
Multidimensional Meet in the Middle
Cryptanalysis of KATAN

Shahram Rasoolzadeh and H̊avard Raddum

Simula Research Laboratory

Abstract. KATAN and KTANTAN are two lightweight families of hard-
ware oriented block ciphers proposed by Cannière et al. at CHES 2009.
They have different versions of 32-, 48- and 64-bit state, all of which
work with an 80-bit key. Inspired by the Trivium stream cipher, these
families have an innovative structure based on two non-linear feedback
shift registers. Such a structure attracts the attention of cryptanalysts
and consequently a variety of security analyses have been published. Al-
though the KTANTAN family is already regarded as a broken cipher,
the full-round KATAN family is still secure.
In this paper, by exploiting several properties of the KATAN round func-
tion as well as the slow diffusion of key bits, we propose some techniques
to extend the number of rounds covered by multidimensional meet in
the middle attack on all versions of the KATAN family of block ciphers.
Our results show that this method can attack up to 206, 148 and 129
reduced-round versions of KATAN32, KATAN48 and KATAN64, respec-
tively, with only 2 or 3 pairs of known plaintext. This cryptanalysis covers
the highest number of rounds to date.
Our work is still far from a full-round attack, so it could not be considered
as a threat to this family of block ciphers yet. We state that KATAN is
still safe to use.

Keywords: KATAN, Multidimensional Meet in the Middle Attack, Lightweight
Block Cipher.

1 Introduction

Lightweight embedded systems such as RFID tags and wireless sensor networks
have become increasingly common over the past few years. Standard ciphers such
as AES were not primarily designed for use in such a constrained environment,
which imposes extreme restrictions on hardware footprint. Designing a secure
and lightweight primitive is an interesting topic in cryptography.

In order to find solutions to this ever-increasing demand, lightweight cryp-
tography has been developed as one of the most active areas in symmetric cryp-
tography where a remarkable number of lightweight block ciphers have been
proposed in the recent years. These lightweight block ciphers aim to balance
security with the resource constraints, which leads to new and creative designs.
Thus it is necessary to assess the security of these primitives carefully.

2 Sh. Rasoolzadeh, H. Raddum

The KATAN and KTANTAN families of block ciphers designed by Cannière
et al. and presented at CHES 2009 [1] are well known instances of such cryp-
tographic primitives. All versions of these families have a structure based on
two non-linear feedback shift registers (NLFSR). This simple round function,
iterated a large number of rounds, allows an efficient hardware implementation
and simultaneously meets the security requirements one would expect from this
cipher.

In comparison with KATAN, KTANTAN has a weaker key schedule and
slower diffusion of key bits. Hence, some full-round attacks on the whole KTAN-
TAN family have been presented using a meet in the middle (MITM) technique
[13,14,15]. In the case of KATAN, despite of a variety of reduced-round crypt-
analyses in different models, including single key [12,2,4,5,6,8,9,10,11], related
key [3,7] and physical [12,16,17,18] attacks; this cipher has remained secure and
seems to have enough security margin.

Previous works on KATAN in the single key setting include algebraic and
cube attacks [12], conditional differential [2], differential [6], all subkeys recovery
(ASR) MITM [5,8], match-box MITM [9], multidimensional (MD) MITM [10]
and dynamic cube [11], which are all summarized in Table 1. The attack which
reaches the highest number of rounds on all three versions is MD MITM attack
presented by Zhu and Gong that is able to cryptanalyse 175, 130 and 112 rounds
of KATAN32, KATAN48 and KATAN64, respectively.

In this paper, by exploiting several properties of the round function and the
slow key diffusion, we propose some new techniques to significantly increase the
number of rounds attacked by the multidimensional meet in the middle attack
on the KATAN family of block ciphers. Our results shows that this method can
successfully attack up to 206, 148 and 129 rounds of KATAN32, KATAN48 and
KATAN64, respectively, with only 2 or 3 plaintext/ciphertext pairs of known
data. The proposed attacks achieve the highest number of rounds ever analyzed.
The associated parameters are reported in Table 1.

This paper is organized as follows. Section 2 introduces the MITM and MD
MITM attacks briefly and presents our technique for guessing subkey bits. Sec-
tion 3 presents a brief description of KATAN and also a method to do faster
partial encryptions or decryptions. In Section 4 we outline the key recovery at-
tack on KATAN block ciphers using MD MITM cryptanalysis with all details
and their complexities. Finally, Section 5 concludes the paper.

2 MITM and MD MITM Attacks

In this section we briefly introduce the basic MITM and MD MITM attacks and
show when these attacks are better than exhaustive key search. The method of
implementing basic MITM and 2D MITM attacks is discussed, and at the end
of the section a technique that reduces the number of subkey bits needed to be
guessed is presented.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 3

Table 1. Summary Result of Single-Key Attacks on KATAN Family

Version Type Round Time Data Memory Ref.

KATAN32

Cube 60 239 230.3 CP - [12]
Conditional Differential 78 222 222 CP - [2]

Algebraic 79 14.7 min 20 CP - [12]
MITM ASR 110 277 138 KP 275.1 [5]
Differential 114 277 231.9 KP - [6]
MITM ASR 119 279.1 144 CP 279.1 [8]

Matchbox MITM 153 278.5 25 CP 276 [9]
Dynamic Cube 154 278.5 232 232 [11]

MD MITM 175 278.3 3 KP 279.6 [10]
MD MITM 201 278 3 KP 278 Sec.4.4
MD MITM 206 279 3 KP 278 Sec.4.4

KATAN48

Cube 40 249 225.9 CP - [12]
Algebraic 64 6.4 hour 5 CP - [12]

Conditional Differential 70 234 234 CP - [2]
MITM ASR 100 278 128 KP 278 [5]
MITM ASR 105 279.1 144 CP 279.1 [8]

Matchbox MITM 129 278.5 25 CP 276 [9]
MD MITM 130 279.5 2 KP 279 [10]
MD MITM 146 278.1 2 KP 277 Sec. 4.2
MD MITM 148 279 2 KP 277 Sec. 4.2

KATAN64

Cube 30 235 220.7 CP - [12]
Algebraic 60 3.2 hour 5 CP - [12]

Conditional Differential 68 235 235 CP - [2]
MITM ASR 94 277.7 116 KP 277.7 [5]
MITM ASR 99 279.1 142 CP 279.1 [8]
MD MITM 112 279.5 2 KP 279 [10]

Matchbox MITM 119 278.5 25 CP 274 [9]
MD MITM 126 278.1 2 KP 277 Sec. 4.3
MD MITM 129 279 2 KP 277 Sec. 4.3

KP: Known Plaintext CP: Chosen Plaintext

2.1 Basic MITM attack

The basic MITM attack is a generic technique presented by Diffie and Hellman to
cryptanalyse DES [19]. Despite the fact that this technique is arguably much less
common than differential or linear attacks on ciphers, there are some applications
to specific block ciphers (such as KATAN and KTANTAN) where using MITM
principles which are more successful than differential and linear attacks.

Let Ei,j(kf , S) denote the partial encryption of the block S, beginning from
the start of round i and ending at the start of round j, where kf is a particular
sequence of subkeys corresponding to these j−i rounds. Similarly, let Dj,i(kb, S)
denote the partial decryption of S, beginning from the start of round j and
ending at the start of round i, where kb is the sequence of subkeys corresponding
to these j − i rounds. Let Kf and Kb be the total set of subkey sequences that
kf and kb, respectively, can be drawn from.

4 Sh. Rasoolzadeh, H. Raddum

Plaintext CiphertextE0,r(kf ,P) DR,r(kb ,C)

0 r R

Fig. 1. Basic MITM Attack

The main idea of a MITM attack is that the subkeys in both parts of the
cipher can be guessed separately. First, the attacker guesses kf and computes
E0,r(kf , P) for a plaintext P . Next, he guesses kb and computes DR,r(kb, C) for
the corresponding ciphertext. If

E0,r(kf , P) = DR,r(kb, C), (1)

then kf and kb are candidates for representing the correct secret key.
Figure 1 illustrates the procedure of basic MITM attack and it can be de-

scribed as follows:

Algorithm 1 Basic MITM attack

for kf ∈ Kf do
Compute v = E0,r(kf , P);
Store kf into a table T indexed by v;

end for
for kb ∈ Kb do

Compute v′ = DR,r(kb, C);
Find the corresponding kf in T [v′] if it exists (Eq. (1) holds for (kf , kb));
Check the candidate (kf , kb) on a few other known plaintext/ciphertext pairs;
if (kf , kb) fits the plaintext/ciphertext pairs then

Return (kf , kb) as correct key;
end if

end for

2.2 MD MITM attack

A multidimensional MITM attack is an extended version of MITM attack where
some internal states are guessed to divide the cipher into smaller sub-ciphers for
easier MITM analysis. This extension attack is only available to block ciphers
that have a greater key size than block size and usually needs the key size to be
significantly larger than the block size.

The first MD MITM attack was presented by Zhu and Gong to cryptanalyse
the KATAN family in [10]. In their algorithm, all subkey bits of the sub-ciphers
for both forward and backward sides were guessed. We use a more efficient way
of guessing subkey bits which lets us attack more rounds of the KATAN family
of block ciphers.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 5

The simplest MD MITM is 2D MITM attack where an internal state S is
guessed and two MITM attacks are performed on the sub-ciphers divided by S.
One MITM attack is done for the plaintext P and the internal state S, finding
candidate subkeys kf1 and kb1. The other connects the internal state S and the
ciphertext C and finds candidate subkeys for kf2 and kb2. Figure 2 illustrates
the procedure of 2D MITM attack and it can be described algorithmically as
follows:

Algorithm 2 2D MITM attack

for kf1 ∈ Kf1 do
Compute v1 = E0,r1(kf1, P);
Store kf1 into a table T1 indexed by v1;

end for
for kb2 ∈ Kb2 do

Compute v2 = DR,r3(kb2, C);
Store kb2 into a table T2 indexed by v2;

end for
for s ∈ S do

for kb1 ∈ Kb1 do
Compute v′1 = Dr2,r1(kb1, s);
Find kf1 stored in T1[v′1];
Store (kf1, kb1) in a table T ′

1 indexed by v′1;
end for
for kf2 ∈ Kf2 do

Compute v′2 = Er2,r3(kf2, s);
Find kb2 stored in T2[v′2];
Store (kf2, kb2) in a table T ′

2 indexed by v′2;
end for
for (v′1, v

′
2) ∈ (V1, V2) do

Find (kf1, kb1) in T ′
1 [v′1] and (kf2, kb2) in T ′

2 [v′2];
Check the candidate (kf1, kb1, kf2, kb2) on a few other known plain-

text/ciphertext pairs;
if (kf1, kb1, kf2, kb2) fits the plaintext/ciphertext pairs then

Return (kf , kb) as correct key;
end if

end for
end for

For having a valid attack that is faster than brute force of the key, the total
number of candidate keys that we test must be less than the number of possible
user-selected keys K. This is equal to the simplified condition |s|+ |v′1|+ |v′2| <
|K|, where |x| is the size of x in bits.

The 3D MITM attack is similar to the 2D MITM one, but with the difference
that we must guess two internal states. The procedures of 3D MITM and further
MD MITM attacks can be found in [10].

6 Sh. Rasoolzadeh, H. Raddum

Plaintext CiphertextEr2,r3(kf2 ,s) DR,r3(kb2 ,C)

0 r2 R

E0,r1 (kf1 ,P) Dr2,r1(kb1 ,s)

r1 r3

S

Fig. 2. 2D MITM Attack

2.3 Reducing the number of guessed subkey bits

The KATAN family has a low algebraic degree for its round function and subkey
bits are xored onton the state at each round. This property causes some subkey
bits to not get anded with other variables and remain only xored to the state
bits in a partial encryption or decryption. For example, in a simple MITM attack
we can write: {

E0,r(kf , P) = E′0,r(k′f , P)⊕ Lfk
′′
f ,

DR,r(kb, C) = D′R,r(k′b, C)⊕ Lbk
′′
b ,

(2)

Here k′f and k′b are subsets of kf and kb such that E1,r(kf , P) and DR,r(kb, C)
are nonlinearly dependent on them (i.e. they appear in the input to an and
operation), and Lf and Lb are binary matrices, only xor ing some bits of k′′f or
k′′b to the state bits. We need that:{

k′f ∩ k′′f = ∅ , k′f ∪ k′′f = kf

k′b ∩ k′′b = ∅ , k′b ∪ k′′b = kb
(3)

When the key schedule is linear (as is the case for KATAN) and k′f and k′b
together determine the user-selected key, we can always find two binary matrices
L′f and L′b of full rank which satisfy the condition

L′f · k′f ⊕ L′b · k′b = Lf · k′′f ⊕ Lb · k′′b , (4)

that is, k′′f and k′′b can be expressed as linear combinations of k′f and k′b bits.
Instead of checking equation (1) for the whole kf and kb, we can then check for

E′0,r(k′f , P)⊕ L′f · k′f = D′R,r(k′b, C)⊕ L′b · k′b, (5)

where the left and right hand sides can be calculated by k′f and k′b in the forward
and backward sides of MITM attack, respectively.

This technique enables us to calculate more rounds than that analyzed in
[10], by guessing only subkey bits which are involved in a non-linear way to the
partial encryption or decryption function. We will use this technique in Section
4, to cryptanalyse the KATAN family of block ciphers.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 7

IR
kb

ka

L1 L2

Fig. 3. Structure of KATAN32

3 Description of KATAN

KATAN is a NLFSR-based family of block ciphers with block sizes of 32, 48
and 64 bits. These will be referred to KATAN32, KATAN48 and KATAN64,
respectively. All three versions of this family have 254 rounds and use the same
LFSR-type key schedule function accepting an 80-bit user-selected key.

The plaintext is loaded into two registers L1 and L2. The least significant
bit (LSB) of each register, numbered by 0, is the rightmost one, and the LSB of
the plaintext is loaded into the LSB of L2 while its most significant bit (MSB) is
loaded into the MSB of L1. To update the state registers, L1 and L2 are shifted
to the left by one bit, where the newly computed bits generated according to
the following equations, are loaded into the LSB of L2 and L1.

{
fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka,
fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb,

(6)

where ⊕ and · are bitwise xor and and operations, respectively, and L[x] denotes
the x-th bit of L, IR is a round-dependent constant, and ka and kb are two subkey
bits. For round i, 0 ≤ i ≤ 253, ka and kb are equal to sk2i and sk2i+1, respectively
which are generated by the key schedule. The structure of KATAN32 is shown
in Fig 3.

In each round, this update procedure (i.e. shifting and loading) is performed
once, twice and three times for KATAN32, KATAN48 and KATAN64, respec-
tively, with the same subkey bits. After 254 rounds the content of the registers is
the ciphertext. Table 2 shows all the parameters associated to KATAN32/48/64.

The key schedule of KATAN is a linear key schedule based on an 80-bit
LFSR defined by the polynomial x80 +x61 +x50 +x13 + 1. This LFSR generates
2 × 254 = 508 subkey bits according to the following rule, where the ki is the

Table 2. Parameters of KATAN Family

size |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
32 13 19 12 7 8 5 3 18 7 12 10 8 3
48 19 29 18 12 15 7 6 28 19 21 13 15 6
64 25 39 24 15 20 11 9 38 25 33 21 14 9

8 Sh. Rasoolzadeh, H. Raddum

Table 3. Number of Early Calculated Round Functions in KATAN Block Ciphers

KATAN32 KATAN48 KATAN64
Enc. Dec. Enc. Dec. Enc. Dec.

fa 4 4 7 3 10 4
fb 4 6 7 7 10 5

user-selected key:

ski =

{
ki 0 ≤ i < 80

ski−80 ⊕ ski−61 ⊕ ski−50 ⊕ ski−13 80 ≤ i < 508
(7)

3.1 Faster Method for Partial Encryption/Decryption

Here we explain three features of the round functions used in the KATAN family
of block ciphers which help us to present a faster method for partial encryption
or decryption.

The first feature is that more than one pair of round functions (fa and fb)
can be calculated before the subkey bits enter the state in a non-linear way. For
example, in the case of KATAN32 encryption, by having the state of any round
we can calculate 4 pairs of round functions before any subkey bits appear in the
input to the and -functions. Only then do we need to guess on the value of this
key bit, before that it is only xored to the state and by using the technique in
Section 2.3 we do not need to guess them. Table 3 shows the number of round
functions which can be calculated before the state depends non-linearly on the
subkey bits, in both encryption and decryption mode. We call this the early
calculating technique.

The second feature is that as in every round only two subkey bits get inserted
into fa and fb, it is not necessary to guess all the needed subkey bits for a partial
encryption or decryption at first and then do the calculation. Instead we can use
a layered method for subkey bits guessing where the round states are calculated
until a subkey bit must be guessed. Then we save the last calculated state in the
memory and guess the corresponding subkey bit and calculate the next round
functions until another subkey bit must be guessed. Calculation in this way will
continue until reaching the desired state. When we need to backtrack and try
another guess, we only need to go back to a state where we can make a new
untried guess, and continue forward from there. In other words, we don’t need
to calculate all the rounds from the beginning for each new guess.

The third feature relates to only partially matching states, where we only
calculate some bits of a desired state. In these situations, there are some round
functions which do not participate in the value of target bits in a desired state.
These round functions are the ones close to the partial state to match. We can
therefore skip calculation of these round functions, and we do not need to guess
on any of the key bits that go into them.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 9

In the next section we will see how these three features will help us to do
partial encryption or decryption faster than the typical way of guessing all the
needed subkey bits and calculating all round functions from the start.

4 MD MITM Cryptanalysis of KATAN

In this section we present 2D MITM attacks on all three versions of the KATAN
family with all details and complexities. Also a 3D MITM attack to KATAN32
is presented at the end of the section.

4.1 2D MITM attack on KATAN32

In this subsection we cryptanalyse a 179-round version of KATAN32 using a
2D MITM attack. We break these 179 rounds into two sub-ciphers by guessing
S73, the state of round 73. In the first dimension, P and S73 meet each other in
round 44, i.e., we compute all 32 bits of S44 from both P and S73. In the second
dimension, S73 and C meet each other in the two LSBs L2[0, 1] in round 108,
i.e. we compute L2[0, 1] of S108 from both S73 and C.

In the forward side of the first dimension, only 78 key bits of

k′f1 = {k0, ..., k76, k78} (8)

are involved non-linearly in the partial encryption from P to S44. In the backward
side, only 48 subkey bits of

k′b1 = {sk96, sk98, sk100, ..., k145} (9)

are involved non-linearly in the partial decryption from S73 to S44. As the union
of k′f1 and k′b1 determines all 80 bits of the master key K, the condition of (4)
is established and we can use the technique of (5) for xor ing the only linearly
involved subkey bits onto S44 during partial encryption and decryption.

In the second dimension we only calculate the 2 bits L2[0, 1] of S108. In the
forward side 48 subkey bits of

k′f2 = {sk146, ..., sk184, sk186, sk188, sk190, sk192, sk194, sk195, sk197, sk201, sk203}
(10)

are involved non-linearly in the partial encryption of the 2 LSBs of S108. In
the backward side, 85 subkey bits of {sk263, sk265, sk267, sk269, sk271, sk273,
sk275, sk277, sk279, sk281, sk283, ..., sk357} are involved non-linearly in the partial
decryption. However, only 78 of these are independent so we only need to guess
78 independent subkey bits which are near the ciphertext side:

k′b2 = {sk263, sk279, sk281, sk283, ...sk357} (11)

Like in the first dimension, as the union of k′f2 and k′b2 determines all 80 bits
of the master key, we can use the technique of (5) for xor ing the only linearly
involved subkey bits onto the state S108.

10 Sh. Rasoolzadeh, H. Raddum

In the forward side of the first dimension, we guess 78 bits of k′f1 and calculate

32 bits of S44. So for every value of S44, we can expect 278−32 candidates for
k′f1 where S44 = E′0,44(k′f1, P) ⊕ L′f1 · k′f1. The number of candidate keys that

matches any S44 is 246. We then find another 46 bits which is calculable from
both forward and backward side of this dimension. For these 46 bits we choose
κ as below:

κ = {sk96 , sk98 , sk100 , sk101 , sk102 , sk104 , sk106 , ..., sk115 , sk117 , sk119 , ...,
sk126 , sk128 , sk130 , sk132 , ..., sk137 , sk139 , sk141 , sk143 , sk145 ,

sk116 ⊕ sk103 , sk127 ⊕ sk103 , sk138 ⊕ sk103 , sk142 ⊕ sk103 , sk118 ⊕ sk105 ,
sk131 ⊕ sk105 , sk140 ⊕ sk105 , sk144 ⊕ sk105 , sk129 ⊕ sk105 ⊕ sk103}

(12)

which is calculable from both k′f1 and k′b1. Then for each value of (S44, κ) there
is only one matching kf1 on the average.

In the attack, we first check for matching in the first dimension, which gives
only one candidate for (k′f1, k

′
b1) in average. From the (k′f1, k

′
b1) candidate we can

calculate values of k′f2 and k′b2 and check for matching in the second dimension,

where 2−2 of the key candidates will be accepted. By testing each key on some
other plaintext/ciphertext pairs, we find the correct key. The whole algorithm
of the attack is described as Algorithm 3.

This attack needs d80/32e = 3 pairs of known plaintext/ciphertext. The main
memory complexity of the attack is storing the T1, T2 and T ′2 tables and it is
equal to

278 × 78 + 278 × 2 + 248 × 2 ≈ 278 × 80 (13)

bits which is equal to 278 of the 280 possible keys.

Time complexity analysis For calculations in the forward side of the first
dimension, first we encrypt the plaintext for 4 rounds and save the state in the
memory before guessing the k0 key bit. Again we encrypt one more round, save
it and guess the next necessary key bit(s). We continue this way until we reach
S44 = E′0,44(kf1, P) and then we xor it with L′f1 · kf1. When backtracking to
try another guess, we only go back to the last state where we still have untried
guesses to make.

In the case of partial matching, when we are close to the state where we will
do the matching, one of the two functions fa and fb may not affect the state to
match, and so it does not need to be computed. For this reason, when counting
the number of round encryptions we count the number of individual fa and fb
computations, and multiply the number with 1/2 to reach the number of round
encryptions. The computation time to create the table T1 is then equal to

1
2 [8 + 2(2 + 2(2 + 22(. . . (2 + 22(2)) . . .)))] (14)

Multidimensional Meet in the Middle Cryptanalysis of KATAN 11

Algorithm 3 2D MITM attack to KATAN32

for kf1 ∈ K′
f1 do

Compute all 32 bits of v1 = E′
0,44(kf1, P)⊕ L′

f1 · kf1 for a plaintext P ;
Compute κ from kf1;
Store kf1 into a table T1 indexed by v1 and κ;

end for
for kb2 ∈ K′

b2 do
Compute the 2 least significant bits of v2 = D′

178,107(kb2, C) ⊕ L′
b2 · kb2 for the

ciphertext C corresponding to P ;
Store kb2 into a table T2 indexed by v2;

end for
for s ∈ F32

2 do
for kf2 ∈ K′

f2 do
Compute the 2 least significant bits of v′2 = E′

73,107(kf2, s)⊕ L′
f2 · kf2;

Store the k′f2 into a table T ′
2 indexed by v′2;

end for
for kb1 ∈ K′

b1 do
Compute all 32 bits of v′1 = D′

73,44(k′b1, s)⊕ L′
b1 · k′b1;

Compute κ′ from kb1;
Find the value for kf1 using index of (v′1, κ

′) in table T1;
Compute values of kf2 and kb2 using both kf1 and kb1 values;
if T ′

2 [kf2] = T2[kb2] then
Test the candidate key using this plaintext/ciphertext pair and a few other

pairs;
if If one candidate key passes all tests then

Return this candidate as correct key;
end if

end if
end for

end for

round encryptions. Expressions of this kind, with t nested brackets, can be ac-
curately simplified as follows:

2 + 22(2 + 22(. . . 2 + 22(2) . . .)) =

2 + 23 + 25 + . . .+ 22t+1 =

2×
t∑

i=0

4i =

2× 4t+1 − 1

4− 1
≈

4

3
× 22t+1

Inserting this into (14), and compensating with the few rounds where only one
key needs to be guessed, gives the number of round encryptions to compute T1
as approximately 1.33× 278.

12 Sh. Rasoolzadeh, H. Raddum

In the backward side of the first dimension, after guessing a value for S73,
first we decrypt 4 fa and 6 fb round functions (equal to 5 rounds) and save
the state of both registers in the memory. Then we guess the sk144 and sk145
subkey bits. Then we decrypt one more pair of round functions, save the state
and guess the next necessary subkey bits. We continue this way until we reach
S44 = D′73,44(kb1, S73) and then we xor it with L′b1 · kb1. The computation time
for these operations are

1
2 [10 + 22(2 + 22(...(2 + 22(1 + 22(1))))...)))] ≈ 0.71× 248 (15)

Unlike the first dimension where all round functions were calculated, in the
second dimension some round functions do not need to be calculated because
we only do partial matching, in two bits. In the forward side, we first encrypt 4
rounds, save the state and then guess the sk147 subkey bit. Again we encrypt one
more round, save it and guess the next necessary key bits in the same manner
as before. Note that key bits do not need to be guessed when they only affect
the computations linearly. We count the number of round functions which have
effect on the 2 LSBs of S108 and get the result as 0.67× 248 round encryptions.

Finally, in the backward side of the second dimension again we decrypt 4 fa
and 6 fb round functions at first and save the state and then guess the sk354
and sk355 subkey bits. We continue as before and guess enough key material to
compute all round functions which have an effect on the value of the 2 LSBs of
S108. The computation time for this is 2.25× 278.

We now calculate the complexity of the whole attack in terms of 179-round
KATAN32 encryptions. Creating the tables T1 and T2 is only done once. The
guessing of the 32-bit value for S73 must be taken into account when doing
computations that depend on this value. Finally, as we only have a 2-bit filter
in the second dimension, we expect to test about 278 full keys for correctness.
The total complexity of the attack in terms of 179-round KATAN32 encryptions
then becomes

1
179 (1.33× 278 + 2.25× 278 + 232(0.67× 248 + 0.71× 248)) + 278 ≈ 278.07

(16)

4.2 2D MITM attack on KATAN48

In this subsection we present a 2D MITM attack to a 148-round version of
KATAN48. We break these 148 rounds into two sub-ciphers by guessing the
state S60. In the first dimension, P and S60 meet each other in round 42 and in
the second dimension, S60 and C meet each other in the LSB (L2[0]) of S85.

For the first dimension, we guess 77 key bits in the forward side and 32 subkey
bits in backward side. These key bits are

k′f1 = {k0, ..., k76}

k′b1 = {sk88, sk90, sk92, ..., k121}.
(17)

Multidimensional Meet in the Middle Cryptanalysis of KATAN 13

In the second dimension we guess 31 subkey bits in the forward side and 78
subkey bits in backward side. These key bits are

k′f2 = {sk120, ..., sk144, sk146, sk147, sk148, sk153, sk154, sk161}

k′b2 = {sk219, sk220, sk221, sk223, ...sk297}.
(18)

Like in the attack for KATAN32, we define a value κ which we use to create
unique states for all key guesses. The state size in KATAN48 is 48 bits, so we
need the κ-value to be 77− 48 = 29 bits in the first dimension. This κ is defined
as

κ = {sk88 , sk93 , ..., sk102 , sk106, ..., sk115 , sk119 , sk120 , sk121 , sk116 ⊕ sk90 ,
sk103 ⊕ sk90 , sk117 ⊕ sk104 , sk105 ⊕ sk92 , sk118 ⊕ sk92 }

(19)

The algorithm for the attack is essentially the same as the attack on KATAN32
in Section 4.1, only with changed round numbers. This attack needs d80/48e = 2
pairs of known plaintext/ciphertext and memory complexity of this attack is
equal to

277 × 77 + 278 × 1 + 231 × 1 ≈ 277 × 79 (20)

bits which is about the same as the storage for 277 keys.

Time complexity analysis For partial encryption and decryption calculations
in this attack we use the same method used in Section 4.1. For KATAN48, in
partial encryptions we can encrypt 3.5 rounds as early calculation and for partial
decryptions, we can decrypt 3 fa and 7 fb round functions (equal to 2.5 rounds)
as early calculation.

For the key guessing and the rest of the partial encryptions or decryptions
we use same method as in the attack on KATAN32. For each guess, we save the
last calculated state, guess the next subkey bit(s) and calculate one more pair of
round functions. The only difference is that in KATAN48 one round consists of
computing fa and fb two times each, and not once each as in KATAN32. Hence
we scale the number of fa and fb invocations by 1

4 to estimate the number
of rounds. The computation times for the different phases of this attack are
given below, but we omit the long expressions with nested brackets for better
readability.

– Forward side of the first dimension: 1.04× 277

– Backward side of the first dimension: 0.83× 232

– Forward side of the second dimension: 1.00× 231

– Backward side of the second dimension: 3.13× 278

With these numbers, the time complexity of the attack in terms of 148-round
KATAN48 encryptions is equal to

1
148 (1.04× 277 + 3.13× 278 + 248(0.83× 232 + 1.00× 231)) + 279 ≈ 279.03

(21)

14 Sh. Rasoolzadeh, H. Raddum

The heaviest part of the attack is testing candidate keys. Since we only match
in one bit in the second dimension, we must expect to test 279 keys. If we use
two matching bits in the second dimension of the attack, we can cryptanalyse
146 rounds of KATAN48 with time complexity of 278.06. The attack will be the
same, except that S60 and C meet each other in the two LSBs of S84.

4.3 2D MITM attack on KATAN64

This subsection presents our 2D MITM attack applied to a 129-round version
of KATAN64. We break the 129 rounds into two sub-ciphers by guessing S51. In
the first dimension, P and S51 meet each other in round 43 and in the second
dimension, S51 and C meet each other in the LSB (L2[0]) of S69. The attack
is mostly the same as before, but the state size and the round numbers have
changed and there is an extra twist as we only need to guess 59 of the 64 state
bits going forward in the second dimension (explained below).

For the first dimension, we guess 77 key bits in the forward side and 16 subkey
bits in the backward side. The key bits guessed are

k′f1 = {k0, ..., k76},

k′b1 = {sk88, ..., k103}.
(22)

In the second dimension, we guess 20 subkey bits in the forward side and 78
subkey bits in the backward side. These subkey bits are

k′f2 = {sk102, ..., sk116, sk118, sk120, sk122, sk123, sk129}

k′b2 = {sk181, sk183, ..., sk259}.
(23)

In the forward side of the second dimension 5 bits (L2[38, 34, 29, 25, 17]) of
S51 have no effect on the LSB of S69, so we do not need to guess the value of
these bits when going forward in the second dimension. This means we can guess
key bits for a few more rounds before having to stop to stay below exhaustive
search complexity.

As before, to get unique states for each key guess in the forward side of the
first dimension we need to define a κ-value computable from both k′f1 and k′b1.
In KATAN64, the κ-value should consist of 77− 64 = 13 bits, and is chosen as

κ = {sk88 , sk89 , sk93 , ..., sk102 , sk90 ⊕ sk103}. (24)

This attack needs d80/64e = 2 pairs of known plaintext/ciphertext and the
memory complexity of the attack is equal to

277 × 77 + 278 × 1 + 220 × 1 ≈ 277 × 79 (25)

bits, which is about the same size as storing 277 keys.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 15

Time complexity analysis For early calculation in the encryption, we can
encrypt 10

3 rounds before starting to guess key bits. For partial decryptions, we
can decrypt 4 fa and 5 fb functions (equal to 1.5 rounds) as early calculation. In
KATAN64 each fa and fb are computed three times each in every round, hence
we will multiply the number of fa and fb invocations with 1

6 to get the number
of rounds needed to be computed in the attack.

The computation time in number of rounds for the four stages of this attack
are given below.

– Forward side of the first dimension: 0.89× 277

– Backward side of the first dimension: 0.83× 216

– Forward side of the second dimension: 0.28× 220

– Backward side of the second dimension: 1.75× 278

The total time complexity of the attack, in terms of 129-round KATAN64
encryptions, is then equal to

1
129 (0.89× 277 + 1.75× 278 + 0.83× 264+16 + 0.28× 259+20)) + 279 ≈ 279.03

(26)

We have the same trade-off as in the attack for KATAN48, between number
of rounds and complexity. If we use two matching bits in the second dimension of
the attack, we can cryptanalyse 126 rounds of KATAN64 with time complexity
of 278.06. However, we still believe the 129-round attack with complexity 279.03

is valid.

4.4 3D MITM attack on KATAN32

In this subsection we present an attack on a 206-round version of KATAN32,
using a 3D MITM attack. We split these 206 rounds into three sub-ciphers by
guessing both S73 and S97.

The first dimension is exactly the same as the first dimension of 179-round
2D MITM attack to KATAN32. In the second dimension, S73 and S97 meet each
other in all 32 bits of S89. In the third dimension, S97 and C meet each other in
the LSB (L2[0]) of S134.

In the second dimension, we guess 32 subkey bits in the forward side and 16
subkey bits in the backward side. These key bits are

kf2 = {sk146, ..., sk177},

kb2 = {sk178, ..., sk193}.
(27)

In this dimension we can not use the technique of (4), and we must guess all
subkeys, including only xored subkey bits, for partial encryption or decryption.
This is because we do not have enough key material in this dimension to express
the only-linearly involved key bits as linear combinations of the other key bits.

16 Sh. Rasoolzadeh, H. Raddum

In the third dimension we guess 48 subkey bits in the forward side and 78
subkey bits in the backward side. These particular bits are

k′f3 = {sk194, ..., sk233, sk235, sk236, sk238, sk240, sk242, sk246, sk249, sk255},

k′b3 = {sk317, sk321, sk333, sk335, sk337, sk338, sk339, sk341, ..., sk411}.
(28)

In the attack, we first check for matching in the first dimension, which gives
one candidate for (k′f1, k

′
b1) on the average for any given value s of S73. The pair

of (k′f1, k
′
b1) determines all 80 bits of the master key K. We compute (kf2, kb2)

for this K, then save K in a table T ′1 indexed by (kf2, kb2). For a fixed S73, we
are making 248 guesses for k′b1. Therefore, as (kf2, kb2) is also a 48-bit value, for
every index of T ′1 there will be one K in average.

Next, we check for matching in the second dimension. For every candidate
value of (kf2, kb2), we find K = T ′1 [(kf2, kb2)] and calculate values for k′f3 and

k′b3 from this K. We then check for matching in the third dimension, where 2−1

of the key candidates will be accepted. By testing each key passing the matching
in the third dimension on some other plaintext/ciphertext pairs, we find the
correct key. The algorithm of the attack is described in Algorithm 4.

The main memory complexity of the attack is storing the T1, T ′1 , T2, T3 and
T ′3 tables. This memory complexity is equal to

278 × 78 + 248 × 80 + 232 × 32 + 232+48 × 1 + 278 × 1 ≈ 278 × 83 (29)

bits which is equal to 278 of the 280 possible keys.

Time complexity analysis In both sides of the second dimension there are
10 subkey bits which only get xored onto S89, so the time for calculations in the
second dimension is negligible compared to the other dimensions. The time for
calculations in the third dimension are given below.

– Forward side of the third dimension: 248

– Backward side of the third dimension: 278

The time complexity of the total attack is then equal to

1
206 (1.33× 278 + 278 + 232(0.71× 248 + 248)) + 279 ≈ 279.02 (30)

In the same way as in the attacks in the previous sections, if in the third
dimension of the attack we use two matching bits, we can attack 201 rounds of
KATAN32 with time complexity of 278.04. In this case, instead of the one bit
matching described above, the 2 LSBs of S130 are chosen for matching.

5 Conclusions

In this paper we have introduced new MD MITM attacks to KATAN family of
block ciphers. Due to the low algebraic degree of the round function and the slow

Multidimensional Meet in the Middle Cryptanalysis of KATAN 17

Algorithm 4 3D MITM attack on KATAN32

for kf1 ∈ K′
f1 do

Compute 32 bits of v1 = E′
0,44(kf1, P)⊕ L′

f1 · kf1 for a plaintext P ;
Compute κ;
Store kf1 in a table T1 indexed by v1 and κ;

end for
for kb3 ∈ K′

b3 do
Compute the least significant bit of v3 = D′

206,134(kb3, C) ⊕ L′
b3 · kb3 for C the

ciphertext corresponding to P ;
Store the v3 in a table T3 indexed by kb3;

end for
for t ∈ F32

2 and kf3 ∈ K′
f3 do

Compute the least significant bit of v′3 = E′
97,134(kf3, t)⊕ L′

f3 · kf3;
Store the v′3 into a table T ′

3 indexed by (t, kf3);
end for
for s ∈ F32

2 do
for kb1 ∈ K′

b1 do
Compute 32 bits of v′1 = D′

73,44(kb1, s)⊕ L′
b1 · kb1;

Compute κ′;
Find kf1 = T1[(v′1, κ

′)];
Compute 80-bit master key candidate K;
Compute (kf2, kb2) from K;
Store K in table T ′

1 indexed by (kf2, kb2);
end for
for kf2 ∈ Kf2 do

Compute v2 = E73,89(kf2, s);
Store kf2 in table T2 indexed by v2;

end for
for t ∈ F32

2 and kb2 ∈ Kb2 do
Compute v′2 = D97,89(kb2, t);
Find kf2 = T2[v′2];
Find K = T ′

1 [(kf2, kb2)];
Calculate values of kf3 and kb3 from K;
if T ′

3 [t, kf3] = T3[kb3] then
Test the candidate key using this plaintext/ciphertext pair and a few other

pairs;
if candidate key matches the plaintext/ciphertext pairs then

Return candidate key as the correct key
end if

end if
end for

end for

key diffusion, we can apply some new techniques which significantly increases
the number of rounds attacked. Our results show that this method can attack
up to 206, 148 and 129 rounds out of 254 rounds of KATAN32, KATAN48 and
KATAN64, respectively, with only 2 or 3 plaintext/ciphertext pairs of known
data. These attacks cover the highest number of rounds to date and are able to

18 Sh. Rasoolzadeh, H. Raddum

cryptanalyse 29, 18 and 10 more rounds of KATAN32, KATAN48 and KATAN64,
compared to the best previously published attacks. Our work is still quite a way
from attacking full 254-round KATAN, so it could not be considered as a threat
to this family of block ciphers yet. We state that KATAN is still safe to use.

References

1. C. De Cannière, O. Dunkelman, and M. Knezevic, “KATAN and KTANTAN -
a Family of Small and Efficient Hardware-oriented Block Ciphers”, Cryptographic
Hardware and Embedded Systems (CHES) 2009, vol. 5747 of Lecture Notes in Com-
puter Science, pp. 272-288, Springer, 2009.

2. S. Knellwolf, W. Meier, M. Naya-Plasencia, “Conditional Differential Cryptanalysis
of NLFSR-Based Cryptosystems”, In M. Abe, ASIACRYPT 2010, LNCS, vol. 6477,
pp. 130145, Springer, 2010.

3. S. Knellwolf, W. Meier, M. Naya-Plasencia, “Conditional Differential Cryptanalysis
of Trivium and KATAN” In A. Miri, S. Vaudenay, Selected Areas in Cryptography,
SAC 2011, LNCS, vol. 7118, pp 200-212 , Springer, 2012.

4. S. Knellwolf, “Accelerated Key Search for the KATAN Family of Block Ciphers”,
ECRYPT Workshop on Lightweight Cryptography, November, 2011.

5. T. Isobe and K. Shibutani, “All Subkeys Recovery Attack on Block Ciphers: Extend-
ing Meet-in-the-Middle Approach”, In L. R. Knudsen and H. Wu, Selected Areas in
Cryptography, SAC 2012, LNCS, vol. 7707, pp. 202-221. Springer, 2012.

6. M. R. Albrecht and G. Leander, “An All-in-One Approach to Differential Crypt-
analysis for Small Block Ciphers”, In L. R. Knudsen and H. Wu, Selected Areas in
Cryptography, SAC 2012, LNCS, vol. 7707, pp. 1-15. Springer, 2012.

7. T. Isobe, Y. Sasaki, and J. Chen, Related-Key Boomerang Attacks on
KATAN32/48/64, In C. Boyd and L. Simpson, ACISP 2013 , LNCS, vol. 7959,
pp. 268-285, Springer, 2013.

8. T. Isobe and K. Shibutani, “Improved All-Subkeys Recovery Attacks on FOX,
KATAN and SHACAL-2 Block Ciphers”, Fast Software Encryption, FSE 2014,
LNCS, vol. 8540, pp. 104-126, Springer, 2015.

9. T. Fuhr and B. Minaud, “Match Box Meet-in-the-Middle Attack Against KATAN”,
Fast Software Encryption, FSE 2014, LNCS, vol. 8540, pp. 61-81, Springer, 2015.

10. B. Zhu and G. Gong, “Multidimensional Meet-in-the-Middle Attack and Its Ap-
plications to KATAN32/48/64”, Accepted in IET Information Security, 2015.

11. Z. Ahmadian, Sh. Rasoolzadeh, M. Salmasizadeh and M. R. Aref, “Automated
Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN”,
Cryptology ePrint Archive, report 2015/040, 2015.

12. G. V. Bard, N. T. Courtois, J. Nakahara, P. Sepehrdad, and B. Zhang, “Algebraic,
Aida/Cube and Side Channel Analysis of KATAN Family of Block Ciphers”, In G.
Gong, K. C. Gupta, INDOCRYPT 2010, LNCS, vol. 6498, pp. 176-196, Springer,
2010.

13. A. Bogdanov and C. Rechberger, “A 3-Subset Meet-in-the-Middle Attack: Crypt-
analysis of the Lightweight Block Cipher KTANTAN”. In A. Biryukov, G. Gong, D.
R. Stinson Selected Areas in Cryptography, SAC 2010, LNCS, vol. 6544, pp. 229-240,
2010.

14. L. Wei, C. Rechberger, J. Guo, H. Wu, H. Wang, and S. Ling, “Improved meet-
in-the-middle cryptanalysis of KTANTAN”. In U. Parampalli and P. Hawkes, Aus-
tralasian Conference on Information Security and Privacy, ACISP 2011, LNCS, vol.
6812, pp. 433-438. Springer, 2011.

Multidimensional Meet in the Middle Cryptanalysis of KATAN 19

15. M. Agren, “Some Instant- and Practical-Time Related-Key Attacks on KTAN-
TAN32/48/64”. In A. Miri, S. Vaudenay, Selected Area in Cryptography SAC 2011,
LNCS, vol. 7118, pp. 213-229. Springer, 2012.

16. S. F. Abdul-Latip, R. Reyhanitabar, W. Susilo, and J. Seberry, “Fault Analysis
of the KATAN Family of Block Ciphers”, In Mark D. Ryan, B. Smyth and G.
Wang, Information Security Practice and Experience, ISPEC 2012, LNCS, vol. 7232,
pp.319-336, Springer, 2012.

17. L. Song and L. Hu, “Improved Algebraic and Differential Fault Attacks on the
KATAN Block Cipher”, In R. H. Deng and T. Feng, Information Security Practice
and Experience, ISPEC 2013, LNCS, vol. 7863, pp 372-386, Springer, 2013.

18. F. M. Quedenfeld, “Algebraic Fault Analysis of KATAN”, Cryptology ePrint
Archive, report 2014/954, 2014.

19. W. Diffie, and M. Hellman, “Exhaustive Cryptanalysis of the NBS Data Encryption
Standard”, IEEE Computer Society Press, vol. 10(6), pp. 74-84, 1977.

	Multidimensional Meet in the Middle Cryptanalysis of KATAN
	Introduction
	MITM and MD MITM Attacks
	Basic MITM attack
	MD MITM attack
	Reducing the number of guessed subkey bits

	Description of KATAN
	Faster Method for Partial Encryption/Decryption

	MD MITM Cryptanalysis of KATAN
	2D MITM attack on KATAN32
	Time complexity analysis

	2D MITM attack on KATAN48
	Time complexity analysis

	2D MITM attack on KATAN64
	Time complexity analysis

	3D MITM attack on KATAN32
	Time complexity analysis

	Conclusions

