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Abstract—Key-exchange protocols such as TLS, SSH, IPsec,
and ZRTP are highly configurable, with typical deployments
supporting multiple protocol versions, cryptographic algorithms
and parameters. In the first messages of the protocol, the peers
negotiate one specific combination: the protocol mode, based on
their local configurations. With few notable exceptions, most
cryptographic analyses of configurable protocols consider a single
mode at a time. In contrast, downgrade attacks, where a network
adversary forces peers to use a mode weaker than the one they
would normally negotiate, are a recurrent problem in practice.

How to support configurability while at the same time guar-
anteeing the preferred mode is negotiated? We set to answer this
question by designing a formal framework to study downgrade
resilience and its relation to other security properties of key-
exchange protocols. First, we study the causes of downgrade
attacks by dissecting and classifying known and novel attacks
against widely used protocols. Second, we survey what is known
about the downgrade resilience of existing standards. Third, we
combine these findings to define downgrade security, and analyze
the conditions under which several protocols achieve it. Finally,
we discuss patterns that guarantee downgrade security by design,
and explain how to use them to strengthen the security of existing
protocols, including a newly proposed draft of TLS 1.3.

I. INTRODUCTION

Popular protocols such as TLS, SSH and IPSec as used
in practice do not fit a simple textbook definition of a key-
exchange protocol, where the state machine, cryptographic
algorithms, parameters and message formats are all fixed in
advance. Rather, these modern protocols feature cryptographic
agility, which provides for configurable selection of multiple
protocol and cipher modes, so that the key exchange actually
executed between two peers depends on a negotiation phase
embedded in the exchange.

Agility has proven important in securing real-world pro-
tocol implementations. For example, in the wake of recent
vulnerability disclosures in TLS [19, 2–4, 33, 20, 8], network
operators reacted by updating client and server configurations
to disable weak algorithms and protocol versions. Moreover,
experience shows that when sufficient agility is not present
within a single protocol, application developers construct
their own ad hoc negotiation mechanisms, for example, by
sequentially attempting connections with different versions of
a protocol and “falling back” to the best one supported [32].

Unfortunately, support for algorithm agility opens up op-
portunities for downgrade attacks, where an active network
adversary interferes with the negotiation, causing honest peers
to complete a key exchange, albeit using a mode that is weaker
than the one they would have used on their own. Such attacks
have been identified in a number of protocols, most famously
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Fig. 1: SIGMA-N: Basic SIGMA [26] with group negotiation

in the early versions of the SSL protocol [36] and even in
recent versions of TLS [2, 32].

Surprisingly, there has been relatively little formal work
around the security of negotiation in modern cryptographic
protocols. Several recent works formally prove the security of
different aspects of TLS and SSH. Some [22, 27] only model
a single mode at a time. Some [10, 11] do model negotiation
of weak algorithms, but do not guarantee negotiation of the
preferred mode. Some others [7, 17] consider only interactions
where both parties have secure configurations. For this reasons,
all of these works overlook certain downgrade attacks that
occur when one party supports an insecure mode.

This is concerning because negotiation has proven to be
fertile ground for attacks, e.g. [8, 36, 2], and because recent
Internet-wide scans have revealed the prevalence of hosts
supporting insecure protocol modes [35, 2]. In this setting,
it is insufficient to restrict our attention to situations where
both parties support secure configurations.

In this work we aim to address this situation by system-
atically investigating the problem of downgrade resilience in
cryptographic protocols.

A. Motivating example

We begin with a simple motivating example: we adapt
the SIGMA protocol of Krawczyk [26] by adding a naïve
extension intended to negotiate Diffie-Hellman groups: In the
first message, A proposes a list of groups it supports; in the
second message, B indicates which of these groups should be
used in the exchange. The modified protocol appears in Fig. 1.
The goal of the protocol is to compute session keys (km, ks).

Under normal circumstances, the protocol succeeds in cor-
rectly selecting a group. However, consider a scenario where
both participants support both strong and weak groups. B’s
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Fig. 2: Man-in-the-Middle downgrade attack on SIGMA-N

signature authenticates the chosen group, but not A’s proposal.
This leads to a downgrade attack (see Fig. 2) similar to the
Logjam attack on TLS [2], where an attacker can break the
session keys at leisure and compromise the connection.

Protocol designers have adopted a number of techniques
to prevent such downgrade attacks. Based on a review of
deployed protocols, we identify three common patterns. In
the first, exemplified by SSH, protocol designers assume the
existence of strong signing keys shared between the two
parties, and use these keys to authenticate all negotiation
messages, either at the time they are transmitted, or after
the fact. In a second pattern, exemplified by TLS, designers
transmit unauthenticated protocol messages, perform a key
exchange, and then subsequently use the resulting shared
secrets to retroactively authenticate the negotiation messages.
The final approach relies on whitelisting certain modes, and is
best exemplified by Google’s TLS False Start proposal [28],
which is being codified as part of TLS 1.3 [16].

Each approach has various advantages and disadvantages.
The devil is often in the details: each protocol is sensitive
to the precise nature of the implementation, e.g. the inputs of
authentication functions, or the specifics of what a valid mode
is for whitelisting. As a concrete example, modern versions of
TLS-DHE fail to sign the identity of the ciphersuite chosen by
a server, leading to cross-protocol attacks [30, 2]. Similarly,
TLS False Start relies solely on ciphersuite identifier (rather
than more detailed information such as key strength) in its
selection of which modes to whitelist, which converts the
online attack of Adrian et al. [2] into an offline one.

B. Overview of our approach

We give a definition and a theorem for downgrade resilience
that model the following intuitive and desirable property for
deployed key-exchange protocols:

To prevent an attack on a particular protocol mode,
it is sufficient to deactivate the configurations that
lead to its negotiation.

Our work builds on the definitions of Bhargavan et al. [11],
used to model security in MITLS, a reference implementation
of the TLS standard. A fundamental difference between these
definitions and previous work is that they attempt to model

entire deployed protocols. This requires a definition of security
cognizant of the fact that some aspects (modes) of the protocol
may be insecure. To deal with this, the definitions of [11]
incorporate predicates determining modes that are expected
to provide security guarantees, e.g., key indistinguishability.
This approach allows to define security when secure modes
are chosen, yet tolerates the existence of insecure modes.

One limitation of these definitions is that they do not take
into account how modes are chosen. In a protocol secure
under the MITLS framework, two parties under adversarial
influence may arrive at an insecure mode even when otherwise
they would use a secure mode. In theory each party can
detect and react to the negotiation of an insecure mode, e.g.,
by terminating the protocol execution. Nonetheless, this does
not guarantee that the preferred common mode is selected.
Our solution is to incorporate downgrade resilience in our
security definitions, to ensure that an adversary cannot force
the selection of another mode than the preferred one.

We consider protocols between an Initiator and a Responder.
These two parties each have their own local static configura-
tions, expressing their preferences and their intent to negoti-
ate a shared protocol mode. To define downgrade resilience
formally, we introduce a downgrade protection predicate DP
that operates on pairs of configurations (analogous to MITLS
predicates on modes), and that identifies pairs of configurations
from which we expect downgrade resilience. We also introduce
a function Nego that maps two opposite-role configurations to
the protocol mode that should be negotiated in the absence
of active adversaries. Intuitively, our definition says that a
protocol is downgrade secure if two peers starting from config-
urations satisfying DP can only negotiate the mode determined
by Nego, even in the presence of an active adversary.

By way of example, a specific instantiation of Nego
for the TLS protocol might determine that two TLS peer
configurations would normally result in the negotiation
of TLS 1.2 in combination with a ciphersuite such as
DHE-RSA-AES256-GCM-SHA384 with a 2048-bit Diffie-
Hellman modulus. However, if a server supports an insecure
mode, such as a DHE-EXPORT ciphersuite, an adversary
might force the pair to downgrade to this mode [2]. This
shows that without additional countermeasures, TLS 1.2 does
not meet our definition. On the other hand, protocols with
only one possible mode are obviously secure. The challenge
we address in this paper is to consider agile protocols that
support multiple modes (e.g., ciphersuites, versions).

To apply our definition to real-world protocols, we adopt
the following approach. Rather than analyzing a protocol in
its entirety, we first extract a core negotiation sub-protocol,
which captures the main downgrade-protection mechanisms
of the larger protocol. We next prove that this sub-protocol
is complete for downgrade security, in the sense that an
adversary that succeeds in downgrading the full protocol will
also succeed in downgrading the sub-protocol. This technique
of lifting security from the sub-protocol to the main protocol
was previously employed by Bergsma et al. [7] to prove multi-
ciphersuite security.
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In our analysis we restrict ourselves to the manual extraction
of sub-protocols that only cover specific families of modes,
e.g., signature-based modes or pre-shared key modes, while
some of our attacks are cross family attacks. Proving the
absence of cross-family attacks requires either to consider
more complex sub-protocols that encompass several families,
or to study families independently and prove a composition
theorem similar to that in Bergsma et al. [7]. Our work is
a stepping stone in this direction, and our results are readily
applicable in situations where peer configurations are from the
same family.

Similarly, in developing our definitional approach we did
not yet use any verification tools. We could have written
machine-checked proofs for sub-protocol completeness, how-
ever proving properties such as downgrade security is at the
limit of what current tools can handle. We plan to extend
our formalization of TLS in F* to verify our results on the
downgrade security of TLS.

C. Summary of our results

Our primary contribution is a novel downgrade security def-
inition for key-exchange protocols. We devise a methodology
to analyze the downgrade security of a complex protocol by
abstracting away irrelevant details and studying only the core
negotiation sub-protocol.

We demonstrate the relevance of our definition and the
applicability of our methodology by analyzing the downgrade
security of several exemplary real-world protocols, namely
TLS, SSH, IPSec and ZRTP. We do so by taking in their stan-
dard specifications and extracting appropriate core negotiation
sub-protocols. Our analysis identifies known and novel attacks
as well as sufficient conditions under which these protocols
achieve downgrade security. These conditions inform users of
these protocols as to how to restrict host configurations to best
avoid downgrade attacks.

The following are concrete novel contributions:
• We describe two new attacks on protocol standards: 2 on

IKEv2 and 2 on ZRTP.
• We confirm the conclusion evidenced by recent attacks:

TLS versions up to 1.2 are not generally downgrade secure.
• We prove a downgrade security theorem for SSHv2

with publickey client authentication that is stronger than
previous results. This stems from both peers signing all the
messages that determine the protocol mode.
• We show that although the current TLS 1.3 draft [16]

includes a mandatory server-side message for signing the
handshake transcript, this does not prevent downgrades to ear-
lier versions of TLS or non-preferred groups. Informed by this
analysis, we define and prove two new downgrade protection
mechanisms. The concrete countermeasures, designed jointly
with the core TLS 1.3 working group, are on track to be
included in the draft standard.

D. Outline of the paper

The remainder of this paper proceeds as follows. In §II we
introduce the terminology used throughout and we provide a

primer on security definitions for key exchange protocols. We
also introduce downgrade resilience, formally defined in §III.
In §IV through §VII we apply these definitions to analyze
the security of SSH, IPSec IKE, ZRTP and TLS. We survey
related work in §A. We defer most proofs to the Appendix.

II. MODELING MULTI-MODE KEY-EXCHANGES

The two main security aspects of popular key-exchange
models [11, 7, 18] are entity authentication and key-
indistinguishability [6]. Our focus lies on considering multi-
mode protocols and incorporating the negotiation of the mode
into the security model.

A key exchange protocol Π is a two-party protocol with an
initiator role I and a responder role R (sometimes called client
and server). The adversary interacts with multiple sessions of
the protocol. Each session π maintains variables in a local
state and makes assignments to them before sending or after
receiving a message. We write π.x for the value of variable x
in session π. We will consider the following variables:
π.cfg initial configuration (including the role);
π.uid unique identifier of the session;
π.mode negotiated mode (including long-term identities);
π.key session key;
π.complete flag set when the session completes successfully.

Each session assigns a value to each variable only once,
typically in the order given above. The configuration variable
π.cfg is assigned when a session is created and contains other
variables, including one for the session role. We use π.role as
shorthand for π.cfg.role and let I = R, R = I .

An adversary interacts with sessions via queries to oracles.
A query π ← Init(cfg) initializes a session. Recall that cfg
determines role and furthermore, in the setting where we have
symmetric or public keys, cfg will contain handles to those
keys. A query mout ← Send(π,min) sends a message min

to session π, which processes it to update its local state and
output an ongoing message mout. A query k ← Reveal(π)
reveals the session key of π, i.e., returns the value of π.key.
There are several variants for handling long-term keys and
other authentication mechanisms as well as corruption settings,
and each of those requires different variables and oracles.
As these settings are mostly standard and orthogonal to our
definition, we leave those details deliberately unspecified for
now and get back to them in Section IV. Note that our
definitions only become complete once we add the specifics
of long-term keys or other authentication mechanisms.

A. Unique identifiers & partnering

The goal of a key exchange protocol is to match two
sessions of two different parties so that they compute the same
key and agree on the algorithms and authentication setting. We
say that two sessions match if and only if they derive the same
session key [25]. For defining downgrade security, we rely on
the weaker notion of partnering, based on unique identifiers—
at most two sessions may assign the same value to the session
variable uid.
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Definition 1 (Partnering): Sessions π and π′ are partnered if
π′.role = π.role (they have opposite roles) and π′.uid = π.uid.
A session π is unpartnered when there is no such π′.

For example, in TLS, a suitable uid is the pair of nonces sent
by the client and server in their Hello messages. To guarantee
partnering upon completion, a protocol needs to protect the
messages that influence the uid against man-in-the-middle
attacks. As some configurations—in particular those where
entity authentication is optional—do not protect against man-
in-the-middle attacks, our definition depends on a predicate PS
that indicates configurations that provide Partnering Security.
Typically, these configurations demand peer authentication.

Definition 2 (Partnering security): The advantage
Adv

partnering
Π, PS (A) of adversary A against the partnering

security of Π is the probability that, when A interacts with
protocol Π, there is an unpartnered session π such that
π.complete = true and PS(π.cfg) holds.

B. Multi-mode authentication

We now define authentication for protocols in which long-
term identifiers (e.g. public keys or pre-shared key identifiers)
of peers are themselves negotiated. This is also known as
the post-specified peer setting [14] and the type of authen-
tication (e.g. mutual or bilateral) is determined as part of
the negotiation [18]. We incorporate entity identifiers eidr
for r ∈ {I,R} and authentication type, together with the
negotiated cryptographic algorithms in the mode variable. We
write eidr as shorthand for mode.eidr. As algorithms can
be weak, keys can be compromised, and authentication can
be unilateral, whether participants get guarantees depends
crucially on the outcome of negotiation.

While the predicate PS for partnering is defined over con-
figurations fixed upon creation of a session, our authentication
definition depends on a predicate Auth(mode, r), which holds
when mode is expected to authenticate role r.

Authentication classically guarantees agreement on the vari-
ables of authenticated peers.

Definition 3 (Agreement): A session π agrees with π′ on x
when π.x = π′.x or π′.x = ⊥. For agreement on a set X we
require that π agrees with π′ on all x ∈ X .

Definition 4 (Multi-mode authentication): A session π com-
pletes maliciously for X when π.complete = true but there is
no partnered session π′ matching π that agrees with π on X .

The advantage Advmm-auth
Π, Auth, X(A) of an adversary A against

the multi-mode authentication security with agreement on X
of protocol Π is the probability that, when A interacts with
protocol Π, a session π completes maliciously for X and
Auth(π.mode, π.role) holds.

Let r = π.role. Note that Auth(π.mode, r) typically includes
the requirement that the long term key π.eidr of the peer is
honest. If, as in SIGMA-N, the mode is secure against key-
compromise impersonation attacks [23] then π.eidr need not
be honest. In addition, the predicate Auth models concurrent
mixed-mode authentication. A protocol mode provides mutual-
authentication if Auth(π.mode, r) holds regardless of r. It

provides server-only authentication if only Auth(π.mode, I)
holds, i.e., only clients get guarantees.

Observe that the authentication mode is itself negotiated.
The same long-term keys eidr routinely appear in different
modes and protocols may assign the same key in different
modes. Agreement on mode and other variables may be
critical for higher-level protocols; mode may include record
algorithms and using the same keys with different algorithms
may lead to agile security problems. In any case it contains the
entity identifiers that should be in agreement to avoid identity
confusion attacks [15]. As we will see, protocols need to have
sufficient downgrade resilience to guarantee that the preferred
authentication mode is negotiated.

C. Key-indistinguishability and privacy

Classical definitions of key indistinguishability are param-
eterized by a freshness predicate Fresh that determines the
sessions with uncompromised keys. Key indistinguishability
requires that for fresh sessions, an adversary cannot tell apart
the real session key from a random one.

For SIGMA-N, a suitable Fresh predicate holds for π when
the group in π.mode is strong, A neither queried Reveal(π)
nor Reveal(π′) for a matching session π′, and π.eidr̄ is honest.

Identity protection and deniability are other orthogonal
security requirements of key-exchange protocols. We do not
formally capture them in this work, but note that many design
decisions in real-world key-exchange protocols are motivated
by user privacy in addition to security.

D. Instantiating our model for SIGMA-N

Consider the SIGMA-N protocol of Fig. 1. The config-
urations should include sufficient detail to determine the
negotiated mode. We thus include the acceptable groups and
a function PK from identities to peer public keys. The latter
would normally be implemented by looking up the public key
of the peer in a certificate store. We thus have variables

cfg 4
=

{
(I, A, pkA,PK, groups) for initiator I
(R,B, pkB ,PK, groups) for responder R

uid 4
= (gx, gy)

mode 4
= (Gi, pkA, pkB) .

SIGMA-N inherits the security properties of SIGMA [26].
It thus provides authentication and key-indistinguishability for
Auth and Fresh predicates that hold only for modes with strong
groups and honest keys. Since gx and gy are signed, it also
provides partnering security, even if the group is weak.

III. DEFINING DOWNGRADE RESILIENCE

Downgrade resilience is motivated by protocols such as
SIGMA-N that despite satisfying all of the definitions above
remain vulnerable to practical attacks. We model the desired
outcome of negotiation using a function Nego that maps two
configurations with opposite roles to the protocol mode nego-
tiated (if any) in the absence of active adversaries. Formally,
if a session π talking to a session π′ completes, it must be the
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case that π.mode = Negor(π.cfg, π′.cfg), where Negor is an
abbreviation defined by case:

Negor(cfgr, cfgr̄)
4
=

{
Nego(cfgr, cfgr̄) when r = I

Nego(cfgr̄, cfgr) when r = R .

Definition 5 (Negotiation correctness): The protocol nego-
tiation is correct if, whenever a session π with role r and
configuration cfgr completes, there exists a peer configuration
cfgr̄ such that π.mode = Negor(cfgr, cfgr̄).

Although we expect this basic property to hold uncondition-
ally, many implementation errors may break it. For instance,
the FREAK attack stems from TLS clients that do not offer
export ciphersuites but still accept export-grade RSA keys.
An implementation of SIGMA-N in which an initiator accepts
groups it did not propose would also fail to satisfy negotiation
correctness.

Downgrade security complements negotiation correctness.
Informally, a protocol is downgrade secure when two sessions
of opposite roles with the same unique identifier uid always
negotiate the mode prescribed by their configurations. Hence,
downgrade security concerns situations in which one partic-
ipant can save the other, even if the latter supports broken
cryptography. However, we have to assume that at least some
of the mechanisms of the protocol (e.g., its signature modes)
are strong enough. Conversely, if both participants enable
(among others) a mode that is entirely insecure, then there
is no cryptographically sound way to prevent an attacker from
downgrading their connection.

Our definition is parameterized by a downgrade-protection
predicate DP on pairs of configurations.
DP(cfgr, cfgr̄) indicates the pairs of configurations from

which we expect downgrade protection; it is not necessarily
symmetric. By convention, cfgr is the local configuration,
cfgr̄ is the peer configuration, and when DP(cfgr, cfgr̄)
holds, we expect that the local session is protected.

Definition 6 (Downgrade security): A session π is down-
graded when π.complete = true and there is a part-
nered session π′ such that DP(π.cfg, π′.cfg), and π.mode 6=
Negoπ.role(π.cfg, π′.cfg).

The advantage Adv
downgrade
Π,DP, X (A) of A against downgrade

security with agreement on X is the probability that, when
A terminates after interacting with Π, there exists a session π
that either is downgraded or disagrees with a partnered session
π′ on X . We write Adv

downgrade
Π,DP (A) when X = {}.

First observe that protocols that support a single mode are
trivially downgrade secure with agreement on mode. Note also
that only partnered sessions get downgrade protection guaran-
tees, so our definition is meaningful only for protocols for
which partnering security holds. For role r, if DP(cfgr, cfgr̄)
holds for any peer configuration cfgr̄, we should also have
PS(cfgr); we write this concisely as DP ⊆r PS, and observe
that this property holds in our case studies. Downgrade secu-
rity is a complementary, but intuitively stronger property.

Agreement on mode (or some of its parts) is desirable
but not essential for downgrade protection. Conversely, for

configurations cfgr and cfgr̄ for which both DP(cfgr, cfgr̄)
and DP(cfgr̄, cfgr) hold, we do have downgrade protection
with agreement on mode.

The DP predicate for downgrade protection plays a role
similar to Auth for authentication, but it depends only on static
configurations and on the honesty of long-term credentials.
This reflects that downgrade protection should depend only
on the inputs to the negotiation, and not the negotiation itself,
which may be under the influence of an adversary.

Our formal configurations are session-specific, and do not
necessarily coincide with concrete configuration in real-world
protocol deployments. In particular, each configuration con-
tains credentials only for the intended peer (e.g. cached cer-
tificates, key fingerprints). As an example, our configurations
for TLS include the authentication settings of the session: the
client’s configuration expresses its intent to communicate with
a particular server, who may nevertheless support multiple
negotiable certificates, e.g., those negotiated using the server
name indication extension [13].

Ideally, DP(π.cfg, ·) would hold regardless of the second
configuration. Anticipating on our results, this is the case for
SSH, where DP is defined as follows: the configuration of π
must require authentication of its peer, all peer keys accepted
by π must be honest, and all signature algorithms must be
(agile) strong. However, this is not the case e.g. for TLS 1.2
clients, which do not get downgrade protection with servers
that support weak Diffie-Hellman groups.
Generalizing downgrade security: For simplicity, our defini-
tions above assume there is at most one correct mode reachable
from configurations π.cfg and π′.cfg, and consider adversaries
that lead sessions to pick any other mode.

More generally, we may let Nego return a set of equally-
acceptable modes and tolerate attacks that influence which of
these modes is picked by partnered sessions. In that case, of
course, we would still insist that the two sessions agree on the
negotiated mode.

As an example, we may interpret configurations as sets of
acceptable modes, and let Nego compute their intersection.
As long as the protocol is negotiation-correct and guarantees
agreement on mode, it would be downgrade secure for this
generalized definition.

A. Instantiating our model for SIGMA-N

Recall that SIGMA-N configurations are tuples
(r, ID, pkID,PK, groups) where PK is a function mapping
identities to public keys. The negotiation function describes
the correct mode upon completion. If pkA = cfgR.PK(A), it
is defined as

Nego(cfgI , cfgR)
4
= (nego(cfgI .groups, cfgR.groups),

cfgI .pkA, cfgR.pkB) .

for some function nego that selects the group. Otherwise
Nego(cfgI , cfgR)

4
= ⊥.

Note that SIGMA-N does not guarantee agreement on mode
because the responder R completes first without receiving
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any confirmation from I . Thus, Nego is defined even when
cfgR.pkB 6= cfgI .PK(B).

For such a Nego function, DP can hold only for pairs of
configurations with at most one group in common. However,
observe that if DP guarantees the honesty of peer public keys,
a participant only accepts groups whitelisted by its partnered
peer. Thus, SIGMA-N is downgrade secure if we generalize
Nego to tolerate the negotiation of any mode that uses a
group in the intersection of the groups whitelisted by both
participants, i.e.

Nego(cfgI , cfgR)
4
=

{
{(G, cfgI .pkA, cfgR.pkB) | G ∈ cfgI .groups ∩ cfgR.groups} if cfgI .pkA = cfgR.PK(A)

∅ otherwise .

B. Downgrade resilience and multi-mode security

Protocol analysts often consider protocols restricted to spe-
cific modes and configurations. For instance it is common
practice to analyze individual protocol modes in isolation.
Similarly we can restrict the initial configurations of a protocol
to those that provide downgrade protection. Consider sets of
configurations CI and CR picked by initiators and responders
respectively. We consider restricted protocols in which ses-
sions abort whenever they are initialized with a configuration
outside of the set CI ∪ CR.

Definition 7 (Protected configurations): Let DP be a down-
grade protection predicate. A pair of sets of configurations
(Cr,Cr̄) gives downgrade protection to role r if Cr×Cr̄ ⊆ DP.

The following theorem expresses that when downgrade se-
curity holds, only the security of modes that can be negotiated
in the absence of an adversary matters. That is, if peers support
insecure modes, but with such a low priority that they never
negotiate them on their own, then these modes do not affect
security in the presence of an adversary.

Theorem 1 (Downgrade resilience and multi-mode security):
Let Π be a protocol, (Cr,Cr̄) sets of configurations, DP a
downgrade protection predicate, andN = {Negor(cfgr, cfgr̄) |
cfgr, cfgr̄ ∈ Cr×Cr̄} the modes negotiable without adversary
influence. If DP ⊆r PS and
• (Cr,Cr̄) gives downgrade protection to r,
• Π is multi-mode authentication secure for Auth, X ,
• Π is partnering secure for PS, and
• Π is downgrade secure for DP,

then the protocol Π restricted to configurations in Cr ∪ Cr̄
is multi-mode authentication secure for a more lax Auth′

predicate that deems all modes outside of N as “good”,
i.e. Auth′(m, role)

4
= Auth(m, role)∨(m /∈ N ∧ role = r).

Concretely, given an adversary A against authentication for
Auth′, X , we have

Advauth
Π′, Auth′, X(A) ≤ Adv

partnering
Π, PS (A) + Adv

downgrade
Π,DP (A)

+ Advauth
Π, Auth, X(A) ,

where Π′ is Π restricted to configurations Cr ∪ Cr̄.
For key-indistinguishability and a freshness predicate

Fresh(π) that requires for matching π′ with π′.mode 6= ⊥

that π.mode = π′.mode = Negor(π.cfg, π′.cfg), we have an
analogous theorem for

Fresh′(π)
4
= Fresh(π)∨(π.mode /∈ N ∧π.role = r) .

In the context of TLS, Bhargavan et al. [11] observe that
this is a sufficient condition for the security of session keys
that are released before the handshake completes.

C. Downgrade secure sub-protocols

We are interested in minimal core sub-protocols that guaran-
tee downgrade security. To justify our use of sub-protocols in
further sections as a sound abstraction of the full protocol we
use simulation. Our sub-protocols can take additional input
as part of Init and Send queries to allow for an accurate
simulation of the full protocol. This is akin to the sub-protocols
of Bergsma et al. [7] which allow for additional signing oracles
(restricted to not break security of the sub-protocol).

For simplicity, the following definition leaves out details
about handling of long-term keys and corruption models.
When filling in the details for a particular setting, we require
the simulation to be accurate with respect to e.g. corruption,
so that it issues exactly the same corruption queries as in the
full protocol.

Definition 8 (Sub-protocol): A protocol Π̃ is a sub-protocol
of Π for X if we have an efficient simulator S with only
oracle access to Π̃ and exposing the same oracles as Π, such
that S ◦ Π̃ is indistinguishable from Π for an information-
theoretic distinguisher with access to all session variables in
X .

Formally, we model a protocol (and a simulator) as a collec-
tion of oracles sharing state, each oracle being a probabilistic
algorithm. We model access to session variables using oracles
that just return the value of the corresponding variable. The
composition S ◦ Π̃ of a simulator S and a sub-protocol Π̃
is well-defined when Π̃ includes all algorithms called by
the oracles of S. The composition itself is a new collection
of algorithms, one for each oracle of S. Operationally, the
oracles of S ◦ Π̃ behave as the algorithmic composition of the
oracles of S and Π̃. Similarly, we model an adversary A as a
single probabilistic algorithm with access to oracles, and the
composition A ◦ S (resp. A ◦ Π) behaves as the algorithmic
composition of this algorithm with the oracles of S (resp. Π).

As the next theorem shows, simulation allows to lift security
properties satisfied by a sub-protocol to the full protocol.

Theorem 2 (Downgrade protection lifting): Let Π̃ be a sub-
protocol of Π for X with {cfg, uid,mode, complete} ⊆ X , and
DP a downgrade protection predicate. Let S be a simulator for
Π̃ as in Def. 8. For any adversary A against the DP-downgrade
security of Π, the compositionA◦S ofA and S is an adversary
against the downgrade security of Π̃, and

Adv
downgrade
Π̃,DP, X

(A ◦ S) = Adv
downgrade
Π,DP, X (A) .

Proof sketch: If A is successful when interacting with Π
through the protocol oracles, then at the end of the downgrade
security experiment there must be a downgraded session π.
Since the simulation of S interacting with Π̃ is accurate with
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respect to all variables that determine whether a session is
downgraded or not, and A interacting with the simulation
behaves exactly as when interacting with the full protocol Π,
the advantage of A ◦ S against the downgrade security of Π̃
with agreement on X is the same as that of A against Π.

An analogous theorem holds for partnering security.

D. Downgrade security by whitelisting

Consider a protocol that is negotiation correct and guaran-
tees multi-mode authentication with agreement on all variables
that influence the computation of mode, then we get down-
grade protection for

DP(cfg, .) 4
= ∀cfg′. Auth(Negocfg.role(cfg, cfg′), cfg.role) .

That is, all negotiable modes from downgrade secure configu-
rations must provide authentication security. This generalizes
the Negotiation-authentication theorem of [17].

IV. SECURE SHELL

Fig. 3 models a run of the SSHv2 [38] protocol with a client
that authenticates using the publickey method [37]. The
corresponding downgrade protection sub-protocol is shown
on Fig. 4. The functions H,H ′ in these figures stand for
the composition of a fixed injective formatting function and
a negotiated hash function. Note that there is a potential
downgrade in SSHv2 from publickey authentication to
other authentication mechanisms like password. We assume
a server that is configured to require public key authentication.

Client and server configurations include lists algs of key
exchange, server signature, encryption and MAC algorithms
ordered by preference. We let F (cfg) = cfg.algs. Each party
computes the negotiated ciphersuite independently, following
the rules in the protocol specification [38, Sect. 7.1], which we
encode in a nego function. Roughly, these rules dictate that the
first algorithm for each category in cfgI that is also in cfgR be
selected. Each session locally assigns nego(F (cfgI), F (cfgR))
to a. In addition, a client configuration cfgI includes a user
name and a service name u, a function PKI mapping a pair
(a, u) to a public key, and a function PKsR mapping a value a
to a set of acceptable server public keys. Conversely, a server
configuration cfgR includes a function PKR mapping a value
a to a public key, and a function PKsI mapping a pair (a, u)
to a set of acceptable client public keys. For instance, for
OpenSSH the keys cfgI .PKsR of acceptable server public keys
are taken from the clients known_hosts file, whereas the
keys cfgR.PKsI of acceptable client public keys are taken from
the .ssh/authorized_keys file in the home directory of
the user on the server.

In terms of the template in Section II, the downgrade
protection sub-protocol uses the following variables:

cfg 4
=

{
(I, algs, u,PKI ,PKsR) for I
(R, algs,PKR,PKsI) for R

uid 4
= (nI , nR)

mode 4
= (a, u, pk I , pkR) .

Client and server exchange nonces and their algorithmic
preferences F (cfgI), F (cfgR). The server then selects a com-
patible signature key pair (pkR, skR) and signs a hash log that
includes the first two exchanged messages. When receiving
this message, the client checks that pkR is an acceptable
server key in its local configuration, computes log locally and
verifies the server signature. If the signature verifies, it selects
a key pair (pk I , sk I) in its configuration for authenticating
and sends back to the server a signature over log , u, and pk I .
When receiving this message, the server checks that pk I is an
acceptable client key in cfgR.PKsI(a, u). Each party completes
the session upon successfully verifying the peer signature,
otherwise aborts. Formally, if pkR ∈ cfgI .PKsR(a), then the
client assigns the following value to mode:

(nego(F (cfgI), F (cfgR)), cfgI .u, cfgI .PKI(a, u), pkR) ,

Otherwise it aborts. The server’s behavior is specified analo-
gously.

In the downgrade security experiment for the sub-protocol,
we allow the adversary to fill in blanks (−) arbitrarily by
providing additional input to the Send oracle of each session.

A remarkable property of the downgrade protection sub-
protocol of mutually-authenticated SSHv2 is that, because both
client and server sign (a hash of) the inputs to the nego
function, downgrade protection security relies only on the
honesty of the signature keys, the collision resistance of the
hash algorithm, and the strength of the signature algorithms.
Notably, it does not rely on the key exchange algorithm being
strong or contributive, not even on it providing high entropy
inputs to H . This means that we can prove this protocol secure
for a predicate DP that only constrains the signature and hash
algorithms of cfgr, and requires honesty of peer public keys
in cfgr.PKsr̄, but has no requirements on cfgr̄.

We complete our security model with oracles pk ←
KeyGen(keycfg) for key generation, sk ← Corrupt(pk) for
adaptive corruption, and Coerce(pk) for adverarial key reg-
istration. A public key pk is honest if it was generated by a
query to oracle KeyGen but not corrupted by a Corrupt query.

A. SSHv2 is downgrade secure

Our results on the downgrade security of SSH rely on the
security of agile hash functions and signatures.

As protocol participants may negotiate different hash func-
tions we need to capture collisions across hash functions.

Definition 9 (Agile collision resistance): Let h? be a hash
function, and H a set of hash functions. Consider the game:

- h, v, v′ ← A()
- Return h?(v) = h(v′) ∧ v 6= v′

The collision resistance advantage of A, AdvCR
h?, P (A) is the

probability that the game returns true.
If the ranges of hash functions are disjoint, agile collision

resistance reduces to ordinary collision resistance.
Bhargavan et al. [11] also define existential unforgeability

under chosen-message attacks (EUF-CMA) for agile hash-
then-sign signatures. We here consider such signatures as
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Client I Server R

VI

VR

II = KEXINIT(nI , algsI)
IR = KEXINIT(nR, algsR)

KEXDH_INIT(gx)

KEXDH_REPLY(pkR, g
y, sign(skR, hash(log)))

(k1, k2) = kdf(gxy, log)(k1, k2) = kdf(gxy, log)
NEWKEYS

NEWKEYS

{USERAUTH_REQUEST(u, pk I , sign(sk I , hash(log , u, pk I)))}k1
{USERAUTH_SUCCESS}k2

Fig. 3: SSHv2 mutually-authenticated key-exchange, where
log = H(VI , VR, II , IR, pkR, g

x, gy, gxy)

Client I Server R

m1 = (nI , F (cfgI))
m2 = (nR, F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

uid = (nI , nR)
a = nego(F (cfgI), F (cfgR))

pkR, sign(skR, hash(log))

u, pk I , sign(sk I , hash(log , u, pk I))

mode = (a, u, pk I , pkR)
complete = true

mode = (a, u, pk I , pkR)
complete = true

Fig. 4: SSH-sub: SSHv2 downgrade protection sub-protocol
SSH-sub, where log = H ′(m1,m2,−, pkR,−)

primitives, although they would usually be proved secure in
the random oracle model.

Definition 10 (Agile EUF-CMA security): Consider an agile
signature scheme s = (keygen, sign, verify). Let p? be an
agility parameter, and P a set of parameters. Consider the
forgery game:

- Let pk, sk ← keygen()
- Set M := {} and run m,σ ← ASign(pk)
- Return m /∈M ∧ verify(pk, p?,m, σ)

where Sign(p,m) returns ⊥ if p /∈ P and otherwise sets M :=
M ∪ {m} before returning sign(sk, p,m).

The advantage AdvEUF-CMA
s, p?,P (A) of A in forging a signature

for s is the probability that the forgery game returns true.
Downgrade security of SSHv2 sub-protocol: We prove first
the downgrade security of the sub-protocol. We will show later
that the sub-protocol soundly abstracts the full protocol. Thus,
any downgrade attack on the full protocol can be turned into
a downgrade attack on the sub-protocol.

Let Nego(cfgI , cfgR)
4
= (a, cfgI .u, cfgI .PKI(a, u), pkR) ,

where a = nego(F (cfgI), F (cfgR)) if pkR = cfgR.PKR(a),
and ⊥ otherwise.

Let M be the set of modes supported by SSH and

M? 4
= {Negocfg.role(cfg, cfg′)|PS(cfg)}

be the modes negotiated between any pair of configurations
for which the first guarantees partnering security.

Let Ps
4
= {p | s, p = mode.sig ∧ mode ∈ M} be the

agility parameters for the signature scheme s of a peer, H be
the set of all hash algorithms supported by SSH, and H? 4

=
{mode.hash | mode ∈ M?} be the hash algorithms used by
partnering secure modes.

Theorem 3 (Partnering security of SSH-sub): Let PS be
such that PS(cfg) implies that all public keys in the range
of cfg.PKscfg.role are honest. Given an adversary A against
the partnering security of SSH-sub, we construct adversaries
Bs,p,i and Bh running in about the same time as A such that
Adv

partnering
SSH-sub, PS(A) is at most∑

h∈H?

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where ns is the number of keys generated for scheme s.
Hence we reduce partnering security to the agile security

of collision resistant hash functions and signatures negotiable
under PS.

We now consider downgrade security. Nego,M, Ps, and H
are defined as above. We re-defineM?, H? to use DP instead
of PS, i.e. M? 4

= {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)}.
Theorem 4 (Downgrade security of SSH sub-protocol): Let

DP be such that DP(cfg, ·) implies that all public keys in
the range of cfg.PKcfg.role are honest. Given an adversary
A against the downgrade security of the sub-protocol, we
construct adversaries Bs,p,i and Bh running in about the same
time as A such that Adv

downgrade
SSH-sub,DP(A) is at most

n2

2|uid|/2 +
∑
h∈H?

AdvCR
h,H(Bh)+

∑
(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns the number of keys
generated for scheme s, and |uid| the size of unique identifiers.

Theorem 5 (Simulation for SSH sub-protocol): SSH-sub
(Fig. 4) is a sub-protocol of SSH (Fig. 3) for their common
variables.
Proof sketch: The simulator S forwards queries to SSH-sub
after applying message parsing and formatting functions. It
does so by providing appropriate values for blanks (−) and
simulating missing messages in the sub-protocol. In particular
it generates fresh Diffie-Hellman shares of his own.

V. INTERNET KEY EXCHANGE

The Internet Key Exchange (IKE) protocol is the key
exchange component of the IPsec suite of protocols. Two
versions of the protocol are commonly deployed: IKEv1 [21]
and IKEv2 [24]. Both variants are inspired by the SIGMA
protocol [26] recalled in the introduction, and are believed to
inherit its authentication and key-indistinguishability guaran-
tees. Next, we study their downgrade protection sub-protocols.

A. IKEv1 does not prevent downgrades

We first consider the DHE-PSK modes of IKEv1, whose
first three messages are depicted in Figure 5. The protocol
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presumes that both parties can select the pre-shared key
(psk) to use from the negotiated security association SAR
and identifiers IDI and IDR; it then confirms that the two
parties agree, using a MAC based on psk. The two parties
also exchange Diffie-Hellman shares and use them to derive
session keys and protect application data but, in ‘aggressive’
modes, their authentication and downgrade-protection relies
solely on the pre-shared key.

The corresponding downgrade protection sub-protocol is
depicted in Figure 6. The initiator begins by extracting a
list of supported security associations [SA1, . . . ,SAn] from
its configuration, presumably ordered by preference, formats
them (using the function F ), and sends them along with a
nonce (nI ) to the responder. Each security association specifies
a Diffie-Hellman group (for the key exchange); an encryption
scheme and a hash algorithm (for protecting messages); and
a peer authentication method. The responder chooses one
of these associations (SAR), based on its own configuration,
and responds with its own nonce. The initiator checks that
this choice is compatible with its proposals, which completes
the negotiation. To authenticate one another, to provide key
confirmation, and to prevent downgrades, the initiator and
responder exchange MACs, optionally signed when using
certificates for authentication. For simplicity, Figures 5 and
6 depict the use of just a pre-shared key for authentication.
The MACs are computed with a key derived from the pre-
shared key and the nonces, over some important parts of the
protocol transcript: the key shares, the client’s offered security
associations and the sender’s identity.

Surprisingly, the MAC does not cover the negotiated secu-
rity association (SAR), and this omission leads to a downgrade
attack. A man-in-the-middle can simply modify the second
message to replace the server’s chosen SAR with a different
SA′R compatible with the initiator’s proposals. If this new SA′R
uses an encryption algorithm that the attacker can break (e.g.
DES or NULL), then the attacker can break the confidentiality
of the first messages sent by the initiator. (Similarly, the first
MAC includes IDR but not IDI , so an attacker can modify
IDI in the first message, and yet the initiator will complete
the sub-protocol without detecting the modification; this is less
problematic in the full protocol because IKEv1 continues with
a confirmation message from the responder.)

We instantiate our main definitions to IKEv1 to better un-
derstand this downgrade-protection failure and propose fixes.
Clearly, the protocol offers no authentication guarantees unless
the PSKs used by both parties are honest, so we always make
that assumption in the following, which enables us to omit the
choice of PSKs from the negotiation predicates. In IKEv1, the
mac and kdf functions are negotiated as part of SAR. They
are effectively HMAC-MD5 or HMAC-SHA1. For simplicity,
we also restrict our attention to clients and servers configured
to use only HMAC-SHA1. (See §IV for an explicit handling
of cryptographic agility.) We use the following notations for
the sub-protocol:
• the goal is to agree on a mode (SAR, IDI , IDR);
• cfgI = (IDI , [SA1, . . . , SAn]).

• cfgR includes IDR and is otherwise unspecified; it would
typically also include a list of SAs.
• F is a formatting function from cfgI to the payload of

the first message that encodes the list of proposals above.
• nego is a partial function, used by the responder to map

F (cfgI) and cfgR to some SAR.
• check is used by the initiator to confirm that the mode is

acceptable, checking for instance that SAR matches one of the
initiator’s proposals [SA1, . . . , SAn].
• Nego(cfgI , cfgR), our specification for negotiation, is

defined as (nego(F (cfgI), cfgR), cfgI .IDI , cfgR.IDR) when
check succeeds, and is otherwise undefined.
The definitions of F , nego, and check follow from the stan-
dard; their details are unimportant in our presentation.

We easily get partnering security (Definition 2) from the
security of both kdf (modeled as a PRF keyed with psk)
and mac (modeled as a MAC, relying e.g. on existential
unforgeability under chosen-message attacks).

To simplify our presentation, we assume in our formal theo-
rem statement a universe of configurationsMfix with fixed kdf
and mac algorithms. Consequently, we can rely on standard
pseudo-randomness and chosen message attack unforgeabiltiy
assumptions for kdf and mac and thus simplify our theorem
and proof. We hope this is useful for a reader accustomed
to traditional non-agile provable security developments. This
is still meaningful, as configurations may vary for instance
on the choice of groups in the full protocol, moreover the
proof acts as a template for a fully agile theorem analogous
to Theorem 3.

Theorem 6 (Partnering security of IKEv1-sub):
LetMfix be the universe of configurations used by protocol

participants and let PS be such that all psks referred to by
handles of SAi are honest. Given an adversary A against
the partnering security of IKEv1-sub, we construct adversaries
B and B′ running in about the same time as A such that
Adv

partnering
IKEv1-sub, PS(A) is at most

n · (AdvPRF(B) + AdvEUF-CMA(B′)) ,

where n is the number of sessions.
The proof relies on the honesty of psk and the freshness of

uid in the key derivation. The key km is random, and equal
only if two sessions agree on uid. This is confirmed using the
MAC.

On the other hand, the protocol offers provable downgrade
protection only for very restrictive configurations. For exam-
ple, relying on the unambiguous formatting of IDI and IDR
in the MACed payloads, we have downgrade protection when

1) the client (or the server) uses each PSK only for a fixed
SAR, IDI , IDR; or

2) the client proposes only one SA at a time and checks that
the server echoes this proposal in SAR, and moreover SA
determines IDI .

Our analysis of the IKEv1 downgrade-protection sub-
protocol suggests an obvious fix: include the mode
(SAR, IDI , IDR) in both MACs. We then obtain downgrade
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Init. I Resp. R

HDR1(nI , [SA1, . . . ,SAn], gx,IDI)

km = kdf(psk , nI | nR)

HDR2(nR,SAR, gy,IDR,mac(km,m1))

km = kdf(psk , nI | nR)

HDR3(mac(km,m2))

Fig. 5: IKEv1 aggressive DHE-PSK protocol (first messages).

Init. I Resp. R

nI , F (cfgI),IDI

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)
mode = (SAR,IDI ,IDR)
km = kdf(psk , nI | nR)

nR,SAR,IDR,mac(km,− | F (cfgI) | IDR)

uid = (nI , nR)
mode = (SAR,IDI ,IDR)
check(cfgI ,mode)
km = kdf(psk , nI | nR)

mac(km,− | F (cfgI) | IDI)

complete = true complete = true

Fig. 6: IKEv1 aggressive DHE-PSK downgrade protection
sub-protocol. F is a formatting function from cfgI to the
payload of the first message that encodes the list of proposals.

protection under the same conditions as for partnering: that
PSKs be honest and both kdf and mac be secure.

To exercise e now prove partnering security and downgrade
security.

We also considered other modes of IKEv1, based on signa-
tures instead of PSKs (much as in our introductory SIGMA
example), and also when the MACs are protected using the
keys derived from the Diffie-Hellman exchange. In those cases,
the downgrade-protection sub-protocol is almost the same:
SAR is similarly left unauthenticated and, even if the messages
are protected, there is still an attack when the client proposes
a weak group, as explained in the introduction.

B. IKEv2 does not prevent downgrades

IKEv2 [24] is a revision of the IKEv1 protocol intended
to simplify the specification and extend it to cover popular
authentication methods such as EAP [1].

1) IKEv2 with signatures: We first consider the plain,
signature-based sub-protocol (see Figure 8). For brevity, we
omit a description of the full protocol (its first messages appear
in Figure 11) and we reuse the notations introduced for IKEv1.
We also ignore signature agility issues, since in IKEv2 the
hash algorithm for signing is not negotiated; it is chosen by
the sender, who almost always picks SHA1.

As in IKEv1, the initiator begins by offering a sequence of
security associations (extracted from cfgI ) and the responder
chooses one of these. In the full protocol, the initiator and
responder also exchange Diffie-Hellman public values and use
them to derive session keys, used (in particular) to encrypt and
MAC all messages after m2.

The client and the server then exchange signatures over
MACs of their own views of the protocol (presumably to pro-
vide some deniability): their full first message, their identity,
and the nonce of their peer. In particular, and in contrast with
IKEv1, the server’s signature covers its chosen SAR but not
the initiator’s offered security associations.

The sub-protocol leaves important payloads unauthenti-
cated: the peers do not sign or MAC each other’s DH public
keys, and not even each other’s identities. It also ignores
the fact that, in the full protocol, all messages after m2 are
encrypted and MACed using a derived key. Thus, some attacks
against the sub-protocol may not occur in the full protocol.

Still, there is a downgrade attack against the full protocol
as soon as the client tolerates one weak group. The attack
proceeds as follows (see Fig. 22 in the appendix). Suppose
an initiator offers two security associations, one using the
1024-bit Diffie-Hellman group 14 and another using the 768-
bit group 1. The attacker tampers with the first message to
delete the first association, so that the responder thinks that
the initiator only supports group 1. The attacker forwards the
responder’s messages, and now the initiator thinks that the
responder only supports group 1. If the attacker has performed
enough pre-computation on group 1 so that he can compute
the discrete log of a key share, he can then compute the session
and MAC keys and impersonate the responder.

In practice, executing this attack requires the MitM to send
an extra INVALID_KE message to the client. This does not
present any difficulty since this message is unauthenticated.

The attack described above is reminiscent of Logjam [2]
and is arguably feasible with modern computing power, or
will be in the coming years. There are other downgrade attacks
with a similar impact on IKEv2: the man-in-the-middle could
downgrade the security association to use weak encryption or
authentication algorithms.

2) IKEv2 with EAP client authentication: We now consider
the downgrade protection sub-protocol in case the initiator is
authenticated using some EAP method, whereas the responder
still uses a certificate and a signature (see Figure 10).

In this variant, in the third message, the initiator sends
its identity without any signature. Instead, after verifying the
server’s signature, it engages in an application-level ‘embed-
ded’ authentication protocol that generates a shared key. Its
use of EAP is asymmetric, in that EAP authenticates the
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Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . ,SAn], gx, infoI)

m2 = SA_INIT(nR,SAR, gy, infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI))))]ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]k
′
e

Fig. 7: IKEv2 protocol with mutual signatures.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego′(F (cfgI), cfgR)

m2 = (nR,SAR)

uid = (nI , nR)
Check(cfgI ,SAR)

IDI , sign(sk I , H(m1, nR,IDI ,−))

IDR, sign(skR, H
′(m2, nI ,IDR,−))

mode = (SAR,IDI ,IDR)
complete = true

mode = (SAR,IDI ,IDR)
complete = true

Fig. 8: IKEv2 sub-protocol with mutual signatures.

Init. I Resp. R

m1 = SA_INIT(nI , [SA1, . . . ,SAn], (G, gx), infoI)

m2 = SA_INIT(nR,SAR, (G, gy), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI)]ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]k
′
e

[AUTH(eap1(. . .))]ke

[AUTH(eap2(. . .))]k
′
e

msk = EAP shared key msk = EAP shared key

[AUTH(mac(msk ,m1 | nR | mac(km,IDI)))]ke

[AUTH(mac(msk ,m2 | nI | mac(k′m,IDR)))]k
′
e

Fig. 9: IKEv2 protocol with EAP client authentication.

Init. I Resp. R

m1 = (nI , F (cfgI))

uid = (nI , nR)
SAR = nego(F (cfgI), cfgR)

m2 = (nR,SAR)

uid = (nI , nR)
Check(cfgI ,SAR)

IDI

IDR, sign(skR, H(m2, nI ,IDR,−))

mac(msk , H ′(m1, nR,IDI ,−))

mac(msk , H(m2, nI ,IDR,−))

mode = (SAR,IDI ,IDR)
complete = true

mode = (SAR,IDI ,IDR)
complete = true

Fig. 10: IKEv2 sub-protocol with EAP client authentication.

Init. I MitM Resp. R

m1 = SA_INIT(nI , [SAstrong ,SAnull ], (G, g
x), infoI) m′1 = SA_INIT(nI , [SAnull ], (G, g

x), infoI)

m2 = SA_INIT(nR,SAnull , (G, g
y), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)Encryption and Integrity set to null

AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI)))) AUTH(IDI)

AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))

Data

Fig. 11: Man-in-the-middle cross-protocol downgrade attack on IKEv2 by mixing signatures and EAP authentication

initiatior (IDI ) but does not re-authenticate the responder. The
resulting shared key is used to MAC the initiator’s view of the
negotiation: the full first message, including the client’s offered
security associations, the responder’s nonce, and a MAC over
the initiator’s identity with the session key.

Enabling EAP actually weakens downgrade protection: the
responder (still) does not sign the initiator’s proposals, and
also does not sign the chosen client AUTH method (signature
or EAP), and this opens the possibility of cross-authentication
attacks between different AUTH methods.

For example, consider the attack in Fig. 11. Suppose the ini-

tiator disables EAP, but the responder supports it. The attacker
can then replace the initiator’s signature message with an EAP
authentication message, forward the responder’s signature, and
thereby downgrade the SA used by the initiator, to use a weak
encryption algorithm, for instance. In comparison with the first
attack on IKEv2 discussed above, this attack does not require
breaking the Diffie-Hellman exchange to gain control of the
key used to MAC the signature payloads.

This would be a powerful downgrade, and it would allow
offline decryption of the initiator’s subsequent messages, but
it is still difficult to implement in practice because the au-
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thentication messages are themselves encrypted-and-MACed.
Hence, the attack requires that the attacker should be able to
break the (downgraded) authenticated encryption mechanism
in the SA.

For example, it can be mounted if the encryption and
integrity algorithms are downgraded to NULL, an allowed
(but not recommended) option in IKEv2. In particular, the
specification says: “Though the security of negotiated Child
SAs does not depend on the strength of the encryption and
integrity protection negotiated in the IKE SA, implementations
MUST NOT negotiate NONE as the IKE integrity protection
algorithm or ENCR_NULL as the IKE encryption algorithm.”
[24, Section 5]. Our attack shows that this assumption is
wrong: the downgrade security of IKEv2 crucially depends
on the strength of the encryption and integrity algorithms,
especially when both signatures and EAP are enabled.

We also note that in case the initiator also supports EAP, any
subsequent initiator authentication makes no difference since
the initiator is now talking to the attacker and does not seek
to re-authenticate the responder.

A simple fix for all these attacks would be for the responder
to include the client’s first message and authentication mode in
its signature (at the cost of losing deniability). We could then
obtain downgrade protection simply by relying on the strength
of the responder’s signature, irrespective of weak groups and
broken encryption algorithms.

C. Version downgrades from IKEv2 to IKEv1

IKE does not include a version negotiation protocol. Ini-
tiators first try to connect with IKEv2 and if that fails they
fall back to IKEv1. This allows a simple downgrade attack
between this versions, since IKEv1 has no way of authenti-
cating the highest supported version. The IKEv2 specification
acknowledges this version downgrade possibility to IKEv1,
but sets up a flag to prevent future downgrade attacks from
IKEv(n > 2) to IKEv2: “Note that IKEv1 does not follow
these rules, because there is no way in v1 of noting that
you are capable of speaking a higher version number. So an
active attacker can trick two v2-capable nodes into speaking
v1. When a v2-capable node negotiates down to v1, it should
note that fact in its logs” [24, Section 2.5].

VI. Z REAL-TIME PROTOCOL

ZRTP [39] is a specialized protocol used to establish key
material for encrypted voice-over-IP (VoIP) communications.
Unlike TLS, ZRTP does not rely on public-key infrastructure
or certificates for authentication. Instead, participants authen-
ticate each other by comparing a “short authentication string”
derived from the session key, also known as a SAS, via some
trusted channel. For our purposes in this analysis, we assume
in our model that the SAS comparison is conducted via an
ideal, trusted channel that is not susceptible to tampering.

(Formally we model this using a CompareSAS(π, π′) oracle
that makes session π compare its own sas to that of π′,
if assigned. Session π must be in a waiting state before
this oracle call and continues if the two match, otherwise

aborts. We also provide a LeakSAS(π) oracle that marks
π’s sas as dishonest and leaks it to the adversarym, and a
FakeSAS(π, sas′) oracle that let the adversary inject its own
sas′ to be compared with π’s sas.)

Because the SAS is short, the protocol offers a more limited
form of protection. If the SAS length is ` bits, then the
probability of an attacker subverting the authentication is at
least 2−` with each execution of the handshake. In most
implementations ` is typically a small value, e.g. 16. The
use of a short authentication string presents challenges for
both key exchange and downgrade security. For example, if
the SAS employed a full-length collision-resistant hash, it
would suffice for the parties to exchange a hash of the full
protocol transcript. However, even when constructed using
a (truncated) collision-resistant hash function, the SAS is
too short to provide the necessary protection, and additional
measures must be taken.

A. ZRTP does not prevent downgrades

The ZRTP protocol is presented in Figure 12. The down-
grade protection sub-protocol is presented in Figure13. The
ciphersuite negotiation is conducted within the first two
(“Hello”) messages exchanged by the Initiator and the Re-
sponder. The chosen ciphersuite ai is determined by selecting
a ciphersuite in the intersection of the available algorithms pre-
sented by each party. Ciphersuites consist of a key exchange
algorithm, a cipher and MAC algorithm for subsequent data
exchange, and a SAS algorithm determining the length and
format of the SAS string. Additionally, the protocol negotiates
options such as a “trusted” PBX flag and an optional signature
on the SAS.

Following the initial negotiation messages, the parties deter-
mine who will play the role of the Initiator, engage in a key
exchange, and derive session keys. Transcript correctness is
enforced by incorporating a hash of most of the transcript into
the key derivation function, which produces both session keys
and a SAS. A final mechanism tries to authenticate each of the
handshake messages by computing a MAC over each message,
using a key that is revealed in the subsequent message. To bind
these messages together, ZRTP uses a hash chain.1

Downgrading protocol versions: ZRTP includes a negotiation
mechanism for protocol versions and options that is not in-
corporated into the calculation of the shared secrets and SAS.
When the parties support multiple versions of the protocol and
protocol options, a MitM can substitute the protocol versions
vI , vR to downgrade both parties to a previous version of
the protocol, as illustrated in Figure 14. Moreover, since the
first (Initiator Hello) message is not authenticated, the attacker
can also change the options flags oI . This second proce-
dure requires the attacker to defeat the hash chain security

1Specifically, each participant computes an initial nonce H0 and hashes it
to obtain the sequence H3 = hash(H2 = hash(H1 = hash(H0))). At each
message in the handshake, the party reveals Hi and uses Hi−1 as a MAC
key to authenticate the current message. Verification is only possible when
the next message is received. The initial value H0 is revealed only within the
encrypted confirmation message at the conclusion of the protocol.
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Initiator I Responder R

m1 = Hello(vI ,IDI , [aI,1, . . . , aI,n])

m2 = Hello(vR,IDR, [aR,1, . . . , aR,n])

m3 = Commit(IDI , hash(m5), ai)

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , k
m
R , k

e
I , k

e
R, sas)

= kdf(gxy,IDI ,IDR,
hash(m2,m3,m4,m5))

(kmI , k
m
R , k

e
I , k

e
R, sas)

= kdf(gxy,IDI ,IDR,
hash(m2,m3,m4,m5))

m6 = Confirm1(mac(kmR , [flags]k
e
R))

m7 = Confirm2(mac(kmI , [flags]k
e
I ))

sas

sas

Fig. 12: ZRTP protocol

Initiator I Responder R

m1 = (IDI , F (cfgI)),mac(kI ,m1), hash(kI)

m2 = (IDR, F (cfgR)),mac(kR,m2), hash(kR)

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, hash(nI)), kI

m4 = (nR), kR

m5 = (nI)

uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI ,IDR, h,−)

check(cfgR, a)
uid = h = H(m2,m3,m4,m5,−)
sas = H ′(IDI ,IDR, h,−)

sas

sas

mode = (a,IDI ,IDR)
complete = true

mode = (a,IDI ,IDR)
complete = true

Fig. 13: ZRTP downgrade protection sub-protocol

mechanism. Unfortunately this may be done by capturing and
delaying subsequent messages until the authentication key for
earlier messages has been revealed, allowing the attacker to
change messages arbitrarily. The fix for this vulnerability is
straightforward: all negotiation messages should be included
in the calculation of the session key and SAS.
Downgrade from DH to PSK: ZRTP supports both Diffie-
Hellman key exchange and a pre-shared key mode. The latter
is analogous to the session resumption handshake in TLS, in
that it provides an inexpensive (symmetric-key only) hand-
shake, which operates under the assumption that the parties
have previously completed a full Diffie-Hellman handshake to
establish a pre-shared key. The limitation of this pre-shared
mode is that it does not force the parties to commit to their
protocol inputs before revealing them, which admits an offline
attack in which a MitM may identify protocol inputs that
result in a chosen SAS. A full attack is shown in Figure 23,
beginning with the establishment of a shared key (via Diffie-
Hellman) and restarting with the PSK mode.

VII. TRANSPORT LAYER SECURITY

The Transport Layer Security protocol (TLS) is used to
provide secure channels for a variety of Internet applications.
It offers a number of key exchange mechanisms, authentication
methods, and encryption schemes, so that users can pick and
choose mechanisms best suited to their needs.

A negative consequence of this agility is the potential
for downgrades. TLS clients and servers commonly support
multiple protocol versions and hundreds of ciphersuites, even
though some of them are known to be obsolete or even broken.
For example, SSL 2 is still supported by 10% of web servers
even though it has long been known to be vulnerable to
multiple attacks including, notably, a ciphersuite downgrade
attack [36]. More recently, about 25% of web servers were
found to still support export-grade ciphersuites that were
deprecated in 2000, enabling powerful downgrade and server
impersonation attacks like FREAK [8] and Logjam [2].

Since SSL 3, all versions of TLS incorporate various down-
grade protection mechanisms. We will analyze the downgrade
protection provided by TLS 1.2 and the proposed improve-
ments in TLS 1.3.

A. Negotiation in TLS 1.2

Figure 15 depicts a mutually authenticated TLS connection
incorporating a Diffie-Hellman key exchange that uses either
a finite-field group (DHE) or an elliptic curve (ECDHE). Most
TLS connections authenticate only the server, but the figure
also depicts the optional client authentication messages.

The client I first sends a hello message (CH) containing
a nonce (nI ) and a list of agility parameters [a1, . . . , an]
that include ciphersuites, compression methods, and protocol
extensions. The server responds with a hello message (SH)
containing its chosen parameters (aR). At this point, the client
and server know which key exchange they will execute next. In
an ephemeral Diffie-Hellman key exchange (DHE/ECDHE),
the server sends its public-key certificate (certR) and uses
the private key to sign the nonces, the group (or curve)
parameters (p, g) and its own Diffie-Hellman public value (gy).
The server may let the client remain anonymous, or it may
require client authentication (specifying the class of certificates
[cert1, . . . , certm] that it is willing to accept), in which case,
the client sends its own certificate (certI ), its own public
value (gx) and uses its private key to sign the full protocol
transcript so far (log1). Now the client and server derive the
master secret (ms) and session keys (k1, k2) from the nonces
and shared secret (gxy). To complete the key exchange, both
sides compute MACs using the master secret over the full
protocol transcript, and exchange them in finished messages
(CFIN,SFIN). These MACs provide key confirmation as well
as downgrade protection. Once they have been exchanged,
the client and server can start exchanging application data
encrypted under the new session keys ([Data]k).

B. TLS 1.2 does not prevent downgrades

The downgrade protection sub-protocol for TLS 1.2 is
depicted in Fig. 16. For simplicity, we consider only server-
authenticated (EC)DHE connections, where clients are anony-
mous.

The client offers its entire public configuration (F (cfgI))
to the server, which then computes the negotiated parameters
(mode) that consist of the protocol version (v), the chosen
parameters (aR), the group (GR), the server identity (pkR),
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Initiator I MitM Responder R

m1 = Hello(vI , oI ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m1)

m2 = Hello(vR, oR,IDR, [aR,1, . . . , aR,n], h),m

m′1 = Hello(v′I , oI ,IDR, [aR,1, . . . , aR,n], $), $

m2 = Hello(v′R, oR,IDR, [aR,1, . . . , aR,n]), hash(KR)),mac(KR,m2)

m′′1 = Hello(v′I , oI ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m
′′
1)

m3 = Commit(IDI , hash(m5), ai,KI) m′′′1 = Hello(v′I , o
′
I ,IDI , [aI,1, . . . , aI,n], hash(KI)),mac(KI ,m

′′′
1 )

m3

m4 = DHPart1(gy)

m5 = DHPart2(gx)

(kmI , k
m
R , k

e
R, k

e
S , sas) =

kdf(gxy,IDI ,IDR, hash(m2,m3,m4,m5))
(kmI , k

m
R , k

e
R, k

e
S , sas) =

kdf(gxy,IDI ,IDR, hash(m2,m3,m4,m5))

m6 = Confirm1(mac(kmR , [flags]k
e
R))

m7 = Confirm2(mac(kmI , [flags]k
e
I ))

sas

sas

Fig. 14: Man-in-the-Middle attack on ZRTP version and option negotiation. We assume that both peers prefer version vI = vR,
but will support an older version v′I = v′R. The attacker additionally modifies the options flags oI transmitted in m1.

Client I Server I

CH(nI , vmaxI , [a1, . . . , an])

SH(nR, v, aR)

SC(certR)

SKE(sign(skR, hash1(nI | nR | p | g | gy)))

SCR∗([cert1, . . . , certm])

SHD

CC∗(certI)log1 log1

CKE(gx)log2 log2

CCV∗(sign(sk I , hash2(log1)))

(ms, k1, k2) = kdf(gxy, nI | nR) (ms, k1, k2) = kdf(gxy, nI | nR)

log3 log3

[CFIN(mac(ms, hash(log2)))]k1

[SFIN(mac(ms, hash(log3)))]k2

[Data]k1

[Data]k2

Fig. 15: TLS with (EC)DHE key exchange. Messages labeled
with * occur only when client authentication is enabled.

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR, sign(skR, hash1(nI | nR | GR | gy)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
Check(cfgI ,mode)
ms = kdf(gxy, nI | nR)

ms = kdf(gxy, nI | nR)

m3 = (gx,mac(ms, H(m1,m2, g
x,−)))

m4 = (mac(ms, H ′(m1,m2,m3,−)))

complete = true complete = true

Fig. 16: TLS 1.2 sub-protocol

and the hash function used in the server signature (hash1). The
protocol version and the ciphersuite in aR together determine
other protocol parameters, such as the key derivation function
(kdf), the authenticated encryption scheme, and the MAC and
hash functions used in the finished messages (mac, hash).
We note that the server may possess several identities and
choose one based on the chosen ciphersuite or other protocol
extensions offered by the client.

Downgrade protection primarily relies on the MACs in the
finished messages, which in turn rely on the strength of the
group GR and the negotiated algorithms kdf, hash, and mac.
If a client and server support a weak group, for example, then
an attacker can downgrade the group and then break the master
secret to forge the MACs, as in Logjam.

A second protection mechanism is the server signature,
but we observe that this signature covers only the unique
identifier and the group GR, but none of the other negotiated
parameters. For example, the Logjam attacker tricks the server
into using an export ciphersuite (DHE-EXPORT) that results
in a weak Diffie-Hellman group. The client does not support
DHE-EXPORT and still thinks it is using standard DHE, but
the attacker can forge the MAC to hide this discrepancy.
Importantly, the server signature fails to prevent this attack,
because it does not include the ciphersuite. Before this attack
was disclosed, many implementations of TLS clients still
accepted arbitrary groups.

Furthermore, we note that the negotiated algorithms can be
weak in practice. For example, TLS 1.2 supports MD5-based
signatures; TLS 1.1 derives keys and transcript hashes based
on combinations of MD5 and SHA1. These weak constructions
also lead to downgrade and impersonation attacks [9].

Let minr,maxr be the supported minimum and maximum
protocol versions, let algsr = [a1, . . . , am] = F (cfgI) be the
ciphersuites and extensions, and let groupsr be the groups
supported by role r. In terms of the general definition in
Section II, the downgrade protection sub-protocol uses the
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following session variables:

cfg 4
=

{
(I,minI ,maxI , algsI , groupsI ,PKsR) for I
(R,minR,maxR, algsR, groupsR,PKR) for R

uid 4
= (nI , nR)

mode 4
= (v, aR, GR, pkR, hash1)

The negotiation function nego is executed by the server and
is based on the server’s configuration cfgR and the server’s
partial view F (cfgI) of the client configuration. The client
does not get to inspect cfgR, but it does check that the resulting
mode is consistent with its configuration.

The protocol only offers downgrade protection if the peer
is authenticated with an honest key and strong signature and
hash algorithms. So we will consider downgrade security from
the viewpoint of a client, while assuming that all keys in PKsR
are honest and hash1 is collision-resistant. We get partnering
security from the freshness of the uid and the strength of the
server signature (which includes the uid ).

However, downgrade protection for the client cannot rely
on just the signature, and hence requires one of the following
conditions:

• the server uses its pkR only with modes that use strong
groups, key derivation algorithm kdf, hash and mac
algorithms and the client is aware of the servers choice
and aborts whenever it sees an unexpected algorithm
combination;
• the client only accepts modes with strong groups (in
particular not the groups ‘negotiated’ by the Logjam
and the ECDHE-DHE cross-protocol attacks [30]) and
algorithms.

An extreme example of the first condition would be to
require that the server uses a different public key for each
mode; the proofs in [17] rely on this somewhat unrealistic
assumption to avoid ECDHE-DHE cross-protocol attacks and
the need for agile security assumptions. More pragmatically,
if a client and server only support TLS 1.2 (and hence only
strong hash constructions), only support strong groups and
curves for (EC)DHE and all other ciphersuites that use Diffie-
Hellman, then TLS clients can be protected from downgrade.
Of course, we rely on the server using only honest and strong
signing keys (e.g. 2048-bit RSA) with strong signature and
hash algorithms (e.g. RSA-SHA256).

We also get some downgrade protection for the server when
the client is authenticated, relying only on the client signature
and the transcript hash algorithm hash. Pragmatically, TLS
1.2 servers that require client authentication and only accept
strong signature and hash algorithms cannot themselves be
tricked into completing a connection with a weak mode.

As evidenced by the Logjam attack, the TLS protocol does
not satisfy downgrade security unless the DP predicate guar-
antees that the client and server configurations exclusively use
strong algorithms, hence guaranteeing that all the negotiated
algorithms used in the finished MACs are strong.

C. On downgrade protection in Draft 10 of TLS 1.3

Draft 10 of TLS 1.3, the next version of TLS, proposes
a protocol that is quite different from TLS 1.2; a typical
run of the 1-round-trip mode is depicted in Fig. 17. The
corresponding downgrade protection sub-protocol is in Fig. 18.

In contrast to TLS 1.2, the client hello message includes
Diffie-Hellman public values for the client’s preferred groups.
The server may choose one of these groups or ask for a public
value in a different group, as long as it is one supported by
the client. The server sends its own public value in the server
hello message, and all subsequent messages are encrypted and
integrity-protected using the Diffie-Hellman shared key.

For downgrade security from the client’s viewpoint, a key
difference is that server signatures in TLS 1.3 cover the full
transcript, and hence they cover the full client and server hello
messages. This foils most of the downgrade attacks on TLS
1.2; as long as the client only accepts strong signature and
hash algorithms and honest public keys from the server, it
cannot be downgraded to a weaker ciphersuite, and moreover,
it yields agreement on the chosen ciphersuite.

Although Draft 10 of TLS 1.3 provides strong downgrade
protection for the ciphersuite, downgrade attacks remain,
in particular, because clients and servers will continue to
support lower protocol versions for backward compatibility.
Considering that TLS 1.2 does not provide strong downgrade
protections, this unfortunately means that all the downgrade
attacks on TLS 1.2 will be inherited by TLS 1.3.

There are three downgrade attacks possible on TLS 1.3 as
described in Draft 10. One, an attacker downgrades the con-
nection to TLS 1.2 or lower and mounts any of the downgrade
attacks mentioned before. This will succeed as long as the
attacker can forge the finished MACs. Second, an attacker uses
the TLS fallback mechanism to stop TLS 1.3 connections and
allows only TLS 1.2 connections to go through. Even if the
endpoints implement the fallback protection mechanism [31],
the attacker can use one of the downgrade attacks in TLS
1.2 to break the connection. Third, in Draft 10 of the TLS 1.3
protocol, the handshake hashes restart upon receiving a Retry
message and hence, the attacker can downgrade the Diffie-
Hellman group for some classes of negotiation functions.

We can prevent all of these attacks by two countermeasures,
both of which are in the process of incorporation into the next
TLS 1.3 draft. See Fig. 19. First, we continue the handshake
hashes over retries. Second, TLS 1.3 servers always include
their highest supported version number in the server nonce,
even when they choose a lower version such as TLS 1.0.

Including the maximum version number into the server
nonce of all versions yields version downgrade protection
for clients. It is a simple patch (For the server, it amounts
to changing how nonces are generated. The client needs to
implement an equality check.) that can be incorporated into
TLS versions without making them incompatible with TLS
versions that do not implement the patch. If a server and
a client both implement the patch, the client gets version
downgrade protection.
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Client I Server R

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1)])

Retry(G2)

CH(nI ,maxI , [a1, . . . , an], [(G1, g
x1), (G2, g

x2)])log1 log1

SH(nR, v, aR, (G2, g
y))

(k1, k2) = kdf(gx2y, log1) (k1, k2) = kdf(gx2y, log1)

log2 log2

[SC(certR)]k2log3 log3

[SCV(sign(skR, hash1(hash(log2))))]k2

ms = kdf(gx2y, log3) ms = kdf(gx2y, log3)

log4 log4

[SFIN(mac(ms, hash(log3)))]k2

[CFIN(mac(ms, hash(log4)))]k1

[Data]k1

[Data]k2

Fig. 17: TLS 1.3 1-RTT mode with server-only authentication

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
mode = nego(F (cfgI), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (nR, v, aR, GR, pkR)

m′2 = sign(skR, hash1(H(m1,m2,−)))

uid = (nI , nR)
mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

Fig. 18: TLS 1.3 sub-protocol

We proceed in three steps: We show that when hashes
continue over Retry, clients that interact with servers that
just support TLS 1.3 achieve downgrade security. We then
show that embedding the version number into the server’s
nonce yields version downgrade protection from the client’s
perspective. We then put the two results together and show
that the composition of TLS 1.2 and TLS 1.3 with these
countermeasures provides the same client-side downgrade
protection as when servers just support TLS 1.3.

The downgrade protection sub-protocol uses the same ses-
sion variables as for TLS 1.2, but defines Nego using the func-
tion nego from Fig. 19. Let M be the set of modes supported
by TLS and M? = {Negocfg.role(cfg, cfg′)|PS(cfg)} be the
modes negotiated between any pair of configurations for which
the first guarantees partnering security. Let Ps = {p | s, p =
mode.sig∧mode ∈M} be the signature agility parameters for
peer signature scheme s, H be the set of all hash algorithms
supported by TLS, and H? = {mode.hash | mode ∈ M?} be
the hash algorithms used by partnering secure modes. We now
prove partnering security for TLS 1.2 and 1.3, and downgrade
security for clients speaking to servers that implement the
fix described in Fig. 19. We then define version downgrade
security and show that the fixes in Fig. 19 (TLS 1.3) and
Fig. 21 (TLS 1.2, in appendix) prevent version downgrade.

Theorem 7 (Partnering security of TLS for clients): We
consider a universe of configurations where RSA keys are
used for signing or encryption, but not for both. Let PS be
such that PS(cfg) implies that cfg.role = I , that all public
keys in the range of cfg.PKsR are honest and that cfg does
not support RSA key transport. Given an adversary A against
the partnering security of TLS, we construct adversaries Bs,p,i
and Bh running in about the same time as A such that

Client I Server R

m0 = (nI , F0(cfgI))

m′0 = GR

m1 = (nI , F1(cfgI , GR))

uid = (nI , nR)
n′R = maxR | nR
mode = nego(F1(cfgI , GR), cfgR)

= (v, aR, GR, pkR, hash1)

m2 = (n′R, v, aR, GR, pkR)

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)

m′2 = sign(skR, hash1(H(m0,m
′
0,m1,m2,−)))

mode = (v, aR, GR, pkR, hash1)
check(cfgI ,mode)
complete = true

complete = true

Fig. 19: TLS13-sub: A version downgrade fix for TLS 1.3

Adv
partnering
TLS, PS (A) is at most

∑
h∈H?

AdvCR
h,H(Bh) +

∑
(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where ns keys are generated for signing scheme s.
The proof is the same as for Theorem 3 for SSH except that

we only need to prove the property for clients and rely on the
nonces being hashed and signed as part of messages m0 and
m1.

For downgrade security, we define Nego, M, Ps, and H
as before. However, we redefine M?, H? to use DP instead
of PS, i.e., M? = {Negocfg.role(cfg, cfg′) | DS(cfg, cfg′)} and
H? = {mode.hash | mode ∈M?}.

Theorem 8 (Downgrade security of TLS1.3-sub): We con-
sider a universe of configurations where RSA keys are used
for signing or encryption, but not for both.
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Let DP be such that DP(cfg, cfg′) implies that cfg.role =
I , that all public keys in the range of cfg.PKsR are honest,
that cfg and cfg′ implement the countermeasure, such that cfg′

only supports TLS 1.3 and cfg only supports TLS 1.3 or TLS
1.3 & 1.2 and does not support RSA key transport. Given an
adversary A against the downgrade security of TLS1.3-sub,
we construct adversaries Bs,p,i and Bh running in about the
same time as A such that Adv

downgrade
TLS1.3-sub,DP(A) is at most

n2

2|nR|+1
+

∑
h∈H?

AdvCR
h,H(Bh)

+
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns is the number of
keys generated for signing scheme s, and |nR| is the size of
the servers contribution to the unique identifiers. The current
proposal is 24 bytes.

The proof again follows the same structure as for Theorem 4
for SSH except that we only need to prove the property for
clients.

We define version downgrade security similarly to down-
grade security via a function Versionr that maps two opposite-
role configurations (which include the version numbers) to the
version number negotiated (if any) in the absence of active
adversaries. Formally, if a session π talking to a session π′

completes, it must be the case that π.v = Versionr(cfgr, cfgr̄).
Akin to downgrade security, our definition of version down-
grade security is parameterized by a version downgrade
protection predicate VDP on pairs of configurations. When
VDP(cfgr, cfgr̄) holds, we expect that the local instance r is
protected. For TLS, we will only consider version downgrade
protection from the client’s perspective.

Definition 11 (Version downgrade security): The advan-
tage Advversion

Π, VDP(A) of A against the version downgrade
security of Π is the probability that, when A terminates
after interacting with protocol Π through its oracles, there
exists a session π such that π.complete = true and there
is a partnered session π′ such that VDP(π.cfg, π′.cfg) but
π.v 6= Versionπ.role(π.cfg, π′.cfg).

In the variant of Version Downgrade Security that includes
version agreement, the adversary also wins if there exists a
session π such that π.complete = true and there is a partnered
session π′ such that VDP(π.cfg, π′.cfg) but π does not agree
with π′ on v.

Theorem 9 (Version downgrade security of TLS1.3−TLS1.2-
sub): We consider a universe of configurations where RSA
keys are used for signing or encryption, but not for both. Let
VDP be such that VDP(cfg, cfg′) implies that cfg.role = I
and that all public keys in the range of cfg.PKsR are honest
and such that: (a) cfg activates the countermeasure for all its
versions and does not support RSA key transport. (b) cfg′

activates the countermeasure for all its versions.
Given an adversary A against the version downgrade se-

curity of TLS1.3-TLS1.2-sub, we construct adversaries Bs,p,i

and Bh running in about the same time as A such that
Advversion

TLS1.3-TLS1.2-sub, VDP(A) is at most

n2

2|nR|+1
+

∑
h∈H?

AdvCR
h,H(Bh)

+
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i) ,

where n is the number of sessions, ns is the number of
keys generated for signing scheme s, and |nR| is the size of
the servers contribution to the unique identifiers. The current
proposal is 24 bytes.

If the server configuration supports at most TLS 1.3 and
TLS 1.2, the above bound also holds for the variant of version
downgrade security that assures version agreement.

Note that we would generally obtain agreement on the
version number if the client embeds his highest supported
version number into his nonce.

For a downgrade predicate DP and a version predicate
VDP such that DP ⊆ VDP, let DP+VDP be the predicate
that holds for pair of configurations in DP, with server
configurations extended to also support configurations of lower
version protocols that by VDP should never be negotiated.
Putting Theorem 9 and Theorem 8 together, we get that when
both client and server implement the countermeasures, then
supporting TLS 1.3 & 1.2 is as good as supporting only TLS
1.3.

Corollary 1 (Downgrade security of TLS1.3-TLS1.2-sub):
Let DP ⊆ VDP and let VDP be such that VDP(cfg, ·) implies
that cfg.role = I , that all public keys in the range of cfg.PKsR
are honest and that

1) cfg only supports TLS 1.3 or TLS 1.3 & 1.2, activates the
countermeasure for all its versions, and does not support
RSA key transport,

2) cfg′ only supports TLS 1.3 or TLS 1.3 & 1.2 and activates
the countermeasure for all its versions.

Given an adversary A against the downgrade security of
TLS1.3-TLS1.2-sub, we construct adversaries B and C running
in about the same time as A such that

Adv
downgrade
TLS1.3-1.2-sub,DP′(A) ≤
Advversion

TLS1.3-1.2-sub, VDP(B) + Adv
downgrade
TLS1.3-sub,DP(C)

where DP′ = DP ∪ DP+VDP.
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APPENDIX A
ADDITIONAL RELATED WORK

Downgrade as an attack vector: The importance of down-
grades when building practical exploits against key exchange
protocols has been widely recognized [32, 8, 36, 2].

The lessons learned from this are less clear. There is
a disconnect between the IETF, implementers, penetration
testers, and protocol analysts. Browser developers are fre-
quently criticized for prioritized interoperability over security
and standard compliance.
RFC 7507 [31] proposes the Signaling Cipher Suite Value

(SCSV) extension for TLS to prevent version downgrade
attacks when the key-exchange of all versions provides tran-
script authentication. SSL2.0 and SSL3.0 are being deprecated,
partly to prevent version downgrade attacks as these versions
do not support said extensions [34, 5] and SSL2.0 in any case
does not provide reliable transcript authentication. Similarly,
ciphersuite hygiene is frequently discussed in standard docu-
ments [29, 28]
Previous downgrade security theorems about TLS 1.2: Dowl-
ing and Stebila [17] model ciphersuite and version negotiation
for the TLS protocol up to version 1.2 in the multi-ciphersuite
setting introduced by Bergsma et al. [7] (discussed below). In
our model, their result corresponds to a proof of downgrade
security for a DP(π.cfg, π′.cfg) predicate that guarantees that
all negotiable ciphersuites and versions are strong enough to
provide ACCE security and that all public keys are honest and
used at most by one negotiable ciphersuite. Their optimality
function ω is a more limited variant of our Nego function and
does not include entity identifiers. Their main theorem states
that under such strong conditions multi-mode authentication
implies downgrade security.

This is a rather weak form of downgrade security, but as
shown by our attack, TLS 1.2 does not provide much stronger
protection at least for clients. Servers that authenticate clients
can however receive stronger guarantees.
Related work for SSH: Bergsma et al. [7] previously analyzed
SSH in a multi-ciphersuite setting. They split the protocol into
a negotiation phase NP and key-exchange phase SP, one for
each value of π.mode. They show that if each combination
NP‖SP is ACCE secure, then NP‖

→
SP is multi-ciphersuite ACCE

secure. While they do not prove downgrade security per se,
the result of [17] adapted to SSH corresponds to a proof
of downgrade security for a DP(π.cfg, π′.cfg) predicate that
guarantees that all negotiable ciphersuites and versions are
strong enough to provide ACCE security.

The sharing of the public key is admissible under the con-
dition that each sub-protocol provides sufficient oracle access
to the long-term key functionality, e.g., signing, to simulate all
other sub-protocols. In our terminology, the protocols NP‖SP

of [7] are single mode restrictions of NP‖
→
SP. After their

extensions with oracles providing sufficient access to long-
term key functionalities, they are also sub-protocols in our
sense.

We prove downgrade protection for a predicate DP that
includes a much larger set of configurations. Combined with
the result of Bergsma et al., our result allows to prove multi-
ciphersuite ACCE security when not all sub-protocols in

→
SP

are ACCE secure, as long as we restrict the protocol to con-
figurations in DP that do not negotiate them (cf. Theorem 1).

APPENDIX B
PROOF SKETCHES

A. Proof of Theorem 1

Proof sketch: Consider the multi-mode authentication ex-
periment G0 for Π′. Let S hold when at some point
through G0 a session π completes maliciously on X and
Auth(π.mode, π.role) holds (i.e., A succeeds in breaking au-
thentication iff S holds at the end of G0).

Game G1 behaves as G0 except it aborts just before a session
π of role r would complete without being partnered. Because
of the restriction in Π′ and the hypothesis that DP ⊆r PS, it
must be the case that PS(π.cfg). Thus, any time G1 aborts, A
succeeds in breaking the partnering security of Π′, and thus
that of Π. Hence, the difference in the probability of S between
G0 and G1 is at most Adv

partnering
Π, PS (A).

Game G2 behaves as G1 except it aborts just before a
session π of role r would complete and there is a partnered
session π′ such that π.mode 6= Negor(π.cfg, π′.cfg). The
difference in the probability of S between G1 and G2 is at
most Adv

downgrade
Π,DP (A) since any time G2 aborts but G1 does

not, A succeeds in breaking the downgrade security of Π′, and
thus that of Π.

By definition of N , G2 never completes with a session
of role r assigning a mode outside of N . Consequently, the
probability of S in this game is at most

Advauth
Π′, Auth, X(A) ≤ Advauth

Π, Auth, X(A) .

Interestingly, partnering security is similar to the alive-
ness requirement in some (single-mode) security definitions
which Krawczyk [26] does not consider as fundamental for
key-exchange security. Our second game transformation how-
ever only works if a partnered session π′ with the same uid
exists. Otherwise an abort in G2 cannot be translated into a
downgrade security attack.

B. Proof of Theorem 3

Proof sketch: Let G0 be the original partnering security
experiment. Let S hold whenever at some point during the
experiment, a session π for which PS(π.cfg) holds com-
pletes without being partnered. Let G1 behave like G0, except
it aborts whenever two sessions hash messages (m1,m2)
with different (nI , nR) to the same value. Using A, we
can construct for each h ∈ H? an adversary Bh such that
|PrG0 [S]− PrG1 [S]| ≤

∑
h∈H? AdvCR

h,H(Bh) .
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Game G2 behaves as G1, except that sessions with honest
peer keys and a peer signature scheme (s, p) ∈ sig(M?) abort
without completing whenever they verify a signature on log
that was not signed by another session.

To bound the difference in the probability of S between
these games we use a lemma of Bhargavan et al. [12, Lemma
4]. It shows via a hybrid argument how to construct adversaries
Bs,p,i that bound the probability of a forgery for an agile hash-
and-sign scheme (s, p) ∈ sig(M?) in an agile signature library
that generates ns honest keys for signing scheme s, thus

|PrG1 [S]− PrG2 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

We conclude by confirming that all sessions hash (nI , nR)
into log and verify a signature on log before completion.
For those sessions for which PS(cfg) holds, pkcfg.role ∈
cfg.PKscfg.role is honest, and we have that another session in
possession of the signing key must have assigned the same
uid = (nI , nR). Finally, since the signatures computed by
initiators and responders cannot be confounded, the other
session must have the opposite role.

C. Proof of Theorem 4

Proof sketch: Let S be the event that there exists a session π
such that π is downgraded.

Let G0 be the original downgrade security experiment.
Game G1 aborts whenever two sessions of the same role

assign the same uid.
Let n be the total number of sessions. The length of the

randomness in client and server nonces is |uid|/2 bits. The
probability that n such random values give rise to a collision is
approximately n22−|uid|/2−1. As G0 and G1 are equivalent up
to collisions, we have |PrG0 [S]− PrG1 [S]| ≤ n22−|uid|/2−1 .

Game G2 behaves as G1, except that it aborts whenever two
sessions hash messages (m1,m2,−, pkR,−) to the same log .

Using A, we can construct for each h ∈ H? an adversary
Bh such that |PrG0 [S]− PrG1 [S]| ≤

∑
h∈H? AdvCR

h,H(Bh) .
Observe that in G2, every pair of nonces (nI , nR) = uid in

the message pairs (m1,m2) is signed at most once per role.
Game G3 is the same as Game G2, except that sessions with

honest peer keys and (s, p) ∈ sig(M) abort without complet-
ing whenever they verify a signature on log or (log , u, pkI)
that was not signed by another session.

We again bound the difference in the success probabilities
using the lemma of Bhargavan et al. [12, Lemma 4] and have

|PrG2 [S]− PrG3 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

Observe that, since the signatures computed by initiators
and responders cannot be confounded, in Game G3 we never
verify a message that was not signed by its unique matching
peer.

We now consider initiators and responders separately.
For the initiator we have that message log was signed by

its partner, which computed it from the responders key pkR

and messages m1 and m2 containing the contribution of the
local and the remote configuration respectively. Note that the
only missing component of mode is u, pkI which, conditioned
on the responder completing are determined by the initiators
configuration.

For the responder, message (log , u, pkI) authenticates the
two public keys and all inputs to nego.

D. Proof of Theorem 8

Proof sketch: Game G0 is the original downgrade experiment.
In game G1 we guarantee that there is at most one partnered
server session. By the collision probability of server nonces
we have that |PrG0 [S]− PrG1 [S]| ≤ n2(2−|nR|−1) . In games
G2 and G3 we abort on agile hash function collisions and
signature forgeries for modes in M?.

The final reasoning step follows a different pattern than
SSH. As the server signs all information that is taken into
account by nego together with the corresponding nonces, the
signature over the protocol messages must have been generated
by the server session with the unique identifier corresponding
to these nonces. Moreover, if there had been any modification
to the messages of the server and the client that influence nego,
then the client would have aborted in Game G3.

E. Proof of Theorem 9

Proof sketch: Let S be the event that there exists a session
π that completed and is version downgraded, i.e., there exists
a partner session π′ with the same uid and opposite role and
such that π.v 6= Versionπ.role(π.cfg, π′.cfg)

Let G0 be the original version downgrade security experi-
ment. Game G1 aborts whenever two server sessions assign
the same nR. Let n be the total number of sessions. The
probability that n such random values give rise to a collision is
upper bounded by n22−|nR|−1. As G0 and G1 are identical up
to collisions, we have |PrG0 [S]− PrG1 [S]| ≤ n22−|nR|/2−1 .
Game G2 behaves as G1, except that it aborts whenever two
sessions hash different transcripts to the same log . Using A,
we can construct for each h ∈ H? an adversary Bh such that
|PrG0 [S]− PrG1 [S]| ≤

∑
h∈H? AdvCR

h,H(Bh). Observe that in
G2, every nR is signed at most once by the responder.

Game G3 is the same as Game G2, except that sessions
with honest peer keys and (s, p) ∈ sig(M) abort without
completing whenever they verify a signature that was not
produced by another session.

We again bound the difference in the success probabilities
using the lemma of Bhargavan et al. [12, Lemma 4] and have

|PrG2 [S]− PrG3 [S]| ≤
∑

(s,p)∈sig(M?)

ns∑
i=1

AdvEUF-CMA
s, p,Ps

(Bs,p,i).

Observe that, since the signatures computed by initiators
and responders cannot be confounded, in Game G3 we never
verify a message that was not signed by its unique partner.

For the initiator we have that message log was signed by
its partner and contains the responder’s nonce. As the VDP
holds, the responder’s nonce contains the maximal supported
version number and the initiator verifies that this matches the
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one that the initiator either proposed or received, the initiator
yields the preferred protocol version.

Generally, we do not get agreement on v, because the
responder does not sign the initiator’s maximal version number
and hence, even if the initiator completes, he has no guarantees
that the server actually received the highest protocol version.
However, if the server only supports TLS 1.3 and TLS 1.2,
then the domain separation property of signatures guarantees
that initiator and responder have the same protocol version.

F. Proof of Corollary 1

Proof sketch: Theorem 9 ensures that if the client and server
configurations both support TLS 1.3 and TLS 1.2, then they
get TLS 1.3 and Theorem 8 ensures that a client session that
supports TLS 1.3 and TLS 1.2 gets the preferred mode when
interacting with a server that only supports TLS 1.3.

The probability that the server partner session of a com-
pleting client that supports TLS 1.3 or TLS 1.3 and TLS 1.2
assigns a different version variable than 1.3 is upper bounded
by Advversion

TLS1.3-1.2-sub, VDP(B). Note that crucially we rely on
agreement on the version variable.

The main proof idea is that servers that support TLS 1.3
and 1.2 and server that support only TLS 1.3 behave the same
way after receiving 1.3 as the client’s highest version numbers.
Hence, in a first game-hop, we wait until the first Send query
to a server session, and if this first query contains version
number 1.3, we initialize the server with a configuration that
only supports 1.3 (and besides has the configuration that the
adversary provided). Else, we initialize the server with the
configuration that the adversary provided. Now, all servers that
run TLS 1.3 in a particular session only support TLS 1.3.

The probability that a client that supports either TLS 1.3
or TLS 1.3 and 1.2 when interacting with such a server is
downgraded is upper bounded by Adv

downgrade
TLS1.3-sub,DP(C).

APPENDIX C
ADDITIONAL FIGURES

Initiator I Responder R

m1 = (IDI , F (cfgI))

m2 = (IDR, F (cfgR))

a = nego(cfgI , F (cfgR))

m3 = (IDI , a, nI ,mac(psk IR, “Prsh
′′))

uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

check(cfgR, a)
uid = h = H(m2,m3,−)
(kI , kR, sas) = kdf(psk IR, h)

m4 = mac(kR,−)

m5 = mac(kI ,−)

sas

sas

mode = (a,IDI ,IDR)
complete = true

mode = (a,IDI ,IDR)
complete = true

Fig. 20: ZRTP with Pre-Shared Keys: negotiation sub-protocol

Client I Server R

m1 = (nI , F (cfgI))

uid = (nI , nR)
n′R = maxR | nR
mode = nego(F (cfgI), cfgR)

= (v, aR, pkR, G, hash1)

m2 = (n′R, v, aR, G, pkR, sign(skR, hash1(nI | n′R | G | gy)))

verifyVersion(n′R, v, cfgI)
uid = (nI , nR)
mode = (v, aR, pkR, G, hash1)
check(cfgI ,mode)
ms = kdf(gxy, nI | n′R)

ms = kdf(gxy, nI | n′R)

m3 = (gx,mac(ms, H(m1,m2, g
x,−)))

m4 = mac(ms, H ′(m1,m2,m3,−))

complete = true complete = true

Fig. 21: A version downgrade fix for TLS 1.2
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Init. I MitM Resp. R

SA_INIT(nI , [SA14,SA1], (G14, g
o), infoI)

INVALID_KE(G1)

m1 = SA_INIT(nI , [SA14,SA1], (G1, g
x), infoI) m′1 = SA_INIT(nI , [SA1], (G1, g

x), infoI)

m2 = SA_INIT(nR,SA1, (G1, g
y), infoR)

(km, k
′
m, ke, k

′
e) = kdf(gxy, nI | nR) (km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)y = dlog(G1, g

y)
(km, k

′
m, ke, k

′
e) = kdf(gxy, nI | nR)

[AUTH(IDI , sign(sk I , hash(m1 | nR | mac(km,IDI))))]ke [AUTH(IDM , sign(skM , hash(m′1 | nR | mac(km,IDM ))))]ke

[AUTH(IDR, sign(skR, hash(m2 | nI | mac(k′m,IDR))))]k
′
e

[Data1]ke [Data′1]ke

[Data2]k
′
e[Data′2]k

′
e

Fig. 22: Man-in-the-middle downgrade attack on IKEv2 with mutual signatures and weak Diffie-Hellman groups

Initiator I MitM M Responder R

m1 = Hello(vi,IDI , [cI,1, . . . , cI,n], hash(KI)),mac(KI ,m1) m′1 = Hello(vi,IDI , [cI,1, . . . , cI,n], hash(K ′I)),mac(K ′I ,m
′
1)

m′2 = Hello(vr,IDR, [cR,1, . . . , cR,n], hash(KR)),mac(KR,m
′
2)m2 = Hello(vr,IDR, [cR,1, . . . , cR,n], hash(K ′R)),mac(K ′R,m2)

m3 = Commit(IDI , hash(m5), ci,KI) m′3 = Commit(IDI , hash(m′5), ci,K
′
I)

m′4 = DHPart1(gy)m4 = DHPart1(gy
′
)

m5 = DHPart2(gx) m′5 = DHPart2(gx
′
)

h = hash(m2,m3,m4,m5)
(kI , kR, psk IR, sas) = kdf(gxy,IDI ,IDR, h)

Knows
(kI , kR, psk IR, sas)
(k′I , k

′
R, psk ′IR, sas ′)

h′ = hash(m′2,m
′
3,m

′
4,m

′
5)

(k′I , k
′
R, psk ′IR, sas ′) = kdf(gx

′y,IDI ,IDR, h′)

m′6 = Confirm1(mac(k′R,flags))m6 = Confirm1(mac(kR,flags))

m7 = Confirm2(mac(kI ,flags)) m′7 = Confirm2(mac(k′I ,flags))

TerminateConnection

m′8 = Hello(vi,IDI , [ci], hash(K ′′I )),mac(K ′′I ,m
′
8)

m′9 = Hello(vr,IDR, [ci], hash(K ′′R)),mac(K ′′R,m
′
9)

Choose nI such that sas = sas ′′

m′10 = Commit(IDI , ci, nI ,mac(psk ′IR, “Prsh
′′),K ′′I )

h′′ = hash(m′9,m
′
10)

(k′′I , k
′′
R, psk ′′IR, sas ′′) = kdf(psk ′IR,IDI ,IDR, h

′′)
h′′ = hash(m′9,m

′
10)

(k′′I , k
′′
R, psk ′′IR, sas ′′) = kdf(psk ′IR,IDI ,IDR, h

′′)

sas(= sas ′′)

sas ′′(= sas)

Fig. 23: Man-in-the-middle cross-protocol attack on ZRTP with Diffie-Hellman exchange followed immediatly by a pre-shared
key exchange: M tampers with the first exchange between I and R and disconnects before they can compare their (differing)
SAS values. M then runs a new pre-shared exchange with R and is able to synchronize the SAS values at I and R by finding
an appropriate nonce (with 216 work).


