA experiment PubKcpa
Aξ,ξ(l) [10] :

1. Keys s.pu, s.pr are chosen randomly.
2. The adversary Aξ is given as input 1l, the public key s.pu and oracle access

to the encryption scheme. Aξ will choose two activation messages m0,m1.

3. A random bit b $←− {0, 1}l is chosen, and then a ciphertext c = ξs.pu(mb)
is computed and given to the adversary Aξ.

4. The adversary Aξ executes the process EXECAξ (A, π, P, kb) until the
output is "Success". Aξ returns b′ = D(k, σA).

5. The output of the experiment is 1 if b=b’, and 0 otherwise.
According to the assumption:
Pr [D(kOUTc , σA) = b] > negl(l)⇒ Pr [PubKcpa

kOUTc ,Aξ,ξ(l) = 1] > negl(l)

and this is contradiction to the assumption that ξ is CCA secure. Thus, if ξ
is CPA-secure then |Pr [INDA,D,π,P (l) = 1]− 1

2 | < negl(l).
Thus, for every CPA-secure ξ, protocol CrypTop ensures secrecy.

Theorem 2

Proof. According to the predicate PDET , there are at least nA+1 disjoint routes
between the client c and the server.

According to the protocol designKey Registry at the Server, if the server
registers a key, it sends the authenticated ACK message through all of the col-
laborators, through at least nA + 1 disjoint routes.

Thus, if the server registers a key kOUTs , at least one ACK message had
reached the client, and the client registers a key kOUTc . If not, the attacker was
able to block all the ACK messages from nA + 1 disjoint routes with its nA
devices. Hence, at least one attacker device was on more than one route. This
contradicts the disjoint routes assumption.

According to the protocol design Key Registry at the Client, the client
registers a key if it receives even one authenticated ACK message from the server.

Assume in negative that there exists a PPT attackerA s.t. Pr(EXEC(A, π, P, 1l) =
”Failure”) > negl(l).

If EXEC(A, π, P, 1l)=Failure, then kOUTc 6= kOUTs . In this case, the server
did not register the same key as the client. Thus, the attacker A was able to
(1) create and authenticate the ACK message without knowing the key kOUTc

or (2) change and authenticate the key agreement message, or (3) retrieve the
key kOUTc . Each operation is done with a non-negligible probability greater than
negl(x).

Assuming (1) or (2): The attacker A was able to create message m′ and
tag tag′ for a message he did not see before. This is in contradiction to the
assumption thatM is MAC secure.

Assuming (3): The attacker was able to retrieve the key kOUTc from the
activation message. This contradicts the secrecy property.

Thus, for all PPT attackers A, there exists a negligible function negl(l) s.t.
Pr(EXEC(A, π, P, 1l) = ”Failure”) < negl(l).

Definition 8 [Bounded Termination] CrypTopology-based key setup π is a
bounded termination protocol if, for each topology G = (V,E), there exists a
number M(G) s.t. for all protocol executions, and the number of messages that
will be sent is less than M(G).

Theorem 6. [Bounded Termination]: Protocol CrypTop ensures Bounded
Termination property, as defined at Definition 9.

Proof. Let t0 be the time the execution process started, and let Tdelay be the
maximal delay of message between neighbor devices. We will prove that the
execution time is bounded by Tbounded = 6 |V |Tdelay.

The longest route a message can pass is a route that includes all the devices
in the network. Thus, the maximal time delay of a message from a sender to a
receiver device is |V |Tdelay. We assume that the processing time of a message, at
each device, is zero. For simplicity, we will assume that every device in the net-
work waits that period for receiving response, even if the routes for its message’s
destination is shorter that the maximal route.

According to the CrypTop design there are 6 synchronous transactions (can
be seen in Fig. 2). Each transaction, as explained, is bounded by |V |Tdelay.

Thus, the maximal time that it takes to the protocol to execute is: 6 |V |Tdelay

Theorem 3

Proof. First, we will prove that CrypTop is bounded termination protocol by
the number: 2 + 4 |V |.

Let G = (V,E) be the network graph. According to the protocol details,
the client sends a key request message. Than, the server sends the client list of
collaborators. The number of collaborator is limited by the number of devices in
the network, |V |. The client initiate challenge-response session with each collab-
orator. and the number of messages is twice (for challenge and response messages
with each device).

The client send all the responses through all its neighbours, and hence, this
limit the number of messages to |V |. Upon successful authentication at the server,

the server initiate ACK message through all the routes to the device. Those
messages number is also bounded by the number of devices in the network.

Summarizing the upper limit for messages: 1+1+2|V |+ |V |+|V | = 2 + 4|V |.
Thus, CrypTop is a Bounded Protocol. We will now prove that CrypTop with

predicate PFUL is always finished with key setup.
If PFULL(c,G, Φ, ρ,<) = 1, then there are at least 2nA + 1 disjoint routes

between the client c and the server s.
Because of the disjoint routes, attacker that control nA devices will be able

to manipulate or complete maximum nA challenge-response sessions. There will
still be nA + 1 routes between the server and client, without any attacker node.
Using the nA+1 responses, the server will be able to distinguish the client from
the attacker, and to authenticate the client.

Now, it is left to prove that the server will receive the nA + 1 responses.
Since the attacker is eventually delivering, all the messages on the routes that
it does not control, will eventually reach their destination. This includes the
challenge-responses sessions, and the ACK from the server to the client.

This complete the proof.

Theorem 5

Proof. Let A be an attacker that is able to compromise nA devices at TP time.
Let lifetime < TP be the time that was set by CrypTop that after it the
client must request for new key. We will prove that can not be more than nA
compromised devices in the system.

Assume in negative that at time t0 there were more than nA compromised
devices. Since the attacker is able to compromise maximum nA devices at TP
time, than there is at least one device v′ that was compromise more than TP time
earlier than t0. Before compromised, v′ could be Legacy or Upgraded device.

If v′ was Legacy than the attacker did not compromise any key. By the
attacker definition, it can not control more than nA devices, and hence v′ is no
longer compromised.

If v′ was Upgraded: According to CrypTop design, the server set a key for v′
with a lifetime. After that lifetime, v′ will have to request for a new key.

Since lifetime < TP , v′ requested for a new key at time tR, where t0 −
TP < tR < t0. Thus, v′ is no longer Compromised, not its keys are known to
the attacker.

Thus, the maximal number of compromised devices (or their keys) is not
greater than nA.

Lemma 1

Proof. Every device in the network that processes the packet must decrease the
TTL received from the sender by at least one, 4i ≥ 1. The maximal TTL for a
packet is 255. Hence,

ttl = 255−
N∑
i=1

4i + 1 ≤ 255−N + 1 =⇒ N ≤ 255− ttl + 1

where N is the distance of the sender in hop counts.

B Execution Model

B.1 Asynchronous Execution

For the detailed execution model, we define additional device type, which called
trusted device. Those devices are highly secure, and assumed to be not-compromised.
In addition, trusted devices do not have to obey the routing function, and al-
lowed to send messages according to their inner protocol. We exclude this type
of devices from the main paper due to page limitations.

On each graph G = (V,E), we define a coloring function φ : V × V →
{Legacy, Upgraded, Trusted, Compromised}, which defines the type for each
device in the network.

The details of the topology-based execution are in Algorithm 2.
For each of the defined properties, the attacker’s goal is to create an execution

process whose output contradicts one of the protocol requirements. To achieve
that, the attacker A is allowed to choose all the network conditions: the network
graph, the coloring function, the routing method, the client device c, and the
server device s.

Let G = (V,E), φ be the network topology and the coloring function chosen
by the attacker.

In addition to these conditions, the attacker chooses the client device c ∈
V − T , such that P (c,G, φ, ρ,<)=1. It also chooses the server s to be one of the
trusted devices in the network.

The routing function < is chosen by the attacker, according to the network
routing method.

If the network routing is shortest-path routing, A will choose a shortest-path
tree for the message routing < = <0.

If the network routing is adversarial, then the attacker will provide its desired
adversarial routing function < = <A, in addition to providing a shortest-path
tree routing <0.

During the initialization phase (Algorithm 3), the server receives the network
properties with the non-adversarial routing function <0, the security parameter
1l, and the topology predicate P . It creates a pair of private and public keys,
s.pr, s.pu. The public key s.pu is given to the client for its initialization process,
along with the routing method and the security parameter 1l.

The key-setup execution process consists of a sequence of activations of π
within different devices - which include the client c and the server s.

The activations are controlled and scheduled by the attacker, who also decides
which incoming messages or external requests the activated party will receive.

Every message m that is sent by a party contains the sender device IP, the
destination device IP, the next hop device IP, the TTL field, and a random string
payload that should reach the destination device. For a source-routing network,
each message also contains the route of the message.

In order to send a random string payload to device d, a party s adds the
message m to a set of pending messages M. The message’s next hop will be to
the next device that should receive the message.

Whenever A activates a party v on some incoming message m, it must be
that m is in the set M and that v is the device in the next hop field of message
m. Upon activation, the party adds a group of messages M ′ to M .

Furthermore, m is now deleted from M. If v is not the destination device of
the message m, then a new message m′ will be added to M (Algorithm 4). The
next hop field of m′ will be the neighbor of v that should receive that message,
according to the routing method. The payload, the source, and the destination
device of m′ will be identical to m. In TTL networks, the TTL field will be
decreased by 1, and the message will be added only if the TTL field is greater
than 0.
A is not required to maintain the order of the messages, nor is it bound

by any fairness requirement on the activation of parties. By definition 3, an
Eventually Delivering attacker is required to deliver all the messages between
non-compromised parties, and it can only block messages that pass through
compromised devices.

Beyond activating parties, the adversary A can also corrupt parties. Upon
corruption, A learns the entire current state of the corrupted party. From this
point on, A can add to M any (fake) messages from the corrupted party. A can
block or change messages that pass through corrupted devices.

B.2 Synchronous Model

We denote the maximal network delay between two devices as Tdelay. For sim-
plicity, we assume that the processing time of messages in the devices is bounded
by this value.

The longest route a message can pass through is a route that includes all
the devices in the network. Thus, the maximal time delay of a message from
a sending to a receiving device is |V |Tdelay. We assume that the processing
time of a message at each device is zero. Thus, the maximal time that will be
passed from sending a message till receiving a response is Tmax = 2 |V |Tdelay.
For simplicity, we assume that every device in the network waits that period to
receive a response, even if the route for its message’s destination is shorter that
the maximal route.

Using the synchronous model we define the bounded termination property:
Bounded Termination. - A key-setup protocol ensures bounded termina-

tion if the protocol’s execution time is bounded, possibly as a function of the
network topology G = (V,E).

Definition 9 [Bounded Termination] Let t0 be the time the execution game
started and G = (V,E) the network topology.

Protocol π ensures bounded termination, if there exists TEXEC(G) s.t. for
every attacker A, and the execution is finished after time t0 + TEXEC(G) :

EXECSYN(A,π,P ,1l,t0)) ∈ {”Alert”, ”Success”, ”Failure”, ”Timeout”}

EXEC(A,π,P ,1l)

// Initialization - see Algo. 3
{G,φ, ρ,<, A, c, s, σA, σc, σs,mInit, k

OUT
c } = Init_Execution(A,π,P ,1l)

M = ∅
Add_Message(mInit,M) // see Algo. 4
while True do

M ′ = ∅
m̂ = A(σA)
switch φ(M [m̂].next_hop) do

case Compromised do
{M ′, σA} = A(σA,M [m̂]) M [m̂] = ∅

end
case Trusted OR Upgraded do

v = M [m̂].next_hop
{M ′, σv, k

OUT
s , c′, isAlert} = π(σv,M [m̂])

if isAlert then
Return ("Alert",σA)

end
if v = s AND kOUTs 6= NULL AND c = c′ then

if kOUTs = kOUTc then
Return ("Success",kOUTc ,σA)

else
Return ("Failure",σA)

end
end
M [m̂] = ∅

end
case Legacy do

Decrement M [m̂].ttl by 1
if M [m̂].ttl = 0 OR M [m̂].next_hop = M [m̂].destination then

M [m̂] = ∅
else

// The message should be routed to the next device
if ρ = source then

// In source-routing the messages are route according to the
routing list. See section 2.1

M [m̂].next_hop = M [m̂].route[next_hop]
else

// adversarial or shortest-path routing
M [m̂].next_hop = <(M [m̂].next_hop,M [m̂].destination)

end
end

end
end
foreach m ∈M ′ do

Add_Message(m,M)
σA = A(σA,m)

end
end

Algorithm 2: Execution Process

C Experimental Evaluation

In this section we evaluate several practical aspects related to CrypTop. Since
there is no public information on ICS control networks, we assumed that the
topology of the control network is similar to the power system topology. This is
a reasonable assumption, since the communication lines often pass through the

Init_Execution(A,π,P ,1l):

k
$←− ${0, 1}l OR receives as an input (for the Secrecy property only).

/* The attacker chooses the network properties, the client, and the server. */
{G = (V,E), φ, ρ, c ∈ V, s ∈ V, σA} ← A(P, 1l))
s.t.:
φ : V → {Legacy, Trusted, Compromised, Upgraded}
ρ ∈ {source, shortest_path, adversarial}
φ(s) = Trusted
P (c,G, φ, ρ) = 0 AND φ(c) = Upgraded
IF one of the above does not holds, RETURN ("Success",k,σA)

{σs, s.pr, s.pu} ← π.Init_Server(G,φ, ρ, P, 1l)

SID
$←− {0, 1}l

{σc, kOUTc } ← π.Init_Client(s.pu, k, ρ, 1l)

/* The server public key is known to the attacker */
σA ← σA ∪ {s.pu}

/* Shared keys with the server are loaded on each trusted device */
foreach {t ∈ V |φ(t) = Trusted, t 6= s} do

kAUTHt
$←− {0, 1}l

σt ← kAUTHt

σs = σs ∪ kAUTHt

end

if ρ ∈ {shortest_path, adversarial} then
A → <0 : V × V → V
Validate <0 is shortest path routing. If not, return 0.
σA = σA ∪ <0 σs = σs ∪ <0

if ρ = adversarial then
<A ← A, s.t.<A : V × V → V
σA = σA ∪ <A
< = <A

else
< = <0

end
end

Return {G,φ, ρ,<, A, c, s, σA, σc, σs,mInit, k
OUT
c }

Algorithm 3: Initializing Process Execution

same infrastructure as the power lines. For the power system, we used several
IEEE benchmark topologies: IEEE 300, IEEE 118, and IEEE 57 bus systems.

Initially we present the methodology we used to model the communication
network from the power system.

Next, we evaluate the ways to choose the first devices to upgrade to use the
protocol. Since CrypTop assumes collaborators, it is better to choose the first
devices to upgrade as devices that will allow key-setup for as many other devices
as possible. We will evaluate two methods for choosing those devices: choosing
devices with the higher edge degree and choosing randomly.

At last, we evaluate the availability of CrypTop on different network sizes
and different routing methods. We will show that in the tested networks, more
than 60% of the devices in the network can use CrypTop for receiving keys, in
the presence of an attacker that controls a single device in the network.

Procedure Add_Message(m,M)
Add to M element with:

source = m.source
destination = m.destination
payload = m.payload
ttl = m.ttl
if ρ = source then

route = m.route
next_hop = m.route[m.source]

else
next_hop = <(m.source,m.destination)

end

Algorithm 4: Message Handling

C.1 Methodology

A power system is built from a number of electrical buses that requires moni-
toring and control. Each bus is operated by several field devices (such as PLCs)
that rare esponsible for the physical measurements and physical state of the
bus. Those field devices operation is controlled and monitored from a central-
ized server called "control server".

In order to communicate with a field device (e.g. sending command or re-
ceiving measurements) the control server uses a communication network, that is
built from communication devices, namely routers.

We assume that each group of field devices, that controls a single bus, is
connected the same router. By this assumption, every electrical bus has a single
router in the communication network.

There are several ways to implement connection between routers. A fre-
quently used method is to pass the communication cables on the same pols
as the electrical cables. In that way, to reduce the cost of another pols set for
the communication cables.

Following this implementation method, we assume that for buses that are
electrically connected, their routers are also directly connected.

Using those assumptions modeled the communication network, based on the
electrical network. Let G = (V,E) be the control network, where V is the set of
devices (e.g. routers), and E are the edges. Device vi is responsible on managing
electrical bus i (e.g. connecting it to other buses, measuring its voltage), those,
there is a vertex for each bus. vi and vj are connected in the graph, only if there
is a connection between bus i and bus j in the electrical system.

As an example for this modeling method, consider the IEEE 9 bus case, shown
on Figure 4. Each bus represent a vertex in the graph. Edges are communication
connections between buses. In that way, the communication network graph G =
(V,E) for IEEE9 was created.

The routing method ρ of the networks chosen to be shortest-path or source-
route. In the shortest-path routing, each edge considered to be with weight of
1.

For each network G, routing method ρ and method for choosing trusted
devices we evaluate the number of devices that have n ∈ {2, 3, 4, 5} disjoint

routes to trusted devices. Those values represent detection-based availability
against attacker with {1,2,3,4} devices respectively.

The number of devices is presented as a percentage from the total number
of devices in the network.

Fig. 4. Extracting the control network from the power network

C.2 Availability

We defined the CrypTop properties with respect to topology predicates PDET
and PFULL. These predicates require that the number of disjoint routes be
greater than the number of compromised devices. In this section we evaluate
the number of devices with PDET (v,G, φ, ρ,<) = 1. In other words, these are
devices with nA + 1 disjoint routes, where nA is the number of compromised
devices in the network.

The routing method ρ of the networks was chosen to be shortest-path or
source-route. In the shortest-path routing, each edge is considered to have a
weight of 1.

The coloring function φ required that we choose a group of trusted devices
and nA compromised devices. The group of trusted devices we chose were the
devices with the higher degree of edges. The size of the trusted devices group
was from 1 to 5.

For each device v, we assumed that the nA compromised devices are located
in the worst case, with respect to v’s location. In other words, the compromised
devices are located on nA disjoint routes between v and the group of trusted
devices (if v has at least nA such disjoint routes). The number of compromised
devices was chosen to be from 1 to 4, nA ∈ {1, 2, 3, 4}

The results are shown in Figures 5 and 6.
From the results, it can be seen that even with a small number of trusted

devices (about 5 devices), most of the devices in the network can use CrypTop
in the presence of one compromised device or one compromised link. In IEEE
118 with source routing, more than 80% of the devices can use CrypTop, while
in shortest-path routing, more than 65% of the network can use CrypTop.

Another conclusion from the results is that the networks present significantly
more percentage of devices that available for CrypTop in the presence of one
compromised device, nA = 1, than for a higher number of compromised devices.
Motivated by this conclusion, we compared the availability for CrypTop between

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Source routing

1 2 3 4 5

0

0.2

0.4

0.6

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing

nA=1 nA=2 nA=3 nA=4

Fig. 5. Percentage of devices available for secure ToBKES in IEEE 118. Compromised
devices were chosen to be at the worst-case position.

different networks. The results can be seen in Figure 9. These results indicate
that for most of the evaluated network topologies, even 5 trusted devices are
sufficient to have an availability of more than half of the network, in the presence
of a single compromised device.

1 2 3 4 5

0

0.2

0.4

0.6

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Source routing

1 2 3 4 5

0

0.1

0.2

0.3

0.4

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing

nA=1 nA=2 nA=3 nA=4

Fig. 6. Percentage of devices available for secure ToBKES in IEEE 300. Compromised
devices were chosen to be at the worst-case position.

C.3 Proactive Security

In this section we evaluate the applicability of the proactive mechanism. For
the networks IEEE 300 and IEEE 118, we assumed a large number of upgraded
devices that support CrypTop: 30%,40% and 50% of the devices in the network.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Source routing

1 2 3 4 5

0

0.2

0.4

0.6

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing

nA=1 nA=2 nA=3 nA=4

Fig. 7. Percentage of devices available for secure ToBKES in IEEE 57. Compromised
devices were chosen to be at the worst-case position.

We also assumed that one of those devices is trusted and considered to be the
authentication server.

For each device in the network, we evaluated the number of compromised
devices that are needed in order to prevent it from receiving a refresh key. Similar

1 2 3 4 5

0

0.2

0.4

0.6

0.8

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Source routing

1 2 3 4 5

0

0.2

0.4

0.6

|T |

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing

nA=1 nA=2 nA=3 nA=4

Fig. 8. Percentage of devices available for secure ToBKES in IEEE 30. Compromised
devices were chosen to be at the worst-case position.

to the previous section, we assume that the compromised devices are located at
the worst place, with respect to the device location.

We evaluated the number of devices in the network that will be able to
receive a refreshed key for a number of compromised devices from 1 to 5, nA ∈
{1, 2, 3, 4, 5}.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

|T |

%
av
ai
la
bl
e
de

vi
ce
s

IEEE 300, Source-routing IEEE 300, Shortest-path
IEEE 118, Source-routing IEEE 118, Shortest-path
IEEE 57, Source-routing IEEE 57, Shortest-path

Fig. 9. Comparison between different network topologies showing devices available for
secure ToBKES in the presence of a compromised device, nA = 1.

The results are shown in Figure 10. From the results, it can be seen that
even with partial deployment of CrypTop for only 30% of the network, more
than 85% of the devices will be able to receive a refresh key.

Moreover, the results show that at 50% deployment of CrypTop, the proactive
key refresh is available for more than 80% of the devices, even in the case where
there are 5 compromised devices (and keys). This result strengthens CrypTop
as a proactive method for plug-and-play key setup in ICS networks.

1 2 3 4 5

0.6

0.8

1

nA

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing, IEEE 118

1 2 3 4 5

0.4

0.6

0.8

nA

%
av
ai
la
bl
e
de

vi
ce
s

Shortest-path routing, IEEE 300

30% Upgraded 40% Upgraded
50% Upgraded

Fig. 10. Percentage of devices that can securely receive a refreshed key in the presence
of nA compromised devices. For large scale deployment of ToBKES, most of the network
is secured against a small number of compromised devices.

