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While DNSSEC securely provides authenticity and integrity to the domain name system (DNS),
it also creates a new security vulnerability called zone enumeration [27, 10, 7, 42] that allows an
adversary that asks a small number of targeted DNS queries to learn the IP addresses of all domain
names in a zone. An enumerated zone can be used as “a source of probable e-mail addresses for
spam, or as a key for multiple WHOIS queries to reveal registrant data that many registries may
have legal obligations to protect” [27] (e.g., per EU data protection laws, see [34],[2, pg. 37]),
or to create a toehold for more complex attacks. As the Internet of things becomes increasingly
ubiquitous, it also becomes increasingly important to keep the names and addresses of these ‘things’
(e.g., thermostats, fridges, baby monitors) away from remote attackers.

In [20] we solved DNSSEC’s zone enumeration problem by introducing NSEC5, a cryptographic
construction based on RSA digital signatures. NSEC5 provides authenticated denial of existence,
i.e., it is used to answer DNS queries (e.g., “What is the IP address for aWa2j3.example.com?”)
that do not have a response (e.g., “aWa2j3.example.com is a non-existent domain.”) RSA-based
NSEC5 was recently submitted for specification in an Internet draft [40], and a working implemen-
tation of a nameserver that supports RSA-based NSEC5 is also available [1].

However, recent years have seen the DNSSEC community aiming to replace RSA with elliptic
curve cryptography (EC), in order to shorten the length of DNSSEC responses [23, 39, 36]. There-
fore, in this paper we present a new variant of NSEC5 that uses elliptic curve cryptography (ECC)
to produce shorter NSEC5 responses. If a zone is signed with ECDSA at the 128-bit security
level and also uses our ECC-based NSEC5 scheme, its denial-of-existence responses (response code
NXDOMAIN) will be about 2 times shorter than that a zone signed with 2048-bit RSA and RSA-
based NSEC5 [20]. Moreover, our ECC-based NSEC5 has responses lengths that are comparable
to NSEC3 [27], DNSSEC’s current authenticated-denial-of-existence mechanism that is vulnerable
to zone enumeration via offline dictionary attacks [42, 10]. In fact, if a zone signed with ECDSA
at the 128-bit security level also uses our ECC-based NSEC5 scheme with SHA-256 for hashing, it
will have responses that are shorter than a zone using NSEC3 with 1024-bit RSA and SHA1 (for
an 80-bit security level), which is today’s dominant deployment configuration [37, 21].

Organization. Sections 1-2 start with background on the issues that lead to the development
of NSEC5. We present our ECC-based NSEC5 construction in Sections 3-4; Section 3 reviews
how NSEC5 can be constructed from Verifiable Random Functions (VRF) [31, 28], and Section 4
presents an ECC-based VRF based on [16]. We estimate response lengths for NSEC5 in Section 5.
We conclude in Section 6 by precisely measuring response lengths for NSEC5 (as specified in its
Internet draft [40]) using the NSEC5-ready implementation of the KNOT DNS nameserver [1] and
empirical data from the paypal.com zone. Formal cryptographic proofs for the security of the
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ECC-based VRF are in Appendix A. (These proofs are new since [16] did not prove that their
construction is a VRF.)

1 Does length really matter?

The length of a DNSSEC response might, at first glance, seem like a foolish parameter to optimize.
After all, when a DNS resolver sends a DNS query (“What is the IP address for www.example.

com?”) the nameserver produces a DNS response (“155.41.24.251”) that is generally short enough
to fit into a single IP packet. However, DNSSEC naturally amplifies the length of DNS response
by including cryptographic digital signature along with information about cryptographic keys and
algorithms (via the DNSSEC RRSIG record).

When amplification means that the DNSSEC response no longer fits in a single IP packet,
several undesirable outcomes can occur. The response can be sent over UDP and fragmented across
multiple IP fragments, and thus risks being dropped by a middlebox that blocks IP fragments [35,
38] or being subject to an IP fragmentation attack [21]. Alternatively, the resolver can be forced
to resend the query over TCP [30], which incurs both a high performance cost (due to roundtrips
needed to establish a TCP connection) and the risk that the connection will be dropped (because
some middleboxes are configured to block DNS over TCP) [35].

Worse yet, DNSSEC length amplification can also be amplify DDoS attacks [17]. In an amplified
DDoS attack, a botnet sends nameservers many short DNS queries that are spoofed to look like
they come from a victim machine, and the nameservers respond by pelting the victim machine
with many long DNSSEC responses. Longer DNSSEC responses increase the volume of traffic
that arrives at the victim. Fortunately, recent measurements [38, Fig. 10] found that DNSSEC’s
existing authenticated denial of existence records (i.e., NSEC and NSEC3 records) are not the
worst offenders in terms of DNSSEC length amplification. Our ECC-based NSEC5 has response
lengths comparable to the NSEC3 responses that are already part of DNSSEC. (See Sections 5-6.)

2 Why today’s DNSSEC trades off integrity and privacy.

We now review the issues that lead to the development of NSEC5 for DNSSEC.
Recall that with DNSSEC, a trustworthy zone owner is trusted to determine the set of names

(www.example.com) present in the zone and their mapping to corresponding values (155.41.24.251).
Nameservers receive information from the zone owner, and respond to DNS queries for the zone
made by resolvers. NSEC5 was developed to solve DNSSEC’s zone enumeration problem, which
arises when a DNS query (“What is the IP address for aWa2j3.example.com?”) does not have
a response (“aWa2j3.example.com is a non-existent domain.”) Today, DNSSEC’s methods for
authenticated denial of existence reflect tradeoffs between privacy against zone enumeration and
integrity of DNS information. We describe each method and its tradeoffs below:

NSEC (RFC 4034 [3]). The NSEC record is defined as follows. The trusted owner of the
zone prepares a lexicographic ordering of the names present in a zone, and uses the private zone
signing key (ZSK) to sign every consecutive pair of names; each pair of names is an NSEC record.
The precomputed NSEC records are then provided to the nameserver. Then, to prove the non-
existence of a name (x.example.com), the nameserver returns the NSEC record for the pair of
existent names that are lexicographically before and after the non-existent name (w.example.com
and z.example.com), as well as its associated DNSSEC signatures.
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NSEC provides strong integrity—it not only protects against network attackers that intercept
DNSSEC responses, but is also robust to a malicious nameserver. This is because NSEC records
are precomputed and signed by the trusted owner of the zone, and so the nameserver does not need
to know the private ZSK in order to produce a valid NSEC record. Without the private ZSK, a
malicious nameserver cannot sign bogus DNSSEC responses. On the other hand, NSEC is highly
vulnerable to zone enumeration attacks, where an adversary that makes a few online queries to the
nameserver to collects all the NSEC records trivially learns all the names in the zone.

NSEC3 (RFC 5155 [27]). NSEC3 is meant to raise the bar for zone enumeration attacks. The
trusted owner of the zone cryptographically hashes all the names present in the zone using SHA1,
lexicographically orders all the hash values, and uses the private ZSK to signs every consecutive
pair of hashes; each pair of hashes is an NSEC3 record. To prove the non-existence of a name, the
nameserver returns the precomputed NSEC3 record (and the associated DNSSEC signatures) for
the pair of hashes lexicographically before and after the hash of the non-existent name.

Like NSEC, NSEC3 uses precomputed responses, and thus also provides strong integrity. How-
ever, while hashing does make zone enumeration more difficult, it is still possible, as demonstrated
by [10, 42] and acknowledged in RFC 5155 [27, Sec. 12.1.1]. To enumerate a zone that uses NSEC3,
the adversary again makes a few online queries to the nameserver to collect all the NSEC3 records,
and then uses an offline dictionary attacks to crack the hash values in the NSEC3 records, thus
learning the names present in the zone. These offline attacks will only become faster and more
efficient as technologies for hashing continue to improve (e.g., GPUs [42], special-purpose ASICs).

NSEC3 White Lies (RFC 7129 [18]). NSEC3 White Lies was introduced to offer strong
protection against zone enumeration. With NSEC3 White Lies, the nameserver holds the private
ZSK and signs, online, the minimal possible pair of hash values that cover a queried name. That
is, given a query α and its hash value h(α), the nameserver generates an NSEC3 record containing
the pair of hashes (h(α)− 1, h(α) + 1), and signs the NSEC3 record with the private ZSK.

Because the NSEC3 White Lies record only contains information about the queried name α,
but not about any name present in the zone, it is not vulnerable to zone enumeration attacks.
An adversary can only enumerate the zone by brute force—by sending an online query to the
nameserver for each name that it suspects is in the zone. On the other hand, because the nameserver
is required to hold the private ZSK and sign responses online, NSEC3 White Lies provides only
weak integrity——it protects against network attackers that intercept DNSSEC responses, but is
vulnerable to attacks by a malicious nameserver that uses the private ZSK to sign bogus DNSSEC
responses. Weak integrity can be a problem when an organization’s nameserver is run by a different
organization,1 or is compromised [41].

3 NSEC5: Strong integrity and strong privacy.

In [20], we introduced NSEC5 to provide both strong integrity and strong privacy against zone
enumeration. NSEC5 is very similar to NSEC3, except that we replace the cryptographic hashes
used in NSEC3 with the hashes computed by a verifiable random function (VRF) [31].

1For example, the zone umich.edu has two authoritative nameservers run by the University of Michigan
(dns1.itd.umich.edu and dns2.itd.umich.edu) and one run by the University of Wisconsin (dns.cs.wisc.edu) [33].
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3.1 Verifiable Random Functions (VRF).

A VRF [28] is essentially the public-key version of a keyed cryptographic hash. A VRF comes with
a public-key pair (PK ,SK ), and only the holder of the private key SK can compute the hash, but
anyone with public key PK can verify the hash. A VRF hashes an input α using the private key
SK

β = FSK (α) .

The pseudorandomness of a VRF guarantees that β is indistinguishable from random by anyone
who does not know the private key SK . The private key SK is also used to construct a proof π
that β is the correct hash output

π = ΠSK (α) .

The proof π is constructed in such a way that anyone holding the public key can validate that
indeed β = FSK (α). Finally, the VRF has a trusted uniqueness property that roughly requires
that, given the VRF public key PK , each VRF input α corresponds to a unique VRF hash output
β. More precisely, trusted uniqueness guarantees that, given a validly-generated PK , even an
adversary that knows SK cannot produce a valid proof for a fake VRF hash output β′ 6= β. See
Appendix A for formal definitions.

It is sometimes the case that β can be computed directly from π by a simple operation, such as
hashing. In this case communicating π alone to the recipient is enough. In particular, this is the
case in both our previous RSA-based NSEC5 construction [20] and in the present paper.

3.2 NSEC5 from VRFs.

NSEC5 uses a VRF to provide authenticated denial of existence for DNSSEC [31, Sec. 7]. We
review the NSEC5 construction and three new types of DNSSEC records it requires: NSEC5,
NSEC5KEY and NSEC5PROOF.2

The NSEC5KEY. NSEC5 uses a VRF whose keys are distinct from the ZSK that computes
DNSSEC signatures. The private VRF key is known to both the nameserver and the trusted owner
of the zone. Meanwhile, the private ZSK is only known to the trusted owner of the zone. Finally,
resolvers get the public ZSK (in a DNSKEY record), and the public VRF key (in an NSEC5KEY
record) using the standard mechanisms used to distribute keys in DNSSEC.

Why do we need two separate keys, namely the ZSK (for signing DNS records) and the VRF key
(for NSEC5)? This allows us to separate our two security goals (i.e., strong integrity and strong
privacy against zone enumeration). To achieve strong integrity, we follow the approach in NSEC

2Our original NSEC5 construction [20] did not describe NSEC5 in terms of VRFs. However, it did actually use
the following VRF, which is based on RSA in the random oracle model. To hash input α using the private RSA key
SK, start by computing the proof value

π = RSASIGSK (MGF (α))

and then compute the hash value β as
β = H(π)

H is a standard cryptographic hash function (e.g., SHA-256) while MGF is an industry-standard cryptographic hash
that produces outputs one bit shorter than the RSA modulus [4, Sec. 10.2]. To verify that β is indeed the hash of α,
(1) use the public RSA key PK to verify that π is a valid RSA signature on H1(α), and (2) verify that H(π) = β.
Notice that trusted uniqueness follows because, given the public key PK, then RSASIGSK(MGF (·)) can produce
exactly one proof value π for every input value α. This RSA-based VRF also has the property that the hash value
β is publicly computable from the proof π; as such, in [20] we also did not need to include β in the NSEC5PROOF
record.
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and NSEC3, and provide the private ZSK to the the trusted zone owner but not to the untrusted
nameserver. On the other hand, any reasonable definition of privacy against zone enumeration
must trust the nameserver; after all, the nameserver holds all the DNS records for the zone, and
thus can trivially enumerate the zone. For this reason, we will provide the secret VRF key to the
nameserver, and use the VRF only to deal with zone enumeration attacks.

Precomputing NSEC5 records. The trusted owner of the zone uses the private VRF key
SK to compute the VRF hashes of all the names present in the zone, lexicographically orders all
the the hash values, and uses the private ZSK to sign every consecutive pair of hashes; each pair
of hashes is an NSEC5 record. The precomputed NSEC5 records and their associated DNSSEC
signatures are provided to the nameserver along with the private VRF key SK.

Responding with NSEC5 and NSEC5PROOF records. To prove the non-existence of
a queried name α, the nameserver uses the private VRF key SK to obtain the VRF hash output
β = FSK (α) and the proof value π = ΠSK(α). The nameserver then responds to the query with (1)
an NSEC5PROOF record containing β and π, and (2) the precomputed NSEC5 record (and the
associated DNSSEC signatures) for the pair of hashes lexicographically before and after β. (Notice
that NSEC3 does not need a ‘PROOF’ record, since the resolver can hash α on its own; but it is
exactly this public nature of the hash function in NSEC3 that leads to off-line zone enumeration
attacks.)

We use an ECC-based VRF that has the additional property that β is publicly computable
from the proof π, so we will not need to include β in the NSEC5PROOF record.

Validating responses. The resolver validates the response by (1) using the public VRF key
in the NSEC5KEY record to validate that proof π and hash output β from the NSEC5PROOF
record correctly correspond to the query α, (2) checking that β falls between the two hash values
in the signed NSEC5 record, and (3) using the public ZSK to validate the DNSSEC signatures on
the NSEC5 record.

3.3 Properties of NSEC5.

NSEC5 requires online cryptographic computations; namely, for every query α that the nameserver
receives, the nameserver computes the NSEC5PROOF record, on the fly, using the secret VRF key
SK . Notice that ‘NSEC3 White Lies’ also requires online cryptographic computations; for every
query α, the nameserver uses the secret ZSK to sign, on the fly, the minimally covering NSEC3
record for α (see Section 2). The fact that both of these solutions prevent zone enumeration is not
a coincidence. Indeed, in [20] we proved that any solution that both (a) prevents zone enumeration
and (b) provides weak integrity, must necessarily use online cryptography. What is interesting
about NSEC5, however, it that provides strong integrity (i.e., integrity even when the nameserver
is malicious or compromised), while ‘NSEC3 White Lies’ only provides weak integrity. We now
sketch the security arguments for NSEC5; formal cryptographic proofs are in [31, Sec. 7].

Strong protection against zone enumeration. An attacker can only enumerate the zone by
brute force—by sending an online query to the nameserver for each name α that it suspects is in
the zone. To see why, suppose an adversary has collected all the NSEC5 records for the zone, and
now wants to enumerate the zone using an offline-dictionary attack that ‘cracks’ the VRF hashes.
To do this, the adversary must first hash each entry in his dictionary, and then check if any of
the hashed dictionary entries match any VRF hashes in the collected NSEC5 records; if there is a
match, the adversary has successfully cracked the VRF hash. However, because the adversary does
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not know the private VRF key, the VRF hash values are indistinguishable from random values. It
follows that the adversary cannot hash any of the entries in its dictionary, and thus cannot perform
a offline dictionary attack.

Strong integrity. We now argue that, because the untrusted nameserver does not know the
private ZSK, it cannot provide a false denial of existence (i.e., to provide a valid response claiming
that that name α does not exist in the zone, even though it really does). We emphasize that strong
integrity is preserved even if a malicious nameserver, or any other adversary, knows the private
VRF key SK . To see why, first observe that resolvers have the VRF public key PK and thus can
check that the proof value π and hash output β in the NSEC5PROOF corresponds to their query
α. Thus, by trusted uniqueness, no one, even given the knowledge of SK , can fool the resolvers into
accepting a different β. Thus, since β cannot be forged, the only avenue of attack is to forge an
NSEC5 record. (The forged NSEC5 record would contain a pair of hashes lexicographically before
and after β; no true NSEC5 record of this form can exist, because β corresponds to a name α that
exists in the zone ) But forging an NSEC5 record requires forging a signature with the private ZSK,
which the malicious nameserver (or other adversary) does not have.3

In fact, the argument for the strong integrity of NSEC3 is identical to the one we have just
outlined. This is because if the private VRF key SK used with NSEC5 is made public, NSEC5 is
essentially the same as NSEC3: the adversary can hash queries on its own, but cannot forge NSEC*
records. Therefore, even if the private NSEC5KEY is leaked to an adversary, all that happens is
that the security of NSEC5 downgrades to that of NSEC3.

4 An Elliptic Curve VRF for NSEC5.

We use a VRF that is very similar to the construction of Franklin and Zhang [16]. This VRF
that operates in a cyclic group G of prime order with generator g and is secure in the random
oracle model. The VRF adapts the Chaum-Pederson (CP) protocol from CRYPTO’92 [14], for
proving that two cyclic group elements gx and hx have the same discrete logarithm x base g and
h, respectively. The security of this scheme, proven in the random oracle model, rests on the
computational Diffie-Hellman (CDH) assumption, which roughly says that it is hard to compute
hx given the tuple (g, gx, h). Our description adopts a multiplicative group notation, and all hash
functions are modelled as random oracles.

4.1 Construction.

Public parameters. Let q be a prime number, Zq be the integers modulo q, Z∗q = Zq−{0}, and let
G a cyclic group of prime order q with generator g. We assume that q, g and G are public parameters
of our scheme. Let H1 be a hash function (modeled as a random oracle) mapping arbitrary-length
bitstrings onto the cyclic group G. (See Appendix B for a suggested instantiation of H1.) Both
hash functions H2 and H3 are (random oracles) instantiated with a standard cryptographic hash
like SHA-256.

3Notice that the trusted uniqueness property of the VRF is crucial for providing strong integrity. This is why
we cannot replace the RSA signature in our original NSEC5 construction from [20] with an ECDSA signature; RSA
signatures are unique given the public key PK but ECDSA signatures are not. With randomized ECDSA signatures,
the signer uses a nonce as part of its signature computation, and so signatures are not unique given the ECDSA
public key PK. Moreover, even deterministic ECDSA [32] fails to provide uniqueness given the ECDSA public key
PK. This follows because with deterministic ECDSA, the signer derives the signing nonce from a keyed hash of the
message it is signing, but the key k to this hash in independent of the ECDSA public key PK. Thus, PK does not
allow the verifier to check that the signer used the correct nonce for each message it signed.
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Keys. The secret VRF key x ∈ Zq is chosen uniformly at random. The public VRF key is gx.

Hashing. Given the secret VRF key x and input α, compute the proof π as:
1. Obtain the group element h = H1(α) and raise it to the power of the secret key to get γ = hx.
2. Choose a nonce k ∈ Zq.
3. Compute c = H3(g, h, g

x, hx, gk, hk).
4. Let s = k − cx mod q.
The proof is the group element γ and the two exponent values c, s. The VRF output β = FSK (α)

is computed by hashing γ with H2. Thus

π = (γ, c, s) β = H2(γ)

Notice that anyone can compute the VRF hash output β given the proof π. (This is why we don’t
need to include β in the NSEC5PROOF record, per Section 3.2.)

Verifying. Given public key gx , verify that proof π corresponds to the input α and output β
as follows:

1. Given public key gx, and exponent values c and s from the proof π, compute u = (gx)c · gs.
Note that if everything is correct then u = gk.

2. Given input α, hash it to obtain h = H1(α). Make sure that γ ∈ G. Use h and the values
(γ, c, s) from the proof to compute v = (γ)c ·hs. Note that if everything is correct then v = hk.

3. Check that hashing all these values together gives us c from the proof. That is, given the
values u and v that we just computed, the group element γ from the proof, the input α, the
public key gx and the public generator g, check that:

c = H3(g,H1(α), gx, γ, u, v) i.e., c = H3(g, H1(α), gx, γ, (gx)c · gs, (γ)c · [H1(α)]s)

Finally, given γ from the proof π, check that β = H2(γ).

4.2 Instantiation with elliptic curves.

This VRF can be instantiated over any group where the computational Diffie-Hellman (CDH)
problem is hard, including the elliptic curves currently standardized in DNSSEC (NIST P-256 [24,
Sec. 3]), and the Curve25519 [26] which has recently been proposed for use with DNSSEC [25, 36].
Each of these curve achieves an approximately 128-bit security level, roughly as strong as 3072-bit
RSA [9, 24]. Both of these curves operate in finite field Fq, where q is a 256-bit prime, therefore
the exponents in our construction are of size 256 bits. Using point compression, each elliptic curve
point can be represented with only 256+1 bits, so the proof π will be p = 256 + 1 + 2 ∗ 256 = 769
bits long.

The idea behind point compression is to represent a point with coordinates (x, y) using only
its abscissa x (which is 256 bits long) and a single bit that indicates which square root (positive
or negative) should be used for the ordinate y. Without point compression, both coordinates must
be transmitted, for a total length of 256+256 bits. (Thus, without point compression our proof
π would be 2 ∗ 256 + 2 ∗ 256 = 1024 bits long.) There has been some controversy over whether
or not point compression is covered by a patent, and whether its use in DNSSEC corresponds to
patent infringement [39]. However, as Bernstein [8] argues: “a patent cannot cover compression
mechanisms [appearing in the paper by Miller in 1986 [29] that was] published seven years before
the patent was filed.” Indeed, current Internet drafts for Curve25519 for DNSSEC signatures also
use point compression [25].
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4.3 Security properties.

Franklin and Zhang did not prove that their construction is a VRF [16], so we provide formal
proofs that this VRF satisfies selective pseudorandomness and trusted uniqueness in Appendix A.
We sketch the proofs here.

Trusted uniqueness. The proof is by contradiction. Suppose an adversary, given the secret key
x, can come up with some α and an incorrect VRF output value β1 6= H2([H1(α)]x) for that α,
and a valid proof π1 = (γ1, s1, c1) for value β1. The verification function for the VRF computes
h = H1(α) and

u = (gx)c1gs1

v = (γ1)
c1hs1

Now take the logarithm of the first equation base g and the logarithm of the second equation base
h, subtract the two resulting equations, and express c1, to get

c1 ≡
logg u− logh v

x− logh γ1
(mod q) . (1)

Now since γ1 6= hx (since β1 is not the correct output value), the denominator is not zero, and there
is exactly one c1 modulo q that satisfies equation (4) for a given (g, h, gx, γ, u, v), regardless of s.
However, recall that the verifier checks that c1 is equal to the output of the cryptographic hash
function H3 on input (g, h, gx, γ, u, v). Since H3 is a random oracle, its output is random, and the
probability that it equals the unique value determined by its inputs according to (1) is negligible.
Thus, we have arrived at our contradiction.

Pseudorandomness. This follows from the CDH assumption, in the random oracle model.
Roughly speaking, the pseudorandomness adversary does not know the secret VRF key x, but
must distinguish between between pairs (α, β) where β is the VRF hash output on input α, and
pairs (α, r) where r is a random value. This adversary knows the public values g and gx, and can
easily compute h = H1(α) for any α. However, by the CDH assumption, its hard for this adversary
to compute hx even given (g, gx, h). Since the adversary does not know hx, the random oracle
output β = H2(h

x) looks entirely random to him, and pseudorandomness follows.

5 Estimating the length of responses.

We now perform some back-of-the-envelope length estimates for NSEC5 with our elliptic curve
VRF, and compare it to NSEC3 and our RSA-based NSEC5 construction from [20]. (In [20], we
constructed NSEC5 from a VRF whose proof value π was a RSA signature, and the VRF hash
output was β = H(π) where H is standard cryptographic hash function.) These estimates only
take into account the cryptographic material (i.e., hashes, signatures, proofs) associated with each
response. We assume that all three mechanisms use cryptographic hash functions H producing
outputs of length ` and DNSSEC signatures (i.e., RRSIG records) producing outputs of length σ.
NSEC5 proofs have length p.

Length estimates. NSEC5 records and NSEC3 records are almost identical in structure; each
contains two hash value and is signed with an RRSIG record, and thus incurs a length of 2` + σ.
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Hash Algorithm SHA1, ` = 160 bits SHA-256, ` = 256 bits
RSA ECDSA RSA ECDSA

Signature Algorithm σ = 1024 σ = 2048 σ = 512 σ = 1024 σ = 2048 σ = 512
NSEC3 4032 7104 2496 4608 7680 3072
NSEC5 RSA, p = 1024 4736 6784 3712 5120 7168 4096
NSEC5 RSA, p = 2048 6784 8832 5760 7168 9216 6144
NSEC5 EC, p = 769 4226 6274 3202 4610 6658 3586

Table 1: Length estimates for different mechanisms for authenticated denial of existence. All
numbers shown in bits and computed per equations (2), (3). As discussed, SHA1 is considered to
be end-of-life [5] and thus the left side of this table corresponds to the, insecure but still widely
used, 80-bit security level, while the right side of the table reflects the use of the more modern
SHA-256 hash function for a 128-bit security level. Each column represents a different signature
algorithm for RRSIG records.

NSEC3 deals with wildcards and closest enclosers by returning (in the worst case) three NSEC3
records for a given query [27]. It follows that the length of an NSEC3 response is, in the worst case

|nsec3| = 3(2`+ σ) = 6`+ 3σ (2)

However, in [19], Gieben and Mekking observed that wildcards and closest enclosers could be dealt
with using only two NSEC3 records. While this optimization was not standardized as part of
NSEC3, we can apply it to our setting because NSEC5 records are almost identical to NSEC3
records. Therefore with NSEC5 we require only two NSEC5 records along with their associated
RRSIG and NSEC5PROOF records in response to every query. Every NSEC5PROOF is unsigned
and contains a proof value π of length p, where our elliptic curve VRF has p = 769 and our RSA
VRF has p equal to the length of an RSA signature. Thus, the length of an NSEC5 response is, in
the worst case

|nsec5| = 2(2`+ σ + p) = 4`+ 2σ + 2p (3)

Cryptographic algorithms and key lengths. Modern key-management recommendations
mandate a security level of at least 112 bits for cryptographic applications. In practice this corre-
sponds to signatures with 2048-bit RSA (σ = 2048 bits) or ECDSA over 256-bit curves (σ = 512
bits) where SHA-256 is the hash function (` = 256 bits) [6]. However, the majority of domains that
employ DNSSEC still use 1024-bit RSA (σ = 1024 bits) for signing [22, 37], in order to achieve
shorter responses; this corresponds to an 80-bit security level that is widely considered outdated
and insecure [6]. Moreover, NSEC3 currently only supports SHA1 (` = 160) as the hashing func-
tion [27], whereas NSEC5 was proposed with SHA-256 as the default option [40] in accordance with
modern security standards. For completeness we include in our analysis all possible combinations
of schemes and hash functions, i.e., NSEC3 and NSEC5 with both SHA1 and SHA-256. Table 1
instantiates equations (2) and (3) with these values of signature length σ and hash output length
` and NSEC5 proof length p.

Observations. From Table 1, we see that the NSEC5 responses are shortest when elliptic
curves are used both for the signature (i.e., ECDSA) and for the NSEC5 proof (per Section 4);
when SHA-256 is used as the hash function, the cryptographic material in the NSEC5 responses is
about ≈ 3586 bits long. We can immediately see the improvement if we compare the elliptic curve
approach with RSA; NSEC5 with SHA-256 and 2048-bit RSA signatures and proofs has ≈ 9216
bits of cryptographic material, so ECC-based NSEC5 responses are 2.6 times shorter!

Moreover, NSEC5 with elliptic curves for both the signature and the proof provides responses
(≈ 3586 bits) that are not much longer than NSEC3 with elliptic curve signatures and SHA-256
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(≈ 3072 bits). In fact, NSEC5 with elliptic curves at the 128-bit security level (≈ 3586 bits)
produces responses that are shorter than NSEC3 at a lower security level (i.e., ≈ 4032 bits for
NSEC3 with 1024-bit RSA and SHA1); this last comparison is especially significant since many
DNSSEC zones today are still signed using 1024-bit RSA [37, 22].

6 Measuring response lengths with an NSEC5-ready nameserver.

We now validate the observations made in Section 5 by precisely measuring response lengths using
the NSEC5-ready implementation of the KNOT DNS nameserver from [1] and empirical data
from the paypal.com zone. We determine the length of responses for NSEC, NSEC3 and NSEC5
with signing algorithms that have a security level of at least 112-bits. That is, for producing
RRSIG records we consider both 2048-bit RSA (σ = 2048) and ECDSA over the NIST P-256 curve
(σ = 512). For each scheme we used the only standardized hash function, i.e., SHA1 (` = 160) for
NSEC3 and SHA-256 (` = 256) for NSEC5.

6.1 Measurement methodology.

We chose paypal.com because it is the only Alexa-100 domain that deploys DNSSEC; this zone uses
NSEC and so it could be trivially enumerated with a small number of online queries. Therefore, in
October 2015, we collected all the NSEC records from paypal.com and we ended up with a zone
of a little more than 1000 records.

To sign the zone, we used the NSEC5-ready version of the KNOT DNS nameserver from [1],
which implements our RSA-based NSEC5 scheme from [20] as specified in the IETF Internet
draft [40]. We used this nameserver to re-sign the zone using (1) NSEC with 2048-bit RSA sig-
natures, (2) NSEC with 512-bit ECDSA signatures, (3) NSEC3 with 512-bit ECDSA signatures,
(2) NSEC3 with 2048-bit RSA signatures, (5) NSEC5 with 2048-bit RSA signatures and proofs,
(6) NSEC5 with 2048-bit RSA proofs and 512-bit ECDSA signature (a hybrid EC/RSA scheme).
For each instance of the signed zone, we collected denial-of-existence responses (response code NX-
DOMAIN4), by issuing DNS queries with a random five-character string prepended to each actual
record name from the zone. We report the average and standard deviation of the length of these re-
sponses in Figure 1. Note that this measurement is very accurate, as it includes all the appropriate
records and fields in the response packet, rather than just the cryptographic material as discussed
in Section 5.

Finally, because the nameserver implementation [1] does not yet support NSEC5 with ECC
proofs, we calculated the response size for (7) NSEC5 with ECC proofs and ECDSA signatures
by taking a delta from the hybrid EC/RSA NSEC5 scheme; this delta is concretely measured as
2048 − 769 = 1279 bits per proof. (We emphasize that this is still a very accurate estimation of
the final response size, as the only difference in packet formats between ECC-based NSEC5 and
RSA-based NSEC5 is the owner name hash field of the NSEC5PROOF record, as specified in [40].)

6.2 Observations.

MTU. In all cases, transition from RSA to ECDSA reduces the response size significantly. All
schemes produce packets larger than 512 bytes (which is the default UDP size limit for DNS when

4We focused on NXDOMAIN responses because, out of all the “negative” response types (such as NODATA or
empty non-terminals), they typically are the longest.
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Figure 1: Average and standard deviation of NXDOMAIN response size in bytes.

EDNS0 is not used) and most of them are within the Ethernet Maximum Transmission Unit (MTU)
which is 1500 bytes.

Variance in response length. The error bars in Figure 1 correspond to one standard deviation.
Notice the NSEC5 has much smaller variance than NSEC or NSEC3. This follows because with
NSEC, some queries are handled with a single NSEC + RRSIG record (if the same record covers
both the queried name and the wildcard expansion) while others are handled with two NSEC +
RRSIG records. Meanwhile, with NSEC3, if the closest encloser happens to be an empty non-
terminal, the response contains two NSEC3 + RRSIG records instead of three. On the other hand,
NSEC5 responses always have two NSEC5 + RRSIG + NSEC5PROOF records, and the (small)
variance is only due to differences in the record content.

RSA-based approaches. As can be seen in the figure, NSEC5 with RSA proofs and signatures
can significantly increase response size. If 2048-bit RSA is used for NSEC3 or NSEC5 (middle and
rightmost red bars in the plot) packets grow prohibitively large, above or close to the Ethernet MTU.
This leads to a variety of undesirable outcomes including packet fragmentation (Section 1), and
further justifies the recent push for adoption of elliptic curve cryptography for DNSSEC [39, 15, 23]).

ECC-based approaches. Leaving RSA behind, the current state-of-the-art NSEC3 with
ECDSA has an average response length of 751 bytes (middle blue bar). Comparing this to the
hybrid NSEC5 scheme with RSA proofs and ECDSA signatures (which was achievable prior to this
paper), the average response length is 1190 bytes (middle purple bar). This still corresponds to
a significant length increase of ∼ 58.4%. Meanwhile if we use a full ECC approach with NSEC5
(ECC proofs and ECDSA signatures), the average response size is 870 bytes (rightmost blue bar),
corresponding to a mere ∼ 15.9% increase over the best possible with NSEC3 variant. Note that
these numbers are achieved while using SHA1 for hashing at NSEC3 and SHA-256 for NSEC5. In
case NSEC5 is standardized for use with SHA1, then the gap between the two drops to just 5.1%.

ECC-based NSEC5 is shorter than a NSEC3 with 1024-bit RSA. Quite surprisingly,
our NSEC5 scheme not only eliminates zone enumeration and achieves better security level (128-
bit vs. 80-bit security), but also produces shorter responses than today’s dominant deployment
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configuration [37]. Specifically, NSEC3 using 1024-bit RSA and SHA1 (for an 80-bit security level)
produces response lengths of 1038 bytes on average. This is approximately 20% longer than what
we achieve with NSEC5 with EC proofs and ECDSA signatures at the 128-bit security level!
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A Security Proofs.

We prove that the construction in Section 4 is a secure VRF. It suffices to prove two properties:
Trusted Uniqueness (see [31, Definition 10]) and Selective Pseudorandomness (see [31, Definition
11]). Sufficiency of these two properties for constructing NSEC5 follows from [31, Theorem 4]. We
discuss each property in turn.

We model all hash functions (i.e., H1, H2, H3) as random oracles. We use the notation Prove
to denote operation that on input α uses the secret VRF key SK to produce a VRF proof value π
and VRF hash value β, i.e., ProveSK (α) → (β, π). The notation VerPK (α, β, π) = 1 denotes the
algorithm that uses the public key PK to verify that proof π and hash output β are valid for input
α.

A.1 Trusted Uniqueness.

Following tradition of the VRF literature, Naor and Ziv [31, Definition 10]) define Trusted Unique-
ness unconditionally: that is, for a validly generated public key, each input α to the VRF has at
most one hash output β that can be proven to be correct. However, the construction in Section 4
satisfies it only computationally: more than one hash output y may exist, but only one valid β—the
one produced by Prove—can be proven correct by any computationally bounded adversary, even
given the secret key. We are not aware of any prior work defining this relaxation of the uniqueness
property, although Chase and Lysyanskaya [13] mention that such a relaxation can be defined. We
therefore define it here.

Definition A.1 (Computational Trusted Uniqueness). For all probabilistic polynomial-time adver-
saries A, for a random validly chosen key pair (PK ,SK )← Setup(1κ),

Pr[A(PK ,SK )→ (α, β1, π1) and ProveSK (α)→ (β2, π2) s.t. β1 6= β2 and VerPK (α, β1, π1) = 1]

is negligible in κ, where κ is the security parameter.

(The second part of the definition—namely, that for every PK , for an overwhelming fraction of
the domain of α, there exists β and π such that VerPK (α, β, π) = 1—remains unchanged.)

We now prove that the VRF satisfies this property unconditionally (based on the randomness
of the oracle H3 and not on any computational assumptions).

Claim A.2. The VRF satisfies computational trusted uniqueness of Definition A.1.

Proof. Suppose there is an adversary A that violates uniqueness with probability ε. That is, on
input g, x, the adversary A makes Q queries to the H3 oracle and wins by outputting (α, β1, π1)
s.t. β1 6= β2 and Ver(α, β1, π1) = 1 with probability ε. We will show that ε ≤ (Q+ 1)/min(q/2, ρ),
where q is the order of the group G and ρ = |range(H3)|. Note that this negligible in κ, because
the group size |G| and the output range of H3 are exponential in κ, while Q is bounded by the
adversary’s polynomial running time.

The proof π1 contains γ1 such that β1 = H2(γ1); similarly, π2 contains γ2 such that β2 = H2(γ2).
Since β1 6= β2, we have γ1 6= γ2. Therefore, since γ2 = [H1(α)]x (because that is what Prove
produces), we have γ1 6= [H1(α)]x.

Now, it must be that π1 = (γ1, c, s) for some c, s that ensure that Ver(α, β1, π1) = 1. The
verification function Ver computes h = H1(α) and

u = gs(gx)c

v = hs(γ1)
c.

15



Assume, for now, that h 6= 1, and thus (because G is of prime order), h is a generator of G. Then
we can take the logarithm of the first equation base g and the logarithm of the second equation
base h, because h and g are generators of G. Solving these for s we get

logg u− cx ≡ s (mod q)

logh v − c logh γ1 ≡ s (mod q)

which implies that

c ≡
logg u− logh v

x− logh γ1
(mod q) (4)

Since γ1 6= hx, the denominator is not zero, and so there is only one c modulo q that satisfies
equation (4) given g, gx, h, γ1, u, and v.

If h = 1, then γ2 = hx = 1, and so γ1 6= 1. Thus, γ1 is a generator of G, and so again c modulo
q is uniquely determined given g,PK , h, γ1, u, and v: namely

c = logγ1 v . (5)

Recall that for verification to pass,

c = H3(g, h, g
x, γ1, u, v) .

Note that the contents of the query to H3 contains every value in the right hand side of the equations
(4) and (5), and thus the correct c is uniquely defined at the time the query is made.

What is the probability, for a given query to H3, that the random value returned by the H3

oracle is congruent to that correct c modulo q? Let ρ denote |range(H3)|. If the range of H3 is
a subset of Zq, and the correct c is in that range, then this probability is at most 1/ρ. If ρ is an
exact multiple of q, then this probability is at most 1/q. Finally, if ρ not an exact multiple of q
but is greater than q, then some values modulo q are more likely than others, but none will have
probability greater than dρ/qe/ρ < 2/q.

Assume the adversary outputs β1, π1 and then the verification algorithm is run. This causes a
total of Q+ 1 queries to H3 (Q by A and one by the verifier), so by the union bound, the chances
that any of them returns a correct c for that query are at most (Q+ 1)/min(q/2, ρ).

The second part of trusted uniqueness (namely, that verifiable y and π exists for most α) is
true by inspection: β and π exists for every α, because the algorithm Prove can be used to produce
them.

Remark. Since our computational trusted uniqueness property is slightly weaker than the
unconditional trusted uniqueness of [31, Definition 10], the proof of the soundness property in [31,
Theorem 4] of Naor-Ziv needs a slight change, as follows. Recall that the proof is a reduction from
an adversary A who violates soundness to an adversary B who forges signatures. The reduction
relies on the fact that A must provide the correct β value (called y in [31]) and proof π for the VRF
as part of its soundness-violating output on an input α (called x in [31]). Computational trusted
soundness ensure that this happens except with negligible (i.e., (Q + 1)/min(q/2, ρ)) probability.
Thus, the success probability of the reduction reduces from ε to ε− (Q+ 1)/min(q/2, ρ).
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A.2 Selective Pseudorandomness.

We will state selective pseudorandomness in terms of concrete, rather than asymptotic, security.
This type of security is more relevant to practice, and, in our case, avoids the formalism of defining
how G is produced as a function of the security parameter and how the adversary gets a description
of G. Instead, we work for fixed G.

Selective Pseudorandomness of the VRF depends on the following assumption about the group
G and generator g, known as the (t, ε)-CDH Assumption: for any adversary C whose description
size and running time are bounded by t, the probability (over a random choice of h ∈ G and x ∈ Zq)
that C(g, gx, h) outputs hx is at most ε.

Claim A.3. Under the (t, ε)-CDH assumption, the VRF satisfies Selective Pseudorandomness as
defined in [31, Definition 11]: namely, no adversary F with running time (plus description size) t′

that makes at most Q queries to Prove and the random oracles (of which at most QP are to Prove)
can break pseudorandmomness with advantage more than ε′, where t′ ≈ t (minus the time for Θ(Q)
exponentiations in G) and ε′ = Q(ε+ (QP + 1)/q).

Proof. We need to show the following: if
• F chooses α,
• then receives an honestly generated PK = gx and is allowed Q total oracle queries, of which

at most QP queries are to ProveG,g,x (except on α) and the rest are to random functions
H1, H2, H3,
• and then distinguishes H2([H1(α)]x) from a random bit string of length n with advantage ε′,

then we can build C that breaks (t, ε)-CDH assumption for t ≈ t′ (plus the time for Θ(Q) expo-
nentiations in G) and ε = ε′/Q− (QP + 1)/q.

Note that if, during this attack, no query to H2 on input [H1(α)]x is made by F or its Prove
oracle, then H2([H1(α)]x) is distributed uniformly at random, independently of the view of F , and
is thus perfectly indistinguishable from random. Therefore, for F to have advantage ε′, H2 must
be queried on [H1(α)]x by either F or its Prove oracle with probability at least ε′.

Since F never queries Prove on α, the only way Prove will query H2 on [H1(α)]x is if H1(α) =
H1(αi) for some query αi that F makes to Prove. Recall that α is fixed by F ahead of time; thus,
the probability that F is able to find αi with H1(α) = H1(αi) is at most Q/q, by the union bound
over the total number of queries to H1. Therefore, [H1(α)]x must be queried to H2 with probability
at least ε′ −Q/q. We will use this fact to break the CDH assumption, as follows.

Given (g, gx, h), C gets α from F , sets (g, gx) as the VRF public key PK and runs F (PK ),
answering the queries of F as follows (note that all random oracle query responses are computed
as below unless already defined):
• If F queries α to random oracle H1, C returns h.
• If F queries any other αi to H1, C chooses a random ρi ∈ [q] and then programs H1 as

H1(qi) := gρi .

(note that this response is distributed uniformly in G, just a like the honest H1, because g is
a generator of G).
• If F queries H2 or H3, C return a fresh random value in the appropriate range (note that

these responses are distributed just like honest H2 and H3).
• If F makes a query qi to Prove (note that qi 6= α),

– C makes a query to H1(qi) as described above to get ρi,
– C makes a query to H2((g

x)ρi) as described above to get β,
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– C chooses a random values s ∈ [q] and c ∈ range(H3) and then computes

u = gs(gx)c

and
v = [gρi ]s[(gx)ρi ]c .

If H3(g, g
ρi , gx, (gx)ρi , u, v) is already defined, then C fails and aborts. Else, C programs

the H3 oracle to let
H3(g, g

ρi , gx, (gx)ρi , u, v) := c

(note that if C does not abort, then H3 is uniformly random, just like honest H2 and
H3).

If C does not abort, then its simulation for F is faithful and, as argued above, the H2 query
table will therefore contain [H1(α)]x = hx with probability at least ε′ − Q/q. The probability
that C aborts is simply the probability that H3(g, g

ρi , gx, (gx)ρi , u, v) is already defined during
the computation of the response to Prove; since at most Q values of H3 are defined, and u is
a uniformly random value in G (because s is uniformly random in [q] and g is a generator), the
chances that a single query to Prove causes an abort are Q/q, and the chances that any of the
queries to Prove causes an abort are QPQ/q. Thus, the H2 query table contains hx with probability
at least ε′ − (QP + 1)Q/q. C simply outputs a random element in this table; since there are at
most Q of them, C succeeds with probability ε′/Q− (QP + 1)/q.

B Hashing onto the curve.

The VRF (Section 4) uses a hash function H1 that maps arbitrary-length strings to points on an
elliptic curve. How can we instantiate such a hash function? Ideally we want an instantiation that
can work for both curves we have considered here: NIST P-256 and Curve25519.

One very lightweight technique was proposed in [11] and, at a high level, it proceeds as follows.
Assume an elliptic curve with corresponding equation y2 = x3 + ax + b (in Weierstrass form).
Given an integer α (the queried name in our case), set counter i = 0 and compute h = H(α||i),
where H is a standard cryptographic hash function, e.g., SHA-256, and || is concatenation. Then,
if h3 + ax + b is a quadratic residue (that is, h is the valid x-coordinate of a point on the curve)
output (h, (h3 + ax + b)1/2). Otherwise, increment the counter by 1 and try again. This simple
process is expected to terminate after two steps, and the involved operations are very fast, with an
expected running time of (O log3(q)), if the curve is defined over finite field Fq. The range of this
function is only half of the group G (because only one y is chosen for a random x), but that does
not materially change the proofs of security (specifically, in Claim A.3 1/q gets subtracted from
the success of C, and the running time for simulating queries to H1 doubles).

As first shown in [12], the above technique is not suitable when α must be kept secret; this is
because the running time of the hashing algorithm depends on α, and so it is susceptible to timing
attacks. However, we stress that this attack is not relevant in the context of NSEC5. The only
value that is hashed in the query phase is the queried name α itself, which is already known to the
adversary.
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