
Linear Hull Attack on Round-Reduced Simeck with
Dynamic Key-guessing Techniques

Abstract. Simeck is a new family of lightweight block cipher proposed by Yang et al. in
CHES’15, which performs efficiently in hardware implementation. In this paper, we search
out differentials with low hamming weight and high probability for Simeck using Kölbl’s tool,
then exploit the links between the differential and linear characteristic to construct linear
hulls for Simeck. We give improved linear hull attack with dynamic key-guessing techniques
on Simeck according to the property of the AND operation in the round function. Our results
cover Simeck 32/64 reduced to 23 rounds, Simeck 48/96 reduced to 30 rounds, Simeck 64/128
reduced to 37 rounds, which are the best known so far for any variant of Simeck.
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1 Introduction

Simeck is a new family of lightweight block cipher proposed in CHES’15 by Yang, Zhu,
Suder, Aagaard and Gongbased in [19]. They combined the Simon and Speck block ciphers
designed by NSA in [7], using a different set of rotation constants of Simon’s round function
and the key schedule of Speck. The round function of Simeck only contains the AND
operation, left rotation and the XOR operation, leading to a more compact and efficient
implementation in hardware. The Simeck family has three variants with different block
size and key size, including Simeck32/64, Simeck48/96, Simeck64/128.

Related Works. Many cryptanalysis techniques of Simon can be used to attack the
Simeck due to their similarity, including differential [2, 4, 8], linear [3, 13] cryptanalysis
and so on. For Simon, wang et al. in [18] improved the differential attack results by
dynamic key-guessing techniques. Then Chen et al. basing on the dynamic key-guessing
techniques in the linear hull cryptanalysis of Simon [9], applied the Guess, Split and
Combine technique to reduce the time complexity in the calculation of the empirical
correlations. They can attack one or two more rounds for all versions of Simon than Wang
et al.’s results.

For Simeck, there are only a few cryptanalysis results so far. Kölbl et al. in [11] com-
pared the Simon and Simeck on the lower bounds of differential and linear characteristic
and presented some differentials for Simeck. Based on the differentials, they recovered
the key for 19/26/33 rounds of Simeck32/48/64. Bagheri et al. in [6] analyzed Simeck’s
security against linear cryptanalysis. With Matsui’s algorithm 2, they attacked 18/23/27
rounds for Simeck32/48/64. Zhang et al. evaluated the security on 20/24/27 rounds of
Simeck32/48/64 against zero correlation linear cryptanalysis in [20]. Qiao et al. in [15]
used the differential cryptanalysis with dynamic key-guessing techniques to attack Simeck
and improved the previously best results on all versions by 2 rounds.

Our contributions. This paper analyzes the security of Simeck against improved linear
hull cryptanalysis with dynamic key-guessing techniques. At first using Kölbl’s tool, we
search out better differentials than the previous results. The probability for Simeck32/64



Table 1: Summary of cryptanalysis results on Simeck

cipher round Data Complexity Time Complexity Reference

Simeck32/64

18 231 263.5 [6]
19 231 236 [11]
20 232 256.65 [20]
22 232 257.9 [15]

23 231.91 261.78Aa+ 256.41Eb section 4.1

Simeck48/96

24 245 294 [6]
24 248 291.6 [20]
26 247 262 [11]
28 246 268.3 [15]
30 247.66 292.2A+ 288.04E section 4.2

Simeck64/128

27 261 2120.5 [6]
27 264 2112.79 [20]
33 263 296 [11]
35 263 2116.3 [15]
37 263.09 2111.44A+ 2121.25E section 4.3

a additions.
b encryption of attacked rounds.

is more accurate with searching more differential characteristics. For Simeck48/96 and
Simeck64/128, the differentials with less active bits are preferred so we can extend the trails
for more rounds and attack more rounds. Then we take advantage of the links between
linear characteristic and differential characteristic to construct linear hull distinguishers
for the Simeck family. After getting the boolean expressions for the parity bits of the
distinguishers, we use the Guess, Split and Combine technique to calculate the empirical
correlations, which reduces the time complexity greatly. As a result, 23/30/37 rounds of
Simeck32/48/64 can be attacked (Table 1), which are the best results so far. We also do
some experiments to verify our results. The experiment on the bias of the linear hull for
Simeck32/64 meets our expectation and 48.4% of the results have a bias higher than we
expect. Due to the time limitation, we implement the attack on 21-round Simeck32/64 to
recover 8-bit information of 32-bit subkeys. The success rate is 45.6% corresponding to
our estimated value, which proves our algorithm is effective.

This paper is organized as follows. Section 2 gives a brief description of the Simeck
family and dynamic key-guessing techniques in the linear hull cryptanalysis. In section 3,
we introduce the differential trails searched and transform the differentials to linear hulls.
Then linear hull cryptanalysis with the dynamic key-guessing techniques are applied to
attack all versions of Simeck in section 4. Finally we conclude in section 5.

2 Preliminaries

2.1 The Simeck family

The lightweight block cipher Simeck with Feistel structure is proposed in CHES’15. The
Simeck cipher with 2n-bit block and mn-bit key will be referred to as Simeck2n/mn. There
are three versions of Simeck, including Simeck32/64, Simeck48/96 and Simeck64/128.
The Simeck32/64 contains 32 rounds, Simeck48/96 contains 36 rounds and Simeck64/128
contains 44 rounds.
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In this paper, we use the notations as follows.
Xr 2n-bit output of round r (input of round r + 1)
Xr
L left half of Xr

Xr
R right half of Xr

Kr n-bit subkey of round r + 1
X <<< i cycle shift of X to the left by i bits
⊕ bitwise XOR
& bitwise AND

Round function. The round function of Simeck is described in Figure 1. The (r + 1)
round’s input is (Xr

L||Xr
R) and the output is (Xr+1

L ||Xr+1
R ). The round function is

Xr+1
L = F (Xr

L)⊕Xr
R ⊕Kr,

Xr+1
R = Xr

L,

where function F (X) = ((X <<< 5)&X)⊕ (X <<< 1). We can also present the round func-
tion for single bit, which we will use in the rest of the paper. Let Xr

L = {Xr
L,n−1, X

r
L,n−2, ...,

Xr
L,0}, Xr

R = {Xr
R,n−1, X

r
R,n−2, ..., X

r
R,0}, and the round function can be denoted as

Xr+1
L,i = (Xr

L,(i−5+n)%n&XL,i)⊕Xr
L,(i−1+n)%n ⊕X

r
R,i ⊕Kr

i ,

Xr+1
R,i = Xr

L,i,

where i = 0, 1, ..., n− 1, and Xr
L,0, X

r
R,0 is the LSB of Xr

L and Xr
R.

Fig. 1: The round function of Simeck
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Fig. 2: The key schedule of Simeck
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Key Schedule. The key schedule of Simeck is similar with Speck. We describe it briefly.
To generate a sequence of round key {K0, ...,Knr−1} from the master key, the states
{t2, t1, t0,K0} are initialized with the master key at first. Then the registers are updated
to generate the round keys used in all nr-round encryption. The updating process can be
denoted as

Ki+1 = ti,

ti+3 = F (ti)⊕Ki ⊕ C ⊕ (zj)i,

where 0 ≤ i ≤ nr − 1, C = 2n − 4(n is the word size), (zj)i is the i-th bit of zj . For
Simeck32/64 and Simeck48/96, the sequence zj is generated by the primitive polynomial
X5 +X2 +1 with the initial states (1, 1, 1, 1, 1). And for Simeck64/128, the zj is generated
by the primitive polynomial X6 +X + 1 with the initial states (1, 1, 1, 1, 1, 1).
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2.2 Linear cryptanalysis

We first give the calculation formula of the correlation for boolean function. Let g(x) :

Fn2 → F2 is a boolean function and B(g) =
∑

x∈Fn
2

(−1)g(x), so the correlation c(g) is

c(g) =
1

2n
B(g) =

1

2n

∑
x∈Fn

2

(−1)g(x).

Then the bias of g(x) is ε(g) = 1
2c(g). In the rest of the paper, we use the B(g) as correlation

for simplicity of description in some situations.
Linear cryptanalysis [12] is an important known plaintext cryptanalytic technique, and

it tries to find a highly probable expression with plaintexts P , ciphertexts C and key bits
K as

α · P ⊕ β · C = γ ·K,

where α, β, γ are masks. The bias of the expression is ε(α · P ⊕ β · C ⊕ γ ·K), so at least
O( 1

ε2
) planitexts are needed in the key recovery attack.

The linear hull [14] is a set of linear approximations with the same input mask and
output mask, and the potential of a linear hull with mask α and β is

ALH(α, β) =
∑

γ
ε2(α · P ⊕ β · C ⊕ γ ·K) = ε̄2.

Notice the ε̄2 may be higher than ε2 in most situations, so there needs less plaintexts in
the linear hull cryptanalysis.

2.3 Linear compression and Dynamic key-guessing

To reduce the time complexity of calculating the correlation in linear hull cryptanalysis,
the linear part of the function can be compressed at first. Let y = f(x, k) is a boolean
function, and x is l1-bit plaintext, k is l2-bit key, the counter vector V [x] denotes the
number of x. If y = f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), we can generate a new counter vector
V ′[x′] =

∑
x0∈F2

(−1)x0V [x0||x′], so the correlation of y under some k guess is

Bk(y) =
∑

x
(−1)f(x,k)V [x]⇒ Bk(y) = (−1)k0

∑
x′

(−1)f
′(x′,k′)V ′[x′].

Since the k0 doesn’t affect the absolute value of Bk(y), the k0 is called related bit and
don’t need to guess. So there needs 2l1+l2−2 computations, less than 2l1+l2 . If y = f(x, k)
has multiple linear bits of x, k, we can also compress them using the above method.

Besides, Chen et al. in [9] introduced the Guess, Split and Combine technique to reduce
the time complexity based on the dynamic key-guessing techniques. In the calculations of
Bk(y) =

∑
x (−1)f(x,k)V [x], let k = kG||kA||kB||kC ((kG, kA, kB, kC) are lG2 , l

A
2 , l

B
2 , l

C
2 -bit)

and guess the kG at first. Then all the x values are split into two sets SA and SB. For NA

values of x ∈ SA, f(x) = fA(x, kA||kC), and for NB values of x ∈ SB, f(x) = fB(x, kB||kC),
so

Bk(y) =
∑

x∈SA

(−1)fA(x,kA||kC)VA[x] +
∑

x∈SB

(−1)fB(x,kB ||kC)VB[x].

There needs NA2l
G
2 +lA2 +lC2 + NB2l

G
2 +lB2 +lC2 + 2l2 additions in the guess, split and combine

process, which takes less time than the general method with 2l1+l2 .
For example, we use the Guess, Split and Combine technique to calculate the correla-

tions Bk1,k2(y) of f1 = (x1 ⊕ k1)&(x2 ⊕ k2) with the counter V [x1, x2] .
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1. Guess k1 at first.
2. Split the x = x1||x2 into two cases according the value of (x1 ⊕ k1).

(a) For x1 that satisfy x1 ⊕ k1 = 0, f1 = 0. There needs to generate a new counter
V1 =

∑
x2∈F2

V [x1 = k1, x2].
(b) For x1 that satisfy x1 ⊕ k1 = 1, f1(x, k) = (x2 ⊕ k2). There needs to generate a

new counter V2 =
∑

x2∈F2
(−1)x2V [x1 = k1 ⊕ 1, x2], and k2 is related bit.

3. Combine the two cases, Bk1,k2(y) = V1 + (−1)k2V2.

Step 2.(a)/2.(b) needs 1 addition, and step c needs 2 additions. So in total there needs
2× (1 + 1 + 2) = 23 additions to compress x1, x2, less than the general method.

3 The Linear Hull distinguishers of Simeck

3.1 Differential distinguishers of Simeck

Differential cryptanalysis is a chosen plaintext/ciphertext cryptanalytic technique. In the
round function of Simeck, the only non-linear operation is the AND operation. For single
bit x and y, the probability of (x&y) = 0 is 0.75. We can extract the highly probable
differential expressions of round function F (X) as

Differential Characteristic 1 : Pr [(∆X))i → (∆F (X))i+1] = 0.5,

Differential Characteristic 2 : Pr [(∆X))i → (∆F (X))i+1,i] = 0.5,

Differential Characteristic 3 : Pr [(∆X))i → (∆F (X))i+1,i+5] = 0.5,

Differential Characteristic 4 : Pr [(∆X))i → (∆F (X))i+1,i,i+5] = 0.5,

where the (∆F (X))i+1 denotes the (i+ 1)-th bit is 1 and the others are 0.
In [10], Kölbl introduced a tool for cryptanalysis of symmetric primitives based on

SMT/SAT solvers. They used the tool to find some differentials for Simeck and attacked the
Simeck using differential cryptanalysis. [15] also gave a differential for Simeck32/64 with
less active bits. We use the tool to search the differentials which have a balance between
low hamming weight and high probability to attack more rounds using less plaintexts. The
differentials are listed in Table 2.

Table 2: The differentials of Simeck

cipher rounds ∆in ∆out log2diff Reference

Simeck32/64 13 (0x0, 0x2) (0x2, 0x0) −29.64 [15]
Simeck32/64 13 (0x0, 0x2) (0x2, 0x0) −28.91 this papaer
Simeck48/96 20 (0x400000, 0xE00000) (0x400000, 0x200000) −43.65 [11]
Simeck48/96 20 (0x400000, 0xA00000) (0x400000, 0x200000) −43.66 this papaer
Simeck64/128 26 (0x0, 0x4400000) (0x8800000, 0x400000) −60.02 [11]
Simeck64/128 26 (0x0, 0x4400000) (0x800000, 0x400000) −60.09 this papaer

For Simeck32/64, by searching all the characteristics with probability higher than
2−52, we get more accurate probability than [15]. For Simeck48/96 and Simeck64/128,
the differentials with less active bits in the input difference and output difference are
preferred, since less key bits are involved in the attack. At the same time, the probability
of the differentials must be higher than 2−45 or 2−61, to ensure in the attack the data
complexity and success rate can be achieved.
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3.2 Linear Hull distinguishers of Simeck

In [3], Alizadeh et al. noticed each differential characteristic can be mapped into an ap-
proximation of linear cryptanalysis for Simon. The property is based on the round function
of Simon, so we can use the similar property for Simeck to construct an equivalent linear
characteristic from a differential characteristic. The relation between the probability p of
a differential and the potential ε̄2 of a linear hull is ε̄2 = 2−2p. The linear approximation
expressions of the round function F (X) for Simeck are

Linear Approxiamtion 1 : Pr[(F (X))i = (X)i−1] = 0.75,

Linear Approxiamtion 2 : Pr[(F (X))i = (X)i−1 ⊕ (X)i] = 0.75,

Linear Approxiamtion 3 : Pr[(F (X))i = (X)i−1 ⊕ (X)i−5] = 0.75,

Linear Approxiamtion 4 : Pr[(F (X))i = (X)i−1 ⊕ (X)i ⊕ (X)i−5] = 0.25.

[1, 5, 17] gave other methods to find good linear hulls for Simon, including correlation
matrix, Mixed Integer Programming (MIP) and so on. In this paper, we use the differential
characteristics to get linear characteristics. The used linear approximations (Used App)
can be found above. The details for Simeck32/64 are listed in Table 3. (For Simeck48/96
and Simeck64/128, the details of the linear hulls can be found in Appendix A.) The linear
hulls for all versions of Simeck can be seen in Table 4.

Table 3: Linear hull based on the differential for Simeck32/64

Differential Linear

r ∆L ∆R XL XR Used App

0 − 1 1 − −
1 1 − − 1 1

2 2 1 1 0 1

3 1, 3 2 0 1, 15 1: 1

4 4 1, 3 1, 15 14 1

5 1, 3, 5 4 14 1, 13, 15 3: 1 : 2

6 2, 3 1, 3, 5 1, 13, 15 0, 15 1 : 1

7 1, 4, 5 2, 3 0, 15 1, 13, 14 3 : 2 : 2

8 3, 4 1, 4, 5 1, 13, 14 14, 15 1 : 2

9 1, 3 3, 4 14, 15 1, 15 1 : 2

10 2 1, 3 1, 15 0 1

11 1 2 0 1 1

12 − 1 1 − −
13 1 − − 1 −∑

r log2pr = −38 log2ε
2 = −40

log2pdiff = −28.91 log2ε̄
2 = −30.91

#trails = 1846518 #characteristics = 1846518

Since the block of Simeck32/64 only contains 32 bits, we can iterate over the 232

possible plaintexts to validate the bias (ε̄2) of the 13-round linear hull. Randomly select
1000 keys and the experimental results are listed in Table 5. In the experiments, 48.4%
of the keys have a bias higher than 2−30.91, which is corresponding to the linear hull’s
ALH = 2−30.91.
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Table 4: The linear hulls for Simeck

cipher round linear hull ALH

Simeck32/64 13
Input Xr

L,1 2−30.91

Output Xr+13
R,1

Simeck48/96 20
Input Xr

L,19, X
r
L,21, X

r
R,20 2−45.66

Output Xr+20
L,21 , X

r+20
R,20

Simeck64/128 26
Input Xr

L,18, X
r
L,22 2−62.09

Output Xr+26
L,22 , X

r+26
R,21

Table 5: Bias of the 13-round linear hull

log2(ε̄2) Num Probability

[−27.91, 0) 56 0.056
[−28.91,−27.91) 123 0.123
[−29.91,−28.91) 154 0.154
[−30.91,−29.91) 151 0.151
[−31.91,−30.91) 144 0.144

(−∞,−31.91) 372 0.372

4 Key Recovery Attack on Simeck

4.1 Key Recovery Attack on Simeck32/64

We use the 13-round linear hull

Xr
L,1 → Xr+13

R,1

obtained in section 3.2 to attack Simeck32/64. At first four more rounds before and four
more rounds after the linear hull are added to get a 21-round distinguisher. Take some
plaintexts or subkeys as a whole, we can get the expression for Xr

L,1 as f(x, k) = x0⊕k0⊕
f ′(x′, k′), where

f ′(x′, k′) = ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9)))]
⊕ {{x10 ⊕ k10 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x3 ⊕ k3)&(x13 ⊕ k13)))]}
&{x15 ⊕ k15 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x3 ⊕ k3)))&(x16 ⊕ k16 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))]}}.

In the expression, x′ = {x1, ..., x16} and k′ = {k1, ..., k16}. The details of {x0, x1, . . . x16},
{k0, k1, . . . , k16} are given in Table 6. Notice x10 = x3⊕x5 and x15 = x4⊕x8, so there are
15 independent bits of x and 17 independent bits of k. The Xr+13

R,1 also can be represented
as f(x, k) where x, k have similar expressions as that in Table 6. (The expressions of x, k
for Xr+13

R,1 is so similar to Table 6 that we omit them in this paper).
The x denotes the plaintexts or ciphertexts and the k denotes the subkey bits. We use

xp = {xp,0, ..., xp,16} and kp = {kp,0, ..., kp,16} to represent the x, k for Xr
L,1. For Xr+13

R,1 , we

use xc and kc. Then the Xr
L,1 can be denoted by f(xp, kp) and the Xr+13

R,1 can be denoted
by f(xc, kc).

Let the plaintexts P = Xr−4 and the ciphertexts C = Xr+17. We can compress the
N pairs (P,C) into a counter vector V [xp, xc] of size 215+15 = 230. Then the empirical
correlation under some subkey kp and kc is

ckp,kc =
1

N

∑
xp,xc

(−1)f(xp,kp)⊕f(xc,kc)V [xp, xc].

As we can see, f(x, k) = x0⊕ k0⊕ f ′(x′, k′) is linear with x0⊕ k0. So the xp,0 and xc,0 can
be compressed at first as following

V1[x
′
p, x
′
c] =

∑
xp,0,xc,0∈F2

(−1)xp,0⊕xx,0V [xp, xc].
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Table 6: The expressions for Xr
L,1

x0
Xr−4

L,1 ⊕X
r−4
L,15

⊕(Xr−4
L,9 &⊕Xr−4

L,14)⊕Xr−4
L,13 ⊕X

r−4
R,14

k0
Kr−1

1 ⊕Kr−2
0 ⊕Kr−3

1

⊕Kr−3
15 ⊕Kr−4

14

x1 (Xr−4
L,5 &⊕Xr−4

L,10)⊕Xr−4
L,9 ⊕X

r−4
R,10 k1 Kr−4

10

x2 (Xr−4
L,10&⊕Xr−4

L,15)⊕Xr−4
L,14 ⊕X

r−4
R,15 k2 Kr−4

15

x3 (Xr−4
L,7 &⊕Xr−4

L,12)⊕Xr−4
L,11 ⊕X

r−4
R,12 k3 Kr−4

12

x4 (Xr−4
L,12&⊕Xr−4

L,1 )⊕Xr−4
L,0 ⊕X

r−4
R,1 k4 Kr−4

1

x5 (Xr−4
L,5 &⊕Xr−4

L,10)⊕Xr−4
L,9 ⊕X

r−4
R,10 ⊕X

r−4
L,11 k5 Kr−4

10 ⊕Kr−3
11

x6 (Xr−4
L,1 &⊕Xr−4

L,6 )⊕Xr−4
L,5 ⊕X

r−4
R,6 k6 Kr−4

6

x7 (Xr−4
L,6 &⊕Xr−4

L,11)⊕Xr−4
L,10 ⊕X

r−4
R,11 k7 Kr−4

11

x8 (Xr−4
L,10&⊕Xr−4

L,15)⊕Xr−4
L,14 ⊕X

r−4
R,15 ⊕X

r−4
L,0 k8 Kr−4

15 ⊕Kr−3
0

x9 (Xr−4
L,11&⊕Xr−4

L,0 )⊕Xr−4
L,15 ⊕X

r−4
R,0 k9 Kr−4

0

x10 x3 ⊕ x5 k10 k3 ⊕ k5 ⊕Kr−2
12

x11 (Xr−4
L,1 &⊕Xr−4

L,6 )⊕Xr−4
L,5 ⊕X

r−4
R,6 ⊕X

r−4
L,7 k11 Kr−4

6 ⊕Kr−3
7

x12 (Xr−4
L,13&⊕Xr−4

L,2 )⊕Xr−4
L,1 ⊕X

r−4
R,2 k12 Kr−4

2

x13 (Xr−4
L,2 &⊕Xr−4

L,7 )⊕Xr−4
L,6 ⊕X

r−4
R,7 k13 Kr−4

7

x14 (Xr−4
L,6 &⊕Xr−4

L,11)⊕Xr−4
L,10 ⊕X

r−4
R,11 ⊕X

r−4
L,12 k14 Kr−4

11 ⊕Kr−3
12

x15 x4 ⊕ x8 k15 k4 ⊕ k8 ⊕Kr−2
1

x16 (Xr−4
L,11&⊕Xr−4

L,0 )⊕Xr−4
L,15 ⊕X

r−4
R,0 ⊕X

r−4
L,1 k16 Kr−4

0 ⊕Kr−3
1

The target correlation becomes

ck′p,k′c =
1

N

∑
x′c

(−1)f
′(x′c,k

′
c)
∑

x′p
(−1)f

′(x′p,k
′
p)V1[x

′
p, x
′
c],

and the kp,0, kc,0 can be regarded as related bits and omitted in the calculation. We

introduce how to calculate the Bk′(y) =
∑

x′ (−1)f
′(x′,k′)V ′[x′] efficiently using dynamic

key-guessing techniques in the following Procedure A, where y = f ′(x′, k′) and V ′[x′] is

the num of x′. The calculation of Bk′p(y) =
∑

x′p
(−1)f

′(x′p,k
′
p)V1[x

′
p, x
′
c] for constant x′c is

same with Bk′(y), so calculating the ck′p,k′c needs to call Procedure A twice.

Procedure A. The expression of f ′(x′, k′) is the same with the expression for Simon32/64,
so the calculation process is similar. The details can be seen in the section 4.2 of [9], and we
gives the basic ideas in the following. There are only 14 independent bits for {x1, . . . x16}
and 16 independent bits for {k1, . . . , k16}. We introduces the procedure briefly.

1. Guess k1, k3, k7 at first.

2. Split the f ′(x′, k′) into 8 cases according to the values of {x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7}.
For each case, there needs 28 × 7 additions to generate a new counter vector. Then
also apply the guess, split and combine technique to calculate the partial correlation
of each case, and the time is 211.19 additions each.

3. Combine the 8 cases to get the final correlation, there needs 213 × 7 additions.

The total time of Procedure A is

T = 23 × (8× (28 × 7 + 211.19) + 213 × 7) = 219.46.

Attack on 23 rounds. We add one more round before and one more round after the
21-round distinguisher. According the plaintexts and ciphertexts involved in the 21-round
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distinguisher, there needs to guess 13-bit keys in (r−5)-th round and 13-bit keys in (r+17)-
th round. The estimated potential ε̄2 of the linear hull is 2−30.91. Set the advantage a = 8
and data complexity N = 2 × 230.19 = 231.19 = cN · ε̄2. According to the experiments on
the bias of the 13-round linear hull in the section 3.2 and the theory of success rate in [16],
we can get the range of the success rate (0.411, 0.532) of the attack in Table 7.

Table 7: Experimental results for the 13-round linear hull of Simeck32/64

log2(ε̄2) Probability p cN lower success rate sl Upper success rate su
[−27.91, 0) 0.056 cN ≥ 16 1 1

[−28.91,−27.91) 0.123 8 ≤ cN < 16 0.997 1
[−29.91,−28.91) 0.154 4 ≤ cN < 8 0.867 0.997
[−30.91,−29.91) 0.151 2 ≤ cN < 4 0.477 0.867
[−31.91,−30.91) 0.144 1 ≤ cN < 2 0.188 0.477∑

p · sl = 0.411
∑
p · su = 0.532

The details of the attack are as follows.

1. Guess 13 bits {Kr−5
0 − Kr−5

2 ,Kr−5
5 − Kr−5

7 ,Kr−5
9 − Kr−5

15 } and 13 bits {Kr+17
0 −

Kr+17
2 ,Kr+17

5 −Kr+17
7 ,Kr+17

9 −Kr+17
15 }. For each of the 226 values,

a. Encrypt the plaintexts by one round and decrypt the ciphertexts by one round to
get the Xr−4 and Xr+17. Then compress the N pairs (Xr−4, Xr+17) into a counter
vector V1[x

′
p, x
′
c] of size 214+14 = 228. This step takes N = 231.91 times two-round

encryptions and compressions.
b. For each of 214 x′c, call Procedure A to calculate the correlation for different k′p and

constant x′c. Now we have 216+14 counters of 14 bits x′c and 16 bits k′p. This step
needs 214 × 219.46 times additions.

c. For each of 216 k′p, call Procedure A to calculate the correlation for different k′c.
Now we have 216+16 counters of 16 bits k′p and 16 bits k′c. This step needs 216×219.46

additions.

In total, there needs 226×231.91 times two-round encryptions and 226×(233.46+235.46) =
261.78 additions.

2. We have 226+32 = 258 counters now. Since the advantage is 8, so the key ranked in
the largest 258−8 counters can be the right key. Get 256 candidates of the master key
according to the the key schedule and do exhaustive search to find the right key. There
needs 256 times 23-round encryptions.

Attack complexity: 261.78 additions and 256.41 23-round encryptions.

Implementation of the 21-round attack. If we don’t consider the (r − 5)-th round
and (r + 17)-th round in the 23-round attack, the 21-round attack needs 235.78 additions
to get 224 possible values of 32 subkey bits. (Due to the time limitation, we don’t do the
exhaustive search to recover the whole master key).

We randomly select the master key to do experiments on the recovery of 8-bit key
information for the 32 bits subkey involved in the 21-round attack. If the correct subkey
bits are in the first 224 counters of all the 232 counters in descending order, we believe
the attack is successful and can recover the correct key bits. There are 1000 master keys
tested and the success rate is 0.456, which meets our expectation (0.411, 0.531) and our
attack algorithm is effective.
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4.2 Key Recovery Attack on Simeck48/96

We use the 20-round linear hull

Xr
L,19 ⊕Xr

L,21 ⊕Xr
R,20 → Xr+20

L,21 ⊕X
r+20
R,20

obtained in section 3.2 to attack Simeck48/96. Add 4 rounds before r-th round, we get the
expression fB(xB, kB) forXr

L,19⊕Xr
L,21⊕Xr

R,20 and the expression of xB = {x0, x1, . . . x28},
kB = {k0, k1, . . . , k28} are given in Table 11 (Appendix B). Add 4 rounds after (r+ 20)-th
round, we get the expression fC(xC , kC) for Xr+20

L,21 ⊕ X
r+20
R,20 and and the expressions of

xC = {x0, x1, . . . x21}, kC = {k0, k1, . . . , k21} are given in Table 12 (Appendix B). Then
we can get a 28-round distinguisher for Simeck48/96.

fB(xB, kB) = x0 ⊕ k0 ⊕ (x1 ⊕ k1)&(x2 ⊕ k2)
⊕ (x3 ⊕ k3)&(x4 ⊕ k4)⊕ (x5 ⊕ k5)&(x6 ⊕ k6)
⊕ [(x7 ⊕ k7 ⊕ (x8 ⊕ k8)&(x9 ⊕ k9))&(x10 ⊕ k10 ⊕ (x9 ⊕ k9)&(x11 ⊕ k11))]
⊕ {[x12 ⊕ k12 ⊕ (x8 ⊕ k8)&(x9 ⊕ k9)⊕
(x13 ⊕ k13 ⊕ (x14 ⊕ k14)&(x15 ⊕ k15))&(x16 ⊕ k16 ⊕ (x3 ⊕ k3)&(x15 ⊕ k15))]
&[x17 ⊕ k17 ⊕ ((x9 ⊕ k9)&(x11 ⊕ k11))⊕
(x16 ⊕ k16 ⊕ (x3 ⊕ k3)&(x15 ⊕ k15))&(x18 ⊕ k18 ⊕ (x3 ⊕ k3)&(x4 ⊕ k4))]}
⊕ {[x19 ⊕ k19 ⊕ (x20 ⊕ k20)&(x21 ⊕ k21)⊕
(x22 ⊕ k22 ⊕ (x23 ⊕ k23)&(x24 ⊕ k24))&(x25 ⊕ k25 ⊕ (x5 ⊕ k5)&(x24 ⊕ k24))]
&[x26 ⊕ k26 ⊕ (x21 ⊕ k21)&(x27 ⊕ k27)⊕
(x25 ⊕ k25 ⊕ (x5 ⊕ k5)&(x24 ⊕ k24))&(x28 ⊕ k28 ⊕ (x5 ⊕ k5)&(x6 ⊕ k6))]}

fC(xC , kC) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))
⊕ [(x3 ⊕ k3 ⊕ ((x4 ⊕ k4)&(x5 ⊕ k5)))&(x6 ⊕ k6 ⊕ ((x5 ⊕ k5)&(x7 ⊕ k7)))]
⊕ [(x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x10 ⊕ k10)))&(x11 ⊕ k11 ⊕ ((x10 ⊕ k10)&(x12 ⊕ k12)))]
⊕ {[x13 ⊕ k13 ⊕ ((x9 ⊕ k9)&(x10 ⊕ k10))⊕
(x14 ⊕ k14 ⊕ ((x15 ⊕ k15)&(x16 ⊕ k16)))&(x17 ⊕ k17 ⊕ ((x16 ⊕ k16)&(x18 ⊕ k18)))]
&[x19 ⊕ k19 ⊕ ((x10 ⊕ k10)&(x12 ⊕ k12))⊕
(x17 ⊕ k17 ⊕ ((x16 ⊕ k16)&(x18 ⊕ k18)))&(x20 ⊕ k20 ⊕ ((x18 ⊕ k18)&(x21 ⊕ k21)))]}

For simplicity, we give the time complexity of calculating the correlation for some
common boolean functions in Table 8. Case f1 and f2 can be found in [9] and the time
complexity is 26.46 and 215.99. There is a little difference between the case f2 and f3, where
f3 = f2⊕((x8⊕k8)&(x12⊕k12)). Because the x8, x12 and k8, k12 are also involved in f2 and
compressed at first, so in the calculation using dynamic techniques the only change is the
method of generating the new counter vector, and the time complexity is equal for the two
cases. The case f4 is same with the Procedure A in section 4.1 and the time complexity is
219.46. For the similar reason like f2 and f3, the f5 have a time complexity of 219.46 as f4.

Procedure B. Here introduces how to calculate the BkB (y) =
∑

xB
(−1)fB(xB ,kB)VB[x]

efficiently using dynamic key-guessing techniques. Compress the plaintexts of r-th round
into a counter VB[x1, ..., x28]. Since x12 = x3 ⊕ x7, x17 = x4 ⊕ x10, there are only 26
independent x bits.
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Table 8: Time complexity for some functions

Case Expression Time

f1 (x1 ⊕ k1 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))&(x4 ⊕ k4 ⊕ (x2 ⊕ k2)&(x5 ⊕ k5)) 26.46

f2

[x1 ⊕ k1 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3)⊕
(x4 ⊕ k4 ⊕ (x5 ⊕ k5)&(x6 ⊕ k6))&(x7 ⊕ k7 ⊕ (x6 ⊕ k6)&(x8 ⊕ k8))]
&[x9 ⊕ k9 ⊕ (x3 ⊕ k3)&(x10 ⊕ k10)⊕
(x7 ⊕ k7 ⊕ (x6 ⊕ k6)&(x8 ⊕ k8))&(x11 ⊕ k11 ⊕ (x8 ⊕ k8)&(x12 ⊕ k12))]

215.99

f3 f2 ⊕ ((x8 ⊕ k8)&(x12 ⊕ k12)) 215.99

f4

f2 ⊕ ((x13 ⊕ k13)&(x14 ⊕ k14))⊕ ((x8 ⊕ k8)&(x12 ⊕ k12))⊕
(x15 ⊕ k15 ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))&(x16 ⊕ k16 ⊕ (x10 ⊕ k10)&(x3 ⊕ k3))
Notice : x1 = x8 ⊕ x15, x9 = x12 ⊕ x16

219.46

f5 f4 ⊕ ((x8 ⊕ k8)&(x12 ⊕ k12)) 219.46

1. Compress {x1−x4, x7−x18} as case f4 for each {x5, x6, x19−x28}, the time complexity
is 219.46. This step needs 212 · 219.46 = 231.46 additions in total. Now we have a counter
vector for 16 bits keys and 12 bits x.

2. Compress {x5, x6, x19−x28} as case f3 for each {k1−k4, x7−x18}, the time complexity
is also 215.99. This step needs 216 · 215.99 = 231.99 additions in total. Now we have a
counter vector for 28 bits keys.

In total, the time complexity of procedure B is 231.46 + 231.99 = 232.75 additions.

Procedure C. Here introduces how to calculate the BkC (y) =
∑

xC
(−1)fC(xC ,kC)VC [x]

efficiently using dynamic key-guessing techniques. Compress the ciphertexts of (r+ 20)-th
round into a counter VC [x1, ..., x21], since x13 = x8 ⊕ x18, x19 = x11 ⊕ x21, there are only
19 independent x bits.

1. Compress {x3−x7} as case f1 for each {x1, x2, x8−x21}, the time complexity is 26.46.
This step needs 214 · 26.46 = 220.46 additions in total. Now we have a counter vector for
5 bits keys and 14 bits x.

2. Compress {x1, x2, x8−x21} as case f5 for each {k3−k7}, the time complexity is 219.46,
and this step needs 25 · 219.46 = 224.46 additions.

In total, the time complexity of procedure C is 220.46 + 224.46 = 224.55 additions.

Attack on 30 rounds. We add one more round before and one more round after the
28-round distinguisher. According the plaintexts and ciphertexts involved in the 28-round
distinguisher, there needs to guess 21-bit keys in (r − 5)-th round and 18-bit keys in
(r + 24)-th round. The estimated potential of this linear hull is 2−45.66. Set the advantage
a = 8 and data complexity N = 4× 245.66 = 247.66, the success rate is 0.867.

1. Guess 21 bits {Kr−5
1 ,Kr−5

3 −Kr−5
21 ,Kr−5

23 } and 18 bits {Kr+24
0 ,Kr+24

4 −Kr+24
6 ,Kr+24

8 −
Kr+24

21 }. For each of 239 values,

a. Encrypt the plaintexts by one round and decrypt the ciphertexts by one round to
get the Xr−4 and Xr+24. Then compress the N pairs (Xr−4, Xr+24) into a counter
vector of size 245. This step takes N = 247.66 times two-round encryptions and
compressions.

b. For each of 219 xC in fC , call Procedure B. Now we have 219+28 counters of 19 bits
xC and 28 bits kB. This step needs 219 × 232.75 additions.
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c. For each of 228 kB, call Procedure C. Now we have 228+21 counters of 28 bits kB
and 21 bits kC . This step needs 228 × 224.55 additions.

In total, this step needs 239 × 247.66 times two-round encryptions and 239 × 253.2 addi-
tions.

2. We have 239+49 = 288 counters in total and the key ranked in the largest 288−8 counters
can be the right key. Get 288 candidates of the master key according to the the key
schedule and do exhaustive search to find the right key.

Attack complexity: 292.2 additions and 288.04 30-round encryptions.

4.3 Key Recovery Attack on Simeck64/128

We use the 26-round linear hull

Xr
L,18 ⊕Xr

L,22 → Xr+26
L,22 ⊕X

r+26
R,21

obtained in section 3.2 to attack Simeck64/128. Add four more rounds on the top and four
more rounds on the bottom to get a 34-round distinguisher. The expression fD(xD, kD)
for the parity bits Xr

L,18⊕Xr
L,22 and the details of {xD, kD} are given in Appendix C. For

the parity bits Xr+26
L,22 ⊕X

r+26
R,21 , it’s expression is same with fC(xC , kC) and the details for

{xC , kC} are also similar that we omit them in this paper.
Then adding two more rounds before and one more round after the 34-round distin-

guisher we can attack the 37-round Simeck64/128. The procedure is similar with the attack
on Simeck32/64 and Simeck48/96, and due to the space limitation we will not repeat it.
The estimated potential of this linear hull is 2−62.09. Set the advantage a = 8 and data
complexity N = 2 × 262.09 = 263.09, the success rate is 0.477. The time complexity of the
37-round attack is 2111.44 additions and 2121.25 37-round encryptions.

5 Conclusion

In this paper, we analyzed the security of Simeck against improved linear hull cryptanalysis
with dynamic key-guessing techniques. We searched out better differentials using Kölbl’s
tool, then got linear hulls for all versions of Simeck. With Chen et al.’s Guess, Split, Com-
bine technique to reduce the time complexity in the calculation of empirical correlations,
we made the improved linear hull attack on Simeck. As a result, we can attack 23-round
Simeck32/64, 30-round Simeck48/96 and 37-round Simeck64/128, which are the best re-
sults so far from the point of rounds attacked. The experiments on the bias of the linear
hull for Simeck32/64 met our expectation and 48.4% of the results have a bias higher than
we expected. We also implemented the attack on 21-round Simeck32/64, and the success
rate is 45.6% corresponding to our estimated value, which proves our algorithm is effective.

In the future, we will try to search better linear hulls for Simeck using other methods
like correlation matrix, Mixed Integer Programming (MIP) and so on. Then we will apply
the improved linear hull attack with dynamic key-guessing techniques for other bit-oriented
block ciphers.
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In this section, we list the details of how to get linear hulls for Simeck48/96 and Simeck64/128
from the differentials given in section 3.1.
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Table 9: Linear hull based on the differential for Simeck48/96

Differential Linear

r ∆L ∆R XL XR Used App

0 22 21, 23 19, 21 20 1

1 21 22 20 21 1

2 − 21 21 − −
3 21 − − 21 1

4 22 21 21 20 1

5 21, 23 22 20 19, 21 1: 1

6 0 21, 23 19, 21 18 1

7 1, 21, 23 0 18 17, 19, 21 1 : 1 : 3

8 22 1, 21, 23 17, 19, 21 20 1

9 1, 21 22 20 17, 21 1 : 3

10 − 1, 21 17, 21 − −
11 1, 21 − − 17, 21 1 : 3

12 22 1, 21 17, 21 20 1

13 1, 21, 23 22 20 17, 19, 21 1 : 1 : 3

14 0 1, 21, 23 17, 19, 21 18 1

15 21, 23 0 18 19, 21 1 : 1

16 22 21, 23 19, 21 20 1

17 21 22 20 21 1

18 − 21 21 − −
19 21 − − 21 1

20 22 21 21 20 −∑
r log2pr = −50 log2ε

2 = −52
log2pdiff = −43.66 log2ε̄

2 = −45.66
#trails = 1798015 #characteristics = 1798015
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Table 10: Linear hull based on the differential for Simeck48/96

Differential Linear

r ∆L ∆R XL XR Used App

0 − 22, 26 18, 22 − −
1 22, 26 − − 18, 22 1 : 3

2 23 22, 26 18, 22 21 1

3 22, 24, 26 23 32 18, 20, 22 1 : 1 : 3

4 25 22, 24, 26 18, 20, 22 19 1

5 22, 24 25 19 20, 22 1: 1

6 23 22, 24 20, 22 21 1

7 22 23 21 22 1

8 − 22 22 − −
9 22 − − 22 1

10 23 22 22 21 1

11 22, 24 23 21 20, 22 1 : 1

12 25 22, 24 20, 22 19 1

13 22, 24, 26 25 19 18, 20, 22 1 : 1 : 3

14 23 22, 24, 26 18, 20, 22 21 1

15 22, 26 23 21 18, 22 1 : 3

16 − 22, 26 18, 22 − −
17 22, 26 − − 18, 22 1 : 3

18 23 22, 26 18, 22 21 1

19 22, 24, 26 23 21 18, 20, 22 1 : 1 : 3

20 25 22, 24, 26 18, 20, 22 19 1

21 22, 24 25 19 20, 22 1 : 1

22 23 22, 24 20, 22 21 1

23 22 23 21 22 1

24 − 22 22 − −
25 22 − − 22 1

26 23 22 22 21 1∑
r log2pr = −68 log2ε

2 = −70
log2pdiff = −60.09 log2ε̄

2 = −62.09
#trails = 1632506 #characteristics = 1632506
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B Attack on Simeck48/96

In this section, we give the details of expressions of {xB, kB} in fB(xB, kB) in Tale 11 and
{xC , kC} in fC(xC , kC) in Tale 12 for Simeck48/96.

Table 11: The expressions for Xr
L,19 ⊕Xr

L,21 ⊕Xr
R,20

x0
Xr−4

L,17 ⊕X
r−4
L,21 ⊕ (Xr−4

L,15&⊕Xr−4
L,20)⊕Xr−4

R,20

⊕(Xr−4
L,11&⊕Xr−4

L,16)⊕Xr−4
L,15 ⊕X

r−4
R,16

k0
Kr−4

16 ⊕Kr−4
20 ⊕Kr−3

17 ⊕Kr−3
19

⊕Kr−3
21 ⊕Kr−2

18 ⊕Kr−1
19 ⊕Kr−1

21

x1 (Xr−4
L,7 &⊕Xr−4

L,12)⊕Xr−4
L,11 ⊕X

r−4
R,12 k1 Kr−4

12

x2 (Xr−4
L,12&⊕Xr−4

L,17)⊕Xr−4
L,16 ⊕X

r−4
R,17 k2 Kr−4

17

x3 (Xr−4
L,9 &⊕Xr−4

L,14)⊕Xr−4
L,13 ⊕X

r−4
R,14 k3 Kr−4

14

x4 (Xr−4
L,14&⊕Xr−4

L,19)⊕Xr−4
L,18 ⊕X

r−4
R,19 k4 Kr−4

19

x5 (Xr−4
L,11&⊕Xr−4

L,16)⊕Xr−4
L,15 ⊕X

r−4
R,16 k5 Kr−4

16

x6 (Xr−4
L,16&⊕Xr−4

L,21)⊕Xr−4
L,20 ⊕X

r−4
R,21 k6 Kr−4

21

x7 x1 ⊕Xr−4
L,13 k7 Kr−4

12 ⊕Kr−4
13

x8 (Xr−4
L,3 &⊕Xr−4

L,8 )⊕Xr−4
L,7 ⊕X

r−4
R,8 k8 Kr−4

8

x9 (Xr−4
L,8 &⊕Xr−4

L,13)⊕Xr−4
L,12 ⊕X

r−4
R,13 k9 Kr−4

13

x10 x2 ⊕Xr−4
L,18 k10 Kr−4

17 ⊕Kr−3
18

x11 (Xr−4
L,13&⊕Xr−4

L,18)⊕Xr−4
L,17 ⊕X

r−4
R,18 k11 Kr−4

18

x12 x3 ⊕ x7 k12 Kr−4
12 ⊕Kr−4

14 ⊕Kr−3
13 ⊕Kr−2

14

x13 x8 ⊕Xr−4
L,9 k13 Kr−4

8 ⊕Kr−3
9

x14 (Xr−4
L,23&⊕Xr−4

L,4 )⊕Xr−4
L,3 ⊕X

r−4
R,4 k14 Kr−4

4

x15 (Xr−4
L,4 &⊕Xr−4

L,9 )⊕Xr−4
L,8 ⊕X

r−4
R,9 k15 Kr−2

9

x16 x9 ⊕Xr−4
L,14 k16 Kr−4

13 ⊕Kr−3
14

x17 x4 ⊕ x10 k17 Kr−4
17 ⊕Kr−4

19 ⊕Kr−3
18 ⊕Kr−2

19

x18 x11 ⊕Xr−4
L,19 k18 Kr−4

18 ⊕Kr−3
19

x19 x3 ⊕ x5 ⊕Xr−4
L,15 k19 Kr−4

14 ⊕Kr−4
16 ⊕Kr−3

15 ⊕Kr−2
16

x20 (Xr−4
L,5 &⊕Xr−4

L,10)⊕Xr−4
L,9 ⊕X

r−4
R,10 k20 Kr−4

10

x21 (Xr−4
L,10&⊕Xr−4

L,15)⊕Xr−4
L,14 ⊕X

r−4
R,15 k21 Kr−4

15

x22 x20 ⊕Xr−4
L,11 k22 Kr−4

10 ⊕Kr−3
11

x23 (Xr−4
L,1 &⊕Xr−4

L,6 )⊕Xr−4
L,5 ⊕X

r−4
R,6 k23 Kr−4

6

x24 (Xr−4
L,6 &⊕Xr−4

L,11)⊕Xr−4
L,10 ⊕X

r−4
R,11 k24 Kr−4

11

x25 x21 ⊕Xr−4
L,16 k25 Kr−4

15 ⊕Kr−3
16

x26 x4 ⊕ x6 ⊕Xr−4
L,20 k26 Kr−4

19 ⊕Kr−4
21 ⊕Kr−3

20 ⊕Kr−2
21

x27 (Xr−4
L,15&⊕Xr−4

L,20)⊕Xr−4
L,19 ⊕X

r−4
R,20 k27 Kr−4

20

x28 x27 ⊕Xr−4
L,21 k28 Kr−4

20 ⊕Kr−3
21

C Attack on Simeck64/128

In this section, we give the details for the key recovery attack on Simeck64/128. The
26-round linear hull is

Xr
L,18 ⊕Xr

L,22 → Xr+26
L,22 ⊕X

r+26
R,21 .

Add 4 rounds before r-th round, we get the expression fD(xD, kD) for Xr
L,18 ⊕Xr

L,22

and the expression of xD = {x0, x1, . . . x25}, kD = {k0, k1, . . . , k25} can be seen in Table
13. Add 4 rounds after (r + 26)-th round, the expression for Xr+26

L,22 ⊕X
r+26
R,21 is same with

the fC(xC , kC) in Appendix B and the computation is also similar with Procedure C. We
can get a 34-round distinguisher for Simeck64/128.
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Table 12: The expressions for Xr+20
L,21 ⊕X

r+20
R,20

x0

Xr+24
L,17 ⊕ (Xr+24

R,12 &⊕Xr+24
R,17 )⊕Xr+24

R,16

⊕Xr+24
L,19 ⊕ (Xr+24

R,14 &⊕Xr+24
R,19 )⊕Xr+24

L,21

⊕(Xr+24
R,16 &⊕Xr+24

R,21 )⊕Xr+24
R,20

k0
Kr+23

17 ⊕Kr+23
19 ⊕Kr+23

21 ⊕Kr+22
18

⊕Kr+21
21 ⊕Kr+21

19 ⊕Kr+20
20

x1 (Xr+24
R,8 &⊕Xr+24

R,13 )⊕Xr+24
R,12 ⊕X

r+24
L,13 k1 Kr+23

13

x2 (Xr+24
R,13 &⊕Xr+24

R,18 )⊕Xr+24
R,17 ⊕X

r+24
L,18 k2 Kr+23

18

x3 x18 ⊕Xr+24
R,16 k3 Kr+23

15 ⊕Kr+22
16

x4 (Xr+24
R,6 &⊕Xr+24

R,11 )⊕Xr+24
R,10 ⊕X

r+24
L,11 k4 Kr+23

11

x5 (Xr+24
R,11 &⊕Xr+24

R,16 )⊕Xr+24
R,15 ⊕X

r+24
L,16 k5 Kr+23

16

x6 x21 ⊕Xr+24
R,21 k6 Kr+23

20 ⊕Kr+22
21

x7 (Xr+24
R,16 &⊕Xr+24

R,21 )⊕Xr+24
R,20 ⊕X

r+24
L,21 k7 Kr+23

21

x8 x1 ⊕Xr+24
R,14 k8 Kr+23

13 ⊕Kr+22
14

x9 (Xr+24
R,4 &⊕Xr+24

R,9 )⊕Xr+24
R,8 ⊕X

r+24
L,9 k9 Kr+23

9

x10 (Xr+24
R,9 &⊕Xr+24

R,14 )⊕Xr+24
R,13 ⊕X

r+24
L,14 k10 Kr+23

14

x11 x2 ⊕Xr+24
R,19 k11 Kr+23

18 ⊕Kr+22
19

x12 (Xr+24
R,14 &⊕Xr+24

R,19 )⊕Xr+24
R,18 ⊕X

r+24
L,19 k12 Kr+23

19

x13 x8 ⊕ x18 k13 Kr+23
15 ⊕Kr+23

13 ⊕Kr+22
14 ⊕Kr+21

15

x14 x9 ⊕Xr+24
R,10 k14 Kr+23

9 ⊕Kr+22
10

x15 (Xr+24
R,0 &⊕Xr+24

R,5 )⊕Xr+24
R,4 ⊕X

r+24
L,5 k15 Kr+23

5

x16 (Xr+24
R,5 &⊕Xr+24

R,10 )⊕Xr+24
R,9 ⊕X

r+24
L,10 k16 Kr+23

10

x17 x10 ⊕Xr+24
R,15 k17 Kr+23

14 ⊕Kr+22
15

x18 (Xr+24
R,10 &⊕Xr+24

R,15 )⊕Xr+24
R,14 ⊕X

r+24
L,15 k18 Kr+23

15

x19 x11 ⊕ x21 k19 Kr+23
20 ⊕Kr+23

18 ⊕Kr+22
19 ⊕Kr+21

20

x20 x12 ⊕Xr+24
R,20 k20 Kr+23

19 ⊕Kr+22
20

x21 (Xr+24
R,15 &⊕Xr+24

R,20 )⊕Xr+24
R,19 ⊕X

r+24
L,20 k21 Kr+23

20

fD(xD, kD) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))
⊕ ((x5 ⊕ k5)&(x6 ⊕ k6))⊕ ((x7 ⊕ k7)&(x8 ⊕ k8))
⊕ [(x9 ⊕ k9 ⊕ ((x10 ⊕ k10)&(x11 ⊕ k11)))&(x12 ⊕ k12 ⊕ ((x11 ⊕ k11)&(x7 ⊕ k7)))]
⊕ [(x13 ⊕ k13 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2)))&(x14 ⊕ k14 ⊕ ((x2 ⊕ k2)&(x15 ⊕ k15)))]
⊕ {[x16 ⊕ k16 ⊕ ((x10 ⊕ k10)&(x11 ⊕ k11))⊕
(x17 ⊕ k17 ⊕ ((x18 ⊕ k18)&(x19 ⊕ k19)))&(x20 ⊕ k20 ⊕ ((x19 ⊕ k19)&(x3 ⊕ k3)))]
&[x21 ⊕ k21 ⊕ ((x7 ⊕ k7)&(x11 ⊕ k11))⊕
(x20 ⊕ k20 ⊕ ((x19 ⊕ k19)&(x3 ⊕ k3)))&(x22 ⊕ k22 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))]}
⊕ {[x23 ⊕ k23 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2))⊕
(x9 ⊕ k9 ⊕ ((x10 ⊕ k10)&(x11 ⊕ k11)))&(x12 ⊕ k12 ⊕ ((x11 ⊕ k11)&(x7 ⊕ k7)))]
&[x24 ⊕ k24 ⊕ ((x2 ⊕ k2)&(x15 ⊕ k15))⊕
(x12 ⊕ k12 ⊕ ((x11 ⊕ k11)&(x7 ⊕ k7)))&(x25 ⊕ k25 ⊕ ((x7 ⊕ k7)&(x8 ⊕ k8)))}
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Table 13: The expressions for Xr
L,18 ⊕Xr

L,22

x0

(Xr−4
L,10&⊕Xr−4

L,15)⊕Xr−4
L,14 ⊕X

r−4
R,15

⊕(Xr−4
L,14&⊕Xr−4

L,19)⊕Xr−4
R,19

⊕Xr−4
L,16 ⊕X

r−4
L,20 ⊕X

r−4
L,22

k0

Kr−4
15 ⊕Kr−4

19 ⊕Kr−3
16 ⊕Kr−3

18

⊕Kr−3
20 ⊕Kr−3

22 ⊕Kr−2
17 ⊕Kr−2

21

⊕Kr−1
18 ⊕Kr−1

22

x1 (Xr−4
L,6 &⊕Xr−4

L,11)⊕Xr−4
L,10 ⊕X

r−4
R,11 k1 Kr−4

11

x2 (Xr−4
L,11&⊕Xr−4

L,16)⊕Xr−4
L,15 ⊕X

r−4
R,16 k2 Kr−4

16

x3 (Xr−4
L,8 &⊕Xr−4

L,13)⊕Xr−4
L,12 ⊕X

r−4
R,13 k3 Kr−4

13

x4 (Xr−4
L,13&⊕Xr−4

L,18)⊕Xr−4
L,17 ⊕X

r−4
R,18 k4 Kr−4

18

x5 (Xr−4
L,10&⊕Xr−4

L,15)⊕Xr−4
L,14 ⊕X

r−4
R,15 k5 Kr−4

15

x6 (Xr−4
L,15&⊕Xr−4

L,20)⊕Xr−4
L,19 ⊕X

r−4
R,20 k6 Kr−4

20

x7 (Xr−4
L,12&⊕Xr−4

L,17)⊕Xr−4
L,16 ⊕X

r−4
R,17 k7 Kr−4

17

x8 (Xr−4
L,17&⊕Xr−4

L,22)⊕Xr−4
L,21 ⊕X

r−4
R,22 k8 Kr−4

22

x9 x1 ⊕Xr−4
L,12 k9 Kr−4

11 ⊕Kr−3
12

x10 (Xr−4
L,2 &⊕Xr−4

L,7 )⊕Xr−4
L,6 ⊕X

r−4
R,7 k10 Kr−4

7

x11 (Xr−4
L,7 &⊕Xr−4

L,12)⊕Xr−4
L,11 ⊕X

r−4
R,12 k11 Kr−4

12

x12 x2 ⊕Xr−4
L,17 k12 Kr−4

16 ⊕Kr−3
17

x13 x5 ⊕Xr−4
L,16 k13 Kr−4

15 ⊕Kr−3
16

x14 x6 ⊕Xr−4
L,21 k14 Kr−4

20 ⊕Kr−3
21

x15 (Xr−4
L,16&⊕Xr−4

L,21)⊕Xr−4
L,20 ⊕X

r−4
R,21 k15 Kr−4

21

x16 x3 ⊕ x9 k16 Kr−4
11 ⊕Kr−4

13 ⊕Kr−3
12 ⊕Kr−2

13

x17 x10 ⊕Xr−4
L,8 k17 Kr−4

7 ⊕Kr−3
8

x18 (Xr−4
L,30&⊕Xr−4

L,3 )⊕Xr−4
L,2 ⊕X

r−4
R,3 k18 Kr−4

3

x19 (Xr−4
L,3 &⊕Xr−4

L,8 )⊕Xr−4
L,7 ⊕X

r−4
R,8 k19 Kr−4

8

x20 x11 ⊕Xr−4
L,13 k20 Kr−4

12 ⊕Kr−3
13

x21 x4 ⊕ x12 k21 Kr−4
16 ⊕Kr−4

18 ⊕Kr−3
17 ⊕Kr−2

18

x22 x7 ⊕Xr−4
L,18 k22 Kr−4

17 ⊕Kr−3
18

x23 x7 ⊕ x13 k23 Kr−4
15 ⊕Kr−4

17 ⊕Kr−3
16 ⊕Kr−2

17

x24 x8 ⊕ x14 k24 Kr−4
20 ⊕Kr−4

22 ⊕Kr−3
21 ⊕Kr−2

22

x25 x15 ⊕Xr−4
L,22 k25 Kr−4

21 ⊕Kr−3
22
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