
Intel SGX Explained

Victor Costan and Srinivas Devadas
victor@costan.us, devadas@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Intel’s Software Guard Extensions (SGX) is a set of
extensions to the Intel architecture that aims to pro-
vide integrity and confidentiality guarantees to security-
sensitive computation performed on a computer where
all the privileged software (kernel, hypervisor, etc) is
potentially malicious.

This paper analyzes Intel SGX, based on the 3 pa-
pers [14, 79, 139] that introduced it, on the Intel Software
Developer’s Manual [101] (which supersedes the SGX
manuals [95, 99]), on an ISCA 2015 tutorial [103], and
on two patents [110, 138]. We use the papers, reference
manuals, and tutorial as primary data sources, and only
draw on the patents to fill in missing information.

This paper does not reflect the information available
in two papers [74, 109] that were published after the first
version of this paper.

This paper’s contributions are a summary of the
Intel-specific architectural and micro-architectural details
needed to understand SGX, a detailed and structured pre-
sentation of the publicly available information on SGX,
a series of intelligent guesses about some important but
undocumented aspects of SGX, and an analysis of SGX’s
security properties.

1 OVERVIEW

Secure remote computation (Figure 1) is the problem
of executing software on a remote computer owned and
maintained by an untrusted party, with some integrity
and confidentiality guarantees. In the general setting,
secure remote computation is an unsolved problem. Fully
Homomorphic Encryption [61] solves the problem for a
limited family of computations, but has an impractical
performance overhead [140].

Intel’s Software Guard Extensions (SGX) is the latest
iteration in a long line of trusted computing (Figure 2)
designs, which aim to solve the secure remote compu-
tation problem by leveraging trusted hardware in the
remote computer. The trusted hardware establishes a se-
cure container, and the remote computation service user

Data Owner’s
Computer

Remote Computer

Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Figure 1: Secure remote computation. A user relies on a remote
computer, owned by an untrusted party, to perform some computation
on her data. The user has some assurance of the computation’s
integrity and confidentiality.

uploads the desired computation and data into the secure
container. The trusted hardware protects the data’s con-
fidentiality and integrity while the computation is being
performed on it.

SGX relies on software attestation, like its predeces-
sors, the TPM [71] and TXT [70]. Attestation (Figure 3)
proves to a user that she is communicating with a specific
piece of software running in a secure container hosted
by the trusted hardware. The proof is a cryptographic
signature that certifies the hash of the secure container’s
contents. It follows that the remote computer’s owner can
load any software in a secure container, but the remote
computation service user will refuse to load her data into
a secure container whose contents’ hash does not match
the expected value.

The remote computation service user verifies the at-
testation key used to produce the signature against an
endorsement certificate created by the trusted hardware’s
manufacturer. The certificate states that the attestation
key is only known to the trusted hardware, and only used

1

Trusted Hardware

Data Owner’s
Computer

Remote Computer

Secure Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Public Loader

Manufacturer

Builds

Trusts

Figure 2: Trusted computing. The user trusts the manufacturer of a
piece of hardware in the remote computer, and entrusts her data to a
secure container hosted by the secure hardware.

for the purpose of attestation.
SGX stands out from its predecessors by the amount

of code covered by the attestation, which is in the Trusted
Computing Base (TCB) for the system using hardware
protection. The attestations produced by the original
TPM design covered all the software running on a com-
puter, and TXT attestations covered the code inside a
VMX [181] virtual machine. In SGX, an enclave (secure
container) only contains the private data in a computation,
and the code that operates on it.

For example, a cloud service that performs image pro-
cessing on confidential medical images could be imple-
mented by having users upload encrypted images. The
users would send the encryption keys to software running
inside an enclave. The enclave would contain the code
for decrypting images, the image processing algorithm,
and the code for encrypting the results. The code that
receives the uploaded encrypted images and stores them
would be left outside the enclave.

An SGX-enabled processor protects the integrity and
confidentiality of the computation inside an enclave by
isolating the enclave’s code and data from the outside
environment, including the operating system and hyper-
visor, and hardware devices attached to the system bus.
At the same time, the SGX model remains compatible
with the traditional software layering in the Intel archi-
tecture, where the OS kernel and hypervisor manage the
computer’s resources.

This work discusses the original version of SGX, also
referred to as SGX 1. While SGX 2 brings very useful

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State
Public Code + Data

Key exchange: B, gA

Shared key: K = gAB

Key exchange: A, gA

gA

gB, SignAK(gA, gB, M)
M = Hash(Initial State)

Shared key: K = gAB
EncK(secret code/data)

Secret Code + Data

Computation Results
EncK(results)

Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 3: Software attestation proves to a remote computer that
it is communicating with a specific secure container hosted by a
trusted platform. The proof is an attestation signature produced
by the platform’s secret attestation key. The signature covers the
container’s initial state, a challenge nonce produced by the remote
computer, and a message produced by the container.

improvements for enclave authors, it is a small incre-
mental improvement, from a design and implementation
standpoint. After understanding the principles behind
SGX 1 and its security properties, the reader should be
well equipped to face Intel’s reference documentation
and learn about the changes brought by SGX 2.

1.1 SGX Lightning Tour
SGX sets aside a memory region, called the Processor
Reserved Memory (PRM, § 5.1). The CPU protects the
PRM from all non-enclave memory accesses, including
kernel, hypervisor and SMM (§ 2.3) accesses, and DMA
accesses (§ 2.9.1) from peripherals.

The PRM holds the Enclave Page Cache (EPC,
§ 5.1.1), which consists of 4 KB pages that store enclave
code and data. The system software, which is untrusted,
is in charge of assigning EPC pages to enclaves. The
CPU tracks each EPC page’s state in the Enclave Page
Cache Metadata (EPCM, § 5.1.2), to ensure that each
EPC page belongs to exactly one enclave.

The initial code and data in an enclave is loaded by un-
trusted system software. During the loading stage (§ 5.3),
the system software asks the CPU to copy data from un-
protected memory (outside PRM) into EPC pages, and
assigns the pages to the enclave being setup (§ 5.1.2).
It follows that the initial enclave state is known to the
system software.

After all the enclave’s pages are loaded into EPC, the
system software asks the CPU to mark the enclave as
initialized (§ 5.3), at which point application software
can run the code inside the enclave. After an enclave is

2

initialized, the loading method described above is dis-
abled.

While an enclave is loaded, its contents is cryptograph-
ically hashed by the CPU. When the enclave is initialized,
the hash is finalized, and becomes the enclave’s measure-
ment hash (§ 5.6).

A remote party can undergo a software attestation
process (§ 5.8) to convince itself that it is communicating
with an enclave that has a specific measurement hash,
and is running in a secure environment.

Execution flow can only enter an enclave via special
CPU instructions (§ 5.4), which are similar to the mech-
anism for switching from user mode to kernel mode.
Enclave execution always happens in protected mode, at
ring 3, and uses the address translation set up by the OS
kernel and hypervisor.

To avoid leaking private data, a CPU that is executing
enclave code does not directly service an interrupt, fault
(e.g., a page fault) or VM exit. Instead, the CPU first per-
forms an Asynchronous Enclave Exit (§ 5.4.3) to switch
from enclave code to ring 3 code, and then services the
interrupt, fault, or VM exit. The CPU performs an AEX
by saving the CPU state into a predefined area inside the
enclave and transfers control to a pre-specified instruc-
tion outside the enclave, replacing CPU registers with
synthetic values.

The allocation of EPC pages to enclaves is delegated
to the OS kernel (or hypervisor). The OS communicates
its allocation decisions to the SGX implementation via
special ring 0 CPU instructions (§ 5.3). The OS can also
evict EPC pages into untrusted DRAM and later load
them back, using dedicated CPU instructions. SGX uses
cryptographic protections to assure the confidentiality,
integrity and freshness of the evicted EPC pages while
they are stored in untrusted memory.

1.2 Outline and Troubling Findings

Reasoning about the security properties of Intel’s SGX
requires a significant amount of background information
that is currently scattered across many sources. For this
reason, a significant portion of this work is dedicated to
summarizing this prerequisite knowledge.

Section 2 summarizes the relevant subset of the Intel
architecture and the micro-architectural properties of
recent Intel processors. Section 3 outlines the security
landscape around trusted hardware system, including
cryptographic tools and relevant attack classes. Last,
section 4 briefly describes the trusted hardware systems
that make up the context in which SGX was created.

After having reviewed the background information,
section 5 provides a (sometimes painstakingly) detailed
description of SGX’s programming model, mostly based
on Intel’s Software Development Manual.

Section 6 analyzes other public sources of informa-
tion, such as Intel’s SGX-related patents, to fill in some
of the missing details in the SGX description. The sec-
tion culminates in a detailed review of SGX’s security
properties that draws on information presented in the
rest of the paper. This review outlines some troubling
gaps in SGX’s security guarantees, as well as some areas
where no conclusions can be drawn without additional
information from Intel.

That being said, perhaps the most troubling finding in
our security analysis is that Intel added a launch control
feature to SGX that forces each computer’s owner to gain
approval from a third party (which is currently Intel) for
any enclave that the owner wishes to use on the com-
puter. § 5.9 explains that the only publicly documented
intended use for this launch control feature is a licensing
mechanism that requires software developers to enter a
(yet unspecified) business agreement with Intel to be able
to author software that takes advantage of SGX’s protec-
tions. All the official documentation carefully sidesteps
this issue, and has a minimal amount of hints that lead to
the Intel’s patents on SGX. Only these patents disclose
the existence of licensing plans.

The licensing issue might not bear much relevance
right now, because our security analysis reveals that the
limitations in SGX’s guarantees mean that a security-
conscious software developer cannot in good conscience
rely on SGX for secure remote computation. At the same
time, should SGX ever develop better security properties,
the licensing scheme described above becomes a major
problem, given Intel’s near-monopoly market share of
desktop and server CPUs. Specifically, the licensing limi-
tations effectively give Intel the power to choose winners
and losers in industries that rely on cloud computing.

2 COMPUTER ARCHITECTURE BACK-
GROUND

This section attempts to summarize the general archi-
tectural principles behind Intel’s most popular computer
processors, as well as the peculiarities needed to reason
about the security properties of a system running on these
processors. Unless specified otherwise, the information
here is summarized from Intel’s Software Development
Manual (SDM) [101].

Analyzing the security of a software system requires

3

understanding the interactions between all the parts of
the software’s execution environment, so this section is
quite long. We do refrain from introducing any security
concepts here, so readers familiar with x86’s intricacies
can safely skip this section and refer back to it when
necessary.

We use the terms Intel processor or Intel CPU to refer
to the server and desktop versions of Intel’s Core line-
up. In the interest of space and mental sanity, we ignore
Intel’s other processors, such as the embedded line of
Atom CPUs, or the failed Itanium line. Consequently,
the terms Intel computers and Intel systems refers to
computer systems built around Intel’s Core processors.

In this paper, the term Intel architecture refers to the
x86 architecture described in Intel’s SDM. The x86 ar-
chitecture is overly complex, mostly due to the need to
support executing legacy software dating back to 1990
directly on the CPU, without the overhead of software
interpretation. We only cover the parts of the architecture
visible to modern 64-bit software, also in the interest of
space and mental sanity.

The 64-bit version of the x86 architecture, covered in
this section, was actually invented by Advanced Micro
Devices (AMD), and is also known as AMD64, x86 64,
and x64. The term “Intel architecture” highlights our
interest in the architecture’s implementation in Intel’s
chips, and our desire to understand the mindsets of Intel
SGX’s designers.

2.1 Overview

A computer’s main resources (§ 2.2) are memory and
processors. On Intel computers, Dynamic Random-
Access Memory (DRAM) chips (§ 2.9.1) provide the
memory, and one or more CPU chips expose logical
processors (§ 2.9.4). These resources are managed by
system software. An Intel computer typically runs two
kinds of system software, namely operating systems and
hypervisors.

The Intel architecture was designed to support running
multiple application software instances, called processes.
An operating system (§ 2.3), allocates the computer’s re-
sources to the running processes. Server computers, espe-
cially in cloud environments, may run multiple operating
system instances at the same time. This is accomplished
by having a hypervisor (§ 2.3) partition the computer’s re-
sources between the operating system instances running
on the computer.

System software uses virtualization techniques to iso-
late each piece of software that it manages (process or

operating system) from the rest of the software running
on the computer. This isolation is a key tool for keeping
software complexity at manageable levels, as it allows
application and OS developers to focus on their software,
and ignore the interactions with other software that may
run on the computer.

A key component of virtualization is address transla-
tion (§ 2.5), which is used to give software the impression
that it owns all the memory on the computer. Address
translation provides isolation that prevents a piece of
buggy or malicious software from directly damaging
other software, by modifying its memory contents.

The other key component of virtualization is the soft-
ware privilege levels (§ 2.3) enforced by the CPU. Hard-
ware privilege separation ensures that a piece of buggy
or malicious software cannot damage other software indi-
rectly, by interfering with the system software managing
it.

Processes express their computing power requirements
by creating execution threads, which are assigned by the
operating system to the computer’s logical processors.
A thread contains an execution context (§ 2.6), which is
the information necessary to perform a computation. For
example, an execution context stores the address of the
next instruction that will be executed by the processor.

Operating systems give each process the illusion that it
has an infinite amount of logical processors at its disposal,
and multiplex the available logical processors between
the threads created by each process. Modern operating
systems implement preemptive multithreading, where
the logical processors are rotated between all the threads
on a system every few milliseconds. Changing the thread
assigned to a logical processor is accomplished by an
execution context switch (§ 2.6).

Hypervisors expose a fixed number of virtual proces-
sors (vCPUs) to each operating system, and also use
context switching to multiplex the logical CPUs on a
computer between the vCPUs presented to the guest op-
erating systems.

The execution core in a logical processor can execute
instructions and consume data at a much faster rate than
DRAM can supply them. Many of the complexities in
modern computer architectures stem from the need to
cover this speed gap. Recent Intel CPUs rely on hyper-
threading (§ 2.9.4), out-of-order execution (§ 2.10), and
caching (§ 2.11), all of which have security implications.

An Intel processor contains many levels of interme-
diate memories that are much faster than DRAM, but
also orders of magnitude smaller. The fastest intermedi-

4

ate memory is the logical processor’s register file (§ 2.2,
§ 2.4, § 2.6). The other intermediate memories are called
caches (§ 2.11). The Intel architecture requires applica-
tion software to explicitly manage the register file, which
serves as a high-speed scratch space. At the same time,
caches transparently accelerate DRAM requests, and are
mostly invisible to software.

Intel computers have multiple logical processors. As
a consequence, they also have multiple caches dis-
tributed across the CPU chip. On multi-socket systems,
the caches are distributed across multiple CPU chips.
Therefore, Intel systems use a cache coherence mech-
anism (§ 2.11.3), ensuring that all the caches have the
same view of DRAM. Thanks to cache coherence, pro-
grammers can build software that is unaware of caching,
and still runs correctly in the presence of distributed
caches. However, cache coherence does not cover the
dedicated caches used by address translation (§ 2.11.5),
and system software must take special measures to keep
these caches consistent.

CPUs communicate with the outside world via I/O
devices (also known as peripherals), such as network
interface cards and display adapters (§ 2.9). Conceptu-
ally, the CPU communicates with the DRAM chips and
the I/O devices via a system bus that connects all these
components.

Software written for the Intel architecture communi-
cates with I/O devices via the I/O address space (§ 2.4)
and via the memory address space, which is primarily
used to access DRAM. System software must configure
the CPU’s caches (§ 2.11.4) to recognize the memory
address ranges used by I/O devices. Devices can notify
the CPU of the occurrence of events by dispatching in-
terrupts (§ 2.12), which cause a logical processor to stop
executing its current thread, and invoke a special handler
in the system software (§ 2.8.2).

Intel systems have a highly complex computer initial-
ization sequence (§ 2.13), due to the need to support a
large variety of peripherals, as well as a multitude of
operating systems targeting different versions of the ar-
chitecture. The initialization sequence is a challenge to
any attempt to secure an Intel computer, and has facili-
tated many security compromises (§ 2.3).

Intel’s engineers use the processor’s microcode facil-
ity (§ 2.14) to implement the more complicated aspects
of the Intel architecture, which greatly helps manage the
hardware’s complexity. The microcode is completely
invisible to software developers, and its design is mostly
undocumented. However, in order to evaluate the feasi-

bility of any architectural change proposals, one must be
able to distinguish changes that can be implemented in
microcode from changes that can only be accomplished
by modifying the hardware.

2.2 Computational Model
This section pieces together a highly simplified model
for a computer that implements the Intel architecture,
illustrated in Figure 4. This simplified model is intended
to help the reader’s intuition process the fundamental
concepts used by the rest of the paper. The following sec-
tions gradually refine the simplified model into a detailed
description of the Intel architecture.

I/O device

Memory (DRAM)

Processor

System Bus

Register file

…
0

Execution
logic

Processor

Register file

Execution
logic interface to

outside
world

Figure 4: A computer’s core is its processors and memory, which
are connected by a system bus. Computers also have I/O devices,
such as keyboards, which are also connected to the processor via the
system bus.

The building blocks for the model presented here come
from [165], which introduces the key abstractions in a
computer system, and then focuses on the techniques
used to build software systems on top of these abstrac-
tions.

The memory is an array of storage cells, addressed
using natural numbers starting from 0, and implements
the abstraction depicted in Figure 5. Its salient feature
is that the result of reading a memory cell at an address
must equal the most value written to that memory cell.

WRITE(addr, value)→ ∅
Store value in the storage cell identified by addr.
READ(addr)→ value
Return the value argument to the most recent WRITE

call referencing addr.

Figure 5: The memory abstraction

A logical processor repeatedly reads instructions from
the computer’s memory and executes them, according to
the flowchart in Figure 6.

The processor has an internal memory, referred to
as the register file. The register file consists of Static
Random Access Memory (SRAM) cells, generally known

5

IP Generation

Commit

Register Read

Execute

Exception HandlingIP Generation

Exception Handling

Execute the current instruction

Read the current instruction’s
input registers

Did a fault occur?

Write the execution results to
the current instruction’s output

registers

NO

Increment RIP by the size of
the current instruction

Write fault data to the
exception registersYES

Interrupted?

NO

Write interrupt
data to exception

registers

Write the exception
handler address to RIP

Locate the current
exception’s handler

YES

Push RSP and RIP to
the exception stack

Write the exception
stack top to RSP and

Decode
Identify the desired operation,

inputs, and outputs

Output registers
include RIP?

NO

YES

Locate the handler’s
exception stack top

Fetch
Read the current instruction

from the memory at RIP

Figure 6: A processor fetches instructions from the memory and
executes them. The RIP register holds the address of the instruction
to be executed.

as registers, which are significantly faster than DRAM
cells, but also a lot more expensive.

An instruction performs a simple computation on its
inputs and stores the result in an output location. The
processor’s registers make up an execution context that
provides the inputs and stores the outputs for most in-
structions. For example, ADD RDX, RAX, RBX per-
forms an integer addition, where the inputs are the regis-
ters RAX and RBX, and the result is stored in the output
register RDX.

The registers mentioned in Figure 6 are the instruction
pointer (RIP), which stores the memory address of the
next instruction to be executed by the processor, and the
stack pointer (RSP), which stores the memory address
of the topmost element in the call stack used by the

processor’s procedural programming support. The other
execution context registers are described in § 2.4 and
§ 2.6.

Under normal circumstances, the processor repeatedly
reads an instruction from the memory address stored in
RIP, executes the instruction, and updates RIP to point
to the following instruction. Unlike many RISC architec-
tures, the Intel architecture uses a variable-size instruc-
tion encoding, so the size of an instruction is not known
until the instruction has been read from memory.

While executing an instruction, the processor may
encounter a fault, which is a situation where the instruc-
tion’s preconditions are not met. When a fault occurs,
the instruction does not store a result in the output loca-
tion. Instead, the instruction’s result is considered to be
the fault that occurred. For example, an integer division
instruction DIV where the divisor is zero results in a
Division Fault (#DIV).

When an instruction results in a fault, the processor
stops its normal execution flow, and performs the fault
handler process documented in § 2.8.2. In a nutshell, the
processor first looks up the address of the code that will
handle the fault, based on the fault’s nature, and sets up
the execution environment in preparation to execute the
fault handler.

The processors are connected to each other and to the
memory via a system bus, which is a broadcast network
that implements the abstraction in Figure 7.

SEND(op, addr, data)→ ∅
Place a message containing the operation code op, the
bus address addr, and the value data on the bus.
READ()→ (op, addr, value)
Return the message that was written on the bus at the
beginning of this clock cycle.

Figure 7: The system bus abstraction

During each clock cycle, at most one of the devices
connected to the system bus can send a message, which
is received by all the other devices connected to the bus.
Each device attached to the bus decodes the operation
codes and addresses of all the messages sent on the bus
and ignores the messages that do not require its involve-
ment.

For example, when the processor wishes to read a
memory location, it sends a message with the operation
code READ-REQUEST and the bus address corresponding
to the desired memory location. The memory sees the
message on the bus and performs the READ operation.
At a later time, the memory responds by sending a mes-

6

sage with the operation code READ-RESPONSE, the same
address as the request, and the data value set to the result
of the READ operation.

The computer communicates with the outside world
via I/O devices, such as keyboards, displays, and net-
work cards, which are connected to the system bus. De-
vices mostly respond to requests issued by the processor.
However, devices also have the ability to issue interrupt
requests that notify the processor of outside events, such
as the user pressing a key on a keyboard.

Interrupt triggering is discussed in § 2.12. On modern
systems, devices send interrupt requests by issuing writes
to special bus addresses. Interrupts are considered to be
hardware exceptions, just like faults, and are handled in
a similar manner.

2.3 Software Privilege Levels
In an Infrastructure-as-a-Service (IaaS) cloud environ-
ment, such as Amazon EC2, commodity CPUs run soft-
ware at four different privilege levels, shown in Figure 8.

VMX
Root

Ring 1
Ring 2
Ring 3

VMX
Non-Root

Ring 0 Hypervisor

Ring 1
Ring 2

Ring 0 OS Kernel

Ring 3
Application

SMM BIOS

SGX Enclave

System
 Softw

are

Less Privileged

More Privileged

Figure 8: The privilege levels in the x86 architecture, and the
software that typically runs at each security level.

Each privilege level is strictly more powerful than the
ones below it, so a piece of software can freely read and
modify the code and data running at less privileged levels.
Therefore, a software module can be compromised by
any piece of software running at a higher privilege level.
It follows that a software module implicitly trusts all
the software running at more privileged levels, and a
system’s security analysis must take into account the
software at all privilege levels.

System Management Mode (SMM) is intended for use
by the motherboard manufacturers to implement features
such as fan control and deep sleep, and/or to emulate
missing hardware. Therefore, the bootstrapping software

(§ 2.13) in the computer’s firmware is responsible for
setting up a continuous subset of DRAM as System Man-
agement RAM (SMRAM), and for loading all the code
that needs to run in SMM mode into SMRAM. The SM-
RAM enjoys special hardware protections that prevent
less privileged software from accessing the SMM code.

IaaS cloud providers allow their customers to run their
operating system of choice in a virtualized environment.
Hardware virtualization [181], called Virtual Machine
Extensions (VMX) by Intel, adds support for a hypervi-
sor, also called a Virtual Machine Monitor (VMM) in
the Intel documentation. The hypervisor runs at a higher
privilege level (VMX root mode) than the operating sys-
tem, and is responsible for allocating hardware resources
across multiple operating systems that share the same
physical machine. The hypervisor uses the CPU’s hard-
ware virtualization features to make each operating sys-
tem believe it is running in its own computer, called a
virtual machine (VM). Hypervisor code generally runs
at ring 0 in VMX root mode.

Hypervisors that run in VMX root mode and take ad-
vantage of hardware virtualization generally have better
performance and a smaller codebase than hypervisors
based on binary translation [161].

The systems research literature recommends breaking
up an operating system into a small kernel, which runs
at a high privilege level, known as the kernel mode or
supervisor mode and, in the Intel architecture, as ring 0.
The kernel allocates the computer’s resources to the other
system components, such as device drivers and services,
which run at lower privilege levels. However, for per-
formance reasons1, mainstream operating systems have
large amounts of code running at ring 0. Their monolithic
kernels include device drivers, filesystem code, network-
ing stacks, and video rendering functionality.

Application code, such as a Web server or a game
client, runs at the lowest privilege level, referred to as
user mode (ring 3 in the Intel architecture). In IaaS cloud
environments, the virtual machine images provided by
customers run in VMX non-root mode, so the kernel runs
in VMX non-root ring 0, and the application code runs
in VMX non-root ring 3.

2.4 Address Spaces
Software written for the Intel architecture accesses the
computer’s resources using four distinct physical address
spaces, shown in Figure 9. The address spaces overlap

1Calling a procedure in a different ring is much slower than calling
code at the same privilege level.

7

partially, in both purpose and contents, which can lead to
confusion. This section gives a high-level overview of the
physical address spaces defined by the Intel architecture,
with an emphasis on their purpose and the methods used
to manage them.

System Buses

CPU

DeviceDRAM

Registers MSRs
(Model-Specific Registers)

Memory Addresses I/O Ports

Device

Software

Figure 9: The four physical address spaces used by an Intel CPU.
The registers and MSRs are internal to the CPU, while the memory
and I/O address spaces are used to communicate with DRAM and
other devices via system buses.

The register space consists of names that are used to
access the CPU’s register file, which is the only memory
that operates at the CPU’s clock frequency and can be
used without any latency penalty. The register space is
defined by the CPU’s architecture, and documented in
the SDM.

Some registers, such as the Control Registers (CRs)
play specific roles in configuring the CPU’s operation.
For example, CR3 plays a central role in address trans-
lation (§ 2.5). These registers can only be accessed by
system software. The rest of the registers make up an
application’s execution context (§ 2.6), which is essen-
tially a high-speed scratch space. These registers can
be accessed at all privilege levels, and their allocation is
managed by the software’s compiler. Many CPU instruc-
tions only operate on data in registers, and only place
their results in registers.

The memory space, generally referred to as the address
space, or the physical address space, consists of 236

(64 GB) - 240 (1 TB) addresses. The memory space is
primarily used to access DRAM, but it is also used to
communicate with memory-mapped devices that read
memory requests off a system bus and write replies for
the CPU. Some CPU instructions can read their inputs
from the memory space, or store the results using the
memory space.

A better-known example of memory mapping is that

at computer startup, memory addresses 0xFFFFF000 -
0xFFFFFFFF (the 64 KB of memory right below the
4 GB mark) are mapped to a flash memory device that
holds the first stage of the code that bootstraps the com-
puter.

The memory space is partitioned between devices and
DRAM by the computer’s firmware during the bootstrap-
ping process. Sometimes, system software includes
motherboard-specific code that modifies the memory
space partitioning. The OS kernel relies on address trans-
lation, described in § 2.5, to control the applications’
access to the memory space. The hypervisor relies on
the same mechanism to control the guest OSs.

The input/output (I/O) space consists of 216 I/O ad-
dresses, usually called ports. The I/O ports are used
exclusively to communicate with devices. The CPU pro-
vides specific instructions for reading from and writing
to the I/O space. I/O ports are allocated to devices by
formal or de-facto standards. For example, ports 0xCF8
and 0xCFC are always used to access the PCI express
(§ 2.9.1) configuration space.

The CPU implements a mechanism for system soft-
ware to provide fine-grained I/O access to applications.
However, all modern kernels restrict application software
from accessing the I/O space directly, in order to limit
the damage potential of application bugs.

The Model-Specific Register (MSR) space consists of
232 MSRs, which are used to configure the CPU’s op-
eration. The MSR space was initially intended for the
use of CPU model-specific firmware, but some MSRs
have been promoted to architectural MSR status, making
their semantics a part of the Intel architecture. For ex-
ample, architectural MSR 0x10 holds a high-resolution
monotonically increasing time-stamp counter.

The CPU provides instructions for reading from and
writing to the MSR space. The instructions can only be
used by system software. Some MSRs are also exposed
by instructions accessible to applications. For example,
applications can read the time-stamp counter via the
RDTSC and RDTSCP instructions, which are very useful
for benchmarking and optimizing software.

2.5 Address Translation

System software relies on the CPU’s address transla-
tion mechanism for implementing isolation among less
privileged pieces of software (applications or operating
systems). Virtually all secure architecture designs bring
changes to address translation. We summarize the Intel
architecture’s address translation features that are most

8

relevant when establishing a system’s security proper-
ties, and refer the reader to [108] for a more general
presentation of address translation concepts and its other
uses.

2.5.1 Address Translation Concepts

From a systems perspective, address translation is a layer
of indirection (shown in Figure 10) between the virtual
addresses, which are used by a program’s memory load
and store instructions, and the physical addresses, which
reference the physical address space (§ 2.4). The map-
ping between virtual and physical addresses is defined by
page tables, which are managed by the system software.

Virtual
Address

Physical
AddressMapping

Page
Tables

Virtual
Address Space

Physical
Address Space

Address
Translation

Software DRAM

System bus

Figure 10: Virtual addresses used by software are translated into
physical memory addresses using a mapping defined by the page
tables.

Operating systems use address translation to imple-
ment the virtual memory abstraction, illustrated by Fig-
ure 11. The virtual memory abstraction exposes the same
interface as the memory abstraction in § 2.2, but each
process uses a separate virtual address space that only
references the memory allocated to that process. From
an application developer standpoint, virtual memory can
be modeled by pretending that each process runs on a
separate computer and has its own DRAM.

Process 1’s
address space

Computer’s physical address space

Process 2’s
address space

Process 3’s
address space

Memory page

Figure 11: The virtual memory abstraction gives each process
its own virtual address space. The operating system multiplexes
the computer’s DRAM between the processes, while application
developers build software as if it owns the entire computer’s memory.

Address translation is used by the operating system to

multiplex DRAM among multiple application processes,
isolate the processes from each other, and prevent ap-
plication code from accessing memory-mapped devices
directly. The latter two protection measures prevent an
application’s bugs from impacting other applications or
the OS kernel itself. Hypervisors also use address trans-
lation, to divide the DRAM among operating systems
that run concurrently, and to virtualize memory-mapped
devices.

The address translation mode used by 64-bit operating
systems, called IA-32e by Intel’s documentation, maps
48-bit virtual addresses to physical addresses of at most
52 bits2. The translation process, illustrated in Figure 12,
is carried out by dedicated hardware in the CPU, which is
referred to as the address translation unit or the memory
management unit (MMU).

Virtual
Address

11…0
Page
Offset

20…12
PTE
Index

29…21
PDE
Index

38…30
PDPTE
Index

47…39
PML4
Index

64…48
Must

match
bit 48

Page Map Level 4 (PML4)

PML4 Entry: PDPT address

Page-Directory-Pointer Table
(PDPT)

PDPT Entry: PD address

Page-Directory (PD)

PD Entry: PT address

Page Table (PT)

PT Entry: Page address

CR3 Register:
PML4 address

+

Physical Address

Physical Page Number (PPN)

Vi
rtu

al
Pa

ge
 N

um
be

r (
VP

N)

Figure 12: IA-32e address translation takes in a 48-bit virtual
address and outputs a 52-bit physical address.

2The size of a physical address is CPU-dependent, and is 40 bits
for recent desktop CPUs and 44 bits for recent high-end server CPUs.

9

The bottom 12 bits of a virtual address are not changed
by the translation. The top 36 bits are grouped into four
9-bit indexes, which are used to index into the page
tables. Despite its name, the page tables data structure
closely resembles a full 512-ary search tree where nodes
have fixed keys. Each node is represented in DRAM as
an array of 512 8-byte entries that contain the physical
addresses of the next-level children as well as some flags.
The physical address of the root node is stored in the
CR3 register. The arrays in the last-level nodes contain
the physical addresses that are the result of the address
translation.

The address translation function, which does not
change the bottom bits of addresses, partitions the mem-
ory address space into pages. A page is the set of all
memory locations that only differ in the bottom bits
which are not impacted by address translation, so all
the memory addresses in a virtual page translate to corre-
sponding addresses in the same physical page. From this
perspective, the address translation function can be seen
as a mapping between Virtual Page Numbers (VPN) and
Physical Page Numbers (PPN), as shown in Figure 13.

Address Translation Unit

Page OffsetVirtual Page Number (VPN)
111263

12
Physical Page Number (PPN)

43
Page Offset

0

11 0

Virtual address

Physical address

must match bit 47
4748

Figure 13: Address translation can be seen as a mapping between
virtual page numbers and physical page numbers.

In addition to isolating application processes, operat-
ing systems also use the address translation feature to run
applications whose collective memory demands exceed
the amount of DRAM installed in the computer. The OS
evicts infrequently used memory pages from DRAM to
a larger (but slower) memory, such as a hard disk drive
(HDD) or solid-state drive (SSD). For historical reason,
this slower memory is referred to as the disk.

The OS ability to over-commit DRAM is often called
page swapping, for the following reason. When an ap-
plication process attempts to access a page that has been
evicted, the OS “steps in” and reads the missing page
back into DRAM. In order to do this, the OS might have
to evict a different page from DRAM, effectively swap-
ping the contents of a DRAM page with a disk page. The
details behind this high-level description are covered in

the following sections.
The CPU’s address translation is also referred to as

“paging”, which is a shorthand for “page swapping”.

2.5.2 Address Translation and Virtualization

Computers that take advantage of hardware virtualization
use a hypervisor to run multiple operating systems at
the same time. This creates some tension, because each
operating system was written under the assumption that it
owns the entire computer’s DRAM. The tension is solved
by a second layer of address translation, illustrated in
Figure 14.

Virtual Address

Guest-Physical Address

MappingPage Tables

Physical Address

MappingExtended Page
Tables (EPT)

Guest OS
Address Space

Physical
Address Space

Virtual
Address Space

Figure 14: Virtual addresses used by software are translated into
physical memory addresses using a mapping defined by the page
tables.

When a hypervisor is active, the page tables set up
by an operating system map between virtual addresses
and guest-physical addresses in a guest-physical ad-
dress space. The hypervisor multiplexes the computer’s
DRAM between the operating systems’ guest-physical
address spaces via the second layer of address transla-
tions, which uses extended page tables (EPT) to map
guest-physical addresses to physical addresses.

The EPT uses the same data structure as the page
tables, so the process of translating guest-physical ad-
dresses to physical addresses follows the same steps as
IA-32e address translation. The main difference is that
the physical address of the data structure’s root node is
stored in the extended page table pointer (EPTP) field
in the Virtual Machine Control Structure (VMCS) for
the guest OS. Figure 15 illustrates the address translation
process in the presence of hardware virtualization.

2.5.3 Page Table Attributes

Each page table entry contains a physical address, as
shown in Figure 12, and some Boolean values that are
referred to as flags or attributes. The following attributes

10

Virtual
Address

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PDPT
(Physical)

PDPT
(Guest)

EPTP in
VMCS

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PD
(Physical)

PD
(Guest)

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PT
(Physical)

PT
(Guest)

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

Physical
Address

Guest
Physical
Address

EPT
PD

EPT
PT

EPT
PDPT

EPT
PML4

PML4
(Physical)

CR3:
PML4

(Guest)

Figure 15: Address translation when hardware virtualization is
enabled. The kernel-managed page tables contain guest-physical
addresses, so each level in the kernel’s page table requires a full walk
of the hypervisor’s extended page table (EPT). A translation requires
up to 20 memory accesses (the bold boxes), assuming the physical
address of the kernel’s PML4 is cached.

are used to implement page swapping and software isola-
tion.

The present (P) flag is set to 0 to indicate unused parts
of the address space, which do not have physical memory
associated with them. The system software also sets the
P flag to 0 for pages that are evicted from DRAM. When
the address translation unit encounters a zero P flag, it
aborts the translation process and issues a hardware ex-
ception, as described in § 2.8.2. This hardware exception
gives system software an opportunity to step in and bring
an evicted page back into DRAM.

The accessed (A) flag is set to 1 by the CPU whenever
the address translation machinery reads a page table entry,
and the dirty (D) flag is set to 1 by the CPU when an
entry is accessed by a memory write operation. The
A and D flags give the hypervisor and kernel insight
into application memory access patterns and inform the
algorithms that select the pages that get evicted from
RAM.

The main attributes supporting software isolation are
the writable (W) flag, which can be set to 0 to prohibit3

writes to any memory location inside a page, the disable
execution (XD) flag, which can be set to 1 to prevent
instruction fetches from a page, and the supervisor (S)
flag, which can be set to 1 to prohibit any accesses from
application software running at ring 3.

3Writes to non-writable pages result in #GP exceptions (§ 2.8.2).

2.6 Execution Contexts

Application software targeting the 64-bit Intel architec-
ture uses a variety of CPU registers to interact with the
processor’s features, shown in Figure 16 and Table 1. The
values in these registers make up an application thread’s
state, or execution context.

OS kernels multiplex each logical processor (§ 2.9.4)
between multiple software threads by context switching,
namely saving the values of the registers that make up a
thread’s execution context, and replacing them with an-
other thread’s previously saved context. Context switch-
ing also plays a part in executing code inside secure
containers, so its design has security implications.

RAX RBX RCX RDX

RSI RDI RBP RSP - stack pointer

RIP - instruction pointer

R8 R9 R10 R11

R12 R13 R14 R15

64-bit integers / pointers 64-bit special-purpose registers

RFLAGS - status / control bits

ignored segment registers
CS DS ES SS

segment registers
FS

64-bit FS base
GS

64-bit GS base

RSP

Figure 16: CPU registers in the 64-bit Intel architecture. RSP can be
used as a general-purpose register (GPR), e.g., in pointer arithmetic,
but it always points to the top of the program’s stack. Segment
registers are covered in § 2.7.

Integers and memory addresses are stored in 16
general-purpose registers (GPRs). The first 8 GPRs have
historical names: RAX, RBX, RCX, RDX, RSI, RDI,
RSP, and RBP, because they are extended versions of
the 32-bit Intel architecture’s GPRs. The other 8 GPRs
are simply known as R9-R16. RSP is designated for
pointing to the top of the procedure call stack, which is
simply referred to as the stack. RSP and the stack that
it refers to are automatically read and modified by the
CPU instructions that implement procedure calls, such
as CALL and RET (return), and by specialized stack han-
dling instructions such as PUSH and POP.

All applications also use the RIP register, which con-
tains the address of the currently executing instruction,
and the RFLAGS register, whose bits (e.g., the carry flag
- CF) are individually used to store comparison results
and control various instructions.

Software might use other registers to interact with
specific processor features, some of which are shown in
Table 1.

The Intel architecture provides a future-proof method
for an OS kernel to save the values of feature-specific
registers used by an application. The XSAVE instruction

11

Feature Registers XCR0 bit
FPU FP0 - FP7, FSW, FTW 0
SSE MM0 - MM7, XMM0 -

XMM15, XMCSR
1

AVX YMM0 - YMM15 2
MPX BND0 - BND 3 3
MPX BNDCFGU, BNDSTATUS 4
AVX-512 K0 - K7 5
AVX-512 ZMM0 H - ZMM15 H 6
AVX-512 ZMM16 - ZMM31 7
PK PKRU 9

Table 1: Sample feature-specific Intel architecture registers.

takes in a requested-feature bitmap (RFBM), and writes
the registers used by the features whose RFBM bits are
set to 1 in a memory area. The memory area written by
XSAVE can later be used by the XRSTOR instruction to
load the saved values back into feature-specific registers.
The memory area includes the RFBM given to XSAVE,
so XRSTOR does not require an RFBM input.

Application software declares the features that it plans
to use to the kernel, so the kernel knows what XSAVE
bitmap to use when context-switching. When receiving
the system call, the kernel sets the XCR0 register to the
feature bitmap declared by the application. The CPU
generates a fault if application software attempts to use
features that are not enabled by XCR0, so applications
cannot modify feature-specific registers that the kernel
wouldn’t take into account when context-switching. The
kernel can use the CPUID instruction to learn the size of
the XSAVE memory area for a given feature bitmap, and
compute how much memory it needs to allocate for the
context of each of the application’s threads.

2.7 Segment Registers
The Intel 64-bit architecture gained widespread adoption
thanks to its ability to run software targeting the older 32-
bit architecture side-by-side with 64-bit software [169].
This ability comes at the cost of some warts. While most
of these warts can be ignored while reasoning about the
security of 64-bit software, the segment registers and
vestigial segmentation model must be understood.

The semantics of the Intel architecture’s instructions
include the implicit use of a few segments which are
loaded into the processor’s segment registers shown in
Figure 16. Code fetches use the code segment (CS).
Instructions that reference the stack implicitly use the
stack segment (SS). Memory references implicitly use the
data segment (DS) or the destination segment (ES). Via

segment override prefixes, instructions can be modified
to use the unnamed segments FS and GS for memory
references.

Modern operating systems effectively disable segmen-
tation by covering the entire addressable space with one
segment, which is loaded in CS, and one data segment,
which is loaded in SS, DS and ES. The FS and GS regis-
ters store segments covering thread-local storage (TLS).

Due to the Intel architecture’s 16-bit origins, segment
registers are exposed as 16-bit values, called segment
selectors. The top 13 bits in a selector are an index in a
descriptor table, and the bottom 2 bits are the selector’s
ring number, which is also called requested privilege
level (RPL) in the Intel documentation. Also, modern
system software only uses rings 0 and 3 (see § 2.3).

Each segment register has a hidden segment descrip-
tor, which consists of a base address, limit, and type
information, such as whether the descriptor should be
used for executable code or data. Figure 17 shows the
effect of loading a 16-bit selector into a segment register.
The selector’s index is used to read a descriptor from the
descriptor table and copy it into the segment register’s
hidden descriptor.

Descriptor Table

Register Selector

Index Ring

Register Descriptor

Base Limit Type

 ⋮

TypeLimitBase
 ⋮

Base Limit Type

TypeBase Limit

TypeBase Limit

GDTR

Base Limit

Input Value

Index Ring

+

Figure 17: Loading a segment register. The 16-bit value loaded by
software is a selector consisting of an index and a ring number. The
index selects a GDT entry, which is loaded into the descriptor part of
the segment register.

In 64-bit mode, all segment limits are ignored. The
base addresses in most segment registers (CS, DS, ES,
SS) are ignored. The base addresses in FS and GS are
used, in order to support thread-local storage. Figure 18
outlines the address computation in this case. The in-
struction’s address, named logical address in the Intel
documentation, is added to the base address in the seg-
ment register’s descriptor, yielding the virtual address,
also named linear address. The virtual address is then

12

translated (§ 2.5) to a physical address.

+

FS Register Descriptor

Base Limit Type

GPRsRSI

Linear Address
(Virtual Address)

Physical
Address

Address
Translation

Figure 18: Example address computation process for MOV
FS:[RDX], 0. The segment’s base address is added to the ad-
dress in RDX before address translation (§ 2.5) takes place.

Outside the special case of using FS or GS to refer-
ence thread-local storage, the logical and virtual (linear)
addresses match. Therefore, most of the time, we can get
away with completely ignoring segmentation. In these
cases, we use the term “virtual address” to refer to both
the virtual and the linear address.

Even though CS is not used for segmentation, 64-bit
system software needs to load a valid selector into it. The
CPU uses the ring number in the CS selector to track the
current privilege level, and uses one of the type bits to
know whether it’s running 64-bit code, or 32-bit code in
compatibility mode.

The DS and ES segment registers are completely ig-
nored, and can have null selectors loaded in them. The
CPU loads a null selector in SS when switching privilege
levels, discussed in § 2.8.2.

Modern kernels only use one descriptor table, the
Global Descriptor Table (GDT), whose virtual address
is stored in the GDTR register. Table 2 shows a typical
GDT layout that can be used by 64-bit kernels to run
both 32-bit and 64-bit applications.

Descriptor Selector
Null (must be unused) 0
Kernel code 0x08 (index 1, ring 0)
Kernel data 0x10 (index 2, ring 0)
User code 0x1B (index 3, ring 3)
User data 0x1F (index 4, ring 3)
TSS 0x20 (index 5, ring 0)

Table 2: A typical GDT layout in the 64-bit Intel Architecture.

The last entry in Table 2 is a descriptor for the Task
State Segment (TSS), which was designed to implement
hardware context switching, named task switching in
the Intel documentation. The descriptor is stored in the
Task Register (TR), which behaves like the other segment
registers described above.

Task switching was removed from the 64-bit architec-
ture, but the TR segment register was preserved, and it
points to a repurposed TSS data structure. The 64-bit
TSS contains an I/O map, which indicates what parts of
the I/O address space can be accessed directly from ring
3, and the Interrupt Stack Table (IST), which is used for
privilege level switching (§ 2.8.2).

Modern operating systems do not allow application
software any direct access to the I/O address space, so the
kernel sets up a single TSS that is loaded into TR during
early initialization, and used to represent all applications
running under the OS.

2.8 Privilege Level Switching
Any architecture that has software privilege levels must
provide a method for less privileged software to invoke
the services of more privileged software. For example,
application software needs the OS kernel’s assistance to
perform network or disk I/O, as that requires access to
privileged memory or to the I/O address space.

At the same time, less privileged software cannot be
offered the ability to jump arbitrarily into more privileged
code, as that would compromise the privileged software’s
ability to enforce security and isolation invariants. In our
example, when an application wishes to write a file to the
disk, the kernel must check if the application’s user has
access to that file. If the ring 3 code could perform an
arbitrary jump in kernel space, it would be able to skip
the access check.

For these reasons, the Intel architecture includes
privilege-switching mechanisms used to transfer control
from less privileged software to well-defined entry points
in more privileged software. As suggested above, an ar-
chitecture’s privilege-switching mechanisms have deep
implications for the security properties of its software.
Furthermore, securely executing the software inside a
protected container requires the same security considera-
tions as privilege level switching.

Due to historical factors, the Intel architecture has a
vast number of execution modes, and an intimidating
amount of transitions between them. We focus on the
privilege level switching mechanisms used by modern
64-bit software, summarized in Figure 19.

2.8.1 System Calls

On modern processors, application software uses the
SYSCALL instruction to invoke ring 0 code, and the ker-
nel uses SYSRET to switch the privilege level back to
ring 3. SYSCALL jumps into a predefined kernel loca-

13

Ring 3Ring 0VMX
Root

SYSCALL

SYSRET

VMEXIT
VMFUNC

VMLAUNCH
VMRESUME

Fault
Interrupt

IRET

VM
exit

VM exit

Figure 19: Modern privilege switching methods in the 64-bit Intel
architecture.

tion, which is specified by writing to a pair of architec-
tural MSRs (§ 2.4).

All MSRs can only be read or written by ring 0 code.
This is a crucial security property, because it entails that
application software cannot modify SYSCALL’s MSRs.
If that was the case, a rogue application could abuse the
SYSCALL instruction to execute arbitrary kernel code,
potentially bypassing security checks.

The SYSRET instruction switches the current privilege
level from ring 0 back to ring 3, and jumps to the address
in RCX, which is set by the SYSCALL instruction. The
SYSCALL / SYSRET pair does not perform any memory
access, so it out-performs the Intel architecture’s previous
privilege switching mechanisms, which saved state on
a stack. The design can get away without referencing a
stack because kernel calls are not recursive.

2.8.2 Faults

The processor also performs a switch from ring 3 to
ring 0 when a hardware exception occurs while execut-
ing application code. Some exceptions indicate bugs in
the application, whereas other exceptions require kernel
action.

A general protection fault (#GP) occurs when software
attempts to perform a disallowed action, such as setting
the CR3 register from ring 3.

A page fault (#PF) occurs when address translation
encounters a page table entry whose P flag is 0, or when
the memory inside a page is accessed in way that is
inconsistent with the access bits in the page table entry.
For example, when ring 3 software accesses the memory
inside a page whose S bit is set, the result of the memory
access is #PF.

When a hardware exception occurs in application code,
the CPU performs a ring switch, and calls the correspond-
ing exception handler. For example, the #GP handler
typically terminates the application’s process, while the
#PF handler reads the swapped out page back into RAM
and resumes the application’s execution.

The exception handlers are a part of the OS kernel,

and their locations are specified in the first 32 entries of
the Interrupt Descriptor Table (IDT), whose structure is
shown in Table 3. The IDT’s physical address is stored in
the IDTR register, which can only be accessed by ring 0
code. Kernels protect the IDT memory using page tables,
so that ring 3 software cannot access it.

Field Bits
Handler RIP 64
Handler CS 16
Interrupt Stack Table (IST) index 3

Table 3: The essential fields of an IDT entry in 64-bit mode. Each
entry points to a hardware exception or interrupt handler.

Each IDT entry has a 3-bit index pointing into the
Interrupt Stack Table (IST), which is an array of 8 stack
pointers stored in the TSS described in § 2.7.

When a hardware exception occurs, the execution state
may be corrupted, and the current stack cannot be relied
on. Therefore, the CPU first uses the handler’s IDT entry
to set up a known good stack. SS is loaded with a null
descriptor, and RSP is set to the IST value to which the
IDT entry points. After switching to a reliable stack,
the CPU pushes the snapshot in Table 4 on the stack,
then loads the IDT entry’s values into the CS and RIP
registers, which trigger the execution of the exception
handler.

Field Bits
Exception SS 64
Exception RSP 64
RFLAGS 64
Exception CS 64
Exception RIP 64
Exception code 64

Table 4: The snapshot pushed on the handler’s stack when a hard-
ware exception occurs. IRET restores registers from this snapshot.

After the exception handler completes, it uses the
IRET (interrupt return) instruction to load the registers
from the on-stack snapshot and switch back to ring 3.

The Intel architecture gives the fault handler complete
control over the execution context of the software that in-
curred the fault. This privilege is necessary for handlers
(e.g., #GP) that must perform context switches (§ 2.6)
as a consequence of terminating a thread that encoun-
tered a bug. It follows that all fault handlers must be
trusted to not leak or tamper with the information in an
application’s execution context.

14

2.8.3 VMX Privilege Level Switching

Intel systems that take advantage of the hardware virtu-
alization support to run multiple operating systems at
the same time use a hypervisor that manages the VMs.
The hypervisor creates a Virtual Machine Control Struc-
ture (VMCS) for each operating system instance that
it wishes to run, and uses the VMENTER instruction to
assign a logical processor to the VM.

When a logical processor encounters a fault that must
be handled by the hypervisor, the logical processor per-
forms a VM exit. For example, if the address translation
process encounters an EPT entry with the P flag set to 0,
the CPU performs a VM exit, and the hypervisor has an
opportunity to bring the page into RAM.

The VMCS shows a great application of the encapsula-
tion principle [130], which is generally used in high-level
software, to computer architecture. The Intel architecture
specifies that each VMCS resides in DRAM and is 4 KB
in size. However, the architecture does not specify the
VMCS format, and instead requires the hypervisor to
interact with the VMCS via CPU instructions such as
VMREAD and VMWRITE.

This approach allows Intel to add VMX features that
require VMCS format changes, without the burden of
having to maintain backwards compatibility. This is no
small feat, given that huge amounts of complexity in the
Intel architecture were introduced due to compatibility
requirements.

2.9 A Computer Map

This section outlines the hardware components that make
up a computer system based on the Intel architecture.
§ 2.9.1 summarizes the structure of a motherboard.

This is necessary background for reasoning about the
cost and impact of physical attacks against a computing
system. § 2.9.2 describes Intel’s Management Engine,
which plays a role in the computer’s bootstrap process,
and has significant security implications.
§ 2.9.3 presents the building blocks of an Intel proces-

sor, and § 2.9.4 models an Intel execution core at a high
level. This is the foundation for implementing defenses
against physical attacks. Perhaps more importantly, rea-
soning about software attacks based on information leak-
age, such as timing attacks, requires understanding how
a processor’s computing resources are shared and parti-
tioned between mutually distrusting parties.

The information in here is either contained in the SDM
or in Intel’s Optimization Reference Manual [96].

2.9.1 The Motherboard

A computer’s components are connected by a printed
circuit board called a motherboard, shown in Figure 20,
which consists of sockets connected by buses. Sockets
connect chip-carrying packages to the board. The Intel
documentation uses the term “package” to specifically
refer to a CPU.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

QPI DDR

NIC / PHY

PCIe

PCH

USB SATA

DMI

ME

FLASH
UEFI

ME FW

SPI

Figure 20: The motherboard structures that are most relevant in a
system security analysis.

The CPU (described in § 2.9.3) hosts the execution
cores that run the software stack shown in Figure 8 and
described in § 2.3, namely the SMM code, the hypervisor,
operating systems, and application processes. The com-
puter’s main memory is provided by Dynamic Random-
Access Memory (DRAM) chips.

The Platform Controller Hub (PCH) houses (rela-
tively) low-speed I/O controllers driving the slower buses
in the system, like SATA, used by storage devices, and
USB, used by input peripherals. The PCH is also known
as the chipset. At a first approximation, the south bridge
term in older documentation can also be considered as a
synonym for PCH.

Motherboards also have a non-volatile (flash) mem-
ory chip that hosts firmware which implements the Uni-
fied Extensible Firmware Interface (UEFI) specifica-
tion [180]. The firmware contains the boot code and
the code that executes in System Management Mode
(SMM, § 2.3).

The components we care about are connected by the
following buses: the Quick-Path Interconnect (QPI [91]),
a network of point-to-point links that connect processors,
the double data rate (DDR) bus that connects a CPU
to DRAM, the Direct Media Interface (DMI) bus that
connects a CPU to the PCH, the Peripheral Component
Interconnect Express (PCIe) bus that connects a CPU to
peripherals such as a Network Interface Card (NIC), and

15

the Serial Programming Interface (SPI) used by the PCH
to communicate with the flash memory.

The PCIe bus is an extended, point-to-point version
of the PCI standard, which provides a method for any
peripheral connected to the bus to perform Direct Mem-
ory Access (DMA), transferring data to and from DRAM
without involving an execution core and spending CPU
cycles. The PCI standard includes a configuration mech-
anism that assigns a range of DRAM to each peripheral,
but makes no provisions for restricting a peripheral’s
DRAM accesses to its assigned range.

Network interfaces consist of a physical (PHY) mod-
ule that converts the analog signals on the network me-
dia to and from digital bits, and a Media Access Con-
trol (MAC) module that implements a network-level pro-
tocol. Modern Intel-based motherboards forego a full-
fledged NIC, and instead include an Ethernet [84] PHY
module.

2.9.2 The Intel Management Engine (ME)

Intel’s Management Engine (ME) is an embedded com-
puter that was initially designed for remote system man-
agement and troubleshooting of server-class systems that
are often hosted in data centers. However, all of Intel’s
recent PCHs contain an ME [80], and it currently plays a
crucial role in platform bootstrapping, which is described
in detail in § 2.13. Most of the information in this section
is obtained from an Intel-sponsored book [162].

The ME is part of Intel’s Active Management Tech-
nology (AMT), which is marketed as a convenient way
for IT administrators to troubleshoot and fix situations
such as failing hardware, or a corrupted OS installation,
without having to gain physical access to the impacted
computer.

The Intel ME, shown in Figure 21, remains functional
during most hardware failures because it is an entire
embedded computer featuring its own execution core,
bootstrap ROM, and internal RAM. The ME can be used
for troubleshooting effectively thanks to an array of abil-
ities that include overriding the CPU’s boot vector and a
DMA engine that can access the computer’s DRAM. The
ME provides remote access to the computer without any
CPU support because it can use the System Management
bus (SMBus) to access the motherboard’s Ethernet PHY
or an AMT-compatible NIC [100].

The Intel ME is connected to the motherboard’s power
supply using a power rail that stays active even when the
host computer is in the Soft Off mode [100], known as
ACPI G2/S5, where most of the computer’s components

Intel PCH

Intel ME

I-Cache
D-Cache

DMA
Engine

Internal
SRAM

DRAM
Access

Execution
Core

HECI
Controller

Internal Bus

SMBus
Controller

SPI
Controller

Interrupt
Controller

Boot
ROM

Watchdog
Timer

Crypto
Accelerator

Ethernet
MAC

PCIe
Controller

USB
Controller

Audio
Controller

Ethernet
PHY

PCIe
lanes

Audio, MIC
Bluetooth

USB
PHY

Integrated
Sensor Hub

SPI
Bus

I2C
UART

Figure 21: The Intel Management Engine (ME) is an embedded
computer hosted in the PCH. The ME has its own execution core,
ROM and SRAM. The ME can access the host’s DRAM via a memory
controller and a DMA controller. The ME is remotely accessible
over the network, as it has direct access to an Ethernet PHY via the
SMBus.

are powered off [87], including the CPU and DRAM.
For all practical purposes, this means that the ME’s exe-
cution core is active as long as the power supply is still
connected to a power source.

In S5, the ME cannot access the DRAM, but it can
still use its own internal memories. The ME can also still
communicate with a remote party, as it can access the
motherboard’s Ethernet PHY via SMBus. This enables
applications such as AMT’s theft prevention, where a
laptop equipped with a cellular modem can be tracked
and permanently disabled as long as it has power and
signal.

As the ME remains active in deep power-saving modes,
its design must rely on low-power components. The exe-
cution core is an Argonaut RISC Core (ARC) clocked at
200-400MHz, which is typically used in low-power em-
bedded designs. On a very recent PCH [100], the internal
SRAM has 640KB, and is shared with the Integrated Sen-
sor Hub (ISH)’s core. The SMBus runs at 1MHz and,
without CPU support, the motherboard’s Ethernet PHY
runs at 10Mpbs.

When the host computer is powered on, the ME’s exe-
cution core starts running code from the ME’s bootstrap
ROM. The bootstrap code loads the ME’s software stack
from the same flash chip that stores the host computer’s
firmware. The ME accesses the flash memory chip an
embedded SPI controller.

16

2.9.3 The Processor Die

An Intel processor’s die, illustrated in Figure 22, is di-
vided into two broad areas: the core area implements the
instruction execution pipeline typically associated with
CPUs, while the uncore provides functions that were
traditionally hosted on separate chips, but are currently
integrated on the CPU die to reduce latency and power
consumption.

Chip Package
Core Core

Core Core

L3 Cache

Graphics
Unit

Memory
Controller

Home Agent

I/O Controller

I/O to Ring

QPI
Packetizer

QPI Router

DRAM

DDR3

Platform Controller Hub NIC

DMIPCI-X

CPU

QPI

IOAPIC

CPU
Config

Power
Unit

Figure 22: The major components in a modern CPU package.
§ 2.9.3 gives an uncore overview. § 2.9.4 describes execution cores.
§ 2.11.3 takes a deeper look at the uncore.

At a conceptual level, the uncore of modern proces-
sors includes an integrated memory controller (iMC) that
interfaces with the DDR bus, an integrated I/O controller
(IIO) that implements PCIe bus lanes and interacts with
the DMI bus, and a growing number of integrated pe-
ripherals, such as a Graphics Processing Unit (GPU).
The uncore structure is described in some processor fam-
ily datasheets [97, 98], and in the overview sections in
Intel’s uncore performance monitoring documentation
[37, 90, 94].

Security extensions to the Intel architecture, such as
Trusted Execution Technology (TXT) [70] and Software
Guard Extensions (SGX) [14, 139], rely on the fact that
the processor die includes the memory and I/O controller,
and thus can prevent any device from accessing protected
memory areas via Direct Memory Access (DMA) trans-
fers. § 2.11.3 takes a deeper look at the uncore organiza-
tion and at the machinery used to prevent unauthorized
DMA transfers.

2.9.4 The Core

Virtually all modern Intel processors have core areas con-
sisting of multiple copies of the execution core circuitry,

each of which is called a core. At the time of this writing,
desktop-class Intel CPUs have 4 cores, and server-class
CPUs have as many as 18 cores.

Most Intel CPUs feature hyper-threading, which
means that a core (shown in Figure 23) has two copies
of the register files backing the execution context de-
scribed in § 2.6, and can execute two separate streams of
instructions simultaneously. Hyper-threading reduces the
impact of memory stalls on the utilization of the fetch,
decode and execution units.

Execution Units

FP

INT INTINT

FP SSE

MEM

SSE

L1
I-Cache

Instruction Scheduler

Decode

L1
D-Cache

L2
Cache

Logical CPU

LAPIC

Registers L1
I-TLB

Logical CPU

LAPIC

Registers

L1
D-TLB

Page Miss Handler (PMH)

Fetch

Microcode

L2
TLB

Figure 23: CPU core with two logical processors. Each logical
processor has its own execution context and LAPIC (§ 2.12). All the
other core resources are shared.

A hyper-threaded core is exposed to system software
as two logical processors (LPs), also named hardware
threads in the Intel documentation. The logical proces-
sor abstraction allows the code used to distribute work
across processors in a multi-processor system to func-
tion without any change on multi-core hyper-threaded
processors.

The high level of resource sharing introduced by
hyper-threading introduces a security vulnerability. Soft-
ware running on one logical processor can use the high-
resolution performance counter (RDTSCP, § 2.4) [152]
to get information about the instructions and memory ac-
cess patterns of another piece of software that is executed
on the other logical processor on the same core.

That being said, the biggest downside of hyper-
threading might be the fact that writing about Intel pro-
cessors in a rigorous manner requires the use of the cum-
bersome term Logical Processor instead of the shorter
and more intuitive “CPU core”, which can often be ab-
breviated to “core”.

2.10 Out-of-Order and Speculative Execution
CPU cores can execute instructions orders of magni-
tude faster than DRAM can read data. Computer archi-

17

tects attempt to bridge this gap by using hyper-threading
(§ 2.9.3), out-of-order and speculative execution, and
caching, which is described in § 2.11. In CPUs that
use out-of-order execution, the order in which the CPU
carries out a program’s instructions (execution order) is
not necessarily the same as the order in which the in-
structions would be executed by a sequential evaluation
system (program order).

An analysis of a system’s information leakage must
take out-of-order execution into consideration. Any CPU
actions observed by an attacker match the execution
order, so the attacker may learn some information by
comparing the observed execution order with a known
program order. At the same time, attacks that try to infer
a victim’s program order based on actions taken by the
CPU must account for out-of-order execution as a source
of noise.

This section summarizes the out-of-order and specu-
lative execution concepts used when reasoning about a
system’s security properties. [150] and [76] cover the
concepts in great depth, while Intel’s optimization man-
ual [96] provides details specific to Intel CPUs.

Figure 24 provides a more detailed view of the CPU
core components involved in out-of-order execution, and
omits some less relevant details from Figure 23.

The Intel architecture defines a complex instruction
set (CISC). However, virtually all modern CPUs are ar-
chitected following reduced instruction set (RISC) prin-
ciples. This is accomplished by having the instruction
decode stages break down each instruction into micro-
ops, which resemble RISC instructions. The other stages
of the execution pipeline work exclusively with micro-
ops.

2.10.1 Out-of-Order Execution

Different types of instructions require different logic
circuits, called functional units. For example, the arith-
metic logic unit (ALU), which performs arithmetic op-
erations, is completely different from the load and store
unit, which performs memory operations. Different cir-
cuits can be used at the same time, so each CPU core can
execute multiple micro-ops in parallel.

The core’s out-of-order engine receives decoded
micro-ops, identifies the micro-ops that can execute in
parallel, assigns them to functional units, and combines
the outputs of the units so that the results are equiva-
lent to having the micro-ops executed sequentially in the
order in which they come from the decode stages.

For example, consider the sequence of pseudo micro-

Memory

Execution

Out of Order Engine

Instruction
Fetch Unit

Branch
Predictors

L1 I-TLB

Reservation Station

Integer ALU
Shift

Integer ALU
LEA

FMA
FP Multiply

Vector
Logicals

Branch

Divide

Vector Shift

Integer
Vector
Multiply

FMA
FP Multiply

Integer
Vector
ALU

Vector
Logicals

FP Addition

Load &
Store

Address

Store
Data

Integer ALU
LEA

Vector
Shuffle

Vector
Logicals

Integer ALU
Shift

Branch

Store
Address

Port 0 Port 1 Ports 2, 3 Port 4 Port 5 Port 6 Port 7

L1 I-Cache

Pre-Decode Fetch Buffer

Instruction Queue

Simple
Decoders

Complex
Decoder

Micro-op Decode Queue

Microcode
ROM

Micro-op
Cache

Renamer

Register
Files

Reorder
Buffer

Load
Buffer

Store
Buffer

Scheduler

L1 D-Cache L2 D-Cache

Integer
Vector
ALU

Memory Control

Instruction Decode

L1 D-TLB

Fill Buffers

Figure 24: The structures in a CPU core that are relevant to out-
of-order and speculative execution. Instructions are decoded into
micro-ops, which are scheduled on one of the execution unit’s ports.
The branch predictor enables speculative execution when a branch is
encountered.

ops4 in Table 5 below. The OR uses the result of the
LOAD, but the ADD does not. Therefore, a good scheduler
can have the load store unit execute the LOAD and the
ALU execute the ADD, all in the same clock cycle.

The out-of-order engine in recent Intel CPUs works
roughly as follows. Micro-ops received from the decode
queue are written into a reorder buffer (ROB) while they
are in-flight in the execution unit. The register allocation
table (RAT) matches each register with the last reorder
buffer entry that updates it. The renamer uses the RAT
to rewrite the source and destination fields of micro-ops
when they are written in the ROB, as illustrated in Tables

4The set of micro-ops used by Intel CPUs is not publicly docu-
mented. The fictional examples in this section suffice for illustration
purposes.

18

Micro-op Meaning
1 LOAD RAX, RSI RAX← DRAM[RSI]
2 OR RDI, RDI, RAX RDI← RDI ∨ RAX
3 ADD RSI, RSI, RCX RSI← RSI + RCX
4 SUB RBX, RSI, RDX RBX← RSI - RDX

Table 5: Pseudo micro-ops for the out-of-order execution example.

6 and 7. Note that the ROB representation makes it easy
to determine the dependencies between micro-ops.

Op Source 1 Source 2 Destination
1 LOAD RSI ∅ RAX
2 OR RDI ROB #1 RSI
3 ADD RSI RCX RSI
4 SUB ROB # 3 RDX RBX

Table 6: Data written by the renamer into the reorder buffer (ROB),
for the micro-ops in Table 5.

Register RAX RBX RCX RDX RSI RDI
ROB # #1 #4 ∅ ∅ #3 #2

Table 7: Relevant entries of the register allocation table after the
micro-ops in Table 5 are inserted into the ROB.

The scheduler decides which micro-ops in the ROB
get executed, and places them in the reservation station.
The reservation station has one port for each functional
unit that can execute micro-ops independently. Each
reservation station port port holds one micro-op from
the ROB. The reservation station port waits until the
micro-op’s dependencies are satisfied and forwards the
micro-op to the functional unit. When the functional unit
completes executing the micro-op, its result is written
back to the ROB, and forwarded to any other reservation
station port that depends on it.

The ROB stores the results of completed micro-ops un-
til they are retired, meaning that the results are committed
to the register file and the micro-ops are removed from
the ROB. Although micro-ops can be executed out-of-
order, they must be retired in program order, in order to
handle exceptions correctly. When a micro-op causes a
hardware exception (§ 2.8.2), all the following micro-ops
in the ROB are squashed, and their results are discarded.

In the example above, the ADD can complete before
the LOAD, because it does not require a memory access.
However, the ADD’s result cannot be committed before
LOAD completes. Otherwise, if the ADD is committed
and the LOAD causes a page fault, software will observe
an incorrect value for the RSI register.

The ROB is tailored for discovering register dependen-
cies between micro-ops. However, micro-ops that exe-

cute out-of-order can also have memory dependencies.
For this reason, out-of-order engines have a load buffer
and a store buffer that keep track of in-flight memory op-
erations and are used to resolve memory dependencies.

2.10.2 Speculative Execution

Branch instructions, also called branches, change the
instruction pointer (RIP, § 2.6), if a condition is met (the
branch is taken). They implement conditional statements
(if) and looping statements, such as while and for.
The most well-known branching instructions in the Intel
architecture are in the jcc family, such as je (jump if
equal).

Branches pose a challenge to the decode stage, because
the instruction that should be fetched after a branch is
not known until the branching condition is evaluated. In
order to avoid stalling the decode stage, modern CPU
designs include branch predictors that use historical in-
formation to guess whether a branch will be taken or
not.

When the decode stage encounters a branch instruc-
tion, it asks the branch predictor for a guess as to whether
the branch will be taken or not. The decode stage bun-
dles the branch condition and the predictor’s guess into
a branch check micro-op, and then continues decoding
on the path indicated by the predictor. The micro-ops
following the branch check are marked as speculative.

When the branch check micro-op is executed, the
branch unit checks whether the branch predictor’s guess
was correct. If that is the case, the branch check is retired
successfully. The scheduler handles mispredictions by
squashing all the micro-ops following the branch check,
and by signaling the instruction decoder to flush the
micro-op decode queue and start fetching the instruc-
tions that follow the correct branch.

Modern CPUs also attempt to predict memory read pat-
terns, so they can prefetch the memory locations that are
about to be read into the cache. Prefetching minimizes
the latency of successfully predicted read operations, as
their data will already be cached. This is accomplished
by exposing circuits called prefetchers to memory ac-
cesses and cache misses. Each prefetcher can recognize
a particular access pattern, such as sequentially read-
ing an array’s elements. When memory accesses match
the pattern that a prefetcher was built to recognize, the
prefetcher loads the cache line corresponding to the next
memory access in its pattern.

19

2.11 Cache Memories
At the time of this writing, CPU cores can process data
≈ 200× faster than DRAM can supply it. This gap is
bridged by an hierarchy of cache memories, which are
orders of magnitude smaller and an order of magnitude
faster than DRAM. While caching is transparent to ap-
plication software, the system software is responsible for
managing and coordinating the caches that store address
translation (§ 2.5) results.

Caches impact the security of a software system in
two ways. First, the Intel architecture relies on system
software to manage address translation caches, which
becomes an issue in a threat model where the system soft-
ware is untrusted. Second, caches in the Intel architecture
are shared by all the software running on the computer.
This opens up the way for cache timing attacks, an entire
class of software attacks that rely on observing the time
differences between accessing a cached memory location
and an uncached memory location.

This section summarizes the caching concepts and im-
plementation details needed to reason about both classes
of security problems mentioned above. [170], [150] and
[76] provide a good background on low-level cache im-
plementation concepts. § 3.8 describes cache timing
attacks.

2.11.1 Caching Principles

At a high level, caches exploit the high locality in the
memory access patterns of most applications to hide the
main memory’s (relatively) high latency. By caching
(storing a copy of) the most recently accessed code and
data, these relatively small memories can be used to
satisfy 90%-99% of an application’s memory accesses.

In an Intel processor, the first-level (L1) cache consists
of a separate data cache (D-cache) and an instruction
cache (I-cache). The instruction fetch and decode stage
is directly connected to the L1 I-cache, and uses it to read
the streams of instructions for the core’s logical proces-
sors. Micro-ops that read from or write to memory are
executed by the memory unit (MEM in Figure 23), which
is connected to the L1 D-cache and forwards memory
accesses to it.

Figure 25 illustrates the steps taken by a cache when it
receives a memory access. First, a cache lookup uses the
memory address to determine if the corresponding data
exists in the cache. A cache hit occurs when the address
is found, and the cache can resolve the memory access
quickly. Conversely, if the address is not found, a cache
miss occurs, and a cache fill is required to resolve the

memory access. When doing a fill, the cache forwards
the memory access to the next level of the memory hierar-
chy and caches the response. Under most circumstances,
a cache fill also triggers a cache eviction, in which some
data is removed from the cache to make room for the
data coming from the fill. If the data that is evicted has
been modified since it was loaded in the cache, it must be
written back to the next level of the memory hierarchy.

Cache
Lookup

Cache
Eviction

Cache
Fill

Look for a cache
line storing A

Found?

Return data
associated with A

Get A from the
next memory level

Choose a cache line
that can store A

Found?

Write the cache line
to the next level

Store the data at A
in the free line

NO
miss

NO

YES
hit

YES

Is the line dirty?

Mark the line
available

YES

NO

Look for a free cache
line that can store A

Figure 25: The steps taken by a cache memory to resolve an access
to a memory address A. A normal memory access (to cacheable
DRAM) always triggers a cache lookup. If the access misses the
cache, a fill is required, and a write-back might be required.

Table 8 shows the key characteristics of the memory
hierarchy implemented by modern Intel CPUs. Each
core has its own L1 and L2 cache (see Figure 23), while
the L3 cache is in the CPU’s uncore (see Figure 22), and
is shared by all the cores in the package.

The numbers in Table 8 suggest that cache placement
can have a large impact on an application’s execution
time. Because of this, the Intel architecture includes
an assortment of instructions that give performance-
sensitive applications some control over the caching
of their working sets. PREFETCH instructs the CPU’s
prefetcher to cache a specific memory address, in prepa-

20

Memory Size Access Time
Core Registers 1 KB no latency
L1 D-Cache 32 KB 4 cycles
L2 Cache 256 KB 10 cycles
L3 Cache 8 MB 40-75 cycles
DRAM 16 GB 60 ns

Table 8: Approximate sizes and access times for each level in the
memory hierarchy of an Intel processor, from [127]. Memory sizes
and access times differ by orders of magnitude across the different
levels of the hierarchy. This table does not cover multi-processor
systems.

ration for a future memory access. The memory writes
performed by the MOVNT instruction family bypass the
cache if a fill would be required. CLFLUSH evicts any
cache lines storing a specific address from the entire
cache hierarchy.

The methods mentioned above are available to soft-
ware running at all privilege levels, because they were de-
signed for high-performance workloads with large work-
ing sets, which are usually executed at ring 3 (§ 2.3). For
comparison, the instructions used by system software
to manage the address translation caches, described in
§ 2.11.5 below, can only be executed at ring 0.

2.11.2 Cache Organization

In the Intel architecture, caches are completely imple-
mented in hardware, meaning that the software stack has
no direct control over the eviction process. However,
software can gain some control over which data gets
evicted by understanding how the caches are organized,
and by cleverly placing its data in memory.

The cache line is the atomic unit of cache organization.
A cache line has data, a copy of a continuous range of
DRAM, and a tag, identifying the memory address that
the data comes from. Fills and evictions operate on entire
lines.

The cache line size is the size of the data, and is always
a power of two. Assuming n-bit memory addresses and a
cache line size of 2l bytes, the lowest l bits of a memory
address are an offset into a cache line, and the highest
n− l bits determine the cache line that is used to store
the data at the memory location. All recent processors
have 64-byte cache lines.

The L1 and L2 caches in recent processors are multi-
way set-associative with direct set indexing, as shown
in Figure 26. A W -way set-associative cache has its
memory divided into sets, where each set has W lines. A
memory location can be cached in any of the w lines in a
specific set that is determined by the highest n− l bits

of the location’s memory address. Direct set indexing
means that the S sets in a cache are numbered from 0 to
S − 1, and the memory location at address A is cached
in the set numbered An−1...n−l mod S.

In the common case where the number of sets in a
cache is a power of two, so S = 2s, the lowest l bits in
an address make up the cache line offset, the next s bits
are the set index. The highest n− s− l bits in an address
are not used when selecting where a memory location
will be cached. Figure 26 shows the cache structure and
lookup process.

Line Offset
l-1…0

Address Tag
n-1…s+l

Set Index
s+l-1…l

Memory Address

…Set S-1, Way 1 Set S-1, Way W-1Set S-1, Way 0
⋮ ⋱ ⋮⋮

Set i, Way 1 Set i, Way W-1…Set i, Way 0

⋮⋮ ⋮ ⋱

Set 1, Way W-1Set 1, Way 0 …Set 1, Way 1

Set 0, Way W-1…Set 0, Way 1Set 0, Way 0

Way W-1…Way 1Way 0

Tag Line Tag Line Tag Line

Matched Line

Tag Comparator

Match? Matched Word

Figure 26: Cache organization and lookup, for a W -way set-
associative cache with 2l-byte lines and S = 2s sets. The cache
works with n-bit memory addresses. The lowest l address bits point
to a specific byte in a cache line, the next s bytes index the set, and
the highest n− s− l bits are used to decide if the desired address is
in one of the W lines in the indexed set.

2.11.3 Cache Coherence

The Intel architecture was designed to support applica-
tion software that was not written with caches in mind.
One aspect of this support is the Total Store Order (TSO)
[147] memory model, which promises that all the logical
processors in a computer see the same order of DRAM
writes.

The same memory location might be simultaneously
cached by different cores’ caches, or even by caches on
separate chips, so providing the TSO guarantees requires

21

a cache coherence protocol that synchronizes all the
cache lines in a computer that reference the same memory
address.

The cache coherence mechanism is not visible to
software, so it is only briefly mentioned in the SDM.
Fortunately, Intel’s optimization reference [96] and the
datasheets referenced in § 2.9.3 provide more informa-
tion. Intel processors use variations of the MESIF [66]
protocol, which is implemented in the CPU and in the
protocol layer of the QPI bus.

The SDM and the CPUID instruction output indicate
that the L3 cache, also known as the last-level cache
(LLC) is inclusive, meaning that any location cached by
an L1 or L2 cache must also be cached in the LLC. This
design decision reduces complexity in many implemen-
tation aspects. We estimate that the bulk of the cache
coherence implementation is in the CPU’s uncore, thanks
to the fact that cache synchronization can be achieved
without having to communicate to the lower cache levels
that are inside execution cores.

The QPI protocol defines cache agents, which are
connected to the last-level cache in a processor, and
home agents, which are connected to memory controllers.
Cache agents make requests to home agents for cache
line data on cache misses, while home agents keep track
of cache line ownership, and obtain the cache line data
from other cache line agents, or from the memory con-
troller. The QPI routing layer supports multiple agents
per socket, and each processor has its own caching agents,
and at least one home agent.

Figure 27 shows that the CPU uncore has a bidirec-
tional ring interconnect, which is used for communi-
cation between execution cores and the other uncore
components. The execution cores are connected to the
ring by CBoxes, which route their LLC accesses. The
routing is static, as the LLC is divided into same-size
slices (common slice sizes are 1.5 MB and 2.5 MB), and
an undocumented hashing scheme maps each possible
physical address to exactly one LLC slice.

Intel’s documentation states that the hashing scheme
mapping physical addresses to LLC slices was designed
to avoid having a slice become a hotspot, but stops short
of providing any technical details. Fortunately, inde-
pendent researches have reversed-engineered the hash
functions for recent processors [85, 135, 197].

The hashing scheme described above is the reason
why the L3 cache is documented as having a “complex”
indexing scheme, as opposed to the direct indexing used
in the L1 and L2 caches.

L3
 C

ac
he

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

Home
Agent

CBox

Core

L2 Cache

L3 Cache
Slice

L3 Cache
Slice

CBox

Core

L2 Cache

QPI
Packetizer

Memory
Controller

DDR3
Channel

Ring to
QPI

Ring to
PCIeI/O Controller

UBox

QPI Link

PCIe Lanes

Figure 27: The stops on the ring interconnect used for inter-core
and core-uncore communication.

The number of LLC slices matches the number of
cores in the CPU, and each LLC slice shares a CBox
with a core. The CBoxes implement the cache coherence
engine, so each CBox acts as the QPI cache agent for its
LLC slice. CBoxes use a Source Address Decoder (SAD)
to route DRAM requests to the appropriate home agents.
Conceptually, the SAD takes in a memory address and
access type, and outputs a transaction type (coherent,
non-coherent, IO) and a node ID. Each CBox contains
a SAD replica, and the configurations of all SADs in a
package are identical.

The SAD configurations are kept in sync by the UBox,
which is the uncore configuration controller, and con-
nects the System agent to the ring. The UBox is re-
sponsible for reading and writing physically distributed
registers across the uncore. The UBox also receives inter-
rupts from system and dispatches them to the appropriate
core.

On recent Intel processors, the uncore also contains at
least one memory controller. Each integrated memory
controller (iMC or MBox in Intel’s documentation) is
connected to the ring by a home agent (HA or BBox in
Intel’s datasheets). Each home agent contains a Target
Address Decoder (TAD), which maps each DRAM ad-
dress to an address suitable for use by the DRAM chips,
namely a DRAM channel, bank, rank, and a DIMM ad-
dress. The mapping in the TAD is not documented by
Intel, but it has been reverse-engineered [151].

The integration of the memory controller on the CPU
brings the ability to filter DMA transfers. Accesses from
a peripheral connected to the PCIe bus are handled by the
integrated I/O controller (IIO), placed on the ring inter-
connect via the UBox, and then reach the iMC. Therefore,

22

on modern systems, DMA transfers go through both the
SAD and TAD, which can be configured to abort DMA
transfers targeting protected DRAM ranges.

2.11.4 Caching and Memory-Mapped Devices

Caches rely on the assumption that the underlying mem-
ory implements the memory abstraction in § 2.2. How-
ever, the physical addresses that map to memory-mapped
I/O devices usually deviate from the memory abstraction.
For example, some devices expose command registers
that trigger certain operations when written, and always
return a zero value. Caching addresses that map to such
memory-mapped I/O devices will lead to incorrect be-
havior.

Furthermore, even when the memory-mapped devices
follow the memory abstraction, caching their memory is
sometimes undesirable. For example, caching a graphic
unit’s framebuffer could lead to visual artifacts on the
user’s display, because of the delay between the time
when a write is issued and the time when the correspond-
ing cache lines are evicted and written back to memory.

In order to work around these problems, the Intel archi-
tecture implements a few caching behaviors, described
below, and provides a method for partitioning the mem-
ory address space (§ 2.4) into regions, and for assigning
a desired caching behavior to each region.

Uncacheable (UC) memory has the same semantics
as the I/O address space (§ 2.4). UC memory is useful
when a device’s behavior is dependent on the order of
memory reads and writes, such as in the case of memory-
mapped command and data registers for a PCIe NIC
(§ 2.9.1). The out-of-order execution engine (§ 2.10)
does not reorder UC memory accesses, and does not
issue speculative reads to UC memory.

Write Combining (WC) memory addresses the spe-
cific needs of framebuffers. WC memory is similar to
UC memory, but the out-of-order engine may reorder
memory accesses, and may perform speculative reads.
The processor stores writes to WC memory in a write
combining buffer, and attempts to group multiple writes
into a (more efficient) line write bus transaction.

Write Through (WT) memory is cached, but write
misses do not cause cache fills. This is useful for pre-
venting large memory-mapped device memories that are
rarely read, such as framebuffers, from taking up cache
memory. WT memory is covered by the cache coherence
engine, may receive speculative reads, and is subject to
operation reordering.

DRAM is represented as Write Back (WB) memory,

which is optimized under the assumption that all the
devices that need to observe the memory operations im-
plement the cache coherence protocol. WB memory is
cached as described in § 2.11, receives speculative reads,
and operations targeting it are subject to reordering.

Write Protected (WP) memory is similar to WB mem-
ory, with the exception that every write is propagated
to the system bus. It is intended for memory-mapped
buffers, where the order of operations does not matter,
but the devices that need to observe the writes do not im-
plement the cache coherence protocol, in order to reduce
hardware costs.

On recent Intel processors, the cache’s behavior is
mainly configured by the Memory Type Range Registers
(MTRRs) and by Page Attribute Table (PAT) indices in
the page tables (§ 2.5). The behavior is also impacted by
the Cache Disable (CD) and Not-Write through (NW)
bits in Control Register 0 (CR0, § 2.4), as well as by
equivalent bits in page table entries, namely Page-level
Cache Disable (PCD) and Page-level Write-Through
(PWT).

The MTRRs were intended to be configured by the
computer’s firmware during the boot sequence. Fixed
MTRRs cover pre-determined ranges of memory, such
as the memory areas that had special semantics in the
computers using 16-bit Intel processors. The ranges
covered by variable MTRRs can be configured by system
software. The representation used to specify the ranges
is described below, as it has some interesting properties
that have proven useful in other systems.

Each variable memory type range is specified using
a range base and a range mask. A memory address be-
longs to the range if computing a bitwise AND between
the address and the range mask results in the range base.
This verification has a low-cost hardware implementa-
tion, shown in Figure 28.

AND
MTRR mask

Physical Address EQ
MTRR base

match

Figure 28: The circuit for computing whether a physical address
matches a memory type range. Assuming a CPU with 48-bit physical
addresses, the circuit uses 36 AND gates and a binary tree of 35
XNOR (equality test) gates. The circuit outputs 1 if the address
belongs to the range. The bottom 12 address bits are ignored, because
memory type ranges must be aligned to 4 KB page boundaries.

Each variable memory type range must have a size that
is an integral power of two, and a starting address that
is a multiple of its size, so it can be described using the

23

base / mask representation described above. A range’s
starting address is its base, and the range’s size is one
plus its mask.

Another advantage of this range representation is that
the base and the mask can be easily validated, as shown
in Listing 1. The range is aligned with respect to its size
if and only if the bitwise AND between the base and the
mask is zero. The range’s size is a power of two if and
only if the bitwise AND between the mask and one plus
the mask is zero. According to the SDM, the MTRRs are
not validated, but setting them to invalid values results in
undefined behavior.

constexpr bool is_valid_range(
size_t base, size_t mask) {

// Base is aligned to size.
return (base & mask) == 0 &&

// Size is a power of two.
(mask & (mask + 1)) == 0;

}

Listing 1: The checks that validate the base and mask of a memory-
type range can be implemented very easily.

No memory type range can partially cover a 4 KB page,
which implies that the range base must be a multiple of
4 KB, and the bottom 12 bits of range mask must be set.
This simplifies the interactions between memory type
ranges and address translation, described in § 2.11.5.

The PAT is intended to allow the operating system or
hypervisor to tweak the caching behaviors specified in
the MTRRs by the computer’s firmware. The PAT has
8 entries that specify caching behaviors, and is stored
in its entirety in a MSR. Each page table entry contains
a 3-bit index that points to a PAT entry, so the system
software that controls the page tables can specify caching
behavior at a very fine granularity.

2.11.5 Caches and Address Translation

Modern system software relies on address translation
(§ 2.5). This means that all the memory accesses issued
by a CPU core use virtual addresses, which must undergo
translation. Caches must know the physical address for a
memory access, to handle aliasing (multiple virtual ad-
dresses pointing to the same physical address) correctly.
However, address translation requires up to 20 memory
accesses (see Figure 15), so it is impractical to perform a
full address translation for every cache access. Instead,
address translation results are cached in the translation
look-aside buffer (TLB).

Table 9 shows the levels of the TLB hierarchy. Recent
processors have separate L1 TLBs for instructions and

data, and a shared L2 TLB. Each core has its own TLBs
(see Figure 23). When a virtual address is not contained
in a core’s TLB, the Page Miss Handler (PMH) performs
a page walk (page table / EPT traversal) to translate the
virtual address, and the result is stored in the TLB.

Memory Entries Access Time
L1 I-TLB 128 + 8 = 136 1 cycle
L1 D-TLB 64 + 32 + 4 = 100 1 cycle
L2 TLB 1536 + 8 = 1544 7 cycles
Page Tables 236 ≈ 6 · 1010 18 cycles - 200ms

Table 9: Approximate sizes and access times for each level in the
TLB hierarchy, from [4].

In the Intel architecture, the PMH is implemented in
hardware, so the TLB is never directly exposed to soft-
ware and its implementation details are not documented.
The SDM does state that each TLB entry contains the
physical address associated with a virtual address, and
the metadata needed to resolve a memory access. For
example, the processor needs to check the writable (W)
flag on every write, and issue a General Protection fault
(#GP) if the write targets a read-only page. Therefore,
the TLB entry for each virtual address caches the logical-
and of all the relevant W flags in the page table structures
leading up to the page.

The TLB is transparent to application software. How-
ever, kernels and hypervisors must make sure that the
TLBs do not get out of sync with the page tables and
EPTs. When changing a page table or EPT, the system
software must use the INVLPG instruction to invalidate
any TLB entries for the virtual address whose translation
changed. Some instructions flush the TLBs, meaning that
they invalidate all the TLB entries, as a side-effect.

TLB entries also cache the desired caching behavior
(§ 2.11.4) for their pages. This requires system software
to flush the corresponding TLB entries when changing
MTRRs or page table entries. In return, the processor
only needs to compute the desired caching behavior dur-
ing a TLB miss, as opposed to computing the caching
behavior on every memory access.

The TLB is not covered by the cache coherence mech-
anism described in § 2.11.3. Therefore, when modifying
a page table or EPT on a multi-core / multi-processor
system, the system software is responsible for perform-
ing a TLB shootdown, which consists of stopping all the
logical processors that use the page table / EPT about
to be changed, performing the changes, executing TLB-
invalidating instructions on the stopped logical proces-
sors, and then resuming execution on the stopped logical

24

processors.
Address translation constrains the L1 cache design.

On Intel processors, the set index in an L1 cache only
uses the address bits that are not impacted by address
translation, so that the L1 set lookup can be done in par-
allel with the TLB lookup. This is critical for achieving
a low latency when both the L1 TLB and the L1 cache
are hit.

Given a page size P = 2p bytes, the requirement
above translates to l + s ≤ p. In the Intel architecture,
p = 12, and all recent processors have 64-byte cache
lines (l = 6) and 64 sets (s = 6) in the L1 caches, as
shown in Figure 29. The L2 and L3 caches are only
accessed if the L1 misses, so the physical address for the
memory access is known at that time, and can be used
for indexing.

Line Offset
5…0

Address Tag
47…12

Set Index
11…6

L1 Cache Address Breakdown

PML4E Index
47…39

PDPTE Index
38…30

PDE Index
29…21

Page Offset
11…0

PTE Index
20…12

4KB Page Address Breakdown

Line Offset
5…0

Address Tag
47…16

Set Index
14…6

L2 Cache Address Breakdown

PML4E Index
47…39

PDPTE Index
38…30

PDE Index
29…21

Page Offset
20…0

2MB Page Address Breakdown

Line Offset
5…0

Address Tag
47…16

Set Index
18…6

L3 Cache Address Breakdown

Figure 29: Virtual addresses from the perspective of cache lookup
and address translation. The bits used for the L1 set index and line
offset are not changed by address translation, so the page tables do
not impact L1 cache placement. The page tables do impact L2 and L3
cache placement. Using large pages (2 MB or 1 GB) is not sufficient
to make L3 cache placement independent of the page tables, because
of the LLC slice hashing function (§ 2.11.3).

2.12 Interrupts
Peripherals use interrupts to signal the occurrence of
an event that must be handled by system software. For
example, a keyboard triggers interrupts when a key is
pressed or depressed. System software also relies on
interrupts to implement preemptive multi-threading.

Interrupts are a kind of hardware exception (§ 2.8.2).
Receiving an interrupt causes an execution core to per-
form a privilege level switch and to start executing the
system software’s interrupt handling code. Therefore, the
security concerns in § 2.8.2 also apply to interrupts, with

the added twist that interrupts occur independently of the
instructions executed by the interrupted code, whereas
most faults are triggered by the actions of the application
software that incurs them.

Given the importance of interrupts when assessing
a system’s security, this section outlines the interrupt
triggering and handling processes described in the SDM.

Peripherals use bus-specific protocols to signal inter-
rupts. For example, PCIe relies on Message Signaled
Interrupts (MSI), which are memory writes issued to
specially designed memory addresses. The bus-specific
interrupt signals are received by the I/O Advanced Pro-
grammable Interrupt Controller (IOAPIC) in the PCH,
shown in Figure 20.

The IOAPIC routes interrupt signals to one or more
Local Advanced Programmable Interrupt Controllers
(LAPICs). As shown in Figure 22, each logical CPU
has a LAPIC that can receive interrupt signals from the
IOAPIC. The IOAPIC routing process assigns each inter-
rupt to an 8-bit interrupt vector that is used to identify
the interrupt sources, and to a 32-bit APIC ID that is used
to identify the LAPIC that receives the interrupt.

Each LAPIC uses a 256-bit Interrupt Request Regis-
ter (IRR) to track the unserviced interrupts that it has
received, based on the interrupt vector number. When the
corresponding logical processor is available, the LAPIC
copies the highest-priority unserviced interrupt vector
to the In-Service Register (ISR), and invokes the logical
processor’s interrupt handling process.

At the execution core level, interrupt handling reuses
many of the mechanisms of fault handling (§ 2.8.2). The
interrupt vector number in the LAPIC’s ISR is used to
locate an interrupt handler in the IDT, and the handler is
invoked, possibly after a privilege switch is performed.
The interrupt handler does the processing that the device
requires, and then writes the LAPIC’s End Of Interrupt
(EOI) register to signal the fact that it has completed
handling the interrupt.

Interrupts are treated like faults, so interrupt handlers
have full control over the execution environment of the
application being interrupted. This is used to implement
pre-emptive multi-threading, which relies on a clock
device that generates interrupts periodically, and on an
interrupt handler that performs context switches.

System software can cause an interrupt on any logical
processor by writing the target processor’s APIC ID into
the Interrupt Command Register (ICR) of the LAPIC
associated with the logical processor that the software
is running on. These interrupts, called Inter-Processor

25

Interrupts (IPI), are needed to implement TLB shoot-
downs (§ 2.11.5).

2.13 Platform Initialization (Booting)

When a computer is powered up, it undergoes a boot-
strapping process, also called booting, for simplicity.
The boot process is a sequence of steps that collectively
initialize all the computer’s hardware components and
load the system software into DRAM. An analysis of
a system’s security properties must be aware of all the
pieces of software executed during the boot process, and
must account for the trust relationships that are created
when a software module loads another module.

This section outlines the details of the boot process
needed to reason about the security of a system based
on the Intel architecture. [92] provides a good refer-
ence for many of the booting process’s low-level details.
While some specifics of the boot process depend on the
motherboard and components in a computer, this sec-
tion focuses on the high-level flow described by Intel’s
documentation.

2.13.1 The UEFI Standard

The firmware in recent computers with Intel processors
implements the Platform Initialization (PI) process in
the Unified Extensible Firmware Interface (UEFI) spec-
ification [180]. The platform initialization follows the
steps shown in Figure 30 and described below.

Security (SEC)

Pre-EFI Initialization (PEI)

Driver eXecution Environment (DXE)

Boot Device Selection (BDS)

Transient System Load (TSL)

Run Time (RT)

measures

measures

measures

measures

measures

microcode
firmware

bootloader

OS

DRAM Initialized

Cache-as-RAM

Figure 30: The phases of the Platform Initialization process in the
UEFI specification.

The computer powers up, reboots, or resumes from
sleep in the Security phase (SEC). The SEC implementa-
tion is responsible for establishing a temporary memory
store and loading the next stage of the firmware into it.
As the first piece of software that executes on the com-
puter, the SEC implementation is the system’s root of

trust, and performs the first steps towards establishing
the system’s desired security properties.

For example, in a measured boot system (also known
as trusted boot), all the software involved in the boot pro-
cess is measured (cryptographically hashed, and the mea-
surement is made available to third parties, as described
in § 3.3). In such a system, the SEC implementation
takes the first steps in establishing the system’s measure-
ment, namely resetting the special register that stores the
measurement result, measuring the PEI implementation,
and storing the measurement in the special register.

SEC is followed by the Pre-EFI Initialization phase
(PEI), which initializes the computer’s DRAM, copies
itself from the temporary memory store into DRAM, and
tears down the temporary storage. When the computer is
powering up or rebooting, the PEI implementation is also
responsible for initializing all the non-volatile storage
units that contain UEFI firmware and loading the next
stage of the firmware into DRAM.

PEI hands off control to the Driver eXecution Envi-
ronment phase (DXE). In DXE, a loader locates and
starts firmware drivers for the various components in the
computer. DXE is followed by a Boot Device Selection
(BDS) phase, which is followed by a Transient System
Load (TSL) phase, where an EFI application loads the
operating system selected in the BDS phase. Last, the
OS loader passes control to the operating system’s kernel,
entering the Run Time (RT) phase.

When waking up from sleep, the PEI implementation
first initializes the non-volatile storage containing the
system snapshot saved while entering the sleep state.
The rest of the PEI implementation may use optimized
re-initialization processes, based on the snapshot con-
tents. The DXE implementation also uses the snapshot
to restore the computer’s state, such as the DRAM con-
tents, and then directly executes the operating system’s
wake-up handler.

2.13.2 SEC on Intel Platforms

Right after a computer is powered up, circuitry in the
power supply and on the motherboard starts establishing
reference voltages on the power rails in a specific or-
der, documented as “power sequencing” [184] in chipset
specifications such as [102]. The rail powering up the
Intel ME (§ 2.9.2) in the PCH is powered up significantly
before the rail that powers the CPU cores.

When the ME is powered up, it starts executing the
code in its boot ROM, which sets up the SPI bus con-
nected to the flash memory chip (§ 2.9.1) that stores both

26

the UEFI firmware and the ME’s firmware. The ME then
loads its firmware from flash memory, which contains
the ME’s operating system and applications.

After the Intel ME loads its software, it sets up some of
the motherboard’s hardware, such as the PCH bus clocks,
and then it kicks off the CPU’s bootstrap sequence. Most
of the details of the ME’s involvement in the computer’s
boot process are not publicly available, but initializing
the clocks is mentioned in a few public documents [5, 7,
42, 107], and is made clear in firmware bringup guides,
such as the leaked confidential guide [93] documenting
firmware bringup for Intel’s Series 7 chipset.

The beginning of the CPU’s bootstrap sequence is
the SEC phase, which is implemented in the processor
circuitry. All the logical processors (LPs) on the mother-
board undergo hardware initialization, which invalidates
the caches (§ 2.11) and TLBs (§ 2.11.5), performs a Built-
In Self Test (BIST), and sets all the registers (§ 2.6) to
pre-specified values.

After hardware initialization, the LPs perform the
Multi-Processor (MP) initialization algorithm, which
results in one LP being selected as the bootstrap pro-
cessor (BSP), and all the other LPs being classified as
application processors (APs).

According to the SDM, the details of the MP initial-
ization algorithm for recent CPUs depend on the moth-
erboard and firmware. In principle, after completing
hardware initialization, all LPs attempt to issue a spe-
cial no-op transaction on the QPI bus. A single LP will
succeed in issuing the no-op, thanks to the QPI arbi-
tration mechanism, and to the UBox (§ 2.11.3) in each
CPU package, which also serves as a ring arbiter. The
arbitration priority of each LP is based on its APIC ID
(§ 2.12), which is provided by the motherboard when the
system powers up. The LP that issues the no-op becomes
the BSP. Upon failing to issue the no-op, the other LPs
become APs, and enter the wait-for-SIPI state.

Understanding the PEI firmware loading process is
unnecessarily complicated by the fact that the SDM de-
scribes a legacy process consisting of having the BSP set
its RIP register to 0xFFFFFFF0 (16 bytes below 4 GB),
where the firmware is expected to place a instruction that
jumps into the PEI implementation.

Recent processors do not support the legacy approach
at all [156]. Instead, the BSP reads a word from address
0xFFFFFFE8 (24 bytes below 4 GB) [40, 203], and ex-
pects to find the address of a Firmware Interface Table
(FIT) in the memory address space (§ 2.4), as shown
in Figure 31. The BSP is able to read firmware con-

tents from non-volatile memory before the computer is
initialized, because the initial SAD (§ 2.11.3) and PCH
(§ 2.9.1) configurations maps a region in the memory
address space to the SPI flash chip (§ 2.9.1) that stores
the computer’s firmware.

Legacy Reset Vector
FIT Pointer

Firmware Interface Table (FIT)

0xFFFFFFF0
0xFFFFFFE8

FIT Header
PEI ACM Entry

Pre-EFI Initialization ACM

TXT Policy Entry

Public Key
Signature

PEI Implementation

TXT Policy Configuration

DXE modules

0xFFFFFFFF

ACM Header

Figure 31: The Firmware Interface Table (FIT) in relation to the
firmware’s memory map.

The FIT [153] was introduced in the context of Intel’s
Itanium architecture, and its use in Intel’s current 64-
bit architecture is described in an Intel patent [40] and
briefly documented in an obscure piece of TXT-related
documentation [89]. The FIT contains Authenticated
Code Modules (ACMs) that make up the firmware, and
other platform-specific information, such as the TPM
and TXT configuration [89].

The PEI implementation is stored in an ACM listed
in the FIT. The processor loads the PEI ACM, verifies
the trustworthiness of the ACM’s public key, and ensures
that the ACM’s contents matches its signature. If the PEI
passes the security checks, it is executed. Processors that
support Intel TXT only accept Intel-signed ACMs [55, p.
92].

2.13.3 PEI on Intel Platforms

[92] and [35] describe the initialization steps performed
by Intel platforms during the PEI phase, from the per-
spective of a firmware programmer. A few steps provide
useful context for reasoning about threat models involv-
ing the boot process.

When the BSP starts executing PEI firmware, DRAM
is not yet initialized. Therefore the PEI code starts ex-
ecuting in a Cache-as-RAM (CAR) mode, which only
relies on the BSP’s internal caches, at the expense of im-
posing severe constraints on the size of the PEI’s working
set.

27

One of the first tasks performed by the PEI implemen-
tation is enabling DRAM, which requires discovering
and initializing the DRAM chips connected to the moth-
erboard, and then configuring the BSP’s memory con-
trollers (§ 2.11.3) and MTRRs (§ 2.11.4). Most firmware
implementations use Intel’s Memory Reference Code
(MRC) for this task.

After DRAM becomes available, the PEI code is
copied into DRAM and the BSP is taken out of CAR
mode. The BSP’s LAPIC (§ 2.12) is initialized and
used to send a broadcast Startup Inter-Processor Inter-
rupt (SIPI, § 2.12) to wake up the APs. The interrupt
vector in a SIPI indicates the memory address of the AP
initialization code in the PEI implementation.

The PEI code responsible for initializing APs is ex-
ecuted when the APs receive the SIPI wake-up. The
AP PEI code sets up the AP’s configuration registers,
such as the MTRRs, to match the BSP’s configuration.
Next, each AP registers itself in a system-wide table,
using a memory synchronization primitive, such as a
semaphore, to avoid having two APs access the table
at the same time. After the AP initialization completes,
each AP is suspended again, and waits to receive an INIT
Inter-Processor Interrupt from the OS kernel.

The BSP initialization code waits for all APs to register
themselves into the system-wide table, and then proceeds
to locate, load and execute the firmware module that
implements DXE.

2.14 CPU Microcode

The Intel architecture features a large instruction set.
Some instructions are used infrequently, and some in-
structions are very complex, which makes it impractical
for an execution core to handle all the instructions in hard-
ware. Intel CPUs use a microcode table to break down
rare and complex instructions into sequences of simpler
instructions. Architectural extensions that only require
microcode changes are significantly cheaper to imple-
ment and validate than extensions that require changes
in the CPU’s circuitry.

It follows that a good understanding of what can be
done in microcode is crucial to evaluating the cost of
security features that rely on architecture extensions. Fur-
thermore, the limitations of microcode are sometimes the
reasoning behind seemingly arbitrary architecture design
decisions.

The first sub-section below presents the relevant facts
pertaining to microcode in Intel’s optimization reference
[96] and SDM. The following subsections summarize

information gleaned from Intel’s patents and other re-
searchers’ findings.

2.14.1 The Role of Microcode

The frequently used instructions in the Intel architecture
are handled by the core’s fast path, which consists of
simple decoders (§ 2.10) that can emit at most 4 micro-
ops per instruction. Infrequently used instructions and
instructions that require more than 4 micro-ops use a
slower decoding path that relies on a sequencer to read
micro-ops from a microcode store ROM (MSROM).

The 4 micro-ops limitation can be used to guess intel-
ligently whether an architectural feature is implemented
in microcode. For example, it is safe to assume that
XSAVE (§ 2.6), which was takes over 200 micro-ops on
recent CPUs [53], is most likely performed in microcode,
whereas simple arithmetic and memory accesses are han-
dled directly by hardware.

The core’s execution units handle common cases in
fast paths implemented in hardware. When an input
cannot be handled by the fast paths, the execution unit
issues a microcode assist, which points the microcode
sequencer to a routine in microcode that handles the
edge cases. The most common cited example in Intel’s
documentation is floating point instructions, which issue
assists to handle denormalized inputs.

The REP MOVS family of instructions, also known
as string instructions because of their use in strcpy-
like functions, operate on variable-sized arrays. These
instructions can handle small arrays in hardware, and
issue microcode assists for larger arrays.

Modern Intel processors implement a microcode up-
date facility. The SDM describes the process of applying
microcode updates from the perspective of system soft-
ware. Each core can be updated independently, and the
updates must be reapplied on each boot cycle. A core
can be updated multiple times. The latest SDM at the
time of this writing states that a microcode update is up
to 16 KB in size.

Processor engineers prefer to build new architectural
features as microcode extensions, because microcode can
be iterated on much faster than hardware, which reduces
development cost [193, 194]. The update facility further
increases the appeal of microcode, as some classes of
bugs can be fixed after a CPU has been released.

Intel patents [110, 138] describing Software Guard
Extensions (SGX) disclose that SGX is entirely imple-
mented in microcode, except for the memory encryp-
tion engine. A description of SGX’s implementation

28

could provide great insights into Intel’s microcode, but,
unfortunately, the SDM chapters covering SGX do not
include such a description. We therefore rely on other
public information sources about the role of microcode
in the security-sensitive areas covered by previous sec-
tions, namely memory management (§ 2.5, § 2.11.5),
the handling of hardware exceptions (§ 2.8.2) and inter-
rupts (§ 2.12), and platform initialization (§ 2.13).

The use of microcode assists can be measured using
the Precise Event Based Sampling (PEBS) feature in re-
cent Intel processors. PEBS provides counters for the
number of micro-ops coming from MSROM, including
complex instructions and assists, counters for the num-
bers of assists associated with some micro-op classes
(SSE and AVX stores and transitions), and a counter for
assists generated by all other micro-ops.

The PEBS feature itself is implemented using mi-
crocode assists (this is implied in the SDM and con-
firmed by [120]) when it needs to write the execution
context into a PEBS record. Given the wide range of
features monitored by PEBS counters, we assume that all
execution units in the core can issue microcode assists,
which are performed at micro-op retirement. This find-
ing is confirmed by an Intel patent [24], and is supported
by the existence of a PEBS counter for the “number of
microcode assists invoked by hardware upon micro-op
writeback.”

Intel’s optimization manual describes one more inter-
esting assist, from a memory system perspective. SIMD
masked loads (using VMASKMOV) read a series of data
elements from memory into a vector register. A mask
register decides whether elements are moved or ignored.
If the memory address overlaps an invalid page (e.g., the
P flag is 0, § 2.5), a microcode assist is issued, even if
the mask indicates that no element from the invalid page
should be read. The microcode checks whether the ele-
ments in the invalid page have the corresponding mask
bits set, and either performs the load or issues a page
fault.

The description of machine checks in the SDM men-
tions page assists and page faults in the same context.
We assume that the page assists are issued in some cases
when a TLB miss occurs (§ 2.11.5) and the PMH has to
walk the page table. The following section develops this
assumption and provides supporting evidence from In-
tel’s assigned patents and published patent applications.

2.14.2 Microcode Structure

According to a 2013 Intel patent [83], the avenues con-
sidered for implementing new architectural features are
a completely microcode-based implementation, using
existing micro-ops, a microcode implementation with
hardware support, which would use new micro-ops, and
a complete hardware implementation, using finite state
machines (FSMs).

The main component of the MSROM is a table of
micro-ops [193, 194]. According to an example in a
2012 Intel patent [194], the table contains on the order
of 20,000 micro-ops, and a micro-op has about 70 bits.
On embedded processors, like the Atom, microcode may
be partially compressed [193, 194].

The MSROM also contains an event ROM, which is an
array of pointers to event handling code in the micro-ops
table [160]. Microcode events are hardware exceptions,
assists, and interrupts [24, 36, 149]. The processor de-
scribed in a 1999 patent [160] has a 64-entry event table,
where the first 16 entries point to hardware exception
handlers and the other entries are used by assists.

The execution units can issue an assist or signal a fault
by associating an event code with the result of a micro-
op. When the micro-op is committed (§ 2.10), the event
code causes the out-of-order scheduler to squash all the
micro-ops that are in-flight in the ROB. The event code is
forwarded to the microcode sequencer, which reads the
micro-ops in the corresponding event handler [24, 149].

The hardware exception handling logic (§ 2.8.2) and
interrupt handling logic (§ 2.12) is implemented entirely
in microcode [149]. Therefore, changes to this logic are
relatively inexpensive to implement on Intel processors.
This is rather fortunate, as the Intel architecture’s stan-
dard hardware exception handling process requires that
the fault handler is trusted by the code that encounters
the exception (§ 2.8.2), and this assumption cannot be
satisfied by a design where the software executing in-
side a secure container must be isolated from the system
software managing the computer’s resources.

The execution units in modern Intel processors support
microcode procedures, via dedicated microcode call and
return micro-ops [36]. The micro-ops manage a hard-
ware data structure that conceptually stores a stack of
microcode instruction pointers, and is integrated with out-
of-order execution and hardware exceptions, interrupts
and assists.

Asides from special micro-ops, microcode also em-
ploys special load and store instructions, which turn into

29

special bus cycles, to issue commands to other functional
units [159]. The memory addresses in the special loads
and stores encode commands and input parameters. For
example, stores to a certain range of addresses flush spe-
cific TLB sets.

2.14.3 Microcode and Address Translation

Address translation (§ 2.5) is configured by CR3, which
stores the physical address of the top-level page table,
and by various bits in CR0 and CR4, all of which are
described in the SDM. Writes to these control registers
are implemented in microcode, which stores extra infor-
mation in microcode-visible registers [62].

When a TLB miss (§ 2.11.5) occurs, the memory exe-
cution unit forwards the virtual address to the Page Miss
Handler (PMH), which performs the page walk needed
to obtain a physical address. In order to minimize the
latency of a page walk, the PMH is implemented as
a Finite-State Machine (FSM) [78, 154]. Furthermore,
the PMH fetches the page table entries from memory
by issuing “stuffed loads”, which are special micro-ops
that bypass the reorder buffer (ROB) and go straight
to the memory execution units (§ 2.10), thus avoiding
the overhead associated with out-of-order scheduling
[63, 78, 159].

The FSM in the PMH handles the fast path of the entire
address translation process, which assumes no address
translation fault (§ 2.8.2) occurs [63, 64, 149, 160], and
no page table entry needs to be modified [63].

When the PMH FSM detects the conditions that trigger
a Page Fault or a General Protection Fault, it commu-
nicates a microcode event code, corresponding to the
detected fault condition, to the execution unit (§ 2.10)
responsible for memory operations [63, 64, 149, 160]. In
turn, the execution unit triggers the fault by associating
the event code with the micro-op that caused the address
translation, as described in the previous section.

The PMH FSM does not set the Accessed or Dirty
attributes (§ 2.5.3) in page table entries. When it detects
that a page table entry must be modified, the FSM issues
a microcode event code for a page walk assist [63]. The
microcode handler performs the page walk again, setting
the A and D attributes on page table entries when neces-
sary [63]. This finding was indirectly confirmed by the
description for a PEBS event in the most recent SDM
release.

The patents at the core of our descriptions above [24,
63, 64, 149, 160] were all issued between 1996 and 1999,
which raises the concern of obsolescence. As Intel would

not be able to file new patents for the same specifications,
we cannot present newer patents with the information
above. Fortunately, we were able to find newer patents
that mention the techniques described above, proving
their relevance to newer CPU models.

Two 2014 patents [78, 154] mention that the PMH is
executing a FSM which issues stuffing loads to obtain
page table entries. A 2009 patent [62] mentions that
microcode is invoked after a PMH walk, and that the
microcode can prevent the translation result produced by
the PMH from being written to the TLB.

A 2013 patent [83] and a 2014 patent [155] on scatter
/ gather instructions disclose that the newly introduced
instructions use a combination of hardware in the ex-
ecution units that perform memory operations, which
include the PMH. The hardware issues microcode assists
for slow paths, such as gathering vector elements stored
in uncacheable memory (§ 2.11.4), and operations that
cause Page Faults.

A 2014 patent on APIC (§ 2.12) virtualization [168]
describes a memory execution unit modification that in-
vokes a microcode assist for certain memory accesses,
based on the contents of some range registers. The patent
also mentions that the range registers are checked when
the TLB miss occurs and the PMH is invoked, in or-
der to decide whether a fast hardware path can be used
for APIC virtualization, or a microcode assist must be
issued.

The recent patents mentioned above allow us to con-
clude that the PMH in recent processors still relies on an
FSM and stuffed loads, and still uses microcode assists to
handle infrequent and complex operations. This assump-
tion plays a key role in estimating the implementation
complexity of architectural modifications targeting the
processor’s address translation mechanism.

2.14.4 Microcode and Booting

The SDM states that microcode performs the Built-In
Self Test (BIST, § 2.13.2), but does not provide any de-
tails on the rest of the CPU’s hardware initialization.

In fact, the entire SEC implementation on Intel plat-
forms is contained in the processor microcode [40, 41,
168]. This implementation has desirable security proper-
ties, as it is significantly more expensive for an attacker
to tamper with the MSROM circuitry (§ 2.14.2) than it
is to modify the contents of the flash memory chip that
stores the UEFI firmware. § 3.4.3 and § 3.6 describe
the broad classes of attacks that an Intel platform can be
subjected to.

30

The microcode that implements SEC performs MP
initialization (§ 2.13.2), as suggested in the SDM. The
microcode then places the BSP into Cache-as-RAM
(CAR) mode, looks up the PEI Authenticated Code Mod-
ule (ACM) in the Firmware Interface Table (FIT), loads
the PEI ACM into the cache, and verifies its signature
(§ 2.13.2) [40, 41, 144, 202, 203]. Given the structure of
ACM signatures, we can conclude that Intel’s microcode
contains implementations of RSA decryption and of a
variant of SHA hashing.

The PEI ACM is executed from the CPU’s cache, after
it is loaded by the microcode [40, 41, 202]. This removes
the possibility for an attacker with physical access to the
SPI flash chip to change the firmware’s contents after the
microcode computes its cryptographic hash, but before it
is executed.

On motherboards compatible with LaGrande Server
Extensions (LT-SX, also known as Intel TXT for servers),
the firmware implementing PEI verifies that each CPU
connected to motherboard supports LT-SX, and powers
off the CPU sockets that don’t hold processors that im-
plement LT-SX [144]. This prevents an attacker from
tampering with a TXT-protected VM by hot-plugging
a CPU in a running computer that is inside TXT mode.
When a hot-plugged CPU passes security tests, a hy-
pervisor is notified that a new CPU is available. The
hypervisor updates its internal state, and sends the new
CPU a SIPI. The new CPU executes a SIPI handler, in-
side microcode, that configures the CPU’s state to match
the state expected by the TXT hypervisor [144]. This
implies that the AP initialization described in § 2.13.2 is
implemented in microcode.

2.14.5 Microcode Updates

The SDM explains that the microcode on Intel CPUs
can be updated, and describes the process for applying
an update. However, no detail about the contents of an
update is provided. Analyzing Intel’s microcode updates
seems like a promising avenue towards discovering the
microcode’s structure. Unfortunately, the updates have
so far proven to be inscrutable [32].

The microcode updates cannot be easily analyzed be-
cause they are encrypted, hashed with a cryptographic
hash function like SHA-256, and signed using RSA or
elliptic curve cryptography [202]. The update facility
is implemented entirely in microcode, including the de-
cryption and signature verification [202].

[75] independently used fault injection and timing
analysis to conclude that each recent Intel microcode

update is signed with a 2048-bit RSA key and a (possibly
non-standard) 256-bit hash algorithm, which agrees with
the findings above.

The microcode update implementation places the
core’s cache into No-Evict Mode (NEM, documented
by the SDM) and copies the microcode update into the
cache before verifying its signature [202]. The update fa-
cility also sets up an MTRR entry to protect the update’s
contents from modifications via DMA transfers [202] as
it is verified and applied.

While Intel publishes the most recent microcode up-
dates for each of its CPU models, the release notes asso-
ciated with the updates are not publicly available. This
is unfortunate, as the release notes could be used to con-
firm guesses that certain features are implemented in
microcode.

However, some information can be inferred by read-
ing through the Errata section in Intel’s Specification
Updates [88, 104, 106]. The phrase “it is possible for
BIOS5 to contain a workaround for this erratum” gen-
erally means that a microcode update was issued. For
example, Errata AH in [88] implies that string instruc-
tions (REP MOV) are implemented in microcode, which
was confirmed by Intel [12].

Errata AH43 and AH91 in [88], and AAK73 in [104]
imply that address translation (§ 2.5) is at least partially
implemented in microcode. Errata AAK53, AAK63,
and AAK70, AAK178 in [104], and BT138, BT210,
in [106] imply that VM entries and exits (§ 2.8.2) are
implemented in microcode, which is confirmed by the
APIC virtualization patent [168].

3 SECURITY BACKGROUND

Most systems rely on some cryptographic primitives for
security. Unfortunately, these primitives have many as-
sumptions, and building a secure system on top of them
is a highly non-trivial endeavor. It follows that a sys-
tem’s security analysis should be particularly interested
in what cryptographic primitives are used, and how they
are integrated into the system.
§ 3.1 and § 3.2 lay the foundations for such an anal-

ysis by summarizing the primitives used by the secure
architectures of interest to us, and by describing the most
common constructs built using these primitives. § 3.3
builds on these concepts and describes software attesta-
tion, which is the most popular method for establishing

5Basic Input/Output System (BIOS) is the predecessor of UEFI-
based firmware. Most Intel documentation, including the SDM, still
uses the term BIOS to refer to firmware.

31

trust in a secure architecture.
Having looked at the cryptographic foundations for

building secure systems, we turn our attention to the
attacks that secure architectures must withstand. Asides
from forming a security checklist for architecture design,
these attacks build intuition for the design decisions in
the architectures of interest to us.

The attacks that can be performed on a computer sys-
tem are broadly classified into physical attacks and soft-
ware attacks. In physical attacks, the attacker takes ad-
vantage of a system’s physical implementation details
to perform an operation that bypasses the limitations set
by the computer system’s software abstraction layers. In
contrast, software attacks are performed solely by execut-
ing software on the victim computer. § 3.4 summarizes
the main types of physical attacks.

The distinction between software and physical attacks
is particularly relevant in cloud computing scenarios,
where gaining software access to the computer running
a victim’s software can be accomplished with a credit
card backed by modest funds [157], whereas physical
access is a more difficult prospect that requires trespass,
coercion, or social engineering on the cloud provider’s
employees.

However, the distinction between software and phys-
ical attacks is blurred by the attacks presented in § 3.6,
which exploit programmable peripherals connected to
the victim computer’s bus in order to carry out actions
that are normally associated with physical attacks.

While the vast majority of software attacks exploit
a bug in a software component, there are a few attack
classes that deserve attention from architecture designers.
Memory mapping attacks, described in § 3.7, become a
possibility on architectures where the system software is
not trusted. Cache timing attacks, summarized in § 3.8
exploit microarchitectural behaviors that are completely
observable in software, but dismissed by the security
analyses of most systems.

3.1 Cryptographic Primitives

This section overviews the cryptosystems used by se-
cure architectures. We are interested in cryptographic
primitives that guarantee confidentiality, integrity, and
freshness, and we treat these primitives as black boxes,
focusing on their use in larger systems. [116] covers the
mathematics behind cryptography, while [51] covers the
topic of building systems out of cryptographic primitives.
Tables 10 and 11 summarize the primitives covered in
this section.

Guarantee Primitive
Confidentiality Encryption
Integrity MAC / Signatures
Freshness Nonces + integrity

Table 10: Desirable security guarantees and primitives that provide
them

Guarantee Symmetric Asymmetric
Keys Keys

Confidentiality AES-GCM, RSA with
AES-CTR PKCS #1 v2.0

Integrity HMAC-SHA-2 DSS-RSA,
AES-GCM DSS-ECC

Table 11: Popular cryptographic primitives that are considered to
be secure against today’s adversaries

A message whose confidentiality is protected can be
transmitted over an insecure medium without an adver-
sary being able to obtain the information in the message.
When integrity protection is used, the receiver is guaran-
teed to either obtain a message that was transmitted by
the sender, or to notice that an attacker tampered with
the message’s content.

When multiple messages get transmitted over an un-
trusted medium, a freshness guarantee assures the re-
ceiver that she will obtain the latest message coming
from the sender, or will notice an attack. A freshness
guarantee is stronger than the equivalent integrity guar-
antee, because the latter does not protect against replay
attacks where the attacker replaces a newer message with
an older message coming from the same sender.

The following example further illustrates these con-
cepts. Suppose Alice is a wealthy investor who wishes
to either BUY or SELL an item every day. Alice cannot
trade directly, and must relay her orders to her broker,
Bob, over a network connection owned by Eve.

A communication system with confidentiality guaran-
tees would prevent Eve from distinguishing between a
BUY and a SELL order, as illustrated in Figure 32. With-
out confidentiality, Eve would know Alice’s order before
it is placed by Bob, so Eve would presumably gain a
financial advantage at Alice’s expense.

A system with integrity guarantees would prevent Eve
from replacing Alice’s message with a false order, as
shown in Figure 33. In this example, without integrity
guarantees, Eve could replace Alice’s message with a
SELL-EVERYTHING order, and buy Alice’s assets at a
very low price.

Last, a communication system that guarantees fresh-
ness would ensure that Eve cannot perform the replay

32

Network
Message

Alice Bob

Eve NoSell
YesBuy

Eavesdrop

Figure 32: In a confidentiality attack, Eve sees the message sent by
Alice to Bob and can understand the information inside it. In this
case, Eve can tell that the message is a buy order, and not a sell order.

Network
Eve’s Message

Alice Bob

Eve Sell Everything

Send own
message

Drop
message

Figure 33: In an integrity attack, Eve replaces Alice’s message with
her own. In this case, Eve sends Bob a sell-everything order. In this
case, Eve can tell that the message is a buy order, and not a sell order.

attack pictured in Figure 34, where she would replace
Alice’s message with an older message. Without fresh-
ness guarantees, Eve could mount the following attack,
which bypasses both confidentiality and integrity guaran-
tees. Over a few days, Eve would copy and store Alice’s
messages from the network. When an order would reach
Bob, Eve would observe the market and determine if the
order was BUY or SELL. After building up a database
of messages labeled BUY or SELL, Eve would replace
Alice’s message with an old message of her choice.

Network
Eve’s Message

Alice Bob

Eve Sell Everything

Send own
message

Drop
message

Figure 34: In a freshness attack, Eve replaces Alice’s message with
a message that she sent at an earlier time. In this example, Eve builds
a database of labeled messages over time, and is able to send Bob her
choice of a BUY or a SELL order.

3.1.1 Cryptographic Keys

All cryptographic primitives that we describe here rely
on keys, which are small pieces of information that must
only be disclosed according to specific rules. A large part
of a system’s security analysis focuses on ensuring that
the keys used by the underlying cryptographic primitives
are produced and handled according to the primitives’
assumptions.

Each cryptographic primitive has an associated key
generation algorithm that uses random data to produce
a unique key. The random data is produced by a cryp-
tographically strong pseudo-random number generator
(CSPRNG) that expands a small amount of random seed
data into a much larger amount of data, which is compu-
tationally indistinguishable from true random data. The
random seed must be obtained from a true source of ran-
domness whose output cannot be predicted by an adver-
sary, such as the least significant bits of the temperature
readings coming from a hardware sensor.

Symmetric key cryptography requires that all the par-
ties in the system establish a shared secret key, which
is usually referred to as “the key”. Typically, one party
executes the key generation algorithm and securely trans-
mits the resulting key to the other parties, as illustrated
in Figure 35. The channel used to distribute the key must
provide confidentiality and integrity guarantees, which
is a non-trivial logistical burden. The symmetric key
primitives mentioned here do not make any assumption
about the key, so the key generation algorithm simply
grabs a fixed number of bits from the CSPRNG.

Hardware Sensor

Random Seed

Cryptographically Secure
Pseudo-Random Number

Generator (CSPRNG)

Key Generation
Algorithm

Bob Alice

Secret
Key

random data

Secret
Key

private
communication

Figure 35: In symmetric key cryptography, a secret key is shared
by the parties that wish to communicate securely.

The defining feature of asymmetric key cryptography
is that it does not require a private channel for key distri-
bution. Each party executes the key generation algorithm,
which produces a private key and a public key that are
mathematically related. Each party’s public key is dis-
tributed to the other parties over a channel with integrity
guarantees, as shown in Figure 36. Asymmetric key
primitives are more flexible than their symmetric coun-
terparts, but are more complicated and consume more
computational resources.

3.1.2 Confidentiality

Many cryptosystems that provide integrity guarantees
are built upon block ciphers that operate on fixed-size
message blocks. The sender transforms a block using an

33

Key Generation
Algorithm

Bob

Alice
Private

Key

Bob’s Public
Key

tamper-proof
communication

Public
Key

Hardware Sensor

Random Seed

Cryptographically Secure
Pseudo-Random Number

Generator (CSPRNG)

random data

Figure 36: An asymmetric key generation algorithm produces a
private key and an associated public key. The private key is held
confidential, while the public key is given to any party who wishes to
securely communicate with the private key’s holder.

encryption algorithm, and the receiver inverts the trans-
formation using a decryption algorithm. The encryp-
tion algorithms in block ciphers obfuscate the message
block’s content in the output, so that an adversary who
does not have the decryption key cannot obtain the origi-
nal message block from the encrypted output.

Symmetric key encryption algorithms use the same
secret key for encryption and decryption, as shown in
Figure 37, while asymmetric key block ciphers use the
public key for encryption, and the corresponding private
key for decryption, as shown in Figure 38.

Network

Encrypted Block

Alice Bob

Secret Key

Message
Block

Encryption Decryption

Message
Block

Secret Key

Figure 37: In a symmetric key secure permutation (block cipher),
the same secret key must be provided to both the encryption and the
decryption algorithm.

Network
Encrypted

Block

Alice Bob

Message
Block

Encryption Decryption

Message
Block

Bob’s
Public
Key

Bob’s
Private

Key

Figure 38: In an asymmetric key block cipher, the encryption
algorithm operates on a public key, and the decryption algorithm uses
the corresponding private key.

The most popular block cipher based on symmetric
keys at the time of this writing is the American Encryp-
tion Standard (AES) [39, 141], with two variants that
operate on 128-bit blocks using 128-bit keys or 256-
bit keys. AES is a secure permutation function, as it
can transform any 128-bit block into another 128-bit
block. Recently, the United States National Security
Agency (NSA) required the use of 256-bit AES keys for
protecting sensitive information [143].

The most deployed asymmetric key block cipher is the
Rivest-Shamir-Adelman (RSA) [158] algorithm. RSA
has variable key sizes, and 3072-bit key pairs are con-
sidered to provide the same security as 128-bit AES
keys [20].

A block cipher does not necessarily guarantee confi-
dentiality, when used on its own. A noticeable issue is
that in our previous example, a block cipher would gen-
erate the same encrypted output for any of Alice’s BUY

orders, as they all have the same content. Furthermore,
each block cipher has its own assumptions that can lead
to subtle vulnerabilities if the cipher is used directly.

Symmetric key block ciphers are combined with op-
erating modes to form symmetric encryption schemes.
Most operating modes require a random initialization
vector (IV) to be used for each message, as shown in
Figure 39. When analyzing the security of systems based
on these cryptosystems, an understanding of the IV gen-
eration process is as important as ensuring the confiden-
tiality of the encryption key.

Network
Encrypted
Message

Alice Bob

Message

Encryption Decryption

Message

Secret
Key

Secret
Key

CSPRNG

Initialization
Vector (IV)

IV

Figure 39: Symmetric key block ciphers are combined with oper-
ating modes. Most operating modes require a random initialization
vector (IV) to be generated for each encrypted message.

Counter (CTR) and Cipher Block Chaining (CBC)
are examples of operating modes recommended [45] by

34

the United States National Institute of Standards and
Technology (NIST), which informs the NSA’s require-
ments. Combining a block cipher, such as AES, with an
operating mode, such as CTR, results in an encryption
method, such as AES-CTR, which can be used to add
confidentiality guarantees.

In the asymmetric key setting, there is no concept
equivalent to operating modes. Each block cipher has its
own assumptions, and requires a specialized scheme for
general-purpose usage.

The RSA algorithm is used in conjunction with
padding methods, the most popular of which are the meth-
ods described in the Public-Key Cryptography Standard
(PKCS) #1 versions 1.5 [112] and 2.0 [113]. A security
analysis of a system that uses RSA-based encryption
must take the padding method into consideration. For
example, the padding in PKCS #1 v1.5 can leak the pri-
vate key under certain circumstances [23]. While PKCS
#1 v2.0 solves this issue, it is complex enough that some
implementations have their own security issues [134].

Asymmetric encryption algorithms have much higher
computational requirements than symmetric encryption
algorithms. Therefore, when non-trivial quantities of
data is encrypted, the sender generates a single-use secret
key that is used to encrypt the data, and encrypts the
secret key with the receiver’s public key, as shown in
Figure 40.

Network
Encrypted
Secret Key

Alice Bob

Message

Asymmetric
Encryption

Asymmetric
Decryption

Message

Bob’s
Public
Key

Bob’s
Private

Key

CSPRNG

Symmetric Key
Generation
Algorithm

Secret Key

Symmetric
Encryption

Encrypted
Message

Secret Key

Symmetric
Decryption

Figure 40: Asymmetric key encryption is generally used to bootstrap
a symmetric key encryption scheme.

3.1.3 Integrity

Many cryptosystems that provide integrity guarantees are
built upon secure hashing functions. These hash func-
tions operate on an unbounded amount of input data and

produce a small fixed-size output. Secure hash functions
have a few guarantees, such as pre-image resistance,
which states that an adversary cannot produce input data
corresponding to a given hash output.

At the time of this writing, the most popular se-
cure hashing function is the Secure Hashing Algo-
rithm (SHA) [48]. However, due to security issues in
SHA-1 [173], new software is recommended to use at
least 256-bit SHA-2 [21] for secure hashing.

The SHA hash functions are members of a large family
of block hash functions that consume their input in fixed-
size message blocks, and use a fixed-size internal state.
A block hash function is used as shown in Figure 41. An
INITIALIZE algorithm is first invoked to set the internal
state to its initial values. An EXTEND algorithm is ex-
ecuted for each message block in the input. After the
entire input is consumed, a FINALIZE algorithm produces
the hash output from the internal state.

Initialize

Intermediate State

ExtendMessage Block

Intermediate State

ExtendMessage Block

Intermediate State

…

Finalize

Output

…

Intermediate State

Figure 41: A block hash function operates on fixed-size message
blocks and uses a fixed-size internal state.

In the symmetric key setting, integrity guarantees are
obtained using a Message Authentication Code (MAC)
cryptosystem, illustrated in Figure 42. The sender uses
a MAC algorithm that reads in a symmetric key and a
variable-legnth message, and produces a fixed-length,
short MAC tag. The receiver provides the original mes-
sage, the symmetric key, and the MAC tag to a MAC
verification algorithm that checks the authenticity of the
message.

The key property of MAC cryptosystems is that an

35

Network
Message

Alice Bob

Secret
Key

Message

MAC
Signing

MAC
Verification

Message

Secret
Key

MAC tag
Correct?

Accept
MessageYes

Reject
MessageNo

Figure 42: In the symmetric key setting, integrity is assured by com-
puting a Message Authentication Code (MAC) tag and transmitting it
over the network along the message. The receiver feeds the MAC tag
into a verification algorithm that checks the message’s authenticity.

adversary cannot produce a MAC tag that will validate a
message without the secret key.

Many MAC cryptosystems do not have a separate
MAC verification algorithm. Instead, the receiver checks
the authenticity of the MAC tag by running the same
algorithm as the sender to compute the expected MAC
tag for the received message, and compares the output
with the MAC tag received from the network.

This is the case for the Hash Message Authentica-
tion Code (HMAC) [124] generic construction, whose
operation is illustrated in Figure 43. HMAC can use
any secure hash function, such as SHA, to build a MAC
cryptosystem.

Network

Message

Alice Bob

Secret
Key

Message

HMAC HMAC

Message

Secret
Key

HMAC tag
Equal?

Accept
MessageYes

Reject
MessageNo

Secure
Hash

Secure
Hash

Figure 43: In the symmetric key setting, integrity is assured by
computing a Hash-bassed Message Authentication Code (HMAC)
and transmitting it over the network along the message. The receiver
re-computes the HMAC and compares it against the version received
from the network.

Asymmetric key primitives that provide integrity guar-
antees are known as signatures. The message sender pro-
vides her private key to a signing algorithm, and transmits
the output signature along with the message, as shown
in Figure 44. The message receiver feeds the sender’s
public key and the signature to a signature verification al-
gorithm, which returns TRUE if the message matches the

signature, and FALSE if the message has been tampered
with.

Network

Message

Alice Bob

Alice’s
Private Key

Message

Signing
Signature

Verification

Message

Alice’s
Public Key

Signature Correct?

Accept
MessageYes

Reject
MessageNo

Secure
Hashing

Hash

Secure
Hashing

Hash

Figure 44: Signature schemes guarantee integrity in the asymmetric
key setting. Signatures are created using the sender’s private key, and
are verified using the corresponding public key. A cryptographically
secure hash function is usually employed to reduce large messages to
small hashes, which are then signed.

Signing algorithms can only operate on small mes-
sages and are computationally expensive. Therefore, in
practice, the message to be transmitted is first ran through
a cryptographically strong hash function, and the hash is
provided as the input to the signing algorithm.

At the time of this writing, the most popular choice for
guaranteeing integrity in shared secret settings is HMAC-
SHA, an HMAC function that uses SHA for hashing.

Authenticated encryption, which combines a block
cipher with an operating mode that offers both confi-
dentiality and integrity guarantees, is often an attractive
alternative to HMAC. The most popular authenticated
encryption operating mode is Galois/Counter operation
mode (GCM) [137], which has earned NIST’s recom-
mendation [47] when combined with AES to form AES-
GCM.

The most popular signature scheme combines the RSA
encryption algorithms with a padding schemes specified
in PKCS #1, as illustrated in Figure 45. Recently, elliptic
curve cryptography (ECC) [121] has gained a surge in
popularity, thanks to its smaller key sizes. For example, a
384-bit ECC key is considered to be as secure as a 3072-
bit RSA key [20, 143]. The NSA requires the Digital
Signature Standard (DSS)[142], which specifies schemes
based on RSA and ECC.

3.1.4 Freshness

Freshness guarantees are typically built on top of a sys-
tem that already offers integrity guarantees, by adding a

36

Little-Endian Integer

Private Key

Message

RSA
Decryption

256-bit
SHA-2

Hash0x00 0x01 PS 0x00 DER

DER-Encoded Hash Algorithm ID

30 31 30 0d 06 09 60 86 48 01
65 03 04 02 01 05 00 04 20

Padding String

ff ff ff ... ff

PKCS #1 v1.5
RSA Signature

This is a
signature

Figure 45: The RSA signature scheme with PKCS #1 v1.5 padding
specified in RFC 3447 combines a secure hash of the signed message
with a DER-encoded specification of the secure hash algorithm used
by the signature, and a padding string whose bits are all set to 1.
Everything except for the secure hash output is considered to be a
part of the PKCS #1 v1.5 padding.

unique piece of information to each message. The main
challenge in freshness schemes comes down to economi-
cally maintaining the state needed to generate the unique
pieces of information on the sender side, and verify their
uniqueness on the receiver side.

A popular solution for gaining freshness guarantees
relies on nonces, single-use random numbers. Nonces are
attractive because the sender does not need to maintain
any state; the receiver, however, must store the nonces of
all received messages.

Nonces are often combined with a message timestamp-
ing and expiration scheme, as shown in Figure 46. An
expiration can greatly reduce the receiver’s storage re-
quirement, as the nonces for expired messages can be
safely discarded. However, the scheme depends on the
sender and receiver having synchronized clocks. The
message expiration time is a compromise between the de-
sire to reduce storage costs, and the need to tolerate clock
skew and delays in message transmission and processing.

Alternatively, nonces can be used in challenge-
response protocols, in a manner that removes the storage
overhead concerns. The challenger generates a nonce
and embeds it in the challenge message. The response to
the challenge includes an acknowledgement of the em-
bedded nonce, so the challenger can distinguish between

Network

Message

Alice Bob

Synchronized
Clock

Message

CSPRNG

Message

Nonce

Seen
Before? OKYes

Reject
ReplayNo

Timestamp

Synchronized
Clock

Recent?

OKYes

Reject
ExpiredNo

Recent
Nonces

Figure 46: Freshness guarantees can be obtained by adding times-
tamped nonces on top of a system that already offers integrity guar-
antees. The sender and the receiver use synchronized clocks to
timestamp each message and discard unreasonably old messages.
The receiver must check the nonce in each new message against a
database of the nonces in all the unexpired messages that it has seen.

a fresh response and a replay attack. The nonce is only
stored by the challenger, and is small in comparison to
the rest of the state needed to validate the response.

3.2 Cryptographic Constructs

This section summarizes two constructs that are built on
the cryptographic primitives described in § 3.1, and are
used in the rest of this work.

3.2.1 Certificate Authorities

Asymmetric key cryptographic primitives assume that
each party has the correct public keys for the other par-
ties. This assumption is critical, as the entire security
argument of an asymmetric key system rests on the fact
that certain operations can only be performed by the own-
ers of the private keys corresponding to the public keys.
More concretely, if Eve can convince Bob that her own
public key belongs to Alice, Eve can produce message
signatures that seem to come from Alice.

The introductory material in § 3.1 assumed that each
party transmits their public key over a channel with in-
tegrity guarantees. In practice, this is not a reasonable
assumption, and the secure distribution of public keys is
still an open research problem.

The most widespread solution to the public key distri-
bution problem is the Certificate Authority (CA) system,
which assumes the existence of a trusted authority whose
public key is securely transmitted to all the other parties
in the system.

37

The CA is responsible for securely obtaining the pub-
lic key of each party, and for issuing a certificate that
binds a party’s identity (e.g., “Alice”) to its public key,
as shown in Figure 47.

Secured
Storage

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Certification
StatementValid From / Until

Certificate Usage

Issuer
Private Key

Issuer Public Key

Signing
Algorithm

Figure 47: A certificate is a statement signed by a certificate author-
ity (issuer) binding the identity of a subject to a public key.

A certificate is essentially a cryptographic signature
produced by the private key of the certificate’s issuer,
who is generally a CA. The message signed by the issuer
states that a public key belongs to a subject. The cer-
tificate message generally contains identifiers that state
the intended use of the certificate, such as “the key in
this certificate can only be used to sign e-mail messages”.
The certificate message usually also includes an identifier
for the issuer’s certification policy, which summarizes
the means taken by the issuer to ensure the authenticity
of the subject’s public key.

A major issue in a CA system is that there is no obvi-
ous way to revoke a certificate. A revocation mechanism
is desirable to handle situations where a party’s private
key is accidentally exposed, to avoid having an attacker
use the certificate to impersonate the compromised party.
While advanced systems for certificate revocation have
been developed, the first line of defense against key com-
promise is adding expiration dates to certificates.

In a CA system, each party presents its certificate
along with its public key. Any party that trusts the CA
and has obtained the CA’s public key securely can verify
any certificate using the process illustrated in Figure 48.

One of the main drawbacks of the CA system is that
the CA’s private key becomes a very attractive attack tar-
get. This issue is somewhat mitigated by minimizing the
use of the CA’s private key, which reduces the opportuni-
ties for its compromise. The authority described above
becomes the root CA, and their private key is only used
to produce certificates for the intermediate CAs who, in

Trusted
Issuer?

Valid
now?

Certificate

Subject Identity

Subject Public Key

Certificate Policy

Certificate Signature

Valid From / Until

Certificate Usage

Issuer Public Key

Expected
subject?

Yes

Valid
for expected

use?

Yes

Yes

Start

Valid
signature?

Yes

Accept
Public Key

Yes

Reject
Certificate

No

No

No

No

No

Figure 48: A certificate issued by a CA can be validated by any
party that has securely obtained the CA’s public key. If the certificate
is valid, the subject public key contained within can be trusted to
belong to the subject identified by the certificate.

turn, are responsible for generating certificates for the
other parties in the system, as shown in Figure 49.

In hierarchical CA systems, the only public key that
gets distributed securely to all the parties is the root
CA’s public key. Therefore, when two parties wish to
interact, each party must present their own certificate, as
well as the certificate of the issuing CA. For example,
given the hierarchy in Figure 49, Alice would prove the
authenticity of her public key to Bob by presenting her
certificate, as well as the certificate of Intermediate CA
1. Bob would first use the steps in Figure 48 to validate
Intermediate CA 1’s certificate against the root CA’s
public key, which would assure him of the authenticity of
Intermediate CA 1’s public key. Bob would then validate
Alice’s certificate using Intermediate CA 1’s public key,
which he now trusts.

In most countries, the government issues ID cards for
its citizens, and therefore acts as as a certificate authority.
An ID card, shown in Figure 50, is a certificate that binds
a subject’s identity, which is a full legal name, to the

38

Secure Storage

Secure Storage

Secure Storage

Intermediate CA 1’s
Certificate

Intermediate CA 1

CA 1’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Root CA

Intermediate
CA 1

Root CA’s Public Key

Root CA’s Private Key

Sign

CA 1’s Public Key

CA 1’s Private Key

Alice

Alice’s Certificate

Alice

Alice’s Public Key

Certificate Signature

Usage: End-User

CA 1’s Public Key

Sign

Alice’s Public Key

Alice’s Private Key

Secure Storage

Secure Storage

Intermediate CA 2’s
Certificate

Intermediate CA 2

CA 2’s Public Key

Certificate Signature

Usage: CA

Root CA’s Public Key

Intermediate
CA 2

CA 2’s Public Key

CA 2’s Private Key

Bob

Bob’s Certificate

Bob

Bob’s Public Key

Certificate Signature

Usage: End-User

CA 2’s Public Key

Bob’s Public Key

Bob’s Private Key

Figure 49: A hierarchical CA structure minimizes the usage of
the root CA’s private key, reducing the opportunities for it to get
compromised. The root CA only signs the certificates of intermediate
CAs, which sign the end users’ certificates.

subject’s physical appearance, which is used as a public
key.

The CA system is very similar to the identity document
(ID card) systems used to establish a person’s identity,
and a comparison between the two may help further the
reader’s understanding of the concepts in the CA system.

Alice Smith

Issued Expires
12/01/2015 12/01/2017

Valid From Valid Until

Issued by
Fictional City Card Office

Subject Public Key

Subject Identity

Issuer Public Key
is replaced by the
Issuer Name

Certificate Signature
is replaced by physical
security featuresFictional Country

Citizen ID Card Certificate Usage

Figure 50: An ID card is a certificate that binds a subject’s full legal
name (identity) to the subject’s physical appearance, which acts as a
public key.

Each government’s ID card issuing operations are reg-
ulated by laws, so an ID card’s issue date can be used
to track down the laws that make up its certification pol-
icy. Last, the security of ID cards does not (yet) rely
on cryptographic primitives. Instead, ID cards include
physical security measures designed to deter tampering
and prevent counterfeiting.

3.2.2 Key Agreement Protocols

The initial design of symmetric key primitives, intro-
duced in § 3.1, assumed that when two parties wish
to interact, one party generates a secret key and shares
it with the other party using a communication channel
with confidentiality and integrity guarantees. In practice,
a pre-existing secure communication channel is rarely
available.

Key agreement protocols are used by two parties to
establish a shared secret key, and only require a com-
munication channel with integrity guarantees. Figure 51
outlines the Diffie-Hellman Key Exchange (DKE) [43]
protocol, which should give the reader an intuition for
how key agreement protocols work.

This work is interested in using key agreement proto-
cols to build larger systems, so we will neither explain
the mathematic details in DKE, nor prove its correctness.
We note that both Alice and Bob derive the same shared
secret key, K = gAB mod p, without ever transmit-
ting K. Furthermore, the messages transmitted in DKE,
namely gA mod p and gB mod p, are not sufficient

39

Alice Bob

Pre-established parameters: large prime p, g generator in Zp

Choose A randomly
between 1 and p

Transmit gA mod p

Choose B randomly
between 1 and p

Compute gB mod p

Receive gA mod pgA mod p

Shared key K =
= (gA mod p)B =
= gAB mod p

Compute gA mod p

Transmit gB mod pReceive gB mod p gB mod p

Shared key K =
= (gB mod p)A =
= gAB mod p

Figure 51: In the Diffie-Hellman Key Exchange (DKE) protocol,
Alice and Bob agree on a shared secret key K = gAB mod p. An
adversary who observes gA mod p and gB mod p cannot compute
K.

for an eavesdropper Eve to determine K, because effi-
ciently solving for x in gx mod p is an open problem
assumed to be very difficult.

Key agreement protocols require a communication
channel with integrity guarantees. If an active adversary
Eve can tamper with the messages transmitted by Alice
and Bob, she can perform a man-in-the-middle (MITM)
attack, as illustrated in Figure 52.

Alice BobEve

gA mod pgA mod p

gE1 mod p

gE2 mod p

gB mod p

K1 = gAE1 mod p K2 = gBE2 mod p

Figure 52: Any key agreement protocol is vulnerable to a man-
in-the-middle (MITM) attack. The active attacker performs key
agreements and establishes shared secrets with both parties. The
attacker can then forward messages between the victims, in order
to observe their communication. The attacker can also send its own
messages to either, impersonating the other victim.

In a MITM attack, Eve intercepts Alice’s first key
exchange message, and sends Bob her own message. Eve
then intercepts Bob’s response and replaces it with her
own, which she sends to Alice. Eve effectively performs
key exchanges with both Alice and Bob, establishing a
shared secret with each of them, with neither Bob nor

Alice being aware of her presence.
After establishing shared keys with both Alice and

Bob, Eve can choose to observe the communication be-
tween Alice and Bob, by forwarding messages between
them. For example, when Alice transmits a message, Eve
can decrypt it using K1, the shared key between herself
and Alice. Eve can then encrypt the message with K2,
the key established between Bob and herself. While Bob
still receives Alice’s message, Eve has been able to see
its contents.

Furthermore, Eve can impersonate either party in the
communication. For example, Eve can create a message,
encrypt it with K2, and then send it to Bob. As Bob
thinks that K2 is a shared secret key established between
himself and Alice, he will believe that Eve’s message
comes from Alice.

MITM attacks on key agreement protocols can be
foiled by authenticating the party who sends the last mes-
sage in the protocol (in our examples, Bob) and having
them sign the key agreement messages. When a CA
system is in place, Bob uses his public key to sign the
messages in the key agreement and also sends Alice his
certificate, along with the certificates for any intermedi-
ate CAs. Alice validates Bob’s certificate, ensures that
the subject identified by the certificate is whom she ex-
pects (Bob), and verifies that the key agreement messages
exchanged between herself and Bob match the signature
provided by Bob.

In conclusion, a key agreement protocol can be used to
bootstrap symmetric key primitives from an asymmetric
key signing scheme, where only one party needs to be
able to sign messages.

3.3 Software Attestation Overview

The security of systems that employ trusted processors
hinges on software attestation. The software running
inside an isolated container established by trusted hard-
ware can ask the hardware to sign (§ 3.1.3) a small piece
of attestation data, producing an attestation signature.
Asides from the attestation data, the signed message
includes a measurement that uniquely identifies the soft-
ware inside the container. Therefore, an attestation signa-
ture can be used to convince a verifier that the attestation
data was produced by a specific piece of software, which
is hosted inside a container that is isolated by trusted
hardware from outside interference.

Each hardware platform discussed in this section uses
a slightly different software attestation scheme. Plat-
forms differ by the amount of software that executes

40

inside an isolated container, by the isolation guarantees
provided to the software inside a container, and by the
process used to obtain a container’s measurement. The
threat model and security properties of each trusted hard-
ware platform follow directly from the design choices
outlined above, so a good understanding of attestation
is a prerequisite to discussing the differences between
existing platforms.

3.3.1 Authenticated Key Agreement

Software attestation can be combined with a key agree-
ment protocol (§ 3.2.2), as software attestation provides
the authentication required by the key agreement pro-
tocol. The resulting protocol can assure a verifier that
it has established a shared secret with a specific piece
of software, hosted inside an isolated container cre-
ated by trusted hardware. The next paragraph outlines
the augmented protocol, using Diffie-Hellman Key Ex-
change (DKE) [43] as an example of the key exchange
protocol.

The verifier starts executing the key exchange protocol,
and sends the first message, gA, to the software inside
the secure container. The software inside the container
produces the second key exchange message, gB , and asks
the trusted hardware to attest the cryptographic hash of
both key exchange messages, h(gA||gB). The verifier re-
ceives the second key exchange and attestation signature,
and authenticates the software inside the secure container
by checking all the signatures along the attestation chain
of trust shown in Figure 53.

The chain of trust used in software attestation is rooted
at a signing key owned by the hardware manufacturer,
which must be trusted by the verifier. The manufacturer
acts as a Certificate Authority (CA, § 3.2.1), and provi-
sions each secure processor that it produces with a unique
attestation key, which is used to produce attestation sig-
natures. The manufacturer also issues an endorsement
certificate for each secure processor’s attestation key.
The certificate indicates that the key is meant to be used
for software attestation. The certification policy gener-
ally states that, at the very least, the private part of the
attestation key be stored in tamper-resistant hardware,
and only be used to produce attestation signatures.

A secure processor identifies each isolated container
by storing a cryptographic hash of the code and data
loaded inside the container. When the processor is asked
to sign a piece of attestation data, it uses the crypto-
graphic hash associated with the container as the mea-
surement in the attestation signature. After a verifier

Tamper-Resistant
Hardware

Attestation Key

Manufacturer Root Key

Endorsement
Certificate

PrivAKPubAK Attestation
Signature

Manufacturer
Certificate Authority

PrivRKPubRK

Signs

Signs

Key Exchange
Message 1

Measurement

Data
Secure

Container

Verifier

Trusts
Hash of

Hash of

Key Exchange
Message 2

Figure 53: The chain of trust in software attestation. The root of
trust is a manufacturer key, which produces an endorsement certificate
for the secure processor’s attestation key. The processor uses the
attestation key to produce the attestation signature, which contains a
cryptographic hash of the container and a message produced by the
software inside the container.

validates the processor’s attestation key using its endorse-
ment certificate, the verifier ensures that the signature is
valid, and that the measurement in the signature belongs
to the software with which it expects to communicate.
Having checked all the links in the attestation chain, the
verifier has authenticated the other party in the key ex-
change, and is assured that it now shares a secret with the
software that it expects, running in an isolated container
on hardware that it trusts.

3.3.2 The Role of Software Measurement

The measurement that identifies the software inside a
secure container is always computed using a secure hash-
ing algorithm (§ 3.1.3). Trusted hardware designs differ
in their secure hash function choices, and in the data
provided to the hash function. However, all the designs
share the principle that each step taken to build a secure
container contributes data to its measurement hash.

The philosophy behind software attestation is that the
computer’s owner can load any software she wishes in
a secure container. However, the computer owner is as-
sumed to have an incentive to participate in a distributed
system where the secure container she built is authenti-
cated via software attestation. Without the requirement
to undergo software attestation, the computer owner can
build any container without constraints, which would
make it impossible to reason about the security proper-
ties of the software inside the container.

41

By the argument above, a trusted hardware design
based on software attestation must assume that each con-
tainer is involved in software attestation, and that the re-
mote party will refuse to interact with a container whose
reported measurement does not match the expected value
set by the distributed system’s author.

For example, a cloud infrastructure provider should
be able to use the secure containers provided by trusted
hardware to run any software she wishes on her com-
puters. However, the provider makes money by renting
her infrastructure to customers. If security savvy cus-
tomers are only willing to rent containers provided by
trusted hardware, and use software attestation to authen-
ticate the containers that they use, the cloud provider will
have a strong financial incentive to build the customers’
containers according to their specifications, so that the
containers pass the software attestation.

A container’s measurement is computed using a se-
cure hashing algorithm, so the only method of building
a container that matches an expected measurement is to
follow the exact sequence of steps specified by the dis-
tributed system’s author. The cryptographic properties of
the secure hash function guarantee that if the computer’s
owner strays in any way from the prescribed sequence
of steps, the measurement of the created container will
not match the value expected by the distributed system’s
author, so the container will be rejected by the software
attestation process.

Therefore, it makes sense to state that a trusted hard-
ware design’s measurement scheme guarantees that a
property has a certain value in a secure container. The
precise meaning of this phrase is that the property’s value
determines the data used to compute the container’s mea-
surement, so an expected measurement hash effectively
specifies an expected value for the property. All contain-
ers in a distributed system that correctly uses software
attestation will have the desired value for the given prop-
erty.

For example, the measuring scheme used by trusted
hardware designed for cloud infrastructure should guar-
antee that the container’s memory was initialized using
the customer’s content, often referred to as an image.

3.4 Physical Attacks

Physical attacks are generally classified according to
their cost, which factors in the equipment needed to carry
out the attack and the attack’s complexity. Joe Grand’s
DefCon presentation [69] provides a good overview with
a large number of intuition-building figures and photos.

The simplest type of physical attack is a denial of
service attack performed by disconnecting the victim
computer’s power supply or network cable. The threat
models of most secure architectures ignore this attack,
because denial of service can also be achieved by soft-
ware attacks that compromise system software such as
the hypervisor.

3.4.1 Port Attacks

Slightly more involved attacks rely on connecting a de-
vice to an existing port on the victim computer’s case or
motherboard (§ 2.9.1). A simple example is a cold boot
attack, where the attacker plugs in a USB flash drive into
the victim’s case and causes the computer to boot from
the flash drive, whose malicious system software receives
unrestricted access to the computer’s peripherals.

More expensive physical attacks that still require rela-
tively little effort target the debug ports of various periph-
erals. The cost of these attacks is generally dominated
by the expense of acquiring the development kits needed
to connect to the debug ports. For example, recent Intel
processors include the Generic Debug eXternal Connec-
tion (GDXC) [126, 199], which collects and filters the
data transferred by the uncore’s ring bus (§ 2.11.3), and
reports it to an external debugger.

The threat models of secure architectures generally
ignore debug port attacks, under the assumption that de-
vices sold for general consumption have their debug ports
irreversibly disabled. In practice, manufacturers have
strong incentives to preserve debugging ports in produc-
tion hardware, as this facilitates the diagnosis and repair
of defective units. Due to insufficient documentation
on this topic, we ignore the possibility of GDXC-based
attacks.

3.4.2 Bus Tapping Attacks

More complex physical attacks consist of installing a
device that taps a bus on the computer’s motherboard
(§ 2.9.1). Passive attacks are limited to monitoring the
bus traffic, whereas active attacks can modify the traf-
fic, or even place new commands on the bus. Replay
attacks are a notoriously challenging class of active at-
tacks, where the attacker first records the bus traffic, and
then selectively replays a subset of the traffic. Replay
attacks bypass systems that rely on static signatures or
HMACs, and generally aim to double-spend a limited
resource.

The cost of bus tapping attacks is generally dominated
by the cost of the equipment used to tap the bus, which

42

increases with bus speed and complexity. For example,
the flash chip that stores the computer’s firmware is con-
nected to the PCH via an SPI bus (§ 2.9.1), which is
simpler and much slower than the DDR bus connecting
DRAM to the CPU. Consequently, tapping the SPI bus is
much cheaper than tapping the DDR bus. For this reason,
systems whose security relies on a cryptographic hash
of the firmware will first copy the firmware into DRAM,
hash the DRAM copy of the firmware, and then execute
the firmware from DRAM.

Although the speed of the DDR bus makes tapping
very difficult, there are well-publicized records of suc-
cessful attempts. The original Xbox console’s booting
process was reverse-engineered, thanks to a passive tap
on the DRAM bus [82], which showed that the firmware
used to boot the console was partially stored in its south-
bridge. The protection mechanisms of the PlayStation 3
hypervisor were subverted by an active tap on its memory
bus [81] that targeted the hypervisor’s page tables.

The Ascend secure processor (§ 4.10) shows that con-
cealing the addresses of the DRAM cells accessed by
a program is orders of magnitude more expensive than
protecting the memory’s contents. Therefore, we are
interested in analyzing attacks that tap the DRAM bus,
but only use the information on the address lines. These
attacks use the same equipment as normal DRAM bus
tapping attacks, but require a significantly more involved
analysis to learn useful information. One of the dif-
ficulties of such attacks is that the memory addresses
observed on the DRAM bus are generally very different
from the application’s memory access patterns, because
of the extensive cache hierarchies in modern processors
(§ 2.11).

We are not aware of any successful attack based on
tapping the address lines of a DRAM bus and analyzing
the sequence of memory addresses.

3.4.3 Chip Attacks

The most equipment-intensive physical attacks involve
removing a chip’s packaging and directly interacting with
its electrical circuits. These attacks generally take advan-
tage of equipment and techniques that were originally
developed to diagnose design and manufacturing defects
in chips. [22] covers these techniques in depth.

The cost of chip attacks is dominated by the required
equipment, although the reverse-engineering involved
is also non-trivial. This cost grows very rapidly as the
circuit components shrink. At the time of this writing,
the latest Intel CPUs have a 14nm feature size, which

requires ion beam microscopy.
The least expensive classes of chip attacks are destruc-

tive, and only require imaging the chip’s circuitry. These
attacks rely on a microscope capable of capturing the
necessary details in each layer, and equipment for me-
chanically removing each layer and exposing the layer
below it to the microscope.

Imaging attacks generally target global secrets shared
by all the chips in a family, such as ROM masks that store
global encryption keys or secret boot code. They are also
used to reverse-engineer undocumented functionality,
such as debugging backdoors. E-fuses and polyfuses are
particularly vulnerable to imaging attacks, because of
their relatively large sizes.

Non-destructive passive chip attacks require measur-
ing the voltages across a module at specific times, while
the chip is operating. These attacks are orders of magni-
tude more expensive than imaging attacks, because the
attacker must maintain the integrity of the chip’s circuitry,
and therefore cannot de-layer the chip.

The simplest active attacks on a chip create or destroy
an electric connection between two components. For
example, the debugging functionality in many chips is
disabled by “blowing” an e-fuse. Once this e-fuse is
located, an attacker can reconnect its two ends, effec-
tively undoing the “blowing” operation. More expensive
attacks involve changing voltages across a component as
the chip is operating, and are typically used to reverse-
engineer complex circuits.

Surprisingly, active attacks are not significantly more
expensive to carry out than passive non-destructive at-
tacks. This is because the tools used to measure the
voltage across specific components are not very different
from the tools that can tamper with the chip’s electric
circuits. Therefore, once an attacker develops a process
for accessing a module without destroying the chip’s
circuitry, the attacker can use the same process for both
passive and active attacks.

At the architectural level, we cannot address physical
attacks against the CPU’s chip package. Active attacks
on the CPU change the computer’s execution semantics,
leaving us without any hardware that can be trusted to
make security decisions. Passive attacks can read the
private data that the CPU is processing. Therefore, many
secure computing architectures assume that the processor
chip package is invulnerable to physical attacks.

Thankfully, physical attacks can be deterred by reduc-
ing the value that an attacker obtains by compromising
an individual chip. As long as this value is below the cost

43

of carrying out the physical attack, a system’s designer
can hope that the processor’s chip package will not be
targeted by the physical attacks.

Architects can reduce the value of compromising an
individual system by avoiding shared secrets, such as
global encryption keys. Chip designers can increase the
cost of a physical attack by not storing a platform’s se-
crets in hardware that is vulnerable to destructive attacks,
such as e-fuses.

3.4.4 Power Analysis Attacks

An entirely different approach to physical attacks con-
sists of indirectly measuring the power consumption of a
computer system or its components. The attacker takes
advantage of a known correlation between power con-
sumption and the computed data, and learns some prop-
erty of the data from the observed power consumption.

The earliest power analysis attacks have directly mea-
sured the processor chip’s power consumption. For ex-
ample, [122] describes a simple power analysis (SPA)
attack that exploits the correlation between the power
consumed by a smart card chip’s CPU and the type of
instruction it executed, and learned a DSA key that the
smart card was supposed to safeguard.

While direct power analysis attacks necessitate some
equipment, their costs are dominated by the complexity
of the analysis required to learn the desired informa-
tion from the observed power trace which, in turn, is
determined by the complexity of the processor’s circuitry.
Today’s smart cards contain special circuitry [179] and
use hardened algorithms [77] designed to frustrate power
analysis attacks.

Recent work demonstrated successful power analysis
attacks against full-blown out-of-order Intel processors
using inexpensive off-the-shelf sensor equipment. [60]
extracts an RSA key from GnuPG running on a laptop
using a microphone that measures its acoustic emissions.
[59] and [58] extract RSA keys from power analysis-
resistant implementations using a voltage meter and a
radio. All these attacks can be performed quite easily by
a disgruntled data center employee.

Unfortunately, power analysis attacks can be extended
to displays and human input devices, which cannot be
secured in any reasonable manner. For example, [182]
documented a very early attack that measures the radia-
tion emitted by a CRT display’s ion beam to reconstitute
the image on a computer screen in a different room. [125]
extended the attack to modern LCD displays. [201] used
a directional microphone to measure the sound emitted

by a keyboard and learn the password that its operator
typed. [148] applied similar techniques to learn a user’s
input on a smartphone’s on-screen keyboard, based on
data from the device’s accelerometer.

In general, power attacks cannot be addressed at the
architectural level, as they rely on implementation de-
tails that are decided during the manufacturing process.
Therefore, it is unsurprising that the secure computing ar-
chitectures described in § 4 do not protect against power
analysis attacks.

3.5 Privileged Software Attacks

The rest of this section points to successful exploits that
execute at each of the privilege levels described in § 2.3,
motivating the SGX design decision to assume that all
the privileged software on the computer is malicious.
[163] describes all the programmable hardware inside
Intel computers, and outlines the security implications of
compromising the software running it.

SMM, the most privileged execution level, is only used
to handle a specific kind of interrupts (§ 2.12), namely
System Management Interrupts (SMI). SMIs were ini-
tially designed exclusively for hardware use, and were
only triggered by asserting a dedicated pin (SMI#) in the
CPU’s chip package. However, in modern systems, sys-
tem software can generate an SMI by using the LAPIC’s
IPI mechanism. This opens up the avenue for SMM-
based software exploits.

The SMM handler is stored in System Manage-
ment RAM (SMRAM) which, in theory, is not acces-
sible when the processor isn’t running in SMM. How-
ever, its protection mechanisms were bypassed multi-
ple times [44, 114, 164, 189], and SMM-based rootk-
its [49, 186] have been demonstrated. Compromising
the SMM grants an attacker access to all the software on
the computer, as SMM is the most privileged execution
mode.

Xen [200] is a very popular representative of the fam-
ily of hypervisors that run in VMX root mode and use
hardware virtualization. At 150,000 lines of code [11],
Xen’s codebase is relatively small, especially when com-
pared to a kernel. However, Xen still has had over 40
security vulnerabilities patched in each of the last three
years (2012-2014) [10].

[136] proposes using a very small hypervisor together
with Intel TXT’s dynamic root of trust for measurement
(DRTM) to implement trusted execution. [183] argues
that a dynamic root of trust mechanism, like Intel TXT,
is necessary to ensure a hypervisor’s integrity. Unfor-

44

tunately, the TXT design requires an implementation
complex enough that exploitable security vulnerabilities
have creeped in [190, 191]. Furthermore, any SMM
attack can be used to compromise TXT [188].

The monolithic kernel design leads to many opportu-
nities for security vulnerabilities in kernel code. Linux
is by far the most popular kernel for IaaS cloud environ-
ments. Linux has 17 million lines of code [16], and has
had over 100 security vulnerabilities patched in each of
the last three years (2012-2014) [8, 33].

3.6 Software Attacks on Peripherals

Threat models for secure architectures generally only
consider software attacks that directly target other com-
ponents in the software stack running on the CPU. This
assumption results in security arguments with the very
desirable property of not depending on implementation
details, such as the structure of the motherboard hosting
the processor chip.

The threat models mentioned above must classify at-
tacks from other motherboard components as physical
attacks. Unfortunately, these models would mis-classify
all the attacks described in this section, which can be
carried out solely by executing software on the victim
processor. The incorrect classification matters in cloud
computing scenarios, where physical attacks are signifi-
cantly more expensive than software attacks.

3.6.1 PCI Express Attacks

The PCIe bus (§ 2.9.1) allows any device connected to
the bus to perform Direct Memory Access (DMA), read-
ing from and writing to the computer’s DRAM without
the involvement of a CPU core. Each device is assigned
a range of DRAM addresses via a standard PCI config-
uration mechanism, but can perform DMA on DRAM
addresses outside of that range.

Without any additional protection mechanism, an at-
tacker who compromises system software can take ad-
vantage of programmable devices to access any DRAM
region, yielding capabilities that were traditionally asso-
ciated with a DRAM bus tap. For example, an early im-
plementation of Intel TXT [70] was compromised by pro-
gramming a PCIe NIC to read TXT-reserved DRAM via
DMA transfers [190]. Recent versions have addressed
this attack by adding extra security checks in the DMA
bus arbiter. § 4.5 provides a more detailed description of
Intel TXT.

3.6.2 DRAM Attacks

The rowhammer DRAM bit-flipping attack [72, 119,
166] is an example of a different class of software attacks
that exploit design defects in the computer’s hardware.
Rowhammer took advantage of the fact that some mobile
DRAM chips (§ 2.9.1) refreshed the DRAM’s contents
slowly enough that repeatedly changing the contents of a
memory cell could impact the charge stored in a neigh-
boring cell, which resulted in changing the bit value
obtained from reading the cell. By carefully targeting
specific memory addresses, the attackers caused bit flips
in the page tables used by the CPU’s address translation
(§ 2.5) mechanism, and in other data structures used to
make security decisions.

The defect exploited by the rowhammer attack most
likely stems from an incorrect design assumption.
The DRAM engineers probably only thought of non-
malicious software and assumed that an individual
DRAM cell cannot be accessed too often, as repeated ac-
cesses to the same memory address would be absorbed by
the CPU’s caches (§ 2.11). However, malicious software
can take advantage of the CLFLUSH instruction, which
flushes the cache line that contains a given DRAM ad-
dress. CLFLUSH is intended as a method for applications
to extract more performance out of the cache hierarchy,
and is therefore available to software running at all priv-
ilege levels. Rowhammer exploited the combination of
CLFLUSH’s availability and the DRAM engineers’ in-
valid assumptions, to obtain capabilities that are normally
associated with an active DRAM bus attack.

3.6.3 The Performance Monitoring Side Channel

Intel’s Software Development Manual (SDM) [101] and
Optimization Reference Manual [96] describe a vast ar-
ray of performance monitoring events exposed by recent
Intel processors, such as branch mispredictions (§ 2.10).
The SDM also describes digital temperature sensors em-
bedded in each CPU core, whose readings are exposed
using Model-Specific Registers (MSRs) (§ 2.4) that can
be read by system software.

An attacker who compromises a computer’s system
software and gains access to the performance monitoring
events or the temperature sensors can obtain the informa-
tion needed to carry out a power analysis attack, which
normally requires physical access to the victim computer
and specialized equipment.

45

3.6.4 Attacks on the Boot Firmware and Intel ME

Virtually all motherboards store the firmware used to boot
the computer in a flash memory chip (§ 2.9.1) that can be
written by system software. This implementation strategy
provides an inexpensive avenue for deploying firmware
bug fixes. At the same time, an attack that compromises
the system software can subvert the firmware update
mechanism to inject malicious code into the firmware.
The malicious code can be used to carry out a cold boot
attack, which is typically considered a physical attack.
Furthermore, malicious firmware can run code at the
highest software privilege level, System Management
Mode (SMM, § 2.3). Last, malicious firmware can mod-
ify the system software as it is loaded during the boot
process. These avenues give the attacker capabilities
that have traditionally been associated with DRAM bus
tapping attacks.

The Intel Management Engine (ME) [162] loads its
firmware from the same flash memory chip as the main
computer, which opens up the possibility of compromis-
ing its firmware. Due to its vast management capabilities
(§ 2.9.2), a compromised ME would leak most of the pow-
ers that come with installing active probes on the DRAM
bus, the PCI bus, and the System Management bus (SM-
Bus), as well as power consumption meters. Thanks to
its direct access to the motherboard’s Ethernet PHY, the
probe would be able to communicate with the attacker
while the computer is in the Soft-Off state, also known
as S5, where the computer is mostly powered off, but is
still connected to a power source. The ME has signifi-
cantly less computational power than probe equipment,
however, as it uses low-power embedded components,
such as a 200-400MHz execution core, and about 600KB
of internal RAM.

The computer and ME firmware are protected by a
few security measures. The first line of defense is a
security check in the firmware’s update service, which
only accepts firmware updates that have been digitally
signed by a manufacturer key that is hard-coded in the
firmware. This protection can be circumvented with
relative ease by foregoing the firmware’s update services,
and instead accessing the flash memory chip directly, via
the PCH’s SPI bus controller.

The deeper, more powerful, lines of defense against
firmware attacks are rooted in the CPU and ME’s hard-
ware. The bootloader in the ME’s ROM will only load
flash firmware that contains a correct signature generated
by a specific Intel RSA key. The ME’s boot ROM con-

tains the SHA-256 cryptographic hash of the RSA public
key, and uses it to validate the full Intel public key stored
in the signature. Similarly, the microcode bootstrap pro-
cess in recent CPUs will only execute firmware in an
Authenticated Code Module (ACM, § 2.13.2) signed by
an Intel key whose SHA-256 hash is hard-coded in the
microcode ROM.

However, both the computer firmware security checks
[54, 192] and the ME security checks [178] have been
subverted in the past. While the approaches described
above are theoretically sound, the intricate details and
complex interactions in Intel-based systems make it very
likely that security vulnerabilities will creep into im-
plementations. Further proving this point, a security
analysis [185] found that early versions of Intel’s Active
Management Technology (AMT), the flagship ME appli-
cation, contained an assortment of security issues that
allowed an attacker to completely take over a computer
whose ME firmware contained the AMT application.

3.6.5 Accounting for Software Attacks on Peripherals

The attacks described in this section show that a system
whose threat model assumes no software attacks must
be designed with an understanding of all the system’s
buses, and the programmable devices that may be at-
tached to them. The system’s security analysis must
argue that the devices will not be used in physical-like
attacks. The argument will rely on barriers that prevent
untrusted software running on the CPU from communi-
cating with other programmable devices, and on barriers
that prevent compromised programmable devices from
tampering with sensitive buses or DRAM.

Unfortunately, the ME, PCH and DMI are Intel-
proprietary and largely undocumented, so we cannot
assess the security of the measures set in place to pro-
tect the ME from being compromised, and we cannot
reason about the impact of a compromised ME that runs
malicious software.

3.7 Address Translation Attacks
§ 3.5 argues that today’s system software is virtually
guaranteed to have security vulnerabilities. This suggests
that a cautious secure architecture should avoid having
the system software in the TCB.

However, removing the system software from the TCB
requires the architecture to provide a method for isolat-
ing sensitive application code from the untrusted system
software. This is typically accomplished by designing
a mechanism for loading application code in isolated
containers whose contents can be certified via software

46

attestation (§ 3.3). One of the more difficult problems
these designs face is that application software relies on
the memory management services provided by the sys-
tem software, which is now untrusted.

Intel’s SGX [14, 139], leaves the system software in
charge of setting up the page tables (§ 2.5) used by ad-
dress translation, inspired by Bastion [31], but instanti-
ates access checks that prevent the system software from
directly accessing the isolated container’s memory.

This section discusses some attacks that become rel-
evant when the application software does not trust the
system software, which is in charge of the page tables.
Understanding these attacks is a prerequisite to reasoning
about the security properties of architectures with this
threat model. For example, many of the mechanisms in
SGX target a subset of the attacks described here.

3.7.1 Passive Attacks

System software uses the CPU’s address translation fea-
ture (§ 2.5) to implement page swapping, where infre-
quently used memory pages are evicted from DRAM
to a slower storage medium. Page swapping relies the
accessed (A) and dirty (D) page table entry attributes
(§ 2.5.3) to identify the DRAM pages to be evicted, and
on a page fault handler (§ 2.8.2) to bring evicted pages
back into DRAM when they are accessed.

Unfortunately, the features that support efficient page
swapping turn into a security liability, when the system
software managing the page tables is not trusted by the
application software using the page tables. The system
software can be prevented from reading the application’s
memory directly by placing the application in an iso-
lated container. However, potentially malicious system
software can still infer partial information about the ap-
plication’s memory access patterns, by observing the
application’s page faults and page table attributes.

We consider this class of attacks to be passive attacks
that exploit the CPU’s address translation feature. It
may seem that the page-level memory access patterns
provided by these attacks are not very useful. However,
[195] describes how this attack can be carried out against
Intel’s SGX, and implements the attack in a few practical
settings. In one scenario, which is particularly concern-
ing for medical image processing, the outline of a JPEG
image is inferred while the image is decompressed inside
a container protected by SGX’s isolation guarantees.

3.7.2 Straightforward Active Attacks

We define active address translation attacks to be the
class of attacks where malicious system software modi-
fies the page tables used by an application in a way that
breaks the virtual memory abstraction (§ 2.5). Memory
mapping attacks do not include scenarios where the sys-
tem software breaks the memory abstraction by directly
writing to the application’s memory pages.

We begin with an example of a straight-forward active
attack. In this example, the application inside a protected
container performs a security check to decide whether to
disclose some sensitive information. Depending on the
security check’s outcome, the enclave code either calls
a errorOut procedure, or a disclose procedure.
The simplest version of the attack assumes that each
procedure’s code starts at a page boundary, and takes up
less than a page. These assumptions are relaxed in more
complex versions of the attack.

In the most straightforward setting, the malicious sys-
tem software directly modifies the page tables of the
application inside the container, as shown in Figure 54,
so the virtual address intended to store the errorOut
procedure is actually mapped to a DRAM page that con-
tains the disclose procedure. Without any security
measures in place, when the application’s code jumps
to the virtual address of the errorOut procedure, the
CPU will execute the code of the disclose procedure
instead.

Application code written by
developer

Application code seen by CPU

errorOut():
write error
return

disclose():
write data
return

Security
Check

FAIL

PASS

Page
tables

0x41000

0x42000

errorOut():
write error
return

disclose():
write data
return

Security
Check

FAIL

PASS

0x41000

0x42000

Virtual
addresses DRAM pages

Figure 54: An example of an active memory mapping attack. The
application’s author intends to perform a security check, and only
call the procedure that discloses the sensitive information if the check
passes. Malicious system software maps the virtual address of the
procedure that is called when the check fails, to a DRAM page that
contains the disclosing procedure.

47

3.7.3 Active Attacks Using Page Swapping

The most obvious active attacks on memory mapping
can be defeated by tracking the correct virtual address
for each DRAM page that belongs to a protected con-
tainer. However, a naive protection measure based on
address tracking can be defeated by a more subtle ac-
tive attack that relies on the architectural support for
page swapping. Figure 55 illustrates an attack that does
not modify the application’s page tables, but produces
the same corrupted CPU view of the application as the
straight-forward attack described above.

errorOut
Contents

disclose

Virtual Physical

0x1A000
0x19000

0x42000
0x41000

disclose
Contents

errorOut

Virtual Physical

0x1A000
0x19000

0x42000
0x41000

HDD / SSD

errorOut

disclose

Page tables and DRAM before swapping

Page tables and DRAM after swapping

Figure 55: An active memory mapping attack where the system
software does not modify the page tables. Instead, two pages are
evicted from DRAM to a slower storage medium. The malicious
system software swaps the two pages’ contents then brings them back
into DRAM, building the same incorrect page mapping as the direct
attack shown in Figure 54. This attack defeats protection measures
that rely on tracking the virtual and disk addresses for DRAM pages.

In the swapping attack, malicious system soft-
ware evicts the pages that contain the errorOut
and disclose procedures from DRAM to a slower
medium, such as a hard disk. The system software ex-
changes the hard disk bytes storing the two pages, and
then brings the two pages back into DRAM. Remarkably,
all the steps taken by this attack are indistinguishable
from legitimate page swapping activity, with the excep-
tion of the I/O operations that exchange the disk bytes
storing evicted pages.

The subtle attack described in this section can be de-
feated by cryptographically binding the contents of each
page that is evicted from DRAM to the virtual address
to which the page should be mapped. The cryptographic
primitive (§ 3.1) used to perform the binding must ob-
viously guarantee integrity. Furthermore, it must also
guarantee freshness, in order to foil replay attacks where
the system software “undoes” an application’s writes by
evicting one of its DRAM pages to disk and bringing in
an older version of the same page.

3.7.4 Active Attacks Based on TLBs

Today’s multi-core architectures can be subjected to an
even more subtle active attack, illustrated in Figure 56,
which can bypass any protection measures that solely
focus on the integrity of the page tables.

DRAM

disclose

Contents
0x19000
0x1A000

Physical
errorOut0x41000

0x1A0000x42000

Physical
0x19000

Virtual

Page tables and TLB
before swapping

HDD / SSD

errorOut

disclose

DRAM

errorOut

Contents
0x19000
0x1A000

Physical
disclose0x41000

0x1A0000x42000

Physical
0x19000

Virtual
Stale TLB after swapping

0x41000
0x190000x42000

Physical
0x1A000

Virtual
Page tables after swapping

Figure 56: An active memory mapping attack where the system
software does not invalidate a core’s TLBs when it evicts two pages
from DRAM and exchanges their locations when reading them back
in. The page tables are updated correctly, but the core with stale TLB
entries has the same incorrect view of the protected container’s code
as in Figure 54.

For performance reasons, each execution core caches
address translation results in its own translation look-
aside buffer (TLB, § 2.11.5). For simplicity, the TLBs
are not covered by the cache coherence protocol that
synchronizes data caches across cores. Instead, the sys-
tem software is responsible for invalidating TLB entries
across all the cores when it modifies the page tables.

Malicious system software can take advantage of the
design decisions explained above by carrying out the fol-
lowing attack. While the same software used in the previ-
ous examples is executing on a core, the system software
executes on a different core and evicts the errorOut
and disclose pages from DRAM. As in the previous
attack, the system software loads the disclose code
in the DRAM page that previously held errorOut. In
this attack, however, the system software also updates
the page tables.

The core where the system software executed sees the
code that the application developer intended. Therefore,
the attack will pass any security checks that rely upon
cryptographic associations between page contents and
page table data, as long as the checks are performed by
the core used to load pages back into DRAM. However,
the core that executes the protected container’s code still

48

uses the old page table data, because the system software
did not invalidate its TLB entries. Assuming the TLBs
are not subjected to any additional security checks, this
attack causes the same private information leak as the
previous examples.

In order to avoid the attack described in this sec-
tion, the trusted software or hardware that implements
protected containers must also ensure that the system
software invalidates the relevant TLB entries on all the
cores when it evicts a page from a protected container to
DRAM.

3.8 Cache Timing Attacks
Cache timing attacks [19] are a powerful class of soft-
ware attacks that can be mounted entirely by application
code running at ring 3 (§ 2.3). Cache timing attacks do
not learn information by reading the victim’s memory,
so they bypass the address translation-based isolation
measures (§ 2.5) implemented in today’s kernels and
hypervisors.

3.8.1 Theory

Cache timing attacks exploit the unfortunate dependency
between the location of a memory access and the time
it takes to perform the access. A cache miss requires
at least one memory access to the next level cache, and
might require a second memory access if a write-back
occurs. On the Intel architecture, the latency between
a cache hit and a miss can be easily measured by the
RDTSC and RDTSCP instructions (§ 2.4), which read a
high-resolution time-stamp counter. These instructions
have been designed for benchmarking and optimizing
software, so they are available to ring 3 software.

The fundamental tool of a cache timing attack is an
attacker process that measures the latency of accesses to
carefully designated memory locations in its own address
space. The memory locations are chosen so that they
map to the same cache lines as those of some interesting
memory locations in a victim process, in a cache that is
shared between the attacker and the victim. This requires
in-depth knowledge of the shared cache’s organization
(§ 2.11.2).

Armed with the knowledge of the cache’s organization,
the attacker process sets up the attack by accessing its
own memory in such a way that it fills up all the cache
sets that would hold the victim’s interesting memory lo-
cations. After the targeted cache sets are full, the attacker
allows the victim process to execute. When the victim
process accesses an interesting memory location in its

own address space, the shared cache must evict one of
the cache lines holding the attacker’s memory locations.

As the victim is executing, the attacker process repeat-
edly times accesses to its own memory locations. When
the access times indicate that a location was evicted from
the cache, the attacker can conclude that the victim ac-
cessed an interesting memory location in its own cache.
Over time, the attacker collects the results of many mea-
surements and learns a subset of the victim’s memory
access pattern. If the victim processes sensitive informa-
tion using data-dependent memory fetches, the attacker
may be able to deduce the sensitive information from the
learned memory access pattern.

3.8.2 Practical Considerations

Cache timing attacks require control over a software pro-
cess that shares a cache memory with the victim process.
Therefore, a cache timing attack that targets the L2 cache
would have to rely on the system software to schedule
a software thread on a logical processor in the same
core as the target software, whereas an attack on the L3
cache can be performed using any logical processor on
the same CPU. The latter attack relies on the fact that
the L3 cache is inclusive, which greatly simplifies the
processor’s cache coherence implementation (§ 2.11.3).

The cache sharing requirement implies that L3 cache
attacks are feasible in an IaaS environment, whereas L2
cache attacks become a significant concern when running
sensitive software on a user’s desktop.

Out-of-order execution (§ 2.10) can introduce noise in
cache timing attacks. First, memory accesses may not
be performed in program order, which can impact the
lines selected by the cache eviction algorithms. Second,
out-of-order execution may result in cache fills that do
not correspond to executed instructions. For example, a
load that follows a faulting instruction may be scheduled
and executed before the fault is detected.

Cache timing attacks must account for speculative ex-
ecution, as mispredicted memory accesses can still cause
cache fills. Therefore, the attacker may observe cache
fills that don’t correspond to instructions that were actu-
ally executed by the victim software. Memory prefetch-
ing adds further noise to cache timing attacks, as the
attacker may observe cache fills that don’t correspond
to instructions in the victim code, even when accounting
for speculative execution.

49

3.8.3 Known Cache Timing Attacks

Despite these difficulties, cache timing attacks are known
to retrieve cryptographic keys used by AES [25, 146],
RSA [28], Diffie-Hellman [123], and elliptic-curve cryp-
tography [27].

Early attacks required access to the victim’s CPU core,
but more sophisticated recent attacks [131, 196] are able
to use the L3 cache, which is shared by all the cores on
a CPU die. L3-based attacks can be particularly dev-
astating in cloud computing scenarios, where running
software on the same computer as a victim application
only requires modest statistical analysis skills and a small
amount of money [157]. Furthermore, cache timing at-
tacks were recently demonstrated using JavaScript code
in a page visited by a Web browser [145].

Given this pattern of vulnerabilities, ignoring cache
timing attacks is dangerously similar to ignoring the
string of demonstrated attacks which led to the depreca-
tion of SHA-1 [3, 6, 9].

3.8.4 Defending against Cache Timing Attacks

Fortunately, invalidating any of the preconditions for
cache timing attacks is sufficient for defending against
them. The easiest precondition to focus on is that the
attacker must have access to memory locations that map
to the same sets in a cache as the victim’s memory. This
assumption can be invalidated by the judicious use of a
cache partitioning scheme.

Performance concerns aside, the main difficulty asso-
ciated with cache partitioning schemes is that they must
be implemented by a trusted party. When the system
software is trusted, it can (for example) use the prin-
ciples behind page coloring [117, 177] to partition the
caches [129] between mutually distrusting parties. This
comes down to setting up the page tables in such a way
that no two mutually distrusting software module are
stored in physical pages that map to the same sets in
any cache memory. However, if the system software
is not trusted, the cache partitioning scheme must be
implemented in hardware.

The other interesting precondition is that the victim
must access its memory in a data-dependent fashion that
allows the attacker to infer private information from the
observed memory access pattern. It becomes tempting
to think that cache timing attacks can be prevented by
eliminating data-dependent memory accesses from all
the code handling sensitive data.

However, removing data-dependent memory accesses
is difficult to accomplish in practice because instruction

fetches must also be taken into consideration. [115]
gives an idea of the level of effort required to remove
data-dependent accesses from AES, which is a relatively
simple data processing algorithm. At the time of this
writing, we are not aware of any approach that scales to
large pieces of software.

While the focus of this section is cache timing at-
tacks, we would like to point out that any shared re-
source can lead to information leakage. A worrying
example is hyper-threading (§ 2.9.4), where each CPU
core is represented as two logical processors, and the
threads executing on these two processors share execu-
tion units. An attacker who can run a process on a logical
processor sharing a core with a victim process can use
RDTSCP [152] to learn which execution units are in use,
and infer what instructions are executed by the victim
process.

4 RELATED WORK

This section describes the broader picture of trusted hard-
ware projects that SGX belongs to. Table 12 summarizes
the security properties of SGX and the other trusted hard-
ware presented here.

4.1 The IBM 4765 Secure Coprocessor

Secure coprocessors [198] encapsulate an entire com-
puter system, including a CPU, a cryptographic accel-
erator, caches, DRAM, and an I/O controller within a
tamper-resistant environment. The enclosure includes
hardware that deters attacks, such as a Faraday cage, as
well as an array of sensors that can detect tampering
attempts. The secure coprocessor destroys the secrets
that it stores when an attack is detected. This approach
has good security properties against physical attacks,
but tamper-resistant enclosures are very expensive [15],
relatively to the cost of a computer system.

The IBM 4758 [172], and its most current-day suc-
cessor, the IBM 4765 [2] (shown in Figure 57) are rep-
resentative examples of secure coprocessors. The 4758
was certified to withstand physical attacks to FIPS 140-1
Level 4 [171], and the 4765 meets the rigors of FIPS
140-2 Level 4 [1].

The 4765 relies heavily on physical isolation for its
security properties. Its system software is protected from
attacks by the application software by virtue of using
a dedicated service processor that is completely sepa-
rate from the application processor. Special-purpose bus
logic prevents the application processor from accessing

50

A
tta

ck
Tr

us
tZ

on
e

TP
M

TP
M

+T
X

T
S

G
X

X
O

M
A

eg
is

B
as

tio
n

A
sc

en
d,

P
ha

nt
om

S
an

ct
um

M
al

ic
io

us
co

nt
ai

ne
rs

 (d
ire

ct
pr

ob
in

g)

N
/A

 (s
ec

ur
e

w
or

ld
 is

 tr
us

te
d)

N
/A

 (T
he

 w
ho

le
co

m
pu

te
r i

s
on

e
co

nt
ai

ne
r)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
Id

en
tif

ie
r t

ag
ch

ec
ks

S
ec

ur
ity

 k
er

ne
l

se
pa

ra
te

s
co

nt
ai

ne
rs

A
cc

es
s

ch
ec

ks
on

 e
ac

h
m

em
or

y
ac

ce
ss

O
S

 s
ep

ar
at

es
co

nt
ai

ne
rs

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

M
al

ic
io

us
 O

S
(d

ire
ct

 p
ro

bi
ng

)
A

cc
es

s
ch

ec
ks

on
 T

LB
 m

is
se

s
N

/A
 (O

S
m

ea
su

re
d

an
d

tru
st

ed
)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
O

S
 h

as
 it

s
ow

n
id

en
tif

ie
r

S
ec

ur
ity

 k
er

ne
l

m
ea

su
re

d
an

d
is

ol
at

ed

M
em

or
y

en
cr

yp
tio

n
an

d
H

M
A

C

X
A

cc
es

s
ch

ec
ks

on
 T

LB
 m

is
se

s

M
al

ic
io

us
hy

pe
rv

is
or

 (d
ire

ct
pr

ob
in

g)

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

N
/A

 (H
yp

er
vi

so
r

m
ea

su
re

d
an

d
tru

st
ed

)

H
yp

er
vi

so
r

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

A
cc

es
s

ch
ec

ks
 o

n
TL

B
 m

is
se

s
N

/A
 (N

o
hy

pe
rv

is
or

su
pp

or
t)

N
/A

 (N
o

hy
pe

rv
is

or
su

pp
or

t)

H
yp

er
vi

so
r

m
ea

su
re

d
an

d
tru

st
ed

N
/A

 (N
o

hy
pe

rv
is

or
su

pp
or

t)

A
cc

es
s

ch
ec

ks
on

 T
LB

 m
is

se
s

M
al

ic
io

us
fir

m
w

ar
e

N
/A

 (f
irm

w
ar

e
is

a
pa

rt
of

 th
e

se
cu

re
 w

or
ld

)

C
P

U
 m

ic
ro

co
de

m
ea

su
re

s
P

E
I

fir
m

w
ar

e

S
IN

IT
 A

C
M

 s
ig

ne
d

by
 In

te
l k

ey
 a

nd
m

ea
su

re
d

S
M

M
 h

an
dl

er
 is

su
bj

ec
t t

o
TL

B
ac

ce
ss

 c
he

ck
s

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

H
yp

er
vi

so
r

m
ea

su
re

d
af

te
r

bo
ot

N
/A

 (F
irm

w
ar

e
is

 n
ot

 a
ct

iv
e

af
te

r b
oo

tin
g)

Fi
rm

w
ar

e
is

m
ea

su
re

d
an

d
tru

st
ed

M
al

ic
io

us
co

nt
ai

ne
rs

 (c
ac

he
tim

in
g)

N
/A

 (s
ec

ur
e

w
or

ld
 is

 tr
us

te
d)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

N
/A

 (D
oe

s
no

t
al

lo
w

 c
on

cu
rr

en
t

co
nt

ai
ne

rs
)

X
X

X
X

X
E

ac
h

en
cl

av
e

its
 g

et
s

ow
n

ca
ch

e
pa

rti
tio

n
M

al
ic

io
us

 O
S

(p
ag

e
fa

ul
t

re
co

rd
in

g)

S
ec

ur
e

w
or

ld
ha

s
ow

n
pa

ge
ta

bl
es

N
/A

 (O
S

m
ea

su
re

d
an

d
tru

st
ed

)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

X
N

/A
 (P

ag
in

g
no

t
su

pp
or

te
d)

X
X

X
P

er
-e

nc
la

ve
pa

ge
 ta

bl
es

M
al

ic
io

us
 O

S
(c

ac
he

 ti
m

in
g)

X
N

/A
 (O

S
m

ea
su

re
d

an
d

tru
st

ed
)

H
os

t O
S

pr
ee

m
pt

ed
 d

ur
in

g
la

te
 la

un
ch

X
X

X
X

X
N

on
-e

nc
la

ve
so

ftw
ar

e
us

es
 a

se
pa

ra
te

 c
ac

he
pa

rti
tio

n
D

M
A

 fr
om

m
al

ic
io

us
pe

rip
he

ra
l

O
n-

ch
ip

 b
us

bo
un

ce
s

se
cu

re
w

or
ld

 a
cc

es
se

s

X
IO

M
M

U
 b

ou
nc

es
D

M
A

 in
to

 T
X

T
m

em
or

y
ra

ng
e

IO
M

M
U

 b
ou

nc
es

D
M

A
 in

to
 P

R
M

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

E
qu

iv
al

en
t t

o
ph

ys
ic

al
 D

R
A

M
ac

ce
ss

M
C

 b
ou

nc
es

D
M

A
 o

ut
si

de
al

lo
w

ed
 ra

ng
e

P
hy

si
ca

l D
R

A
M

re
ad

S
ec

ur
e

w
or

ld
lim

ite
d

to
 o

n-
ch

ip
 S

R
A

M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

D
R

A
M

en
cr

yp
tio

n
D

R
A

M
en

cr
yp

tio
n

D
R

A
M

en
cr

yp
tio

n
D

R
A

M
en

cr
yp

tio
n

X

P
hy

si
ca

l D
R

A
M

w
rit

e
S

ec
ur

e
w

or
ld

lim
ite

d
to

 o
n-

ch
ip

 S
R

A
M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

H
M

A
C

 o
f

ad
dr

es
s

an
d

da
ta

H
M

A
C

 o
f

ad
dr

es
s,

 d
at

a,
tim

es
ta

m
p

M
er

kl
e

tre
e

ov
er

D
R

A
M

H
M

A
C

 o
f

ad
dr

es
s,

 d
at

a,
tim

es
ta

m
p

X

P
hy

si
ca

l D
R

A
M

ro
llb

ac
k

w
rit

e
S

ec
ur

e
w

or
ld

lim
ite

d
to

 o
n-

ch
ip

 S
R

A
M

X
X

U
nd

oc
um

en
te

d
m

em
or

y
en

cr
yp

tio
n

en
gi

ne

X
M

er
kl

e
tre

e
ov

er
 H

M
A

C
tim

es
ta

m
ps

M
er

kl
e

tre
e

ov
er

D
R

A
M

M
er

kl
e

tre
e

ov
er

 H
M

A
C

tim
es

ta
m

ps

X

P
hy

si
ca

l D
R

A
M

ad
dr

es
s

re
ad

s
S

ec
ur

e
w

or
ld

 in
on

-c
hi

p
S

R
A

M
X

X
X

X
X

X
O

R
A

M
X

H
ar

dw
ar

e
TC

B
si

ze
C

P
U

 c
hi

p
pa

ck
ag

e
M

ot
he

rb
oa

rd
(C

P
U

, T
P

M
,

D
R

A
M

, b
us

es
)

M
ot

he
rb

oa
rd

(C
P

U
, T

P
M

,
D

R
A

M
, b

us
es

)

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

C
P

U
 c

hi
p

pa
ck

ag
e

S
of

tw
ar

e
TC

B
si

ze
S

ec
ur

e
w

or
ld

(fi
rm

w
ar

e,
 O

S
,

ap
pl

ic
at

io
n)

A
ll

so
ftw

ar
e

on
th

e
co

m
pu

te
r

S
IN

IT
 A

C
M

 +
 V

M
(O

S
, a

pp
lic

at
io

n)
A

pp
lic

at
io

n
m

od
ul

e
+

pr
iv

ile
ge

d
co

nt
ai

ne
rs

A
pp

lic
at

io
n

m
od

ul
e

+
hy

pe
rv

is
or

A
pp

lic
at

io
n

m
od

ul
e

+
se

cu
rit

y
ke

rn
el

A
pp

lic
at

io
n

m
od

ul
e

+
hy

pe
rv

is
or

A
pp

lic
at

io
n

pr
oc

es
s

+
tru

st
ed

 O
S

A
pp

lic
at

io
n

m
od

ul
e

+
se

cu
rit

y
m

on
ito

r

Table 12: Security features overview for the trusted hardware projects related to Intel’s SGX

51

PCI Express Card

Tamper-Resistant Enclosure

Application
CPU

Application
CPU

Random
Number

Generator
Real-Time

Clock
Crypto

Accelerator

Tamper
Detection and

Response

Battery-Backed
RAM

SDRAM

System Bus

Module Interface

I/O
Controller

Service
CPU

Hardware Access Control Logic

Battery-
Backed

RAM
Flash

NVRAM
Boot

Loader
ROM

PCIe I/O Controller Batteries

PCI Express Interface

Figure 57: The IBM 4765 secure coprocessor consists of an entire
computer system placed inside an enclosure that can deter and de-
tect physical attacks. The application and the system use separate
processors. Sensitive memory can only be accessed by the system
code, thanks to access control checks implemented in the system bus’
hardware. Dedicated hardware is used to clear the platform’s secrets
and shut down the system when a physical attack is detected.

privileged resources, such as the battery-backed memory
that stores the system software’s secrets.

The 4765 implements software attestation. The co-
processor’s attestation key is stored in battery-backed
memory that is only accessible to the service processor.
Upon reset, the service processor executes a first-stage
bootloader stored in ROM, which measures and loads the
system software. In turn, the system software measures
the application code stored in NVRAM and loads it into
the DRAM chip accessible to the application processor.
The system software provides attestation services to the
application loaded inside the coprocessor.

4.2 ARM TrustZone

ARM’s TrustZone [13] is a collection of hardware mod-
ules that can be used to conceptually partition a system’s
resources between a secure world, which hosts a secure
container, and a normal world, which runs an untrusted
software stack. The TrustZone documentation [18] de-
scribes semiconductor intellectual property cores (IP
blocks) and ways in which they can be combined to
achieve certain security properties, reflecting the fact that
ARM is an IP core provider, not a chip manufacturer.
Therefore, the mere presence of TrustZone IP blocks in a
system is not sufficient to determine whether the system
is secure under a specific threat model. Figure 58 illus-
trates a design for a smartphone System-on-Chip (SoC)

design that uses TrustZone IP blocks.

System-on-Chip Package

4G ModemProcessor
without
Secure

Extensions
DMA

Controller

Memory
Controller

Memory
Controller

Display
Controller

OTP
Polyfuses

TZMABoot ROM

AMBA AXI On-Chip Bus

L3 Cache

AMBA AXI Bus

DRAM Flash Display

L2 Cache

Processor
with

Secure
Extensions

Interrupt Controller

APB Bus

AXI to APB
Bridge

ADC / DAC Keypad
Controller

Audio Keypad

Real-Time
Clock

SRAM

TZASC

Figure 58: Smartphone SoC design based on TrustZone. The
red IP blocks are TrustZone-aware. The red connections ignore
the TrustZone secure bit in the bus address. Defining the system’s
security properties requires a complete understanding of all the red
elements in this figure.

TrustZone extends the address lines in the AMBA AXI
system bus [17] with one signal that indicates whether
an access belongs to the secure or normal (non-secure)
world. ARM processor cores that include TrustZone’s
“Security Extensions” can switch between the normal
world and the secure world when executing code. The
address in each bus access executed by a core reflects the
world in which the core is currently executing.

The reset circuitry in a TrustZone processor places
it in secure mode, and points it to the first-stage boot-
loader stored in on-chip ROM. TrustZone’s TCB includes
this bootloader, which initializes the platform, sets up
the TrustZone hardware to protect the secure container
from untrusted software, and loads the normal world’s
bootloader. The secure container must also implement
a monitor that performs the context switches needed to
transition an execution core between the two worlds. The
monitor must also handle hardware exceptions, such as
interrupts, and route them to the appropriate world.

The TrustZone design gives the secure world’s monitor
unrestricted access to the normal world, so the monitor
can implement inter-process communication (IPC) be-
tween the software in the two worlds. Specifically, the
monitor can issue bus accesses using both secure and non-
secure addresses. In general, the secure world’s software
can compromise any level in the normal world’s software

52

stack. For example, the secure container’s software can
jump into arbitrary locations in the normal world by flip-
ping a bit in a register. The untrusted software in the
normal world can only access the secure world via an
instruction that jumps into a well-defined location inside
the monitor.

Conceptually, each TrustZone CPU core provides sep-
arate address translation units for the secure and normal
worlds. This is implemented by two page table base
registers, and by having the page walker use the page
table base corresponding to the core’s current world. The
physical addresses in the page table entries are extended
to include the values of the secure bit to be issued on the
AXI bus. The secure world is protected from untrusted
software by having the CPU core force the secure bit in
the address translation result to zero for normal world
address translations. As the secure container manages its
own page tables, its memory accesses cannot be directly
observed by the untrusted OS’s page fault handler.

TrustZone-aware hardware modules, such as caches,
are trusted to use the secure address bit in each bus access
to enforce the isolation between worlds. For example,
TrustZone’s caches store the secure bit in the address
tag for each cache line, which effectively provides com-
pletely different views of the memory space to the soft-
ware running in different worlds. This design assumes
that memory space is partitioned between the two worlds,
so no aliasing can occur.

The TrustZone documentation describes two TLB con-
figurations. If many context switches between worlds
are expected, the TLB IP blocks can be configured to
include the secure bit in the address tag. Alternatively,
the secure bit can be omitted from the TLBs, as long as
the monitor flushes the TLBs when switching contexts.

The hardware modules that do not consume Trust-
Zone’s address bit are expected to be connected to the
AXI bus via IP cores that implement simple partition-
ing techniques. For example, the TrustZone Memory
Adapter (TZMA) can be used to partition an on-chip
ROM or SRAM into a secure region and a normal region,
and the TrustZone Address Space Controller (TZASC)
partitions the memory space provided by a DRAM con-
troller into secure and normal regions. A TrustZone-
aware DMA controller rejects DMA transfers from the
normal world that reference secure world addresses.

It follows that analyzing the security properties of a
TrustZone system requires a precise understanding of
the behavior and configuration of all the hardware mod-
ules that are attached to the AXI bus. For example, the

caches described in TrustZone’s documentation do not
enforce a complete separation between worlds, as they al-
low a world’s memory accesses to evict the other world’s
cache lines. This exposes the secure container software
to cache timing attacks from the untrusted software in the
normal world. Unfortunately, hardware manufacturers
that license the TrustZone IP cores are reluctant to dis-
close all the details of their designs, making it impossible
for security researchers to reason about TrustZone-based
hardware.

The TrustZone components do not have any counter-
measures for physical attacks. However, a system that
follows the recommendations in the TrustZone documen-
tation will not be exposed to physical attacks, under a
threat model that trusts the processor chip package. The
AXI bus is designed to connect components in an SoC
design, so it cannot be tapped by an attacker. The Trust-
Zone documentation recommends having all the code
and data in the secure world stored in on-chip SRAM,
which is not subject to physical attacks. However, this ap-
proach places significant limits on the secure container’s
functionality, because on-chip SRAM is many orders of
magnitude more expensive than a DRAM chip of the
same capacity.

TrustZone’s documentation does not describe any soft-
ware attestation implementation. However, it does out-
line a method for implementing secure boot, which
comes down to having the first-stage bootloader verify a
signature in the second-stage bootloader against a public
key whose cryptographic hash is burned into on-chip
One-Time Programmable (OTP) polysilicon fuses. A
hardware measurement root can be built on top of the
same components, by storing a per-chip attestation key
in the polyfuses, and having the first-stage bootloader
measure the second-stage bootloader and store its hash
in an on-chip SRAM region allocated to the secure world.
The polyfuses would be gated by a TZMA IP block that
makes them accessible only to the secure world.

4.3 The XOM Architecture

The execute-only memory (XOM) architecture [128] in-
troduced the approach of executing sensitive code and
data in isolated containers managed by untrusted host
software. XOM outlined the mechanisms needed to iso-
late a container’s data from its untrusted software envi-
ronment, such as saving the register state to a protected
memory area before servicing an interrupt.

XOM supports multiple containers by tagging every
cache line with the identifier of the container owning it,

53

and ensures isolation by disallowing memory accesses
to cache lines that don’t match the current container’s
identifier. The operating system and the untrusted appli-
cations are considered to belong to a container with a
null identifier.

XOM also introduced the integration of encryption
and HMAC functionality in the processor’s memory con-
troller to protect container memory from physical attacks
on DRAM. The encryption and HMAC functionality is
used for all cache line evictions and fetches, and the
ECC bits in DRAM chips are repurposed to store HMAC
values.

XOM’s design cannot guarantee DRAM freshness, so
the software in its containers is vulnerable to physical
replay attacks. Furthermore, XOM does not protect a
container’s memory access patterns, meaning that any
piece of malicious software can perform cache timing
attacks against the software in a container. Last, XOM
containers are destroyed when they encounter hardware
exceptions, such as page faults, so XOM does not support
paging.

XOM predates the attestation scheme described above,
and relies on a modified software distribution scheme
instead. Each container’s contents are encrypted with
a symmetric key, which also serves as the container’s
identity. The symmetric key, in turn, is encrypted with
the public key of each CPU that is trusted to run the
container. A container’s author can be assured that the
container is running on trusted software by embedding a
secret into the encrypted container data, and using it to
authenticate the container. While conceptually simpler
than software attestation, this scheme does not allow the
container author to vet the container’s software environ-
ment.

4.4 The Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) [71] introduced
the software attestation model described at the beginning
of this section. The TPM design does not require any
hardware modifications to the CPU, and instead relies
on an auxiliary tamper-resistant chip. The TPM chip
is only used to store the attestation key and to perform
software attestation. The TPM was widely deployed on
commodity computers, because it does not rely on CPU
modifications. Unfortunately, the cost of this approach
is that the TPM has very weak security guarantees, as
explained below.

The TPM design provides one isolation container, cov-
ering all the software running on the computer that has

the TPM chip. It follows that the measurement included
in an attestation signature covers the entire OS kernel and
all the kernel modules, such as device drivers. However,
commercial computers use a wide diversity of devices,
and their system software is updated at an ever-increasing
pace, so it is impossible to maintain a list of acceptable
measurement hashes corresponding to a piece of trusted
software. Due to this issue, the TPM’s software attes-
tation is not used in many security systems, despite its
wide deployment.

The TPM design is technically not vulnerable to any
software attacks, because it trusts all the software on the
computer. However, a TPM-based system is vulnerable
to an attacker who has physical access to the machine,
as the TPM chip does not provide any isolation for the
software on the computer. Furthermore, the TPM chip
receives the software measurements from the CPU, so
TPM-based systems are vulnerable to attackers who can
tap the communication bus between the CPU and the
TPM.

Last, the TPM’s design relies on the software running
on the CPU to report its own cryptographic hash. The
TPM chip resets the measurements stored in Platform
Configuration Registers (PCRs) when the computer is
rebooted. Then, the TPM expects the software at each
boot stage to cryptographically hash the software at the
next stage, and send the hash to the TPM. The TPM up-
dates the PCRs to incorporate the new hashes it receives,
as shown in Figure 59. Most importantly, the PCR value
at any point reflects all the software hashes received by
the TPM up to that point. This makes it impossible for
software that has been measured to “remove” itself from
the measurement.

For example, the firmware on most modern comput-
ers implements the platform initialization process in the
Unified Extensible Firmware Interface (UEFI) specifi-
cation [180]. Each platform initialization phase is re-
sponsible for verifying or measuring the firmware that
implements the next phase. The SEC firmware initializes
the TPM PCR, and then stores the PEI’s measurement
into a measurement register. In turn, the PEI imple-
mentation measures the DXE firmware and updates the
measurement register that stores the PEI hash to account
for the DXE hash. When the OS is booted, the hash in
the measurement register accounts for all the firmware
that was used to boot the computer.

Unfortunately, the security of the whole measurement
scheme hinges on the requirement that the first hash sent
to the TPM must reflect the software that runs in the first

54

)SHA-1(

Boot Loader

0 (zero)

)SHA-1(

sent to TPM

)SHA-1(

OS Kernel

)SHA-1(

sent to TPM

TPM MR
after reboot

TPM MR when
boot loader
executes

)SHA-1(

Kernel module

)SHA-1(

sent to TPM
TPM MR when

OS kernel
executes

TPM MR when
Kernel Module executes

Figure 59: The measurement stored in a TPM platform configura-
tion register (PCR). The PCR is reset when the system reboots. The
software at every boot stage hashes the next boot stage, and sends
the hash to the TPM. The PCR’s new value incorporates both the old
PCR value, and the new software hash.

boot stage. The TPM threat model explicitly acknowl-
edges this issue, and assumes that the firmware respon-
sible for loading the first stage bootloader is securely
embedded in the motherboard. However, virtually ev-
ery TPM-enabled computer stores its firmware in a flash
memory chip that can be re-programmed in software
(§ 2.9.1), so the TPM’s measurement can be subverted
by an attacker who can reflash the computer’s firmware
[29].

On very recent Intel processors, the attack described
above can be defeated by having the initialization mi-
crocode (§ 2.14.4) hash the computer’s firmware (specifi-
cally, the PEI code in UEFI [180] firwmare) and commu-
nicate the hash to the TPM chip. This is marketed as the
Measured Boot feature of Intel’s Boot Guard [162].

Sadly, most computer manufacturers use Verified Boot
(also known as “secure boot”) instead of Measured Boot
(also known as “trusted boot”). Verified Boot means that
the processor’s microcode only boots into PEI firmware
that contains a signature produced by a key burned into
the chip’s e-fuses. Verified Boot does not impact the
measurements stored on the TPM, so it does not improve
the security of software attestation.

4.5 Intel’s Trusted Execution Technology (TXT)
Intel’s Trusted Execution Technology (TXT) [70] uses
the TPM’s software attestation model and auxiliary
tamper-resistant chip, but reduces the software inside the

secure container to a virtual machine (guest operating
system and application) hosted by the CPU’s hardware
virtualization features (VMX [181]).

TXT isolates the software inside the container from
untrusted software by ensuring that the container has
exclusive control over the entire computer while it is
active. This is accomplished by a secure initialization
authenticated code module (SINIT ACM) that effectively
performs a warm system reset before starting the con-
tainer’s VM.

TXT requires a TPM chip with an extended register
set. The registers used by the measured boot process de-
scribed in § 4.4 are considered to make up the platform’s
Static Root of Trust Measurement (SRTM). When a TXT
VM is initialized, it updates TPM registers that make
up the Dynamic Root of Trust Measurement (DRTM).
While the TPM’s SRTM registers only reset at the start of
a boot cycle, the DRTM registers are reset by the SINIT
ACM, every time a TXT VM is launched.

TXT does not implement DRAM encryption or
HMACs, and therefore is vulnerable to physical DRAM
attacks, just like TPM-based designs. Furthermore, early
TXT implementations were vulnerable to attacks where
a malicious operating system would program a device,
such as a network card, to perform DMA transfers to the
DRAM region used by a TXT container [188, 191]. In
recent Intel CPUs, the memory controller is integrated
on the CPU die, so the SINIT ACM can securely set
up the memory controller to reject DMA transfers tar-
geting TXT memory. An Intel chipset datasheet [105]
documents an “Intel TXT DMA Protected Range” IIO
configuration register.

Early TXT implementations did not measure the
SINIT ACM. Instead, the microcode implementing the
TXT launch instruction verified that the code module
contained an RSA signature by a hard-coded Intel key.
SINIT ACM signatures cannot be revoked if vulnerabili-
ties are found, so TXT’s software attestation had to be
revised when SINIT ACM exploits [190] surfaced. Cur-
rently, the SINIT ACM’s cryptographic hash is included
in the attestation measurement.

Last, the warm reset performed by the SINIT ACM
does not include the software running in System Manage-
ment Mode (SMM). SMM was designed solely for use
by firmware, and is stored in a protected memory area
(SMRAM) which should not be accessible to non-SMM
software. However, the SMM handler was compromised
on multiple occasions [44, 49, 164, 186, 189], and an
attacker who obtains SMM execution can access the

55

memory used by TXT’s container.

4.6 The Aegis Secure Processor
The Aegis secure processor [174] relies on a security
kernel in the operating system to isolate containers, and
includes the kernel’s cryptographic hash in the measure-
ment reported by the software attestation signature. [176]
argued that Physical Unclonable Functions (PUFs) [56]
can be used to endow a secure processor with a tamper-
resistant private key, which is required for software attes-
tation. PUFs do not have the fabrication process draw-
backs of EEPROM, and are significantly more resilient
to physical attacks than e-fuses.

Aegis relies on a trusted security kernel to isolate each
container from the other software on the computer by
configuring the page tables used in address translation.
The security kernel is a subset of a typical OS kernel,
and handles virtual memory management, processes, and
hardware exceptions. As the security kernel is a part of
the trusted code base (TCB), its cryptographic hash is
included in the software attestation measurement. The
security kernel uses processor features to isolate itself
from the untrusted part of the operating system, such as
device drivers.

The Aegis memory controller encrypts the cache lines
in one memory range, and HMACs the cache lines in one
other memory range. The two memory ranges can over-
lap, and are configurable by the security kernel. Thanks
to the two ranges, the memory controller can avoid the
latency overhead of cryptographic operations for the
DRAM outside containers. Aegis was the first secure
processor not vulnerable to physical replay attacks, as it
uses a Merkle tree construction [57] to guarantee DRAM
freshness. The latency overhead of the Merkle tree is
greatly reduced by augmenting the L2 cache with the
tree nodes for the cache lines.

Aegis’ security kernel allows the OS to page out con-
tainer memory, but verifies the correctness of the paging
operations. The security kernel uses the same encryption
and Merkle tree algorithms as the memory controller to
guarantee the confidentiality and integrity of the con-
tainer pages that are swapped out from DRAM. The OS
is free to page out container memory, so it can learn a
container’s memory access patterns, at page granular-
ity. Aegis containers are also vulnerable to cache timing
attacks.

4.7 The Bastion Architecture
The Bastion architecture [31] introduced the use of a
trusted hypervisor to provide secure containers to appli-

cations running inside unmodified, untrusted operating
systems. Bastion’s hypervisor ensures that the operating
system does not interfere with the secure containers. We
only describe Bastion’s virtualization extensions to ar-
chitectures that use nested page tables, like Intel’s VMX
[181].

The hypervisor enforces the containers’ desired mem-
ory mappings in the OS page tables, as follows. Each
Bastion container has a Security Segment that lists the
virtual addresses and permissions of all the container’s
pages, and the hypervisor maintains a Module State Table
that stores an inverted page map, associating each physi-
cal memory page to its container and virtual address. The
processor’s hardware page walker is modified to invoke
the hypervisor on every TLB miss, before updating the
TLB with the address translation result. The hypervisor
checks that the virtual address used by the translation
matches the expected virtual address associated with the
physical address in the Module State Table.

Bastion’s cache lines are not tagged with container
identifiers. Instead, only TLB entries are tagged. The
hypervisor’s TLB miss handler sets the container iden-
tifier for each TLB entry as it is created. Similarly to
XOM and Aegis, the secure processor checks the TLB
tag against the current container’s identifier on every
memory access.

Bastion offers the same protection against physical
DRAM attacks as Aegis does, without the restriction that
a container’s data must be stored inside a continuous
DRAM range. This is accomplished by extending cache
lines and TLB entries with flags that enable memory
encryption and HMACing. The hypervisor’s TLB miss
handler sets the flags on TLB entries, and the flags are
propagated to cache lines on memory writes.

The Bastion hypervisor allows the untrusted operat-
ing system to evict secure container pages. The evicted
pages are encrypted, HMACed, and covered by a Merkle
tree maintained by the hypervisor. Thus, the hypervisor
ensures the confidentiality, authenticity, and freshness
of the swapped pages. However, the ability to freely
evict container pages allows a malicious OS to learn a
container’s memory accesses with page granularity. Fur-
thermore, Bastion’s threat model excludes cache timing
attacks.

Bastion does not trust the platform’s firmware, and
computes the cryptographic hash of the hypervisor af-
ter the firmware finishes playing its part in the booting
process. The hypervisor’s hash is included in the mea-
surement reported by software attestation.

56

4.8 Intel SGX in Context
Intel’s Software Guard Extensions (SGX) [14, 79, 139]
implements secure containers for applications without
making any modifications to the processor’s critical ex-
ecution path. SGX does not trust any layer in the com-
puter’s software stack (firmware, hypervisor, OS). In-
stead, SGX’s TCB consists of the CPU’s microcode and
a few privileged containers. SGX introduces an approach
to solving some of the issues raised by multi-core pro-
cessors with a shared, coherent last-level cache.

SGX does not extend caches or TLBs with container
identity bits, and does not require any security checks
during normal memory accesses. As suggested in the
TrustZone documentation, SGX always ensures that a
core’s TLBs only contain entries for the container that
it is executing, which requires flushing the CPU core’s
TLBs when context-switching between containers and
untrusted software.

SGX follows Bastion’s approach of having the un-
trusted OS manage the page tables used by secure con-
tainers. The containers’ security is preserved by a TLB
miss handler that relies on an inverted page map (the
EPCM) to reject address translations for memory that
does not belong to the current container.

Like Bastion, SGX allows the untrusted operating sys-
tem to evict secure container pages, in a controlled fash-
ion. After the OS initiates a container page eviction,
it must prove to the SGX implementation that it also
switched the container out of all cores that were execut-
ing its code, effectively performing a very coarse-grained
TLB shootdown.

SGX’s microcode ensures the confidentiality, authen-
ticity, and freshness of each container’s evicted pages,
like Bastion’s hypervisor. However, SGX relies on a
version-based Merkle tree, inspired by Aegis [174], and
adds an innovative twist that allows the operating system
to dynamically shape the Merkle tree. SGX also shares
Bastion’s and Aegis’ vulnerability to memory access pat-
tern leaks, namely a malicious OS can directly learn a
container’s memory accesses at page granularity, and any
piece of software can perform cache timing attacks.

SGX’s software attestation is implemented using
Intel’s Enhanced Privacy ID (EPID) group signature
scheme [26], which is too complex for a microcode
implementation. Therefore, SGX relies on an assort-
ment of privileged containers that receive direct access
to the SGX processor’s hardware keys. The privileged
containers are signed using an Intel private key whose
corresponding public key is hard-coded into the SGX

microcode, similarly to TXT’s SINIT ACM.
As SGX does not protect against cache timing at-

tacks, the privileged enclave’s authors cannot use data-
dependent memory accesses. For example, cache attacks
on the Quoting Enclave, which computes attestation sig-
natures, would provide an attack with a processor’s EPID
signing key and completely compromise SGX.

Intel’s documentation states that SGX guarantees
DRAM confidentiality, authentication, and freshness by
virtue of a Memory Encryption Engine (MEE). The MEE
is informally described in an ISCA 2015 tutorial [103],
and appears to lack a formal specification. In the absence
of further information, we assume that SGX provides
the same protection against physical DRAM attacks that
Aegis and Bastion provide.

4.9 Sanctum

Sanctum [38] introduced a straightforward software/hard-
ware co-design that yields the same resilience against
software attacks as SGX, and adds protection against
memory access pattern leaks, such as page fault monitor-
ing attacks and cache timing attacks.

Sanctum uses a conceptually simple cache partitioning
scheme, where a computer’s DRAM is split into equally-
sized continuous DRAM regions, and each DRAM re-
gion uses distinct sets in the shared last-level cache
(LLC). Each DRAM region is allocated to exactly one
container, so containers are isolated in both DRAM and
the LLC. Containers are isolated in the other caches by
flushing on context switches.

Like XOM, Aegis, and Bastion, Sanctum also consid-
ers the hypervisor, OS, and the application software to
conceptually belong to a separate container. Containers
are protected from the untrusted outside software by the
same measures that isolate containers from each other.

Sanctum relies on a trusted security monitor, which
is the first piece of firmware executed by the processor,
and has the same security properties as those of Aegis’
security kernel. The monitor is measured by bootstrap
code in the processor’s ROM, and its cryptographic hash
is included in the software attestation measurement. The
monitor verifies the operating system’s resource alloca-
tion decisions. For example, it ensures that no DRAM
region is ever accessible to two different containers.

Each Sanctum container manages its own page tables
mapping its DRAM regions, and handles its own page
faults. It follows that a malicious OS cannot learn the
virtual addresses that would cause a page fault in the
container. Sanctum’s hardware modifications work in

57

conjunction with the security monitor to make sure that
a container’s page tables only reference memory inside
the container’s DRAM regions.

The Sanctum design focuses completely on software
attacks, and does not offer protection from any physical
attack. The authors expect Sanctum’s hardware modifica-
tions to be combined with the physical attack protections
in Aegis or Ascend.

4.10 Ascend and Phantom
The Ascend [52] and Phantom [132] secure processors
introduced practical implementations of Oblivious RAM
[65] techniques in the CPU’s memory controller. These
processors are resilient to attackers who can probe the
DRAM address bus and attempt to learn a container’s
private information from its DRAM memory access pat-
tern.

Implementing an ORAM scheme in a memory con-
troller is largely orthogonal to the other secure archi-
tectures described above. It follows, for example, that
Ascend’s ORAM implementation can be combined with
Aegis’ memory encryption and authentication, and with
Sanctum’s hardware extensions and security monitor,
yielding a secure processor that can withstand both soft-
ware attacks and physical DRAM attacks.

5 SGX PROGRAMMING MODEL

The central concept of SGX is the enclave, a protected
environment that contains the code and data pertaining
to a security-sensitive computation.

SGX-enabled processors provide trusted computing by
isolating each enclave’s environment from the untrusted
software outside the enclave, and by implementing a soft-
ware attestation scheme that allows a remote party to au-
thenticate the software running inside an enclave. SGX’s
isolation mechanisms are intended to protect the confi-
dentiality and integrity of the computation performed
inside an enclave from attacks coming from malicious
software executing on the same computer, as well as
from a limited set of physical attacks.

This section summarizes the SGX concepts that make
up a mental model which is sufficient for programmers
to author SGX enclaves and to add SGX support to ex-
isting system software. Unless stated otherwise, the
information in this section is backed up by Intel’s Soft-
ware Developer Manual (SDM). The following section
builds on the concepts introduced here to fill in some of
the missing pieces in the manual, and analyzes some of
SGX’s security properties.

5.1 SGX Physical Memory Organization
The enclaves’ code and data is stored in Processor Re-
served Memory (PRM), which is a subset of DRAM that
cannot be directly accessed by other software, including
system software and SMM code. The CPU’s integrated
memory controllers (§ 2.9.3) also reject DMA transfers
targeting the PRM, thus protecting it from access by
other peripherals.

The PRM is a continuous range of memory whose
bounds are configured using a base and a mask regis-
ter with the same semantics as a variable memory type
range (§ 2.11.4). Therefore, the PRM’s size must be
an integer power of two, and its start address must be
aligned to the same power of two. Due to these restric-
tions, checking if an address belongs to the PRM can be
done very cheaply in hardware, using the circuit outlined
in § 2.11.4.

The SDM does not describe the PRM and the PRM
range registers (PRMRR). These concepts are docu-
mented in the SGX manuals [95, 99] and in one of
the SGX papers [139]. Therefore, the PRM is a micro-
architectural detail that might change in future implemen-
tations of SGX. Our security analysis of SGX relies on
implementation details surrounding the PRM, and will
have to be re-evaluated for SGX future implementations.

5.1.1 The Enclave Page Cache (EPC)

The contents of enclaves and the associated data struc-
tures are stored in the Enclave Page Cache (EPC), which
is a subset of the PRM, as shown in Figure 60.

EPCDRAM

4kb page
4kb page

⋮

4kb page
4kb page
4kb page

Entry
Entry

⋮

Entry
Entry
Entry

EPCM

PRM

PRM

EPC

Figure 60: Enclave data is stored into the EPC, which is a subset of
the PRM. The PRM is a contiguous range of DRAM that cannot be
accessed by system software or peripherals.

The SGX design supports having multiple enclaves
on a system at the same time, which is a necessity in
multi-process environments. This is achieved by having
the EPC split into 4 KB pages that can be assigned to
different enclaves. The EPC uses the same page size as
the architecture’s address translation feature (§ 2.5). This
is not a coincidence, as future sections will reveal that the
SGX implementation is tightly coupled with the address
translation implementation.

58

The EPC is managed by the same system software
that manages the rest of the computer’s physical mem-
ory. The system software, which can be a hypervisor or
an OS kernel, uses SGX instructions to allocate unused
pages to enclaves, and to free previously allocated EPC
pages. The system software is expected to expose en-
clave creation and management services to application
software.

Non-enclave software cannot directly access the EPC,
as it is contained in the PRM. This restriction plays a key
role in SGX’s enclave isolation guarantees, but creates an
obstacle when the system software needs to load the ini-
tial code and data into a newly created enclave. The SGX
design solves this problem by having the instructions
that allocate an EPC page to an enclave also initialize the
page. Most EPC pages are initialized by copying data
from a non-PRM memory page.

5.1.2 The Enclave Page Cache Map (EPCM)

The SGX design expects the system software to allocate
the EPC pages to enclaves. However, as the system soft-
ware is not trusted, SGX processors check the correctness
of the system software’s allocation decisions, and refuse
to perform any action that would compromise SGX’s
security guarantees. For example, if the system software
attempts to allocate the same EPC page to two enclaves,
the SGX instruction used to perform the allocation will
fail.

In order to perform its security checks, SGX records
some information about the system software’s allocation
decisions for each EPC page in the Enclave Page Cache
Map (EPCM). The EPCM is an array with one entry
per EPC page, so computing the address of a page’s
EPCM entry only requires a bitwise shift operation and
an addition.

The EPCM’s contents is only used by SGX’s security
checks. Under normal operation, the EPCM does not
generate any software-visible behavior, and enclave au-
thors and system software developers can mostly ignore
it. Therefore, the SDM only describes the EPCM at a
very high level, listing the information contained within
and noting that the EPCM is “trusted memory”. The
SDM does not disclose the storage medium or memory
layout used by the EPCM.

The EPCM uses the information in Table 13 to track
the ownership of each EPC page. We defer a full discus-
sion of the EPCM to a later section, because its contents
is intimately coupled with all of SGX’s features, which
will be described over the next few sections.

Field Bits Description
VALID 1 0 for un-allocated EPC

pages
PT 8 page type
ENCLAVESECS identifies the enclave own-

ing the page

Table 13: The fields in an EPCM entry that track the ownership of
pages.

The SGX instructions that allocate an EPC page set
the VALID bit of the corresponding EPCM entry to 1,
and refuse to operate on EPC pages whose VALID bit is
already set.

The instruction used to allocate an EPC page also
determines the page’s intended usage, which is recorded
in the page type (PT) field of the corresponding EPCM
entry. The pages that store an enclave’s code and data
are considered to have a regular type (PT REG in the
SDM). The pages dedicated to the storage of SGX’s
supporting data structures are tagged with special types.
For example, the PT SECS type identifies pages that
hold SGX Enclave Control Structures, which will be
described in the following section. The other EPC page
types will be described in future sections.

Last, a page’s EPCM entry also identifies the enclave
that owns the EPC page. This information is used by
the mechanisms that enforce SGX’s isolation guarantees
to prevent an enclave from accessing another enclave’s
private information. As the EPCM identifies a single
owning enclave for each EPC page, it is impossible for
enclaves to communicate via shared memory using EPC
pages. Fortunately, enclaves can share untrusted non-
EPC memory, as will be discussed in § 5.2.3.

5.1.3 The SGX Enclave Control Structure (SECS)

SGX stores per-enclave metadata in a SGX Enclave
Control Structure (SECS) associated with each enclave.
Each SECS is stored in a dedicated EPC page with the
page type PT SECS. These pages are not intended to
be mapped into any enclave’s address space, and are
exclusively used by the CPU’s SGX implementation.

An enclave’s identity is almost synonymous to its
SECS. The first step in bringing an enclave to life al-
locates an EPC page to serve as the enclave’s SECS, and
the last step in destroying an enclave deallocates the page
holding its SECS. The EPCM entry field identifying the
enclave that owns an EPC page points to the enclave’s
SECS. The system software uses the virtual address of
an enclave’s SECS to identify the enclave when invoking

59

SGX instructions.
All SGX instructions take virtual addresses as their in-

puts. Given that SGX instructions use SECS addresses to
identify enclaves, the system software must create entries
in its page tables pointing to the SECS of the enclaves it
manages. However, the system software cannot access
any SECS page, as these pages are stored in the PRM.
SECS pages are not intended to be mapped inside their
enclaves’ virtual address spaces, and SGX-enabled pro-
cessors explicitly prevent enclave code from accessing
SECS pages.

This seemingly arbitrary limitation is in place so that
the SGX implementation can store sensitive information
in the SECS, and be able to assume that no potentially
malicious software will access that information. For ex-
ample, the SDM states that each enclave’s measurement
is stored in its SECS. If software would be able to modify
an enclave’s measurement, SGX’s software attestation
scheme would provide no security assurances.

The SECS is strongly coupled with many of SGX’s
features. Therefore, the pieces of information that make
up the SECS will be gradually introduced as the different
aspects of SGX are described.

5.2 The Memory Layout of an SGX Enclave
SGX was designed to minimize the effort required to
convert application code to take advantage of enclaves.
History suggests this is a wise decision, as a large factor
in the continued dominance of the Intel architecture is
its ability to maintain backward compatibility. To this
end, SGX enclaves were designed to be conceptually
similar to the leading software modularization construct,
dynamically loaded libraries, which are packaged as .so
files on Unix, and .dll files on Windows.

For simplicity, we describe the interaction between
enclaves and non-enclave software assuming that each
enclave is used by exactly one application process, which
we shall refer to as the enclave’s host process. We do
note, however, that the SGX design does not explicitly
prohibit multiple application processes from sharing an
enclave.

5.2.1 The Enclave Linear Address Range (ELRANGE)

Each enclave designates an area in its virtual address
space, called the enclave linear address range (EL-
RANGE), which is used to map the code and the sensi-
tive data stored in the enclave’s EPC pages. The virtual
address space outside ELRANGE is mapped to access
non-EPC memory via the same virtual addresses as the
enclave’s host process, as shown in Figure 61.

Page Tables
managed by

system software

ELRANGE

Enclave Virtual
Memory View

DRAM

Abort Page

Host Application
Virtual Memory

View

EPC

Figure 61: An enclave’s EPC pages are accessed using a dedicated
region in the enclave’s virtual address space, called ELRANGE. The
rest of the virtual address space is used to access the memory of the
host process. The memory mappings are established using the page
tables managed by system software.

The SGX design guarantees that the enclave’s mem-
ory accesses inside ELRANGE obey the virtual memory
abstraction (§ 2.5.1), while memory accesses outside EL-
RANGE receive no guarantees. Therefore, enclaves must
store all their code and private data inside ELRANGE,
and must consider the memory outside ELRANGE to be
an untrusted interface to the outside world.

The word “linear” in ELRANGE references the linear
addresses produced by the vestigial segmentation fea-
ture (§ 2.7) in the 64-bit Intel architecture. For most
purposes, “linear” can be treated as a synonym for “vir-
tual”.

ELRANGE is specified using a base (the BASEADDR
field) and a size (the SIZE) in the enclave’s
SECS (§ 5.1.3). ELRANGE must meet the same con-
straints as a variable memory type range (§ 2.11.4) and as
the PRM range (§ 5.1), namely the size must be a power
of 2, and the base must be aligned to the size. These
restrictions are in place so that the SGX implementation
can inexpensively check whether an address belongs to
an enclave’s ELRANGE, in either hardware (§ 2.11.4) or
software.

When an enclave represents a dynamic library, it is
natural to set ELRANGE to the memory range reserved
for the library by the loader. The ability to access non-
enclave memory from enclave code makes it easy to
reuse existing library code that expects to work with
pointers to memory buffers managed by code in the host
process.

Non-enclave software cannot access PRM memory. A
memory access that resolves inside the PRM results in
an aborted transaction, which is undefined at an archi-
tectural level, On current processors, aborted writes are

60

ignored, and aborted reads return a value whose bits are
all set to 1. This comes into play in the scenario described
above, where an enclave is loaded into a host application
process as a dynamically loaded library. The system soft-
ware maps the enclave’s code and data in ELRANGE
into EPC pages. If application software attempts to ac-
cess memory inside ELRANGE, it will experience the
abort transaction semantics. The current semantics do
not cause the application to crash (e.g., due to a Page
Fault), but also guarantee that the host application will
not be able to tamper with the enclave or read its private
information.

5.2.2 SGX Enclave Attributes

The execution environment of an enclave is heavily in-
fluenced by the value of the ATTRIBUTES field in the
enclave’s SECS (§ 5.1.3). The rest of this work will refer
to the field’s sub-fields, shown in Table 14, as enclave
attributes.

Field Bits Description
DEBUG 1 Opts into enclave debugging

features.
XFRM 64 The value of XCR0 (§ 2.6)

while this enclave’s code is
executed.

MODE64BIT 1 Set for 64-bit enclaves.

Table 14: An enclave’s attributes are the sub-fields in the AT-
TRIBUTES field of the enclave’s SECS. This table shows a subset of
the attributes defined in the SGX documentation.

The most important attribute, from a security perspec-
tive, is the DEBUG flag. When this flag is set, it enables
the use of SGX’s debugging features for this enclave.
These debugging features include the ability to read and
modify most of the enclave’s memory. Therefore, DE-
BUG should only be set in a development environment,
as it causes the enclave to lose all the SGX security guar-
antees.

SGX guarantees that enclave code will always run
with the XCR0 register (§ 2.6) set to the value indicated
by extended features request mask (XFRM). Enclave au-
thors are expected to use XFRM to specify the set of
architectural extensions enabled by the compiler used to
produce the enclave’s code. Having XFRM be explicitly
specified allows Intel to design new architectural exten-
sions that change the semantics of existing instructions,
such as Memory Protection Extensions (MPX), without
having to worry about the security implications on en-
clave code that was developed without an awareness of

the new features.
The MODE64BIT flag is set to true for enclaves that

use the 64-bit Intel architecture. From a security stand-
point, this flag should not even exist, as supporting a
secondary architecture adds unnecessary complexity to
the SGX implementation, and increases the probability
that security vulnerabilities will creep in. It is very likely
that the 32-bit architecture support was included due to
Intel’s strategy of offering extensive backwards compati-
bility, which has paid off quite well so far.

In the interest of mental sanity, this work does
not analyze the behavior of SGX for enclaves whose
MODE64BIT flag is cleared. However, a security re-
searcher who wishes to find vulnerabilities in SGX might
study this area.

Last, the INIT flag is always false when the enclave’s
SECS is created. The flag is set to true at a certain point
in the enclave lifecycle, which will be summarized in
§ 5.3.

5.2.3 Address Translation for SGX Enclaves

Under SGX, the operating system and hypervisor are
still in full control of the page tables and EPTs, and
each enclave’s code uses the same address translation
process and page tables (§ 2.5) as its host application.
This minimizes the amount of changes required to add
SGX support to existing system software. At the same
time, having the page tables managed by untrusted sys-
tem software opens SGX up to the address translation
attacks described in § 3.7. As future sections will reveal,
a good amount of the complexity in SGX’s design can
be attributed to the need to prevent these attacks.

SGX’s active memory mapping attacks defense mech-
anisms revolve around ensuring that each EPC page
can only be mapped at a specific virtual address (§ 2.7).
When an EPC page is allocated, its intended virtual ad-
dress is recorded in the EPCM entry for the page, in the
ADDRESS field.

When an address translation (§ 2.5) result is the physi-
cal address of an EPC page, the CPU ensures6 that the
virtual address given to the address translation process
matches the expected virtual address recorded in the
page’s EPCM entry.

SGX also protects against some passive memory map-
ping attacks and fault injection attacks by ensuring that
the access permissions of each EPC page always match
the enclave author’s intentions. The access permissions

6A mismatch triggers a general protection fault (#GP, § 2.8.2).

61

for each EPC page are specified when the page is allo-
cated, and recorded in the readable (R), writable (W),
and executable (X) fields in the page’s EPCM entry,
shown in Table 15.

Field Bits Description
ADDRESS 48 the virtual address used to ac-

cess this page
R 1 allow reads by enclave code
W 1 allow writes by enclave code
X 1 allow execution of code inside

the page, inside enclave

Table 15: The fields in an EPCM entry that indicate the enclave’s
intended virtual memory layout.

When an address translation (§ 2.5) resolves into an
EPC page, the corresponding EPCM entry’s fields over-
ride the access permission attributes (§ 2.5.3) specified in
the page tables. For example, the W field in the EPCM
entry overrides the writable (W) attribute, and the X field
overrides the disable execution (XD) attribute.

It follows that an enclave author must include mem-
ory layout information along with the enclave, in such
a way that the system software loading the enclave will
know the expected virtual memory address and access
permissions for each enclave page. In return, the SGX
design guarantees to the enclave authors that the sys-
tem software, which manages the page tables and EPT,
will not be able to set up an enclave’s virtual address
space in a manner that is inconsistent with the author’s
expectations.

The .so and .dll file formats, which are SGX’s
intended enclave delivery vehicles, already have provi-
sions for specifying the virtual addresses that a software
module was designed to use, as well as the desired access
permissions for each of the module’s memory areas.

Last, a SGX-enabled CPU will ensure that the virtual
memory inside ELRANGE (§ 5.2.1) is mapped to EPC
pages. This prevents the system software from carry-
ing out an address translation attack where it maps the
enclave’s entire virtual address space to DRAM pages
outside the PRM, which do not trigger any of the checks
above, and can be directly accessed by the system soft-
ware.

5.2.4 The Thread Control Structure (TCS)

The SGX design fully embraces multi-core processors.
It is possible for multiple logical processors (§ 2.9.3) to
concurrently execute the same enclave’s code at the same
time, via different threads.

The SGX implementation uses a Thread Control Struc-
ture (TCS) for each logical processor that executes an
enclave’s code. It follows that an enclave’s author must
provision at least as many TCS instances as the maxi-
mum number of concurrent threads that the enclave is
intended to support.

Each TCS is stored in a dedicated EPC page whose
EPCM entry type is PT TCS. The SDM describes the
first few fields in the TCS. These fields are considered
to belong to the architectural part of the structure, and
therefore are guaranteed to have the same semantics on
all the processors that support SGX. The rest of the TCS
is not documented.

The contents of an EPC page that holds a TCS cannot
be directly accessed, even by the code of the enclave that
owns the TCS. This restriction is similar to the restric-
tion on accessing EPC pages holding SECS instances.
However, the architectural fields in a TCS can be read by
enclave debugging instructions.

The architectural fields in the TCS lay out the context
switches (§ 2.6) performed by a logical processor when
it transitions between executing non-enclave and enclave
code.

For example, the OENTRY field specifies the value
loaded in the instruction pointer (RIP) when the TCS is
used to start executing enclave code, so the enclave au-
thor has strict control over the entry points available to en-
clave’s host application. Furthermore, the OFSBASGX
and OFSBASGX fields specify the base addresses loaded
in the FS and GS segment registers (§ 2.7), which typi-
cally point to Thread Local Storage (TLS).

5.2.5 The State Save Area (SSA)

When the processor encounters a hardware excep-
tion (§ 2.8.2), such as an interrupt (§ 2.12), while exe-
cuting the code inside an enclave, it performs a privilege
level switch (§ 2.8.2) and invokes a hardware exception
handler provided by the system software. Before ex-
ecuting the exception handler, however, the processor
needs a secure area to store the enclave code’s execution
context (§ 2.6), so that the information in the execution
context is not revealed to the untrusted system software.

In the SGX design, the area used to store an enclave
thread’s execution context while a hardware exception is
handled is called a State Save Area (SSA), illus-
trated in Figure 62. Each TCS references a contiguous se-
quence of SSAs. The offset of the SSA array (OSSA) field
specifies the location of the first SSA in the enclave’s
virtual address space. The number of SSAs (NSSA) field

62

indicates the number of available SSAs.

TCS 1

001000

SECS

SSA 1 Page 1
SSA 1 Page 2
SSA 1 Page 3
SSA 2 Page 1
SSA 2 Page 2
SSA 2 Page 3

NSSA 2
OSSA

OENTRY
OFSBASGX
OGSBASGX

01D038

Thread 1 TLS

008000

SSAFRAMESIZE 3

TCS 2
⋮

Code Pages

Data Pages

_main

RWC3F000 PT_REG

⋮⋮ ⋮

RWXC1D000 PT_REG

RWX

RWX

RW
RW

⋮

RW

R

RW
RW
RW

RW

PTADDRESS
PT_SECS0

C04000

C02000

C05000

C01000

⋮

C1C000

C00000

C03000

C09000

C06000

C08000
C07000

PT_REG

PT_TCS
⋮

PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_REG
PT_TCS
PT_REG

BASEADDR C00000
SIZE 40000

EPCM entries

Enclave virtual
address space

ELF / PE Header

Figure 62: A possible layout of an enclave’s virtual address space.
Each enclave has a SECS, and one TCS per supported concurrent
thread. Each TCS points to a sequence of SSAs, and specifies initial
values for RIP and for the base addresses of FS and GS.

Each SSA starts at the beginning of an EPC page, and
uses up the number of EPC pages that is specified in the
SSAFRAMESIZE field of the enclave’s SECS. These
alignment and size restrictions most likely simplify the
SGX implementation by reducing the number of special
cases that it needs to handle.

An enclave thread’s execution context consists of
the general-purpose registers (GPRs) and the result of
the XSAVE instruction (§ 2.6). Therefore, the size of
the execution context depends on the requested-feature
bitmap (RFBM) used by to XSAVE. All the code in an
enclave uses the same RFBM, which is declared in the
XFRM enclave attribute (§ 5.2.2). The number of EPC
pages reserved for each SSA, specified in SSAFRAME-
SIZE, must7 be large enough to fit the XSAVE output for
the feature bitmap specified by XFRM.

SSAs are stored in regular EPC pages, whose EPCM
page type is PT REG. Therefore, the SSA contents is
accessible to enclave software. The SSA layout is archi-

7ECREATE (§ 5.3.1) fails if SSAFRAMESIZE is too small.

tectural, and is completely documented in the SDM. This
opens up possibilities for an enclave exception handler
that is invoked by the host application after a hardware
exception occurs, and acts upon the information in a
SSA.

5.3 The Life Cycle of an SGX Enclave
An enclave’s life cycle is deeply intertwined with re-
source management, specifically the allocation of EPC
pages. Therefore, the instructions that transition between
different life cycle states can only be executed by the
system software. The system software is expected to
expose the SGX instructions described below as enclave
loading and teardown services.

The following subsections describe the major steps in
an enclave’s lifecycle, which is illustrated by Figure 63.

Uninitialized

Initialized
Not in use

Non-
existing ECREATE

Initialized
In use

EINIT

EENTER
ERESUME

EEXIT
AEX

EREMOVE

EADD
EEXTEND

EBLOCK
ETRACK

ELDU, ELDB
EWB

EBLOCK
ETRACK

ELDU, ELDB

EGETKEY
EREPORT

Figure 63: The SGX enclave life cycle management instructions
and state transition diagram

5.3.1 Creation

An enclave is born when the system software issues the
ECREATE instruction, which turns a free EPC page into
the SECS (§ 5.1.3) for the new enclave.
ECREATE initializes the newly created SECS using

the information in a non-EPC page owned by the system
software. This page specifies the values for all the SECS
fields defined in the SDM, such as BASEADDR and
SIZE, using an architectural layout that is guaranteed to
be preserved by future implementations.

While is very likely that the actual SECS layout used
by initial SGX implementations matches the architec-
tural layout quite closely, future implementations are
free to deviate from this layout, as long as they main-
tain the ability to initialize the SECS using the archi-
tectural layout. Software cannot access an EPC page
that holds a SECS, so it cannot become dependent on
an internal SECS layout. This is a stronger version of

63

the encapsulation used in the Virtual Machine Control
Structure (VMCS, § 2.8.3).
ECREATE validates the information used to initialize

the SECS, and results in a page fault (#PF, § 2.8.2) or
general protection fault (#GP, § 2.8.2) if the information
is not valid. For example, if the SIZE field is not a
power of two, ECREATE results in #GP. This validation,
combined with the fact that the SECS is not accessible
by software, simplifies the implementation of the other
SGX instructions, which can assume that the information
inside the SECS is valid.

Last, ECREATE initializes the enclave’s INIT attribute
(sub-field of the ATTRIBUTES field in the enclave’s
SECS, § 5.2.2) to the false value. The enclave’s code
cannot be executed until the INIT attribute is set to true,
which happens in the initialization stage that will be
described in § 5.3.3.

5.3.2 Loading

ECREATE marks the newly created SECS as uninitial-
ized. While an enclave’s SECS is in this state, the system
software can use EADD instructions to load the initial
code and data into the enclave. EADD is used to create
both TCS pages (§ 5.2.4) and regular pages.
EADD reads its input data from a Page Informa-

tion (PAGEINFO) structure, illustrated in Figure 64. The
structure’s contents are only used to communicate in-
formation to the SGX implementation, so it is entirely
architectural and documented in the SDM.

PAGEINFO

SECINFO
SRCPGE
LINADDR
SECS

Enclave and Host Application
Virtual Address Space

SECINFO

R, W, X
FLAGS

PAGE_TYPE

Initial Page Contents

SIZE

SECS
BASEADDR

ELRANGE

New EPC Page

EPCM Entry

ENCLAVESECS
PT
R, W, X
ADDRESS

Figure 64: The PAGEINFO structure supplies input data to SGX
instructions such as EADD.

Currently, the PAGEINFO structure contains the vir-
tual address of the EPC page that will be allocated
(LINADDR), the virtual address of the non-EPC page
whose contents will be copied into the newly allocated
EPC page (SRCPGE), a virtual address that resolves to
the SECS of the enclave that will own the page (SECS),
and values for some of the fields of the EPCM entry asso-
ciated with the newly allocated EPC page (SECINFO).

The SECINFO field in the PAGEINFO structure is ac-
tually a virtual memory address, and points to a Security
Information (SECINFO) structure, some of which is also
illustrated in Figure 64. The SECINFO structure contains
the newly allocated EPC page’s access permissions (R,
W, X) and its EPCM page type (PT REG or PT TCS).
Like PAGEINFO, the SECINFO structure is solely used
to communicate data to the SGX implementation, so its
contents are also entirely architectural. However, most
of the structure’s 64 bytes are reserved for future use.

Both the PAGEINFO and the SECINFO structures
are prepared by the system software that invokes the
EADD instruction, and therefore must be contained in
non-EPC pages. Both structures must be aligned to their
sizes – PAGEINFO is 32 bytes long, so each PAGEINFO
instance must be 32-byte aligned, while SECINFO has 64
bytes, and therefore each SECINFO instance must be 64-
byte aligned. The alignment requirements likely simplify
the SGX implementation by reducing the number of
special cases that must be handled.
EADD validates its inputs before modifying the newly

allocated EPC page or its EPCM entry. Most importantly,
attempting to EADD a page to an enclave whose SECS is
in the initialized state will result in a #GP. Furthermore,
attempting to EADD an EPC page that is already allocated
(the VALID field in its EPCM entry is 1) results in a #PF.
EADD also ensures that the page’s virtual address falls
within the enclave’s ELRANGE, and that all the reserved
fields in SECINFO are set to zero.

While loading an enclave, the system software will
also use the EEXTEND instruction, which updates the
enclave’s measurement used in the software attestation
process. Software attestation is discussed in § 5.8.

5.3.3 Initialization

After loading the initial code and data pages into the
enclave, the system software must use a Launch En-
clave (LE) to obtain an EINIT Token Structure, via an
under-documented process that will be described in more
detail in § 5.9.1. The token is then provided to the EINIT
instruction, which marks the enclave’s SECS as initial-

64

ized.
The LE is a privileged enclave provided by Intel, and

is a prerequisite for the use of enclaves authored by
parties other than Intel. The LE is an SGX enclave,
so it must be created, loaded and initialized using the
processes described in this section. However, the LE is
cryptographically signed (§ 3.1.3) with a special Intel
key that is hard-coded into the SGX implementation, and
that causes EINIT to initialize the LE without checking
for a valid EINIT Token Structure.

When EINIT completes successfully, it sets the en-
clave’s INIT attribute to true. This opens the way for ring
3 (§ 2.3) application software to execute the enclave’s
code, using the SGX instructions described in § 5.4. On
the other hand, once INIT is set to true, EADD cannot be
invoked on that enclave anymore, so the system software
must load all the pages that make up the enclave’s initial
state before executing the EINIT instruction.

5.3.4 Teardown

After the enclave has done the computation it was de-
signed to perform, the system software executes the
EREMOVE instruction to deallocate the EPC pages used
by the enclave.
EREMOVE marks an EPC page as available by setting

the VALID field of the page’s EPCM entry to 0 (zero).
Before freeing up the page, EREMOVE makes sure that
there is no logical processor executing code inside the
enclave that owns the page to be removed.

An enclave is completely destroyed when the EPC
page holding its SECS is freed. EREMOVE refuses to
deallocate a SECS page if it is referenced by any other
EPCM entry’s ENCLAVESECS field, so an enclave’s
SECS page can only be deallocated after all the enclave’s
pages have been deallocated.

5.4 The Life Cycle of an SGX Thread
Between the time when an enclave is initialized (§ 5.3.3)
and the time when it is torn down (§ 5.3.4), the enclave’s
code can be executed by any application process that has
the enclave’s EPC pages mapped into its virtual address
space.

When executing the code inside an enclave, a logical
processor is said to be in enclave mode, and the code
that it executes can access the regular (PT REG, § 5.1.2)
EPC pages that belong to the currently executing en-
clave. When a logical process is outside enclave mode,
it bounces any memory accesses inside the Processor
Reserved Memory range (PRM, § 5.1), which includes
the EPC.

Each logical processor that executes enclave code uses
a Thread Control Structure (TCS, § 5.2.4). When a TCS
is used by a logical processor, it is said to be busy, and it
cannot be used by any other logical processor. Figure 65
illustrates the instructions used by a host process to ex-
ecute enclave code and their interactions with the TCS
that they target.

Logical Processor in
Enclave Mode

TCS Busy
CSSA = 0

TCS Available
CSSA = 0 EENTER

TCS Busy
CSSA = 1

TCS Available
CSSA = 1

EEXIT

AEXERESUME

EENTER
EEXIT

TCS Available
CSSA = 2

AEXERESUME

Figure 65: The stages of the life cycle of an SGX Thread Control
Structure (TCS) that has two State Save Areas (SSAs).

Assuming that no hardware exception occurs, an en-
clave’s host process uses the EENTER instruction, de-
scribed in § 5.4.1, to execute enclave code. When the en-
clave code finishes performing its task, it uses the EEXIT
instruction, covered in § 5.4.2, to return the execution
control to the host process that invoked the enclave.

If a hardware exception occurs while a logical proces-
sor is in enclave mode, the processor is taken out of en-
clave mode using an Asynchronous Enclave Exit (AEX),
summarized in § 5.4.3, before the system software’s ex-
ception handler is invoked. After the system software’s
handler is invoked, the enclave’s host process can use
the ERESUME instruction, described in § 5.4.4, to re-
enter the enclave and resume the computation that it was
performing.

5.4.1 Synchronous Enclave Entry

At a high level, EENTER performs a controlled jump into
enclave code, while performing the processor configura-
tion that is needed by SGX’s security guarantees. Going
through all the configuration steps is a tedious exercise,
but it a necessary prerequisite to understanding how all
data structures used by SGX work together. For this
reason, EENTER and its siblings are described in much
more detail than the other SGX instructions.
EENTER, illustrated in Figure 66 can only be exe-

65

cuted by unprivileged application software running at
ring 3 (§ 2.3), and results in an undefined instruction
(#UD) fault if is executed by system software.

OENTRY

OFSBASGX

TCS
Reserved

OSSA
CSSA

OGSBASGX

FSLIMIT
GSLIMIT

XFRM
BASEADDR
SSAFRAMESIZE
SECS

PT

TCS EPCM Entry
ENCLAVESECS
R, W, X, PT

XCR0

RCX
RBP

GS

FS

RBX
RIP

RSP
Input Register File

GPRSGX
XSAVE
AEP
U_RBP
U_RSP
SSA

+

x

RCX

FS

GS
RIP

XCR0

Output
Register File

Limit Base

+

+

Limit Base

SelectorTypeBase Limit

CR_SAVE_XCR0

CR_SAVE_FS

CR_SAVE_GS

SelectorTypeBase Limit

+

WriteRead

Figure 66: Data flow diagram for a subset of the logic in EENTER.
The figure omits the logic for disabling debugging features, such as
hardware breakpoints and performance monitoring events.

EENTER switches the logical processor to en-
clave mode, but does not perform a privilege level
switch (§ 2.8.2). Therefore, enclave code always exe-
cutes at ring 3, with the same privileges as the application
code that calls it. This makes it possible for an infras-
tructure owner to allow user-supplied software to create
and use enclaves, while having the assurance that the OS
kernel and hypervisor can still protect the infrastructure
from buggy or malicious software.
EENTER takes the virtual address of a TCS as its input,

and requires that the TCS is available (not busy), and that
at least one State Save Area (SSA, § 5.2.5) is available
in the TCS. The latter check is implemented by making
sure that the current SSA index (CSSA) field in the TCS
is less than the number of SSAs (NSSA) field. The SSA
indicated by the CSSA, which shall be called the current
SSA, is used in the event that a hardware exception occurs

while enclave code is executed.
EENTER transitions the logical processor into enclave

mode, and sets the instruction pointer (RIP) to the value
indicated by the entry point offset (OENTRY) field in
the TCS that it receives. EENTER is used by an un-
trusted caller to execute code in a protected environment,
and therefore has the same security considerations as
SYSCALL (§ 2.8), which is used to call into system soft-
ware. Setting RIP to the value indicated by OENTRY
guarantees to the enclave author that the enclave code
will only be invoked at well defined points, and prevents
a malicious host application from bypassing any security
checks that the enclave author may perform.
EENTER also sets XCR0 (§ 2.6), the register that con-

trols which extended architectural features are in use, to
the value of the XFRM enclave attribute (§ 5.2.2). En-
suring that XCR0 is set according to the enclave author’s
intentions prevents a malicious operating system from
bypassing an enclave’s security by enabling architectural
features that the enclave is not prepared to handle.

Furthermore, EENTER loads the bases of the segment
registers (§ 2.7) FS and GS using values specified in the
TCS. The segments’ selectors and types are hard-coded
to safe values for ring 3 data segments. This aspect of
the SGX design makes it easy to implement per-thread
Thread Local Storage (TLS). For 64-bit enclaves, this is
a convenience feature rather than a security measure, as
enclave code can securely load new bases into FS and
GS using the WRFSBASE and WRGSBASE instructions.

The EENTER implementation backs up the old val-
ues of the registers that it modifies, so they can be re-
stored when the enclave finishes its computation. Just
like SYSCALL, EEENTER saves the address of the fol-
lowing instruction in the RCX register.

Interestingly, the SDM states that the old values of the
XCR0, FS, and GS registers are saved in new registers
dedicated to the SGX implementation. However, given
that they will only be used on an enclave exit, we expect
that the registers are saved in DRAM, in the reserved
area in the TCS.

Like SYSCALL, EENTER does not modify the stack
pointer register (RSP). To avoid any security exploits,
enclave code should set RSP to point to a stack area
that is entirely contained in EPC pages. Multi-threaded
enclaves can easily implement per-thread stack areas by
setting up each thread’s TLS area to include a pointer
to the thread’s stack, and by setting RSP to the value
obtained by reading the TLS area at which the FS or GS
segment points.

66

Last, when EENTER enters enclave mode, it suspends
some of the processor’s debugging features, such as
hardware breakpoints and Precise Event Based Sam-
pling (PEBS). Conceptually, a debugger attached to the
host process sees the enclave’s execution as one single
processor instruction.

5.4.2 Synchronous Enclave Exit

EEXIT can only be executed while the logical processor
is in enclave mode, and results in a (#UD) if executed
in any other circumstances. In a nutshell, the instruction
returns the processor to ring 3 outside enclave mode
and restores the registers saved by EENTER, which were
described above.

Unlike SYSRET, EEXIT sets RIP to the value read
from RBX, after exiting enclave mode. This is inconsis-
tent with EENTER, which saves the RIP value to RCX.
Unless this inconsistency stems from an error in the
SDM, enclave code must be sure to note the difference.

The SDM explicitly states that EEXIT does not mod-
ify most registers, so enclave authors must make sure to
clear any secrets stored in the processor’s registers before
returning control to the host process. Furthermore, en-
clave software will most likely cause a fault in its caller
if it doesn’t restore the stack pointer RSP and the stack
frame base pointer RBP to the values that they had when
EENTER was called.

It may seem unfortunate that enclave code can induce
faults in its caller. For better or for worse, this perfectly
matches the case where an application calls into a dynam-
ically loaded module. More specifically, the module’s
code is also responsible for preserving stack-related reg-
isters, and a buggy module might jump anywhere in the
application code of the host process.

This section describes the EENTER behavior for 64-
bit enclaves. The EENTER implementation for 32-bit
enclaves is significantly more complex, due to the extra
special cases introduced by the full-fledged segmentation
model that is still present in the 32-bit Intel architecture.
As stated in the introduction, we are not interested in
such legacy aspects.

5.4.3 Asynchronous Enclave Exit (AEX)

If a hardware exception, like a fault (§ 2.8.2) or an in-
terrupt (§ 2.12), occurs while a logical processor is ex-
ecuting an enclave’s code, the processor performs an
Asynchronous Enclave Exit (AEX) before invoking the
system software’s exception handler, as shown in Fig-
ure 67.

 ERESUME

 return SUCCESS;
}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable
exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave
 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from
 FS:TLS

 EEXIT

RCX set by
 EENTER

CSSA
TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS
RSP
RFLAGS
CS
RIP

GPRs

Ring 0
Stack

No

 restore GPRs
 handle exception

}

System Software
Hardware Exception Handler
void handler() {

 save GPRs

 IRET

Synchronous
Execution Path

AEX Path

Registers
cleared
by AEX

Figure 67: If a hardware exception occurs during enclave execution,
the synchronous execution path is aborted, and an Asynchronous
Enclave Exit (AEX) occurs instead.

The AEX saves the enclave code’s execution con-
text (§ 2.6), restores the state saved by EENTER, and
sets up the processor registers so that the system soft-
ware’s hardware exception handler will return to an asyn-
chronous exit handler in the enclave’s host process. The
exit handler is expected to use the ERESUME instruction
to resume the enclave computation that was interrupted
by the hardware exception.

Asides from the behavior described in § 5.4.1,
EENTER also writes some information to the current
SSA, which is only used if an AEX occurs. As shown
in Figure 66, EENTER stores the stack pointer register
RSP and the stack frame base pointer register RBP into
the U RSP and U RBP fields in the current SSA. Last,
EENTER stores the value in RCX in the Asynchronous
Exit handler Pointer (AEP) field in the current SSA.

When a hardware exception occurs in enclave mode,
the SGX implementation performs a sequence of steps
that takes the logical processor out of enclave mode and
invokes the hardware exception handler in the system
software. Conceptually, the SGX implementation first

67

performs an AEX to take the logical processor out of en-
clave mode, and then the hardware exception is handled
using the standard Intel architecture’s behavior described
in § 2.8.2. Actual Intel processors may interleave the
AEX implementation with the exception handling imple-
mentation. However, for simplicity, this work describes
AEX as a separate process that is performed before any
exception handling steps are taken.

In the Intel architecture, if a hardware exception oc-
curs, the application code’s execution context can be read
and modified by the system software’s exception handler
(§ 2.8.2). This is acceptable when the system software
is trusted by the application software. However, under
SGX’s threat model, the system software is not trusted
by enclaves. Therefore, the AEX step erases any secrets
that may exist in the execution state by resetting all its
registers to predefined values.

Before the enclave’s execution state is reset, it is
backed up inside the current SSA. Specifically, an AEX
backs up the general purpose registers (GPRs, § 2.6)
in the GPRSGX area in the SSA, and then performs
an XSAVE (§ 2.6) using the requested-feature bitmap
(RFBM) specified in the XFRM field in the enclave’s
SECS. As each SSA is entirely stored in EPC pages al-
located to the enclave, the system software cannot read
or tamper with the backed up execution state. When an
SSA receives the enclave’s execution state, it is marked
as used by incrementing the CSSA field in the current
TCS.

After clearing the execution context, the AEX process
sets RSP and RBP to the values saved by EENTER in
the current SSA, and sets RIP to the value in the current
SSA’s AEP field. This way, when the system software’s
hardware exception handler completes, the processor
will execute the asynchronous exit handler code in the
enclave’s host process. The SGX design makes it easy
to set up the asynchronous handler code as an exception
handler in the routine that contains the EENTER instruc-
tion, because the RSP and RBP registers will have the
same values as they had when EENTER was executed.

Many of the actions taken by AEX to get the logical
processor outside of enclave mode match EEXIT. The
segment registers FS and GS are restored to the values
saved by EENTER, and all the debugging facilities that
were suppressed by EENTER are restored to their previ-
ous states.

5.4.4 Recovering from an Asynchronous Exit

When a hardware exception occurs inside enclave mode,
the processor performs an AEX before invoking the ex-
ception’s handler set up by the system software. The
AEX sets up the execution context in such a way that
when the system software finishes processing the excep-
tion, it returns into an asynchronous exit handler in the
enclave’s host process. The asynchronous exception han-
dler usually executes the ERESUME instruction, which
causes the logical processor to go back into enclave mode
and continue the computation that was interrupted by the
hardware exception.
ERESUME shares much of its functionality with

EENTER. This is best illustrated by the similarity be-
tween Figures 68 and 67.

 ERESUME

 return SUCCESS;
}

 store call results

Application Code

 store call results

 }

 return ERROR;

 try {

int call() {

 prepare call arguments

 EENTER

 } catch (AEX e) {

Resumable
exception?

RCX: AEP RBX: TCS

RCX: AEP RBX: TCS

Yes

 perform enclave
 computation

 PUSH RCX

}

Enclave Code

 POP RBX

void entry() {

 read ESP from
 FS:TLS

 EEXIT

RCX set by
 ERESUME

CSSA
TCS

OENTRY

XSAVE

U_RSP

AEP

SSA

GPRSGX

U_RBP

AEX

Code

SS
RSP
RFLAGS
CS
RIP

GPRs

Ring 0
Stack

No

 restore GPRs
 handle exception

}

System Software
Hardware Exception Handler
void handler() {

 save GPRs

 IRET

Synchronous
Execution Path

AEX Path

Registers
cleared
by AEX

Figure 68: If a hardware exception occurs during enclave execution,
the synchronous execution path is aborted, and an Asynchronous
Enclave Exit (AEX) occurs instead.

EENTER and ERESUME receive the same inputs,
namely a pointer to a TCS, described in § 5.4.1, and
an AEP, described in § 5.4.3. The most common appli-
cation design will pair each EENTER instance with an
asynchronous exit handler that invokes ERESUME with
exactly the same arguments.

68

The main difference between ERESUME and EENTER
is that the former uses an SSA that was “filled out” by
an AEX (§ 5.4.3), whereas the latter uses an empty SSA.
Therefore, ERESUME results in a #GP fault if the CSSA
field in the provided TCS is 0 (zero), whereas EENTER
fails if CSSA is greater than or equal to NSSA.

When successful, ERESUME decrements the CSSA
field of the TCS, and restores the execution context
backed up in the SSA pointed to by the CSSA field
in the TCS. Specifically, the ERESUME implementation
restores the GPRs (§ 2.6) from the GPRSGX field in
the SSA, and performs an XRSTOR (§ 2.6) to load the
execution state associated with the extended architectural
features used by the enclave.
ERESUME shares the following behavior with

EENTER (§ 5.4.1). Both instructions write the U RSP,
U RBP, and AEP fields in the current SSA. Both instruc-
tions follow the same process for backing up XCR0 and
the FS and GS segment registers, and set them to the
same values, based on the current TCS and its enclave’s
SECS. Last, both instructions disable the same subset of
the logical processor’s debugging features.

An interesting edge case that ERESUME handles cor-
rectly is that it sets XCR0 to the XFRM enclave at-
tribute before performing an XRSTOR. It follows that
ERESUME fails if the requested feature bitmap (RFBM)
in the SSA is not a subset of XFRM. This matters be-
cause, while an AEX will always use the XFRM value
as the RFBM, enclave code executing on another thread
is free to modify the SSA contents before ERESUME is
called.

The correct sequencing of actions in the ERESUME im-
plementation prevents a malicious application from using
an enclave to modify registers associated with extended
architectural features that are not declared in XFRM.
This would break the system software’s ability to provide
thread-level execution context isolation.

5.5 EPC Page Eviction

Modern OS kernels take advantage of address transla-
tion (§ 2.5) to implement page swapping, also referred
to as paging (§ 2.5). In a nutshell, paging allows the OS
kernel to over-commit the computer’s DRAM by evicting
rarely used memory pages to a slower storage medium
called the disk.

Paging is a key contributor to utilizing a computer’s
resources effectively. For example, a desktop system
whose user runs multiple programs concurrently can
evict memory pages allocated to inactive applications

without a significant degradation in user experience.
Unfortunately, the OS cannot be allowed to evict an

enclave’s EPC pages via the same methods that are used
to implement page swapping for DRAM memory outside
the PRM range. In the SGX threat model, enclaves do
not trust the system software, so the SGX design offers
an EPC page eviction method that can defend against
a malicious OS that attempts any of the active address
translation attacks described in § 3.7.

The price of the security afforded by SGX is that an
OS kernel that supports evicting EPC pages must use
a modified page swapping implementation that inter-
acts with the SGX mechanisms. Enclave authors can
mostly ignore EPC evictions, similarly to how today’s
application developers can ignore the OS kernel’s paging
implementation.

As illustrated in Figure 69, SGX supports evicting
EPC pages to DRAM pages outside the PRM range. The
system software is expected to use its existing page swap-
ping implementation to evict the contents of these pages
out of DRAM and onto a disk.

HDD / SSD

DRAM DRAM

EWB

ELDU,
ELDB

classical
page

swapping

Enclave
Memory

Non-PRM
Memory

Disk

EPC

Figure 69: SGX offers a method for the OS to evict EPC pages into
non-PRM DRAM. The OS can then use its standard paging feature
to evict the pages out of DRAM.

SGX’s eviction feature revolves around the EWB in-
struction, described in detail in § 5.5.4. Essentially, EWB
evicts an EPC page into a DRAM page outside the EPC
and marks the EPC page as available, by zeroing the
VALID field in the page’s EPCM entry.

The SGX design relies on symmetric key cryp-
tograpy 3.1.1 to guarantee the confidentiality and in-
tegrity of the evicted EPC pages, and on nonces (§ 3.1.4)
to guarantee the freshness of the pages brought back
into the EPC. These nonces are stored in Version Ar-
rays (VAs), covered in § 5.5.2, which are EPC pages
dedicated to nonce storage.

Before an EPC page is evicted and freed up for use
by other enclaves, the SGX implementation must ensure
that no TLB has address translations associated with the

69

evicted page, in order to avoid the TLB-based address
translation attack described in § 3.7.4.

As explained in § 5.1.1, SGX leaves the system soft-
ware in charge of managing the EPC. It naturally follows
that the SGX instructions described in this section, which
are used to implement EPC paging, are only available to
system software, which runs at ring 0 § 2.3.

In today’s software stacks (§ 2.3), only the OS ker-
nel implements page swapping in order to support the
over-committing of DRAM. The hypervisor is only used
to partition the computer’s physical resources between
operating systems. Therefore, this section is written with
the expectation that the OS kernel will also take on the
responsibility of EPC page swapping. For simplicity,
we often use the term “OS kernel” instead of “system
software”. The reader should be aware that the SGX
design does not preclude a system where the hypervisor
implements its own EPC page swapping. Therefore, “OS
kernel” should really be read as “the system software
that performs EPC paging”.

5.5.1 Page Eviction and the TLBs

One of the least promoted accomplishments of SGX is
that it does not add any security checks to the memory
execution units (§ 2.9.4, § 2.10). Instead, SGX’s access
control checks occur after an address translation (§ 2.5)
is performed, right before the translation result is written
into the TLBs (§ 2.11.5). This aspect is generally down-
played throughout the SDM, but it becomes visible when
explaining SGX’s EPC page eviction mechanism.

A full discussion of SGX’s memory access protections
checks merits its own section, and is deferred to § 6.2.
The EPC page eviction mechanisms can be explained
using only two requirements from SGX’s security model.
First, when a logical processor exits an enclave, either
via EEXIT (§ 5.4.2) or via an AEX (§ 5.4.3), its TLBs
are flushed. Second, when an EPC page is deallocated
from an enclave, all logical processors executing that
enclave’s code must be directed to exit the enclave. This
is sufficient to guarantee the removal of any TLB entry
targeting the deallocated EPC.

System software can cause a logical processor to exit
an enclave by sending it an Inter-Processor Interrupt
(IPI, § 2.12), which will trigger an AEX when received.
Essentially, this is a very coarse-grained TLB shootdown.

SGX does not trust system software. Therefore, be-
fore marking an EPC page’s EPCM entry as free, the
SGX implementation must ensure that the OS kernel has
flushed all the TLBs that might contain translations for

the page. Furthermore, performing IPIs and TLB flushes
for each page eviction would add a significant overhead
to a paging implementation, so the SGX design allows
a batch of pages to be evicted using a single IPI / TLB
flush sequence.

The TLB flush verification logic relies on a 1-bit
EPCM entry field called BLOCKED. As shown in Fig-
ure 70, the VALID and BLOCKED fields yield three
possible EPC page states. A page is free when both bits
are zero, in use when VALID is one and BLOCKED is
zero, and blocked when both bits are one.

Blocked
BLOCKED = 1

VALID = 1

In Use
BLOCKED = 0

VALID = 1
EBLOCK

Free
BLOCKED = 0

VALID = 0

EWBEREMOVE

ELDU

EREMOVE

ECREATE,
EADD, EPA

ELDB

Figure 70: The VALID and BLOCKED bits in an EPC page’s
EPCM entry can be in one of three states. EADD and its siblings
allocate new EPC pages. EREMOVE permanently deallocates an EPC
page. EBLOCK blocks an EPC page so it can be evicted using EWB.
ELDB and ELDU load an evicted page back into the EPC.

Blocked pages are not considered accessible to en-
claves. If an address translation results in a blocked EPC
page, the SGX implementation causes the translation to
result in a Page Fault (#PF, § 2.8.2). This guarantees that
once a page is blocked, the CPU will not create any new
TLB entries pointing to it.

Furthermore, every SGX instruction makes sure that
the EPC pages on which it operates are not blocked. For
example, EENTER ensures that the TCS it is given is not
blocked, that its enclave’s SECS is not blocked, and that
every page in the current SSA is not blocked.

In order to evict a batch of EPC pages, the OS kernel
must first issue EBLOCK instructions targeting them. The
OS is also expected to remove the EPC page’s mapping
from page tables, but is not trusted to do so.

After all the desired pages have been blocked, the OS
kernel must execute an ETRACK instruction, which di-
rects the SGX implementation to keep track of which log-
ical processors have had their TLBs flushed. ETRACK re-
quires the virtual address of an enclave’s SECS (§ 5.1.3).
If the OS wishes to evict a batch of EPC pages belonging
to multiple enclaves, it must issue an ETRACK for each
enclave.

70

Following the ETRACK instructions, the OS kernel
must induce enclave exits on all the logical processors
that are executing code inside the enclaves that have been
ETRACKed. The SGX design expects that the OS will
use IPIs to cause AEXs in the logical processors whose
TLBs must be flushed.

The EPC page eviction process is completed when the
OS executes an EWB instruction for each EPC page to be
evicted. This instruction, which will be fully described
in § 5.5.4, writes an encrypted version of the EPC page
to be evicted into DRAM, and then frees the page by
clearing the VALID and BLOCKED bits in its EPCM
entry. Before carrying out its tasks, EWB ensures that the
EPC page that it targets has been blocked, and checks the
state set up by ETRACK to make sure that all the relevant
TLBs have been flushed.

An evicted page can be loaded back into the EPC via
the ELDU and ELDB instructions. Both instructions start
up with a free EPC page and a DRAM page that has the
evicted contents of an EPC page, decrypt the DRAM
page’s contents into the EPC page, and restore the cor-
responding EPCM entry. The only difference between
ELDU and ELDB is that the latter sets the BLOCKED bit
in the page’s EPCM entry, whereas the former leaves it
cleared.
ELDU and ELDB resemble ECREATE and EADD, in

the sense that they populate a free EPC page. Since
the page that they operate on was free, the SGX secu-
rity model predicates that no TLB entries can possibly
target it. Therefore, these instructions do not require a
mechanism similar to EBLOCK or ETRACK.

5.5.2 The Version Array (VA)

When EWB evicts the contents of an EPC, it creates an
8-byte nonce (§ 3.1.4) that Intel’s documentation calls a
page version. SGX’s freshness guarantees are built on the
assumption that nonces are stored securely, so EWB stores
the nonce that it creates inside a Version Array (VA).

Version Arrays are EPC pages that are dedicated to
storing nonces generated by EWB. Each VA is divided
into slots, and each slot is exactly large enough to store
one nonce. Given that the size of an EPC page is 4KB,
and each nonce occupies 8 bytes, it follows that each VA
has 512 slots.

VA pages are allocated using the EPA instruction,
which takes in the virtual address of a free EPC page, and
turns it into a Version Array with empty slots. VA pages
are identified by the PT VA type in their EPCM entries.
Like SECS pages, VA pages have the ENCLAVEAD-

DRESS fields in their EPCM entries set to zero, and
cannot be accessed directly by any software, including
enclaves.

Unlike the other page types discussed so far, VA pages
are not associated with any enclave. This means they
can be deallocated via EREMOVE without any restriction.
However, freeing up a VA page whose slots are in use ef-
fectively discards the nonces in those slots, which results
in losing the ability to load the corresponding evicted
pages back into the EPC. Therefore, it is unlikely that a
correct OS implementation will ever call EREMOVE on a
VA with non-free slots.

According to the pseudo-code for EPA and EWB in the
SDM, SGX uses the zero value to represent the free slots
in a VA, implying that all the generated nonces have to
be non-zero. This also means that EPA initializes a VA
simply by zeroing the underlying EPC page. However,
since software cannot access a VA’s contents, neither the
use of a special value, nor the value itself is architectural.

5.5.3 Enclave IDs

The EWB and ELDU / ELDB instructions use an en-
clave ID (EID) to identify the enclave that owns an
evicted page. The EID has the same purpose as the EN-
CLAVESECS (§ 5.1.2) field in an EPCM entry, which is
also used to identify the enclave that owns an EPC page.
This section explains the need for having two values rep-
resent the same concept by comparing the two values
and their uses.

The SDM states that ENCLAVESECS field in an
EPCM entry is used to identify the SECS of the enclave
owning the associated EPC page, but stops short of de-
scribing its format. In theory, the ENCLAVESECS field
can change its representation between SGX implemen-
tations since SGX instructions never expose its value to
software.

However, we will later argue that the most plausible
representation of the ENCLAVESECS field is the phys-
ical address of the enclave’s SECS. Therefore, the EN-
CLAVESECS value associated with a given enclave will
change if the enclave’s SECS is evicted from the EPC
and loaded back at a different location. It follows that the
ENCLAVESECS value is only suitable for identifying
an enclave while its SECS remains in the EPC.

According to the SDM, the EID field is a 64-bit field
stored in an enclave’s SECS. ECREATE’s pseudocode
in the SDM reveals that an enclave’s ID is generated
when the SECS is allocated, by atomically incrementing
a global counter. Assuming that the counter does not roll

71

over8, this process guarantees that every enclave created
during a power cycle has a unique EID.

Although the SDM does not specifically guarantee
this, the EID field in an enclave’s SECS does not appear
to be modified by any instruction. This makes the EID’s
value suitable for identifying an enclave throughout its
lifetime, even across evictions of its SECS page from the
EPC.

5.5.4 Evicting an EPC Page

The system software evicts an EPC page using the EWB
instruction, which produces all the data needed to restore
the evicted page at a later time via the ELDU instruction,
as shown in Figure 71.

Untrusted DRAM
⋮

VA page

nonce

⋮

EWB

Encrypted
EPC Page

Page
Metadata

MAC
Tag

⋮
VA page

⋮
EWB source page

⋮

EPC

ELDB target page

⋮

⋮
VA page metadata

⋮
EWB source metadata

⋮

EPCM

ELDB target metadata

⋮

ELDU /
ELDB

Figure 71: The EWB instruction outputs the encrypted contents of
the evicted EPC page, a subset of the fields in the page’s EPCM entry,
a MAC tag, and a nonce. All this information is used by the ELDB or
ELDU instruction to load the evicted page back into the EPC, with
confidentiality, integrity and freshness guarantees.

EWB’s output consists of an encrypted version of the
evicted EPC page’s contents, a subset of the fields in
the EPCM entry corresponding to the page, the nonce
discussed in § 5.5.2, and a message authentication

8A 64-bit counter incremented at 4Ghz would roll over in slightly
more than 136 years

code (MAC, § 3.1.3) tag. With the exception of the
nonce, EWB writes its output in DRAM outside the PRM
area, so the system software can choose to further evict
it to disk.

The EPC page contents is encrypted, to protect the
confidentiality of the enclave’s data while the page is
stored in the untrusted DRAM outside the PRM range.
Without the use of encryption, the system software could
learn the contents of an EPC page by evicting it from the
EPC.

The page metadata is stored in a Page Informa-
tion (PAGEINFO) structure, illustrated in Figure 72. This
structure is similar to the PAGEINFO structure described
in § 5.3.2 and depicted in Figure 64, except that the
SECINFO field has been replaced by a PCMD field,
which contains the virtual address of a Page Crypto Meta-
data (PCMD) structure.

PAGEINFO

PCMD
SRCPGE
LINADDR
SECS

Enclave and Host Application
Virtual Address Space

MAC
ENCLAVEID

PCMD

Encrypted EPC Page

EID
SIZE

SECS
BASEADDR

ELRANGE

EPC Page

EPCM Entry

ENCLAVESECS
PT
R, W, X
ADDRESS

SECINFO

R, W, X
FLAGS

PAGE_TYPE

=

Figure 72: The PAGEINFO structure used by the EWB and ELDU /
ELDB instructions

The LINADDR field in the PAGEINFO structure is
used to store the ADDRESS field in the EPCM entry,
which indicates the virtual address intended for accessing
the page. The PCMD structure embeds the Security Infor-
mation (SECINFO) described in § 5.3.2, which is used
to store the page type (PT) and the access permission
flags (R, W, X) in the EPCM entry. The PCMD structure

72

also stores the enclave’s ID (EID, § 5.5.3). These fields
are later used by ELDU or ELDB to populate the EPCM
entry for the EPC page that is reloaded.

The metadata described above is stored unencrypted,
so the OS has the option of using the information inside
as-is for its own bookkeeping. This has no negative im-
pact on security, because the metadata is not confidential.
In fact, with the exception of the enclave ID, all the meta-
data fields are specified by the system software when
ECREATE is called. The enclave ID is only useful for
identifying the enclave that the EPC page belongs to, and
the system software already has this information as well.

Asides from the metadata described above, the PCMD
structure also stores the MAC tag generated by EWB.
The MAC tag covers the authenticity of the EPC page
contents, the metadata, and the nonce. The MAC tag is
checked by ELDU and ELDB, which will only load an
evicted page back into the EPC if the MAC verification
confirms the authenticity of the page data, metadata, and
nonce. This security check protects against the page
swapping attacks described in § 3.7.3.

Similarly to EREMOVE, EWB will only evict the EPC
page holding an enclave’s SECS if there is no other
EPCM entry whose ENCLAVESECS field references
the SECS. At the same time, as an optimization, the
SGX implementation does not perform ETRACK-related
checks when evicting a SECS. This is safe because a
SECS is only evicted if the EPC has no pages belonging
to the SECS’ enclave, which implies that there isn’t any
TCS belonging to the enclave in the EPC, so no processor
can be executing enclave code.

The pages holding Version Arrays can be evicted, just
like any other EPC page. VA pages are never accessible
by software, so they can’t have any TLB entries point-
ing to them. Therefore, EWB evicts VA pages without
performing any ETRACK-related checks. The ability to
evict VA pages has profound implications that will be
discussed in § 5.5.6.

EWB’s data flow, shown in detail in Figure 73, has
an aspect that can be confusing to OS developers. The
instruction reads the virtual address of the EPC page to
be evicted from a register (RBX) and writes it to the
LINADDR field of the PAGEINFO structure that it is
provided. The separate input (RBX) could have been
removed by providing the EPC page’s address in the
LINADDR field.

TRACKING

SECS
EID

AES-GCM

PCMD (Output)

MAC
reserved fields
ENCLAVEID

SECINFO

reserved fields

PAGE_TYPE

FLAGS
R, W, X

PAGEINFO
(Input/Output)

SECS
PCMD
SRCPGE
LINADDR

LINADDR

MAC_HDR
(Temporary)
EID

EPC Page Address
(Input)

LINADDR
ENCLAVESECS

BLOCKED

VALID

EPCM entry

PT
R, W, X

EPC Page

SECINFO

reserved fields

R, W, X

FLAGS
PAGE_TYPE

non-EPC
Page

MAC

ciphertext

plaintext

Page Version
(Generated) VA slot address

(Input)
⋮

VA page

target VA slot

⋮

counter

MAC data

zero

points to
copied to

Figure 73: The data flow of the EWB instruction that evicts an EPC
page. The page’s content is encrypted in a non-EPC RAM page. A
nonce is created and saved in an empty slot inside a VA page. The
page’s EPCM metadata and a MAC are saved in a separate area in
non-EPC memory.

5.5.5 Loading an Evicted Page Back into EPC

After an EPC page belonging to an enclave is evicted, any
attempt to access the page from enclave code will result
in a Page Fault (#PF, § 2.8.2). The #PF will cause the
logical processor to exit enclave mode via AEX (§ 5.4.3),
and then invoke the OS kernel’s page fault handler.

Page faults receive special handling from the AEX
process. While leaving the enclave, the AEX logic specif-
ically checks if the hardware exception that triggered the
AEX was #PF. If that is the case, the AEX implementa-
tion clears the least significant 12 bits of the CR2 register,
which stores the virtual address whose translation caused
a page fault.

In general, the OS kernel’s page handler needs to be
able to extract the virtual page number (VPN, § 2.5.1)

73

from CR2, so that it knows which memory page needs
to be loaded back into DRAM. The OS kernel may also
be able to use the 12 least significant address bits, which
are not part of the VPN, to better predict the application
software’s memory access patterns. However, unlike the
bits that make up the VPN, the bottom 12 bits are not
absolutely necessary for the fault handler to carry out its
job. Therefore, SGX’s AEX implementation clears these
12 bits, in order to limit the amount of information that
is learned by the page fault handler.

When the OS page fault handler examines the address
in the CR2 register and determines that the faulting ad-
dress is inside the EPC, it is generally expected to use the
ELDU or ELDB instruction to load the evicted page back
into the EPC. If the outputs of EWB have been evicted
from DRAM to a slower storage medium, the OS kernel
will have to read the outputs back into DRAM before
invoking ELDU / ELDB.
ELDU and ELDB verify the MAC tag produced by

EWB, described in § 5.5.4. This prevents the OS kernel
from performing the page swapping-based active address
translation attack described in § 3.7.3.

5.5.6 Eviction Trees

The SGX design allows VA pages to be evicted from
the EPC, just like enclave pages. When a VA page is
evicted from EPC, all the nonces stored by the VA slots
become inaccessible to the processor. Therefore, the
evicted pages associated with these nonces cannot be
restored by ELDB until the OS loads the VA page back
into the EPC.

In other words, an evicted page depends on the VA
page storing its nonce, and cannot be loaded back into
the EPC until the VA page is reloaded as well. The de-
pendency graph created by this relationship is a forest
of eviction trees. An eviction tree, shown in Fig-
ure 74, has enclave EPC pages as leaves, and VA pages
as inner nodes. A page’s parent is the VA page that holds
its nonce. Since EWB always outputs a nonce in a VA
page, the root node of each eviction tree is always a VA
page in the EPC.

A straightforward inductive argument shows that when
an OS wishes to load an evicted enclave page back into
the EPC, it needs to load all the VA pages on the path
from the eviction tree’s root to the leaf corresponding to
the enclave page. Therefore, the number of page loads
required to satisfy a page fault inside the EPC depends
on the shape of the eviction tree that contains the page.

The SGX design leaves the OS in complete control

Encrypted VA
Page

⋮

⋮

Encrypted
EPC Page

Page
Metadata

MAC
Tag

Page
Metadata

MAC
Tag

Encrypted VA
Page

⋮

⋮

⋮

Encrypted
EPC Page

Page
Metadata

MAC
Tag

Page
Metadata

MAC
Tag

Encrypted
EPC Page

Page
Metadata

MAC
Tag

VA Page

⋮

⋮

Figure 74: A version tree formed by evicted VA pages and enclave
EPC pages. The enclave pages are leaves, and the VA pages are
inner nodes. The OS controls the tree’s shape, which impacts the
performance of evictions, but not their correctness.

of the shape of the eviction trees. This has no negative
impact on security, as the tree shape only impacts the
performance of the eviction scheme, and not its correct-
ness.

5.6 SGX Enclave Measurement
SGX implements a software attestation scheme that fol-
lows the general principles outlined in § 3.3. For the
purposes of this section, the most relevant principle is
that a remote party authenticates an enclave based on
its measurement, which is intended to identify the soft-
ware that is executing inside the enclave. The remote
party compares the enclave measurement reported by
the trusted hardware with an expected measurement, and
only proceeds if the two values match.

74

§ 5.3 explains that an SGX enclave is built us-
ing the ECREATE (§ 5.3.1), EADD (§ 5.3.2) and
EEXTEND instructions. After the enclave is initialized
via EINIT (§ 5.3.3), the instructions mentioned above
cannot be used anymore. As the SGX measurement
scheme follows the principles outlined in § 3.3.2, the
measurement of an SGX enclave is obtained by com-
puting a secure hash (§ 3.1.3) over the inputs to the
ECREATE, EADD and EEXTEND instructions used to
create the enclave and load the initial code and data into
its memory. EINIT finalizes the hash that represents the
enclave’s measurement.

Along with the enclave’s contents, the enclave author
is expected to specify the sequence of instructions that
should be used in order to create an enclave whose mea-
surement will match the expected value used by the re-
mote party in the software attestation process. The .so
and .dll dynamically loaded library file formats, which
are SGX’s intended enclave delivery methods, already
include informal specifications for loading algorithms.
We expect the informal loading specifications to serve
as the starting points for specifications that prescribe the
exact sequences of SGX instructions that should be used
to create enclaves from .so and .dll files.

As argued in § 3.3.2, an enclave’s measurement is
computed using a secure hashing algorithm, so the sys-
tem software can only build an enclave that matches an
expected measurement by following the exact sequence
of instructions specified by the enclave’s author.

The SGX design uses the 256-bit SHA-2 [21] secure
hash function to compute its measurements. SHA-2 is
a block hash function (§ 3.1.3) that operates on 64-byte
blocks, uses a 32-byte internal state, and produces a 32-
byte output. Each enclave’s measurement is stored in
the MRENCLAVE field of the enclave’s SECS. The 32-
byte field stores the internal state and final output of the
256-bit SHA-2 secure hash function.

5.6.1 Measuring ECREATE

The ECREATE instruction, overviewed in § 5.3.1, first
initializes the MRENCLAVE field in the newly created
SECS using the 256-bit SHA-2 initialization algorithm,
and then extends the hash with the 64-byte block depicted
in Table 16.

The enclave’s measurement does not include the
BASEADDR field. The omission is intentional, as it
allows the system software to load an enclave at any
virtual address inside a host process that satisfies the
ELRANGE restrictions (§ 5.2.1), without changing the

Offset Size Description
0 8 ”ECREATE\0”
8 8 SECS.SSAFRAMESIZE (§ 5.2.5)

16 8 SECS.SIZE (§ 5.2.1)
32 8 32 zero (0) bytes

Table 16: 64-byte block extended into MRENCLAVE by ECREATE

enclave’s measurement. This feature can be combined
with a compiler that generates position-independent en-
clave code to obtain relocatable enclaves.

The enclave’s measurement includes the
SSAFRAMESIZE field, which guarantees that
the SSAs (§ 5.2.5) created by AEX and used by
EENTER (§ 5.4.1) and ERESUME (§ 5.4.4) have the
size that is expected by the enclave’s author. Leaving
this field out of an enclave’s measurement would
allow a malicious enclave loader to attempt to attack
the enclave’s security checks by specifying a bigger
SSAFRAMESIZE than the enclave’s author intended,
which could cause the SSA contents written by an AEX
to overwrite the enclave’s code or data.

5.6.2 Measuring Enclave Attributes

The enclave’s measurement does not include the en-
clave attributes (§ 5.2.2), which are specified in the AT-
TRIBUTES field in the SECS. Instead, it is included
directly in the information that is covered by the attesta-
tion signature, which will be discussed in § 5.8.1.

The SGX software attestation definitely needs to cover
the enclave attributes. For example, if XFRM (§ 5.2.2,
§ 5.2.5) would not be covered, a malicious enclave loader
could attempt to subvert an enclave’s security checks
by setting XFRM to a value that enables architectural
extensions that change the semantics of instructions used
by the enclave, but still produces an XSAVE output that
fits in SSAFRAMESIZE.

The special treatment applied to the ATTRIBUTES
SECS field seems questionable from a security stand-
point, as it adds extra complexity to the software attesta-
tion verifier, which translates into more opportunities for
exploitable bugs. This decision also adds complexity to
the SGX software attestation design, which is described
in § 5.8.

The most likely reason why the SGX design decided to
go this route, despite the concerns described above, is the
wish to be able to use a single measurement to represent
an enclave that can take advantage of some architectural
extensions, but can also perform its task without them.

Consider, for example, an enclave that performs image

75

processing using a library such as OpenCV, which has
routines optimized for SSE and AVX, but also includes
generic fallbacks for processors that do not have these
features. The enclave’s author will likely wish to allow
an enclave loader to set bits 1 (SSE) and 2 (AVX) to
either true or false. If ATTRIBUTES (and, by extension,
XFRM) was a part of the enclave’s measurement, the
enclave author would have to specify that the enclave has
4 valid measurements. In general, allowing n architec-
tural extensions to be used independently will result in
2n valid measurements.

5.6.3 Measuring EADD

The EADD instruction, described in § 5.3.2, extends the
SHA-2 hash in MRENCLAVE with the 64-byte block
shown in Table 17.

Offset Size Description
0 8 ”EADD\0\0\0\0”
8 8 ENCLAVEOFFSET

16 48 SECINFO (first 48 bytes)

Table 17: 64-byte block extended into MRENCLAVE by EADD. The
ENCLAVEOFFSET is computed by subtracting the BASEADDR
in the enclave’s SECS from the LINADDR field in the PAGEINFO
structure.

The address included in the measurement is the ad-
dress where the EADDed page is expected to be mapped
in the enclave’s virtual address space. This ensures that
the system software sets up the enclave’s virtual memory
layout according to the enclave author’s specifications.
If a malicious enclave loader attempts to set up the en-
clave’s layout incorrectly, perhaps in order to mount an
active address translation attack (§ 3.7.2), the loaded en-
clave’s measurement will differ from the measurement
expected by the enclave’s author.

The virtual address of the newly created page is mea-
sured relatively to the start of the enclave’s ELRANGE.
In other words, the value included in the measurement
is LINADDR - BASEADDR. This makes the enclave’s
measurement invariant to BASEADDR changes, which
is desirable for relocatable enclaves. Measuring the rel-
ative addresses still preserves all the information about
the memory layout inside ELRANGE, and therefore has
no negative security impact.
EADD also measures the first 48 bytes of the SECINFO

structure (§ 5.3.2) provided to EADD, which contain the
page type (PT) and access permissions (R, W, X) field
values used to initialize the page’s EPCM entry. By the
same argument as above, including these values in the
measurement guarantees that the memory layout built

by the system software loading the enclave matches the
specifications of the enclave author.

The EPCM field values mentioned above take up less
than one byte in the SECINFO structure, and the rest of
the bytes are reserved and expected to be initialized to
zero. This leaves plenty of expansion room for future
SGX features.

The most notable omission from Table 17 is the data
used to initialize the newly created EPC page. Therefore,
the measurement data contributed by EADD guarantees
that the enclave’s memory layout will have pages allo-
cated with prescribed access permissions at the desired
virtual addresses. However, the measurements don’t
cover the code or data loaded in these pages.

For example, EADD’s measurement data guarantees
that an enclave’s memory layout consists of three exe-
cutable pages followed by five writable data pages, but it
does not guarantee that any of the code pages contains
the code supplied by the enclave’s author.

5.6.4 Measuring EEXTEND

The EEXTEND instruction exists solely for the reason of
measuring data loaded inside the enclave’s EPC pages.
The instruction reads in a virtual address, and extends the
enclave’s measurement hash with the five 64-byte blocks
in Table 18, which effectively guarantee the contents of
a 256-byte chunk of data in the enclave’s memory.

Offset Size Description
0 8 ”EEXTEND\0”
8 8 ENCLAVEOFFSET

16 48 48 zero (0) bytes
64 64 bytes 0 - 64 in the chunk

128 64 bytes 64 - 128 in the chunk
192 64 bytes 128 - 192 in the chunk
256 64 bytes 192 - 256 in the chunk

Table 18: 64-byte blocks extended into MRENCLAVE by
EEXTEND. The ENCLAVEOFFSET is computed by subtracting the
BASEADDR in the enclave’s SECS from the LINADDR field in the
PAGEINFO structure.

Before examining the details of EEXTEND, we note
that SGX’s security guarantees only hold when the con-
tents of the enclave’s key pages is measured. For ex-
ample, EENTER (§ 5.4.1) is only guaranteed to perform
controlled jumps inside an enclave’s code if the contents
of all the Thread Control Structure (TCS, § 5.2.4) pages
are measured. Otherwise, a malicious enclave loader
can change the OENTRY field (§ 5.2.4, § 5.4.1) in a
TCS while building the enclave, and then a malicious

76

OS can use the TCS to perform an arbitrary jump inside
enclave code. By the same argument, all the enclave’s
code should be measured by EEXTEND. Any code frag-
ment that is not measured can be replaced by a malicious
enclave loader.

Given these pitfalls, it is surprising that the SGX de-
sign opted to decouple the virtual address space layout
measurements done by EADD from the memory content
measurements done by EEXTEND.

At a first pass, it appears that the decoupling only has
one benefit, which is the ability to load un-measured user
input into an enclave while it is being built. However, this
benefit only translates into a small performance improve-
ment, because enclaves can alternatively be designed to
copy the user input from untrusted DRAM after being
initialized. At the same time, the decoupling opens up
the possibility of relying on an enclave that provides no
meaningful security guarantees, due to not measuring all
the important data via EEXTEND calls.

However, the real reason behind the EADD / EEXTEND
separation is hinted at by the EINIT pseudo-code in the
SDM, which states that the instruction opens an inter-
rupt (§ 2.12) window while it performs a computationally
intensive RSA signature check. If an interrupt occurs
during the check, EINIT fails with an error code, and
the interrupt is serviced. This very unusual approach for
a processor instruction suggests that the SGX implemen-
tation was constrained in respect to how much latency its
instructions were allowed to add to the interrupt handling
process.

In light of the concerns above, it is reasonable to con-
clude that EEXTEND was introduced because measur-
ing an entire page using 256-bit SHA-2 is quite time-
consuming, and doing it in EADD would have caused the
instruction to exceed SGX’s latency budget. The need to
hit a certain latency goal is a reasonable explanation for
the seemingly arbitrary 256-byte chunk size.

The EADD / EEXTEND separation will not cause secu-
rity issues if enclaves are authored using the same tools
that build today’s dynamically loaded modules, which
appears to be the workflow targeted by the SGX design.
In this workflow, the tools that build enclaves can easily
identify the enclave data that needs to be measured.

It is correct and meaningful, from a security perspec-
tive, to have the message blocks provided by EEXTEND
to the hash function include the address of the 256-byte
chunk, in addition to the contents of the data. If the
address were not included, a malicious enclave loader
could mount the memory mapping attack described in

§ 3.7.2 and illustrated in Figure 54.
More specifically, the malicious loader would EADD

the errorOut page contents at the virtual address in-
tended for disclose, EADD the disclose page con-
tents at the virtual address intended for errorOut,
and then EEXTEND the pages in the wrong order. If
EEXTEND would not include the address of the data
chunk that is measured, the steps above would yield the
same measurement as the correctly constructed enclave.

The last aspect of EEXTEND worth analyzing is its
support for relocating enclaves. Similarly to EADD,
the virtual address measured by EEXTEND is relative
to the enclave’s BASEADDR. Furthermore, the only
SGX structure whose content is expected to be mea-
sured by EEXTEND is the TCS. The SGX design has
carefully used relative addresses for all the TCS fields
that represent enclave addresses, which are OENTRY,
OFSBASGX and OGSBASGX.

5.6.5 Measuring EINIT

The EINIT instruction (§ 5.3.3) concludes the enclave
building process. After EINIT is successfully invoked
on an enclave, the enclave’s contents are “sealed”, mean-
ing that the system software cannot use the EADD instruc-
tion to load code and data into the enclave, and cannot
use the EEXTEND instruction to update the enclave’s
measurement.
EINIT uses the SHA-2 finalization algorithm (§ 3.1.3)

on the MRENCLAVE field of the enclave’s SECS. Af-
ter EINIT, the field no longer stores the intermediate
state of the SHA-2 algorithm, and instead stores the final
output of the secure hash function. This value remains
constant after EINIT completes, and is included in the
attestation signature produced by the SGX software at-
testation process.

5.7 SGX Enclave Versioning Support
The software attestation model (§ 3.3) introduced by
the Trusted Platform Module (§ 4.4) relies on a mea-
surement (§ 5.6), which is essentially a content hash, to
identify the software inside a container. The downside
of using content hashes for identity is that there is no
relation between the identities of containers that hold
different versions of the same software.

In practice, it is highly desirable for systems based
on secure containers to handle software updates without
having access to the remote party in the initial software
attestation process. This entails having the ability to
migrate secrets between the container that has the old
version of the software and the container that has the

77

updated version. This requirement translates into a need
for a separate identity system that can recognize the
relationship between two versions of the same software.

SGX supports the migration of secrets between en-
claves that represent different versions of the same soft-
ware, as shown in Figure 75.

Enclave A

SECS

Enclave B

Non-volatile memory

Encrypted
Secret

Secret

Authenticated
Encryption

Authenticated
Decryption

Secret

Symmetric
Key

Secret
Key

SGX
EGETKEY

SGX
EGETKEY

SIGSTRUCT A

SGX EINIT

Certificate-Based Identity

SECS

SIGSTRUCT B

SGX EINIT

Certificate-Based Identity

Enclave A Identity

Figure 75: SGX has a certificate-based enclave identity scheme,
which can be used to migrate secrets between enclaves that contain
different versions of the same software module. Here, enclave A’s
secrets are migrated to enclave B.

The secret migration feature relies on a one-level cer-
tificate hierarchy (§ 3.2.1), where each enclave author
is a Certificate Authority, and each enclave receives a
certificate from its author. These certificates must be for-
matted as Signature Structures (SIGSTRUCT), which are
described in § 5.7.1. The information in these certificates
is the basis for an enclave identity scheme, presented in
§ 5.7.2, which can recognize the relationship between
different versions of the same software.

The EINIT instruction (§ 5.3.3) examines the target
enclave’s certificate and uses the information in it to pop-
ulate the SECS (§ 5.1.3) fields that describe the enclave’s
certificate-based identity. This process is summarized in
§ 5.7.4.

Last, the actual secret migration process is based on
the key derivation service implemented by the EGETKEY
instruction, which is described in § 5.7.5. The sending
enclave uses the EGETKEY instruction to obtain a sym-
metric key (§ 3.1.1) based on its identity, encrypts its

secrets with the key, and hands off the encrypted secrets
to the untrusted system software. The receiving enclave
passes the sending enclave’s identity to EGETKEY, ob-
tains the same symmetric key as above, and uses the key
to decrypt the secrets received from system software.

The symmetric key obtained from EGETKEY can be
used in conjunction with cryptographic primitives that
protect the confidentiality (§ 3.1.2) and integrity (§ 3.1.3)
of an enclave’s secrets while they are migrated to another
enclave by the untrusted system software. However, sym-
metric keys alone cannot be used to provide freshness
guarantees (§ 3.1), so secret migration is subject to re-
play attacks. This is acceptable when the secrets being
migrated are immutable, such as when the secrets are
encryption keys obtained via software attestation

5.7.1 Enclave Certificates

The SGX design requires each enclave to have a certifi-
cate issued by its author. This requirement is enforced by
EINIT (§ 5.3.3), which refuses to operate on enclaves
without valid certificates.

The SGX implementation consumes certificates for-
matted as Signature Structures (SIGSTRUCT), which are
intended to be generated by an enclave building toolchain,
as shown in Figure 76.

A SIGSTRUCT certificate consists of metadata fields,
the most interesting of which are presented in Table 19,
and an RSA signature that guarantees the authenticity
of the metadata, formatted as shown in Table 20. The
semantics of the fields will be revealed in the following
sections.

Field Bytes Description
ENCLAVEHASH 32 Must equal the

enclave’s measure-
ment (§ 5.6).

ISVPRODID 32 Differentiates mod-
ules signed by the
same private key.

ISVSVN 32 Differentiates ver-
sions of the same
module.

VENDOR 4 Differentiates Intel
enclaves.

ATTRIBUTES 16 Constrains the en-
clave’s attributes.

ATTRIBUTEMASK 16 Constrains the en-
clave’s attributes.

Table 19: A subset of the metadata fields in a SIGSTRUCT enclave
certificate

78

RFC
3447

Enclave Contents

SIGSTRUCT

MODULUS

Q2

SIGNATURE

RSA Signature
EXPONENT (3)

Q1

VENDOR

DATE

ENCLAVEHASH

ATTRIBUTEMASK

ISVSVN

ATTRIBUTES

ISVPRODID

Signed Fields

SGX
Measurement

Simulation

BASEADDR
SIZE

SECS

SSAFRAMESIZE

ATTRIBUTES

Other EPC
Pages

AND

Enclave Author’s
 Public RSA Key

Build Toolchain
Configuration 256-bit SHA-2

PKCS #1 v1.5
Padding

RSA
Exponentiation

Enclave Author’s
 Private RSA Key

zero (not Intel)

Figure 76: An enclave’s Signature Structure (SIGSTRUCT) is
intended to be generated by an enclave building toolchain that has
access to the enclave author’s private RSA key.

The enclave certificates must be signed by RSA signa-
tures (§ 3.1.3) that follow the method described in RFC
3447 [111], using 256-bit SHA-2 [21] as the hash func-
tion that reduces the input size, and the padding method
described in PKCS #1 v1.5 [112], which is illustrated in
Figure 45.

The SGX implementation only supports 3072-bit RSA
keys whose public exponent is 3. The key size is
likely chosen to meet FIPS’ recommendation [20], which
makes SGX eligible for use in U.S. government applica-
tions. The public exponent 3 affords a simplified signa-
ture verification algorithm, which is discussed in § 6.5.
The simplified algorithm also requires the fields Q1 and
Q2 in the RSA signature, which are also described in
§ 6.5.

5.7.2 Certificate-Based Enclave Identity

An enclave’s identity is determined by three fields in its
certificate (§ 5.7.1): the modulus of the RSA key used

Field Bytes Description
MODULUS 384 RSA key modulus
EXPONENT 4 RSA key public exponent
SIGNATURE 384 RSA signature (See § 6.5)
Q1 384 Simplifies RSA signature

verification. (See § 6.5)
Q2 384 Simplifies RSA signature

verification. (See § 6.5)

Table 20: The format of the RSA signature used in a SIGSTRUCT
enclave certificate

to sign the certificate (MODULUS), the enclave’s prod-
uct ID (ISVPRODID) and the security version number
(ISVSVN).

The public RSA key used to issue a certificate iden-
tifies the enclave’s author. All RSA keys used to issue
enclave certificates must have the public exponent set to
3, so they are only differentiated by their moduli. SGX
does not use the entire modulus of a key, but rather a
256-bit SHA-2 hash of the modulus. This is called a
signer measurement (MRSIGNER), to parallel the name
of enclave measurement (MRENCLAVE) for the SHA-2
hash that identifies an enclave’s contents.

The SGX implementation relies on a hard-coded MR-
SIGNER value to recognize certificates issued by Intel.
Enclaves that have an Intel-issued certificate can receive
additional privileges, which are discussed in § 5.8.

An enclave author can use the same RSA key to issue
certificates for enclaves that represent different software
modules. Each module is identified by a unique Product
ID (ISVPRODID) value. Conversely, all the enclaves
whose certificates have the same ISVPRODID and are
issued by the same RSA key (and therefore have the
same MRENCLAVE) are assumed to represent different
versions of the same software module. Enclaves whose
certificates are signed by different keys are always as-
sumed to contain different software modules.

Enclaves that represent different versions of a module
can have different security version numbers (SVN). The
SGX design disallows the migration of secrets from an
enclave with a higher SVN to an enclave with a lower
SVN. This restriction is intended to assist with the distri-
bution of security patches, as follows.

If a security vulnerability is discovered in an enclave,
the author can release a fixed version with a higher SVN.
As users upgrade, SGX will facilitate the migration of
secrets from the vulnerable version of the enclave to the
fixed version. Once a user’s secrets have migrated, the
SVN restrictions in SGX will deflect any attack based on

79

building the vulnerable enclave version and using it to
read the migrated secrets.

Software upgrades that add functionality should not be
accompanied by an SVN increase, as SGX allows secrets
to be migrated freely between enclaves with matching
SVN values. As explained above, a software module’s
SVN should only be incremented when a security vulner-
ability is found. SIGSTRUCT only allocates 2 bytes to
the ISVSVN field, which translates to 65,536 possible
SVN values. This space can be exhausted if a large team
(incorrectly) sets up a continuous build system to allocate
a new SVN for every software build that it produces, and
each code change triggers a build.

5.7.3 CPU Security Version Numbers

The SGX implementation itself has a security version
number (CPUSVN), which is used in the key derivation
process implemented [138] by EGETKEY, in addition to
the enclave’s identity information. CPUSVN is a 128-bit
value that, according to the SDM, reflects the processor’s
microcode update version.

The SDM does not describe the structure of CPUSVN,
but it states that comparing CPUSVN values using inte-
ger comparison is not meaningful, and that only some
CPUSVN values are valid. Furthermore, CPUSVNs
admit an ordering relationship that has the same seman-
tics as the ordering relationship between enclave SVNs.
Specifically, an SGX implementation will consider all
SGX implementations with lower SVNs to be compro-
mised due to security vulnerabilities, and will not trust
them.

An SGX patent [138] discloses that CPUSVN is a con-
catenation of small integers representing the SVNs of the
various components that make up SGX’s implementation.
This structure is consistent with all the statements made
in the SDM.

5.7.4 Establishing an Enclave’s Identity

When the EINIT (§ 5.3.3) instruction prepares an en-
clave for code execution, it also sets the SECS (§ 5.1.3)
fields that make up the enclave’s certificate-based iden-
tity, as shown in Figure 77.
EINIT requires the virtual address of the

SIGSTRUCT certificate issued to the enclave,
and uses the information in the certificate to initial-
ize the certificate-based identity information in the
enclave’s SECS. Before using the information in the
certificate, EINIT first verifies its RSA signature. The
SIGSTRUCT fields Q1 and Q2, along with the RSA

Enclave ContentsSIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature
MODULUS

Q1

VENDOR
ATTRIBUTES
ENCLAVEHASH

ISVSVN

ATTRIBUTEMASK
DATE

ISVPRODID

Signed Fields

256-bit SHA-2
PADDING

BASEADDR

SSAFRAMESIZE
SIZE

ATTRIBUTES
ISVPRODID
ISVSVN

SECS

MRSIGNER

MRENCLAVEMust be equal

AND

Must be equal

Other EPC
Pages

RSA Signature
Verification

Privileged attribute check

Intel’s
MRSIGNER

Equality check

Figure 77: EINIT verifies the RSA signature in the enclave’s
certificate. If the certificate is valid, the information in it is used to
populate the SECS fields that make up the enclave’s certificate-based
identity.

exponent 3, facilitate a simplified verification algorithm,
which is discussed in § 6.5.

If the SIGSTRUCT certificate is found to be properly
signed, EINIT follows the steps discussed in the fol-
lowing few paragraphs to ensure that the certificate was
issued to the enclave that is being initialized. Once the
checks have completed, EINIT computes MRSIGNER,
the 256-bit SHA-2 hash of the MODULUS field in the
SIGSTRUCT, and writes it into the enclave’s SECS.
EINIT also copies the ISVPRODID and ISVSVN fields
from SIGSTRUCT into the enclave’s SECS. As ex-
plained in § 5.7.2, these fields make up the enclave’s
certificate-based identity.

After verifying the RSA signature in SIGSTRUCT,
EINIT copies the signature’s padding into the
PADDING field in the enclave’s SECS. The PKCS #1
v1.5 padding scheme, outlined in Figure 45, does not
involve randomness, so PADDING should have the same
value for all enclaves.
EINIT performs a few checks to make sure that the

enclave undergoing initialization was indeed authorized
by the provided SIGSTRUCT certificate. The most obvi-
ous check involves making sure that the MRENCLAVE
value in SIGSTRUCT equals the enclave’s measurement,
which is stored in the MRENCLAVE field in the en-
clave’s SECS.

However, MRENCLAVE does not cover the enclave’s

80

attributes, which are stored in the ATTRIBUTES field
of the SECS. As discussed in § 5.6.2, omitting AT-
TRIBUTES from MRENCLAVE facilitates writing en-
claves that have optimized implementations that can use
architectural extensions when present, and also have fall-
back implementations that work on CPUs without the ex-
tensions. Such enclaves can execute correctly when built
with a variety of values in the XFRM (§ 5.2.2, § 5.2.5)
attribute. At the same time, allowing system software
to use arbitrary values in the ATTRIBUTES field would
compromise SGX’s security guarantees.

When an enclave uses software attestation (§ 3.3) to
gain access to secrets, the ATTRIBUTES value used
to build it is included in the SGX attestation signa-
ture (§ 5.8). This gives the remote party in the attestation
process the opportunity to reject an enclave built with
an undesirable ATTRIBUTES value. However, when se-
crets are obtained using the migration process facilitated
by certificate-based identities, there is no remote party
that can check the enclave’s attributes.

The SGX design solves this problem by having en-
clave authors convey the set of acceptable attribute
values for an enclave in the ATTRIBUTES and AT-
TRIBUTEMASK fields of the SIGSTRUCT certificate
issued for the enclave. EINIT will refuse to initialize
an enclave using a SIGSTRUCT if the bitwise AND be-
tween the ATTRIBUTES field in the enclave’s SECS
and the ATTRIBUTESMASK field in the SIGSTRUCT
does not equal the SIGSTRUCT’s ATTRIBUTES field.
This check prevents enclaves with undesirable attributes
from obtaining and potentially leaking secrets using the
migration process.

Any enclave author can use SIGSTRUCT to request
any of the bits in an enclave’s ATTRIBUTES field to
be zero. However, certain bits can only be set to one
for enclaves that are signed by Intel. EINIT has a
mask of restricted ATTRIBUTES bits, discussed in § 5.8.
The EINIT implementation contains a hard-coded MR-
SIGNER value that is used to identify Intel’s privileged
enclaves, and only allows privileged enclaves to be built
with an ATTRIBUTES value that matches any of the
bits in the restricted mask. This check is essential to the
security of the SGX software attestation process, which
is described in § 5.8.

Last, EINIT also inspects the VENDOR field in
SIGSTRUCT. The SDM description of the VENDOR
field in the section dedicated to SIGSTRUCT suggests
that the field is essentially used to distinguish between
special enclaves signed by Intel, which use a VENDOR

value of 0x8086, and everyone else’s enclaves, which
should use a VENDOR value of zero. However, the
EINIT pseudocode seems to imply that the SGX imple-
mentation only checks that VENDOR is either zero or
0x8086.

5.7.5 Enclave Key Derivation

SGX’s secret migration mechanism is based on the sym-
metric key derivation service that is offered to enclaves
by the EGETKEY instruction, illustrated in Figure 78.

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

01

zero

KEYPOLICY

MRSIGNER
MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVN

zero

KEYNAME

KEYID

Must be >=

Current
CPUSVN Must be >=

01

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
symmetric key

SEAL_FUSES

SEAL_FUSES

PADDING

Figure 78: EGETKEY implements a key derivation service that is
primarily used by SGX’s secret migration feature. The key derivation
material is drawn from the SECS of the calling enclave, the informa-
tion in a Key Request structure, and secure storage inside the CPU’s
hardware.

The keys produced by EGETKEY are derived based on
the identity information in the current enclave’s SECS
and on two secrets stored in secure hardware inside the
SGX-enabled processor. One of the secrets is the input
to a largely undocumented series of transformations that
yields the symmetric key for the cryptographic primitive
underlying the key derivation process. The other secret,
referred to as the CR SEAL FUSES in the SDM, is one
of the pieces of information used in the key derivation
material.

The SDM does not specify the key derivation algo-
rithm, but the SGX patents [110, 138] disclose that the

81

keys are derived using the method described in FIPS
SP 800-108 [34] using AES-CMAC [46] as a Pseudo-
Random Function (PRF). The same patents state that the
secrets used for key derivation are stored in the CPU’s
e-fuses, which is confirmed by the ISCA 2015 SGX tuto-
rial [103].

This additional information implies that all EGETKEY
invocations that use the same key derivation material will
result in the same key, even across CPU power cycles.
Furthermore, it is impossible for an adversary to obtain
the key produced from a specific key derivation material
without access to the secret stored in the CPU’s e-fuses.
SGX’s key hierarchy is further described in § 5.8.2.

The following paragraphs discuss the pieces of data
used in the key derivation material, which are selected
by the Key Request (KEYREQUEST) structure shown
in in Table 21,

Field Bytes Description
KEYNAME 2 The desired key

type; secret mi-
gration uses Seal
keys

KEYPOLICY 2 The identity informa-
tion (MRENCLAVE
and/or MRSIGNER)

ISVSVN 2 The enclave SVN
used in derivation

CPUSVN 16 SGX implementa-
tion SVN used in
derivation

ATTRIBUTEMASK 16 Selects enclave at-
tributes

KEYID 32 Random bytes

Table 21: A subset of the fields in the KEYREQUEST structure

The KEYNAME field in KEYREQUEST always par-
ticipates in the key generation material. It indicates the
type of the key to be generated. While the SGX design
defines a few key types, the secret migration feature al-
ways uses Seal keys. The other key types are used by the
SGX software attestation process, which will be outlined
in § 5.8.

The KEYPOLICY field in KEYREQUEST has two
flags that indicate if the MRENCLAVE and MRSIGNER
fields in the enclave’s SECS will be used for key deriva-
tion. Although the fields admits 4 values, only two seem
to make sense, as argued below.

Setting the MRENCLAVE flag in KEYPOLICY ties
the derived key to the current enclave’s measurement,

which reflects its contents. No other enclave will be able
to obtain the same key. This is useful when the derived
key is used to encrypt enclave secrets so they can be
stored by system software in non-volatile memory, and
thus survive power cycles.

If the MRSIGNER flag in KEYPOLICY is set, the
derived key is tied to the public RSA key that issued
the enclave’s certificate. Therefore, other enclaves is-
sued by the same author may be able to obtain the same
key, subject to the restrictions below. This is the only
KEYPOLICY value that allows for secret migration.

It makes little sense to have no flag set in KEYPOL-
ICY. In this case, the derived key has no useful security
property, as it can be obtained by other enclaves that are
completely unrelated to the enclave invoking EGETKEY.
Conversely, setting both flags is redundant, as setting
MRENCLAVE alone will cause the derived key to be
tied to the current enclave, which is the strictest possible
policy.

The KEYREQUEST structure specifies the enclave
SVN (ISVSVN, § 5.7.2) and SGX implementation
SVN (CPUSVN, § 5.7.3) that will be used in the key
derivation process. However, EGETKEY will reject the
derivation request and produce an error code if the de-
sired enclave SVN is greater than the current enclave’s
SVN, or if the desired SGX implementation’s SVN is
greater than the current implementation’s SVN.

The SVN restrictions prevent the migration of secrets
from enclaves with higher SVNs to enclaves with lower
SVNs, or from SGX implementations with higher SVNs
to implementations with lower SVNs. § 5.7.2 argues that
the SVN restrictions can reduce the impact of security
vulnerabilities in enclaves and in SGX’s implementation.
EGETKEY always uses the ISVPRODID value from

the current enclave’s SECS for key derivation. It fol-
lows that secrets can never flow between enclaves whose
SIGSTRUCT certificates assign them different Product
IDs.

Similarly, the key derivation material always includes
the value of an 128-bit Owner Epoch (OWNEREPOCH)
SGX configuration register. This register is intended to
be set by the computer’s firmware to a secret generated
once and stored in non-volatile memory. Before the
computer changes ownership, the old owner can clear
the OWNEREPOCH from non-volatile memory, making
it impossible for the new owner to decrypt any enclave
secrets that may be left on the computer.

Due to the cryptographic properties of the key deriva-
tion process, outside observers cannot correlate keys

82

derived using different OWNEREPOCH values. This
makes it impossible for software developers to use the
EGETKEY-derived keys described in this section to track
a processor as it changes owners.

The EGETKEY derivation material also includes a 256-
bit value supplied by the enclave, in the KEYID field.
This makes it possible for an enclave to generate a col-
lection of keys from EGETKEY, instead of a single key.
The SDM states that KEYID should be populated with
a random number, and is intended to help prevent key
wear-out.

Last, the key derivation material includes the bitwise
AND of the ATTRIBUTES (§ 5.2.2) field in the enclave’s
SECS and the ATTRIBUTESMASK field in the KEYRE-
QUEST structure. The mask has the effect of removing
some of the ATTRIBUTES bits from the key derivation
material, making it possible to migrate secrets between
enclaves with different attributes. § 5.6.2 and § 5.7.4
explain the need for this feature, as well as its security
implications.

Before adding the masked attributes value to the
key generation material, the EGETKEY implementation
forces the mask bits corresponding to the INIT and DE-
BUG attributes (§ 5.2.2) to be set. From a practical
standpoint, this means that secrets will never be migrated
between enclaves that support debugging and production
enclaves.

Without this restriction, it would be unsafe for an en-
clave author to use the same RSA key to issue certificates
to both debugging and production enclaves. Debugging
enclaves receive no integrity guarantees from SGX, so
it is possible for an attacker to modify the code inside a
debugging enclave in a way that causes it to disclose any
secrets that it has access to.

5.8 SGX Software Attestation

The software attestation scheme implemented by SGX
follows the principles outlined in § 3.3. An SGX-enabled
processor computes a measurement of the code and data
that is loaded in each enclave, which is similar to the mea-
surement computed by the TPM (§ 4.4). The software
inside an enclave can start a process that results in an
SGX attestation signature, which includes the enclave’s
measurement and an enclave message.

The cryptographic primitive used in SGX’s attestation
signature is too complex to be implemented in hardware,
so the signing process is performed by a privileged Quot-
ing Enclave, which is issued by Intel, and can access the
SGX attestation key. This enclave is discussed in § 5.8.2.

(Licensing)

Enclave Launch

Software Attestation

Enclave
Loading

Launch
Policy

Enclave
Authoring

Enclave Environment

Enclave
Contents

Compiler
Linker

Source
Files

Enclave
Runtime

Enclave Author
Public Key

Enclave Author
Private Key

Enclave Build
Toolchain

SIGSTRUCT

SGX Launch
Enclave

EINITTOKEN

SGX EINIT

SGX ECREATE

SGX EADD

SGX EEXTEND

MRENCLAVE

SGX EREPORT

REPORT

INITIALIZED

SGX Quoting
Enclave

Attestation
Signature

Attestation
Challenge

MRSIGNER

Figure 79: Setting up an SGX enclave and undergoing the soft-
ware attestation process involves the SGX instructions EINIT and
EREPORT, and two special enclaves authored by Intel, the SGX
Launch Enclave and the SGX Quoting Enclave.

Pushing the signing functionality into the Quoting
Enclave creates the need for a secure communication
path between an enclave undergoing software attestation
and the Quoting Enclave. The SGX design solves this
problem with a local attestation mechanism that can be
used by an enclave to prove its identity to any other
enclave hosted by the same SGX-enabled CPU. This
scheme, described in § 5.8.1, is implemented by the
EREPORT instruction.

The SGX attestation key used by the Quoting Enclave
does not exist at the time SGX-enabled processors leave
the factory. The attestation key is provisioned later, using
a process that involves a Provisioning Enclave issued by
Intel, and two special EGETKEY (§ 5.7.5) key types. The
publicly available details of this process are summarized
in § 5.8.2.

The SGX Launch Enclave and EINITTOKEN struc-
ture will be discussed in § 5.9.

83

5.8.1 Local Attestation

An enclave proves its identity to another target enclave
via the EREPORT instruction shown in Figure 80. The
SGX instruction produces an attestation Report (RE-
PORT) that cryptographically binds a message sup-
plied by the enclave with the enclave’s measurement-
based (§ 5.6) and certificate-based (§ 5.7.2) identities.
The cryptographic binding is accomplished by a MAC
tag (§ 3.1.3) computed using a symmetric key that is
only shared between the target enclave and the SGX
implementation.

MAC
EREPORT

KEYID

CPUSVN

ATTRIBUTES
MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN
REPORTDATA

ATTRIBUTES

TARGETINFO
MEASUREMENT

BASEADDR
ISVSVN

MRSIGNER
MRENCLAVE

SSAFRAMESIZE

ATTRIBUTES

SIZE

ISVPRODID

SECS

CR_EREPORT_KEYID

Input Register File

RDX
RBX

RCX

REPORTDATA

Key Derivation Material

zero MRENCLAVE

MASKEDATTRIBUTES

zero

zero CPUSVNKEYNAME

KEYID

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Report key

Current
CPUSVN

Report Key

AES-CMAC

PADDING

Hard-coded PKCS
#1 v1.5 Padding

SEAL_FUSES

SEAL_FUSES

Figure 80: EREPORT data flow

The EREPORT instruction reads the current enclave’s
identity information from the enclave’s SECS (§ 5.1.3),
and uses it to populate the REPORT structure. Specifi-
cally, EREPORT copies the SECS fields indicating the en-
clave’s measurement (MRENCLAVE), certificate-based

identity (MRSIGNER, ISVPRODID, ISVSVN), and at-
tributes (ATTRIBUTES). The attestation report also in-
cludes the SVN of the SGX implementation (CPUSVN)
and a 64-byte (512-bit) message supplied by the enclave.

The target enclave that receives the attestation re-
port can convince itself of the report’s authenticity as
shown in Figure 81. The report’s authenticity proof
is its MAC tag. The key required to verify the MAC
can only be obtained by the target enclave, by asking
EGETKEY (§ 5.7.5) to derive a Report key. The SDM
states that the MAC tag is computed using a block cipher-
based MAC (CMAC, [46]), but stops short of specifying
the underlying cipher. One of the SGX papers [14] states
that the CMAC is based on 128-bit AES.

The Report key returned by EGETKEY is derived from
a secret embedded in the processor (§ 5.7.5), and the
key material includes the target enclave’s measurement.
The target enclave can be assured that the MAC tag in
the report was produced by the SGX implementation,
for the following reasons. The cryptographic properties
of the underlying key derivation and MAC algorithms
ensure that only the SGX implementation can produce
the MAC tag, as it is the only entity that can access
the processor’s secret, and it would be impossible for
an attacker to derive the Report key without knowing
the processor’s secret. The SGX design guarantees that
the key produced by EGETKEY depends on the calling
enclave’s measurement, so only the target enclave can
obtain the key used to produce the MAC tag in the report.
EREPORT uses the same key derivation process as

EGETKEY does when invoked with KEYNAME set to
the value associated with Report keys. For this rea-
son, EREPORT requires the virtual address of a Report
Target Info (TARGETINFO) structure that contains the
measurement-based identity and attributes of the target
enclave.

When deriving a Report key, EGETKEY behaves
slightly differently than it does in the case of seal keys,
as shown in Figure 81. The key generation material
never includes the fields corresponding to the enclave’s
certificate-based identity (MRSIGNER, ISVPRODID,
ISVSVN), and the KEYPOLICY field in the KEYRE-
QUEST structure is ignored. It follows that the report
can only be verified by the target enclave.

Furthermore, the SGX implementation’s
SVN (CPUSVN) value used for key generation is
determined by the current CPUSVN, instead of being
read from the Key Request structure. Therefore, SGX
implementation upgrades that increase the CPUSVN

84

EGETKEY

Key Derivation Material

ATTRIBUTES

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

PADDING

SIZE
BASEADDR

ISVPRODID

SECS

zero

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER
MRENCLAVE

MRENCLAVE

MASKEDATTRIBUTES

zeroPADDING

CPUSVNKEYNAME

KEYID

Current
CPUSVN

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Report key

MAC
EREPORT

KEYID

CPUSVN

ATTRIBUTES
MRENCLAVE

ISVPRODID

MACed Fields

MRSIGNER

ISVSVN
REPORTDATA

AES-CMAC

Equal?
Trust Report

Reject Report

Yes

No

Report Key

SEAL_FUSES

SEAL_FUSES

zero

Figure 81: The authenticity of the REPORT structure created by
EREPORT can and should be verified by the report’s target enclave.
The target’s code uses EGETKEY to obtain the key used for the MAC
tag embedded in the REPORT structure, and then verifies the tag.

invalidate all outstanding reports. Given that CPUSVN
increases are associated with security fixes, the argument
in § 5.7.2 suggests that this restriction may reduce the
impact of vulnerabilities in the SGX implementation.

Last, EREPORT sets the KEYID field in the key gen-
eration material to the contents of an SGX configuration
register (CR REPORT KEYID) that is initialized with
a random value when SGX is initialized. The KEYID
value is also saved in the attestation report, but it is not
covered by the MAC tag.

5.8.2 Remote Attestation

The SDM paints a complete picture of the local attesta-
tion mechanism that was described in § 5.8.1. The remote
attestation process, which includes the Quoting Enclave
and the underlying keys, is covered at a high level in an
Intel publication [109]. This section’s contents is based
on the SDM, on one [14] of the SGX papers, and on the
ISCA 2015 SGX tutorial [103].

SGX’s software attestation scheme, which is illus-
trated in Figure 82, relies on a key generation facility and
on a provisioning service, both operated by Intel.

CPU e-fuses

Provisioning
Enclave

Provisioning
Secret

Seal
Secret

Intel
Key Generation

Facility

Intel
Provisioning

Service

Provisioned
Keys

Proof of
Provisioning Key

ownership

Attestation Key

Provisioning
Key

Attestation
Key

Provisioning
Seal Key

Authenticated
Encryption

Quoting Enclave

Attestation
Key

Provisioning
Seal Key

Authenticated
Encryption

Encrypted
Attestation Key

Attested Enclave

Remote
Party in

Software
Attestation

Key Agreement
Message 1

EREPORT

Key Agreement
Message 2

Report Data

Challenge

Report

Attestation
Signature

Reporting
Key

Report
Verification

Response

Figure 82: SGX’s software attestation is based on two secrets stored
in e-fuses inside the processor’s die, and on a key received from
Intel’s provisioning service.

During the manufacturing process, an SGX-enabled
processor communicates with Intel’s key generation fa-
cility, and has two secrets burned into e-fuses, which
are a one-time programmable storage medium that can

85

be economically included on a high-performance chip’s
die. We shall refer to the secrets stored in e-fuses as the
Provisioning Secret and the Seal Secret.

The Provisioning Secret is the main input to a largely
undocumented process that outputs the SGX master
derivation key used by EGETKEY, which was referenced
in Figures 78, 79, 80, and 81.

The Seal Secret is not exposed to software by any of
the architectural mechanisms documented in the SDM.
The secret is only accessed when it is included in the
material used by the key derivation process implemented
by EGETKEY (§ 5.7.5). The pseudocode in the SDM
uses the CR SEAL FUSES register name to refer to the
Seal Secret.

The names “Seal Secret” and “Provisioning Secret”
deviate from Intel’s official documents, which confus-
ingly use the “Seal Key” and “Provisioning Key” names
to refer to both secrets stored in e-fuses and keys derived
by EGETKEY.

The SDM briefly describes the keys produced by
EGETKEY, but no official documentation explicitly de-
scribes the secrets in e-fuses. The description below is
is the only interpretation of all the public information
sources that is consistent with all the SDM’s statements
about key derivation.

The Provisioning Secret is generated at the key gener-
ation facility, where it is burned into the processor’s e-
fuses and stored in the database used by Intel’s provision-
ing service. The Seal Secret is generated inside the pro-
cessor chip, and therefore is not known to Intel. This ap-
proach has the benefit that an attacker who compromises
Intel’s facilities cannot derive most keys produced by
EGETKEY, even if the attacker also compromises a vic-
tim’s firmware and obtains the OWNEREPOCH (§ 5.7.5)
value. These keys include the Seal keys (§ 5.7.5) and
Report keys (§ 5.8.1) introduced in previous sections.

The only documented exception to the reasoning above
is the Provisioning key, which is effectively a shared se-
cret between the SGX-enabled processor and Intel’s pro-
visioning service. Intel has to be able to derive this key,
so the derivation material does not include the Seal Secret
or the OWNEREPOCH value, as shown in Figure 83.
EGETKEY derives the Provisioning key using the cur-

rent enclave’s certificate-based identity (MRSIGNER,
ISVPRODID, ISVSVN) and the SGX implementation’s
SVN (CPUSVN). This approach has a few desirable se-
curity properties. First, Intel’s provisioning service can
be assured that it is authenticating a Provisioning Enclave
signed by Intel. Second, the provisioning service can use

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER
MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current
CPUSVN Must be >=

AES-CMAC
Key Derivation

zero

SGX Master
Derivation Key

128-bit
Provisioning Key

zero

PADDING

Provisioning Key
PROVISIONKEY

must be true

Figure 83: When EGETKEY is asked to derive a Provisioning key,
it does not use the Seal Secret or OWNEREPOCH. The Provisioning
key does, however, depend on MRSIGNER and on the SVN of the
SGX implementation.

the CPUSVN value to reject SGX implementations with
known security vulnerabilities. Third, this design admits
multiple mutually distrusting provisioning services.
EGETKEY only derives Provisioning keys for enclaves

whose PROVISIONKEY attribute is set to true. § 5.9.3
argues that this mechanism is sufficient to protect the
computer owner from a malicious software provider that
attempts to use Provisioning keys to track a CPU chip
across OWNEREPOCH changes.

After the Provisioning Enclave obtains a Provision-
ing key, it uses the key to authenticate itself to Intel’s
provisioning service. Once the provisioning service is
convinced that it is communicating to a trusted Provi-
sioning enclave in the secure environment provided by
a SGX-enabled processor, the service generates an At-
testation Key and sends it to the Provisioning Enclave.
The enclave then encrypts the Attestation Key using a
Provisioning Seal key, and hands off the encrypted key
to the system software for storage.

Provisioning Seal keys, are the last publicly docu-
mented type of special keys derived by EGETKEY, using
the process illustrated in Figure 84. As their name sug-
gests, Provisioning Seal keys are conceptually similar to

86

the Seal Keys (§ 5.7.5) used to migrate secrets between
enclaves.

Key Derivation Material

PADDING

SSAFRAME
SIZE

MRENCLAVE
ISVSVN

MRSIGNER

ATTRIBUTES

SIZE
BASEADDR

ISVPRODID

SECS

MRSIGNER

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

AND

KEYPOLICY

MRSIGNER
MRENCLAVE

zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

zero

Must be >=

Current
CPUSVN Must be >=

AES-CMAC
Key Derivation

zero

SGX Master
Derivation Key

128-bit
Provisioning

Seal key

SEAL_FUSES

SEAL_FUSES

PADDING

Provisioning Seal Key

Figure 84: The derivation material used to produce Provisioning
Seal keys does not include the OWNEREPOCH value, so the keys
survive computer ownership changes.

The defining feature of Provisioning Seal keys is that
they are not based on the OWNEREPOCH value, so they
survive computer ownership changes. Since Provisioning
Seal keys can be used to track a CPU chip, their use is
gated on the PROVISIONKEY attribute, which has the
same semantics as for Provisioning keys.

Like Provisioning keys, Seal keys are based on the
current enclave’s certificate-based identity (MRSIGNER,
ISVPROD, ISVSVN), so the Attestation Key encrypted
by Intel’s Provisioning Enclave can only be decrypted
by another enclave signed with the same Intel RSA key.
However, unlike Provisioning keys, the Provisioning Seal
keys are based on the Seal Secret in the processor’s e-
fuses, so they cannot be derived by Intel.

When considered independently from the rest of the
SGX design, Provisioning Seal keys have desirable se-
curity properties. The main benefit of these keys is that
when a computer with an SGX-enabled processor ex-
changes owners, it does not need to undergo the provi-
sioning process again, so Intel does not need to be aware
of the ownership change. The confidentiality issue that

stems from not using OWNEREPOCH was already intro-
duced by Provisioning keys, and is mitigated using the
access control scheme based on the PROVISIONKEY
attribute that will be discussed in § 5.9.3.

Similarly to the Seal key derivation process, both the
Provisioning and Provisioning Seal keys depend on the
bitwise AND of the ATTRIBUTES (§ 5.2.2) field in the
enclave’s SECS and the ATTRIBUTESMASK field in
the KEYREQUEST structure. While most attributes can
be masked away, the DEBUG and INIT attributes are
always used for key derivation.

This dependency makes it safe for Intel to use its pro-
duction RSA key to issue certificates for Provisioning
or Quoting Enclaves with debugging features enabled.
Without the forced dependency on the DEBUG attribute,
using the production Intel signing key on a single de-
bug Provisioning or Quoting Enclave could invalidate
SGX’s security guarantees on all the CPU chips whose
attestation-related enclaves are signed by the same key.
Concretely, if the issued SIGSTRUCT would be leaked,
any attacker could build a debugging Provisioning or
Quoting enclave, use the SGX debugging features to
modify the code inside it, and extract the 128-bit Pro-
visioning key used to authenticated the CPU to Intel’s
provisioning service.

After the provisioning steps above have been com-
pleted, the Quoting Enclave can be invoked to perform
SGX’s software attestation. This enclave receives lo-
cal attestation reports (§ 5.8.1) and verifies them using
the Report keys generated by EGETKEY. The Quoting
Enclave then obtains the Provisioning Seal Key from
EGETKEY and uses it to decrypt the Attestation Key,
which is received from system software. Last, the en-
clave replaces the MAC in the local attestation report
with an Attestation Signature produced with the Attesta-
tion Key.

The SGX patents state that the name “Quoting Enclave”
was chosen as a reference to the TPM (§ 4.4)’s quoting
feature, which is used to perform software attestation on
a TPM-based system.

The Attestation Key uses Intel’s Enhanced Privacy
ID (EPID) cryptosystem [26], which is a group signature
scheme that is intended to preserve the anonymity of the
signers. Intel’s key provisioning service is the issuer in
the EPID scheme, so it publishes the Group Public Key,
while securely storing the Master Issuing Key. After a
Provisioning Enclave authenticates itself to the provision-
ing service, it generates an EPID Member Private Key,
which serves as the Attestation Key, and executes the

87

EPID Join protocol to join the group. Later, the Quoting
Enclave uses the EPID Member Private Key to produce
Attestation Signatures.

The Provisioning Secret stored in the e-fuses of each
SGX-enabled processor can be used by Intel to trace
individual chips when a Provisioning Enclave authen-
ticates itself to the provisioning service. However, if
the EPID Join protocol is blinded, Intel’s provisioning
service cannot trace an Attestation Signature to a spe-
cific Attestation Key, so Intel cannot trace Attestation
Signatures to individual chips.

Of course, the security properties of the description
above hinge on the correctness of the proofs behind the
EPID scheme. Analyzing the correctness of such cryp-
tographic schemes is beyond the scope of this work, so
we defer the analysis of EPID to the crypto research
community.

5.9 SGX Enclave Launch Control
The SGX design includes a launch control process,
which introduces an unnecessary approval step that is
required before running most enclaves on a computer.
The approval decision is made by the Launch Enclave
(LE), which is an enclave issued by Intel that gets to
approve every other enclave before it is initialized by
EINIT (§ 5.3.3). The officially documented information
about this approval process is discussed in § 5.9.1.

The SGX patents [110, 138] disclose in no uncertain
terms that the Launch Enclave was introduced to ensure
that each enclave’s author has a business relationship
with Intel, and implements a software licensing system.
§ 5.9.2 briefly discusses the implications, should this turn
out to be true.

The remainder of the section argues that the Launch
Enclave should be removed from the SGX design. § 5.9.3
explains that the LE is not required to enforce the com-
puter owner’s launch control policy, and concludes that
the LE is only meaningful if it enforces a policy that is
detrimental to the computer owner. § 5.9.4 debunks the
myth that an enclave can host malware, which is likely to
be used to justify the LE. § 5.9.5 argues that Anti-Virus
(AV) software is not fundamentally incompatible with
enclaves, further disproving the theory that Intel needs
to actively police the software that runs inside enclaves.

5.9.1 Enclave Attributes Access Control

The SGX design requires that all enclaves be vetted by a
Launch Enclave (LE), which is only briefly mentioned
in Intel’s official documentation. Neither its behavior
nor its interface with the system software is specified.

We speculate that Intel has not been forthcoming about
the LE because of its role in enforcing software licens-
ing, which will be discussed in § 5.9.2. This section
abstracts away the licensing aspect and assumes that the
LE enforces a black-box Launch Control Policy.

The LE approves an enclave by issuing an EINIT
Token (EINITTOKEN), using the process illustrated
in Figure 85. The EINITTOKEN structure contains
the approved enclave’s measurement-based (§ 5.6) and
certificate-based (§ 5.7.2) identities, just like a local at-
testation REPORT (§ 5.8.1). This token is inspected by
EINIT (§ 5.3.3), which refuses to initialize enclaves
with incorrect tokens.

While an EINIT token is handled by untrusted system
software, its integrity is protected by a MAC tag (§ 3.1.3)
that is computed using a Launch Key obtained from
EGETKEY. The EINIT implementation follows the
same key derivation process as EGETKEY to convince
itself that the EINITTOKEN provided to it was indeed
generated by an LE that had access to the Launch Key.

The SDM does not document the MAC algorithm
used to confer integrity guarantees to the EINITTOKEN
structure. However, the EINIT pseudocode verifies the
token’s MAC tag using the same function that the ERE-
PORT pseudocode uses to create the REPORT structure’s
MAC tag. It follows that the reasoning in § 5.8.1 can
be reused to conclude that EINITTOKEN structures are
MACed using AES-CMAC with 128-bit keys.

The EGETKEY instruction only derives the Launch
Key for enclaves that have the LAUNCHKEY attribute
set to true. The Launch Key is derived using the same
process as the Seal Key (§ 5.7.5). The derivation mate-
rial includes the current enclave’s versioning information
(ISVPRODID and ISVSVN) but it does not include the
main fields that convey an enclave’s identity, which are
MRSIGNER and MRENCLAVE. The rest of the deriva-
tion material follows the same rules as the material used
for Seal Keys.

The EINITTTOKEN structure contains the identi-
ties of the approved enclave (MRENCLAVE and MR-
SIGNER) and the approved enclave attributes (AT-
TRIBUTES). The token also includes the information
used for the Launch Key derivation, which includes the
LE’s Product ID (ISVPRODIDLE), SVN (ISVSVNLE),
and the bitwise AND between the LE’s ATTRIBUTES
and the ATTRIBUTEMASK used in the KEYREQUEST
(MASKEDATTRIBUTESLE).

The EINITTOKEN information used to derive the
Launch Key can also be used by EINIT for damage

88

EGETKEY

MASKED
ATTRIBUTESLE

ISVPRODIDLE
CPUSVNLE
KEYID
ISVSVNLE

MAC
EINITTOKEN

VALID

MRSIGNER
MRENCLAVE

MACed Fields
ATTRIBUTES

Vetted Enclave
SIGSTRUCT

EXPONENT (3)

Q2

SIGNATURE

RSA Signature
MODULUS

Q1

VENDOR

ENCLAVEHASH

ATTRIBUTES

DATE

ISVSVN

ATTRIBUTEMASK

ISVPRODID

Signed Fields

256-bit
SHA-2

RDRAND

1

Signed by Enclave
Author’s RSA Key

Desired ATTRIBUTES

PADDING

ATTRIBUTES
BASEADDR

ISVSVN

MRSIGNER
MRENCLAVE

SSAFRAMESIZE
SIZE

ISVPRODID

Launch Enclave
SECS

ISVSVN

KEYNAME
ATTRIBUTEMASK

CPUSVN

KEYREQUEST

KEYID

KEYPOLICY

MRSIGNER
MRENCLAVE

Current
CPUSVN Must be >=

AND

Launch
Control
Policy

Checks

Key Derivation Material

zero zero

MASKEDATTRIBUTES

ISVSVN

ISVPRODID CPUSVNKEYNAME

KEYID

AES-CMAC
Key Derivation

OWNEPOCH

OWNEREPOCH
SGX Register

SGX Master
Derivation Key

128-bit
Launch Key

Launch Key

AND

AES-CMAC

Must be >=

PADDING

SEAL_FUSES

SEAL_FUSES

Figure 85: The SGX Launch Enclave computes the EINITTOKEN.

control, e.g. to reject tokens issued by Launch Enclaves
with known security vulnerabilities. The reference pseu-
docode supplied in the SDM states that EINIT checks
the DEBUG bit in the MASKEDATTRIBUTESLE field,
and will not initialize a production enclave using a to-
ken issued by a debugging LE. It is worth noting that
MASKEDATTRIBUTESLE is guaranteed to include
the LE’s DEBUG attribute, because EGETKEY forces
the DEBUG attribute’s bit in the attributes mask to 1

(§ 5.7.5).
The check described above make it safe for Intel to

supply SGX enclave developers with a debugging LE that
has its DEBUG attribute set, and performs minimal or
no security checks before issuing an EINITTOKEN. The
DEBUG attribute disables SGX’s integrity protection,
so the only purpose of the security checks performed in
the debug LE would be to help enclave development by
mimicking its production counterpart. The debugging LE
can only be used to launch any enclave with the DEBUG
attribute set, so it does not undermining Intel’s ability to
enforce a Launch Control Policy on production enclaves.

The enclave attributes access control system described
above relies on the LE to reject initialization requests
that set privileged attributes such as PROVISIONKEY
on unauthorized enclaves. However, the LE cannot vet
itself, as there will be no LE available when the LE itself
needs to be initialized. Therefore, the Launch Key access
restrictions are implemented in hardware.
EINIT accepts an EINITTOKEN whose VALID bit is

set to zero, if the enclave’s MRSIGNER (§ 5.7.1) equals
a hard-coded value that corresponds to an Intel public
key. For all other enclave authors, an invalid EINIT token
causes EINIT to reject the enclave and produce an error
code.

This exemption to the token verification policy pro-
vides a way to bootstrap the enclave attributes access
control system, namely using a zeroed out EINITTO-
KEN to initialize the Launch Enclave. At the same time,
the cryptographic primitives behind the MRSIGNER
check guarantee that only Intel-provided enclaves will
be able to bypass the attribute checks. This does not
change SGX’s security properties because Intel is already
a trusted party, as it is responsible for generating the Pro-
visioning Keys and Attestation Keys used by software
attestation (§ 5.8.2).

Curiously, the EINIT pseudocode in the SDM states
that the instruction enforces an additional restriction,
which is that all enclaves with the LAUNCHKEY at-
tribute must have its certificate issued by the same Intel
public key that is used to bypass the EINITTTOKEN
checks. This restriction appears to be redundant, as the
same restriction could be enforced in the Launch En-
clave.

5.9.2 Licensing

The SGX patents [110, 138] disclose that EINIT To-
kens and the Launch Enclave (§ 5.9.1) were introduced
to verify that the SIGSTRUCT certificates associated

89

with production enclaves are issued by enclave authors
who have a business relationship with Intel. In other
words, the Launch Enclave is intended to be an enclave
licensing mechanism that allows Intel to force itself
as an intermediary in the distribution of all enclave
software.

The SGX patents are likely to represent an early ver-
sion of the SGX design, due to the lengthy timelines
associated with patent application approval. In light of
this consideration, we cannot make any claims about In-
tel’s current plans. However, given that we know for sure
that Intel considered enclave licensing at some point, we
briefly discuss the implications of implementing such a
licensing plan.

Intel has a near-monopoly on desktop and server-class
processors, and being able to decide which software ven-
dors are allowed to use SGX can effectively put Intel in
a position to decide winners and losers in many software
markets.

Assuming SGX reaches widespread adoption, this is-
sue is the software security equivalent to the Net Neutral-
ity debates that have pitted the software industry against
telecommunication giants. Given that virtually all com-
petent software development companies have argued that
losing Net Neutrality will stifle innovation, it is fairly
safe to assume that Intel’s ability to regulate access to
SGX will also stifle innovation.

Furthermore, from a historical perspective, the enclave
licensing scheme described in the SGX patents is very
similar to Verified Boot, which was briefly discussed
in § 4.4. Verified Boot has mostly received negative
reactions from software developers, so it is likely that
an enclave licensing scheme would meet the same fate,
should the developer community become aware of it.

5.9.3 System Software Can Enforce a Launch Policy

§ 5.3 explains that the SGX instructions used to load and
initialize enclaves (ECREATE, EADD, EINIT) can only
be issued by privileged system software, because they
manage the EPC, which is a system resource.

A consequence on the restriction that only privileged
software can issue ECREATE and EADD instructions is
that the system software is able to track all the public
contents that is loaded into each enclave. The privilege
requirements of EINIT mean that the system software
can also examine each enclave’s SIGSTRUCT. It follows
that the system software has access to a superset of the
information that the Launch Enclave might use.

Furtheremore, EINIT’s privileged instruction status

means that the system software can perform its own
policy checks before allowing application software to
initialize an enclave. So, the system software can enforce
a Launch Control Policy set by the computer’s owner.
For example, an IaaS cloud service provider may use its
hypervisor to implement a Launch Control Policy that
limits what enclaves its customers are allowed to execute.

Given that the system software has access to a superset
of the information that the Launch Enclave might use,
it is easy to see that the set of policies that can be en-
forced by system software is a superset of the policies
that can be supported by an LE. Therefore, the only ra-
tional explanation for the existence of the LE is that it
was designed to implement a Launch Control Policy that
is not beneficial to the computer owner.

As an illustration of this argument, we consider the
case of restricting access to EGETKEY’s Provisioning
keys (§ 5.8.2). The derivation material for Provisioning
keys does not include OWNEREPOCH, so malicious
enclaves can potentially use these keys to track a CPU
chip package as it exchanges owners. For this reason, the
SGX design includes a simple access control mechanism
that can be used by system software to limiting enclave
access to Provisioning keys. EGETKEY refuses to derive
Provisioning keys for enclaves whose PROVISIONKEY
attribute is not set to true.

It follows that a reasonable Launch Control Policy
would only allow the PROVISIONKEY attribute to be
set for the enclaves that implement software attestation,
such as Intel’s Provisioning Enclave and Quoting En-
clave. This policy can easily be implemented by system
software, given its exclusive access to the EINIT instruc-
tion.

The only concern with the approach outlined above is
that a malicious system software might abuse the PRO-
VISIONKEY attribute to generate a unique identifier for
the hardware that it runs on, similar to the much ma-
ligned Intel Processor Serial Number [86]. We dismiss
this concern by pointing out that system software has
access to many unique identifiers, such as the Media
Access Control (MAC) address of the Ethernet adapter
integrated into the motherboard’s chipset (§ 2.9.1).

5.9.4 Enclaves Cannot Damage the Host Computer

SGX enclaves execute at the lowest privilege level (user
mode / ring 3), so they are subject to the same security
checks as their host application. For example, modern
operating systems set up the I/O maps (§ 2.7) to pre-
vent application software from directly accessing the I/O

90

address space (§ 2.4), and use the supervisor (S) page
table attribute (§ 2.5.3) to deny application software di-
rect access to memory-mapped devices (§ 2.4) and to
the DRAM that stores the system software. Enclave
software is subject to I/O privilege checks and address
translation checks, so a malicious enclave cannot directly
interact with the computer’s devices, and cannot tamper
the system software.

It follows that software running in an enclave has the
same means to compromise the system software as its
host application, which come down to exploiting a secu-
rity vulnerability. The same solutions used to mitigate
vulnerabilities exploited by application software (e.g.,
seccomp/bpf [118]) apply to enclaves.

The only remaining concern is that an enclave can per-
form a denial of service (DoS) attack against the system
software. The rest of this section addresses the concern.

The SGX design provides system software the tools
it needs to protect itself from enclaves that engage in
CPU hogging and DRAM hogging. As enclaves cannot
perform I/O directly, these are the only two classes of
DoS attacks available to them.

An enclave that attempts to hog an LP assigned to it
can be preempted by the system software via an Inter-
Processor Interrupt (IPI, § 2.12) issued from another
processor. This method is available as long as the sys-
tem software reserves at least one LP for non-enclave
computation.

Furthermore, most OS kernels use tick schedulers,
which use a real-time clock (RTC) configured to issue pe-
riodical interrupts (ticks) to all cores. The RTC interrupt
handler invokes the kernel’s scheduler, which chooses
the thread that will get to use the logical processor until
the next RTC interrupt is received. Therefore, kernels
that use tick schedulers always have the opportunity to
de-schedule enclave threads, and don’t need to rely on
the ability to send IPIs.

In SGX, the system software can always evict an en-
clave’s EPC pages to non-EPC memory, and then to disk.
The system software can also outright deallocate an en-
clave’s EPC pages, though this will probably cause the
enclave code to encounter page faults that cannot be re-
solved. The only catch is that the EPC pages that hold
metadata for running enclave threads cannot be evicted
or removed. However, this can easily be resolved, as
the system software can always preempt enclave threads,
using one of the methods described above.

5.9.5 Interaction with Anti-Virus Software

Today’s anti-virus (AV) systems are glorified pattern
matchers. AV software simply scans all the executable
files on the system and the memory of running processes,
looking for bit patterns that are thought to only occur
in malicious software. These patterns are somewhat
pompously called “virus signatures”.

SGX (and TXT, to some extent) provides a method for
executing code in an isolated container that we refer to
as an enclave. Enclaves are isolated from all the other
software on the computer, including any AV software
that might be installed.

The isolation afforded by SGX opens up the possibility
for bad actors to structure their attacks as a generic loader
that would end up executing a malicious payload without
tripping the AV’s pattern matcher. More specifically, the
attack would create an enclave and initialize it with a
generic loader that looks innocent to an AV. The loader
inside the enclave would obtain an encrypted malicious
payload, and would undergo software attestation with
an Internet server to obtain the payload’s encryption key.
The loader would then decrypt the malicious payload and
execute it inside the enclave.

In the scheme suggested here, the malicious payload
only exists in a decrypted form inside an enclave’s mem-
ory, which cannot be accessed by the AV. Therefore, the
AV’s pattern matcher will not trip.

This issue does not have a solution that maintains the
status-quo for the AV vendors. The attack described
above would be called a protection scheme if the payload
would be a proprietary image processing algorithm, or a
DRM scheme.

On a brighter note, enclaves do not bring the com-
plete extinction of AV, they merely require a change in
approach. Enclave code always executes at the lowest
privilege mode (ring 3 / user mode), so it cannot perform
any I/O without invoking the services of system software.
For all intents and purposes, this effectively means that
enclave software cannot perform any malicious action
without the complicity of system software. Therefore,
enclaves can be policed effectively by intelligent AV
software that records and filters the I/O performed by
software, and detects malicious software according to
the actions that it performs, rather than according to bit
patterns in its code.

Furthermore, SGX’s enclave loading model allows
the possibility of performing static analysis on the en-
clave’s software. For simplicity, assume the existence

91

of a standardized static analysis framework. The initial
enclave contents is not encrypted, so the system software
can easily perform static analysis on it. Dynamically
loaded code or Just-In-Time code generation (JIT) can
be handled by requiring that all enclaves that use these
techniques embed the static analysis framework and use
it to analyze any dynamically loaded code before it is
executed. The system software can use static verification
to ensure that enclaves follow these rules, and refuse to
initialize any enclaves that fail verification.

In conclusion, enclaves in and of themselves don’t
introduce new attack vectors for malware. However, the
enclave isolation mechanism is fundamentally incompati-
ble with the approach employed by today’s AV solutions.
Fortunately, it is possible (though non-trivial) to develop
more intelligent AV software for enclave software.

6 SGX ANALYSIS

6.1 SGX Implementation Overview
An under-documented and overlooked feat achieved by
the SGX design is that implementing it on an Intel pro-
cessor has a very low impact on the chip’s hardware
design. SGX’s modifications to the processor’s execu-
tion cores (§ 2.9.4) are either very small or completely
inexistent. The CPU’s uncore (§ 2.9.3, § 2.11.3) receives
a new module, the Memory Encryption Engine, which
appears to be fairly self-contained.

The bulk of the SGX implementation is relegated to
the processor’s microcode (§ 2.14), which supports a
much higher development speed than the chip’s electrical
circuitry.

6.1.1 Execution Core Modifications

At a minimum, the SGX design requires a very small
modification to the processor’s execution cores (§ 2.9.4),
in the Page Miss Handler (PMH, § 2.11.5).

The PMH resolves TLB misses, and consists of a fast
path that relies on an FSM page walker, and a microcode
assist fallback that handles the edge cases (§ 2.14.3).
The bulk of SGX’s memory access checks, which are
discussed in § 6.2, can be implemented in the microcode
assist.

The only modification to the PMH hardware that is
absolutely necessary to implement SGX is developing an
ability to trigger the microcode assist for all address trans-
lations when a logical processor (§ 2.9.4) is in enclave
mode (§ 5.4), or when the physical address produced by
the page walker FSM matches the Processor Reserved
Memory (PRM, § 5.1) range.

The PRM range is configured by the PRM Range Reg-
isters (§ 5.1), which have exactly the same semantics as
the Memory Type Range Registers (MTRRs, § 2.11.4)
used to configure a variable memory range. The page
walker FSM in the PMH is already configured to issue a
microcode assist when the page tables are in uncacheable
memory (§ 2.11.4). Therefore, the PRMRR can be repre-
sented as an extra MTRR pair.

6.1.2 Uncore Modifications

The SDM states that DMA transactions (§ 2.9.1) that
target the PRM range are aborted by the processor. The
SGX patents disclose that the PRMRR protection against
unauthorized DMA is implemented by having the SGX
microcode set up entries in the Source Address De-
coder (SAD) in the uncore CBoxes and in the Target
Address Decoder (TAD) in the integrated Memory Con-
troller (MC).
§ 2.11.3 mentions that Intel’s Trusted Execution Tech-

nology (TXT) [70] already takes advantage of the inte-
grated MC to protect a DRAM range from DMA. It is
highly likely that the SGX implementation reuses the
mechanisms brought by TXT, and only requires the ex-
tension of the SADs and TADs by one entry.

SGX’s major hardware modification is the Memory
Encryption Engine (MEE) that is added to the processor’s
uncore (§ 2.9.3, § 2.11.3) to protect SGX’s Enclave Page
Cache (EPC, § 5.1.1) against physical attacks.

The MEE was first briefly described in the ISCA 2015
SGX tutorial [103]. According to the information pre-
sented there, the MEE roughly follows the approach intro-
duced by Aegis [174] [176], which relies on a variation
of Merkle trees to provide the EPC with confidentiality,
integrity, and freshness guarantees (§ 3.1). Unlike Aegis,
the MEE uses non-standard cryptographic primitives that
include a slightly modified AES operating mode (§ 3.1.2)
and a Carter-Wegman [30, 187] MAC (§ 3.1.3) construc-
tion. The MEE was further described in [74].

Both the ISCA SGX tutorial and the patents state that
the MEE is connected to to the Memory Controller (MC)
integrated in the CPU’s uncore. However, all sources are
completely silent on further implementation details. The
MEE overview slide states that “the Memory Controller
detects [the] address belongs to the MEE region, and
routes transaction to MEE”, which suggests that the MEE
is fairly self-contained and has a narrow interface to the
rest of the MC.

Intel’s SGX patents use the name Crypto Memory
Aperture (CMA) to refer to the MEE. The CMA descrip-

92

tion matches the MEE and PRM concepts, as follows.
According to the patents, the CMA is used to securely
store the EPC, relies on crypto controllers in the MC,
and loses its keys during deep sleep. These details align
perfectly with the SDM’s statements regarding the MEE
and PRM.

The Intel patents also disclose that the EPCM (§ 5.1.2)
and other structures used by the SGX implementation
are also stored in the PRM. This rules out the possibility
that the EPCM requires on-chip memory resembling the
last-level cache (§ 2.11, § 2.11.3).

Last, the SGX patents shine a bit of light on an area
that the official Intel documentation is completely silent
about, namely the implementation concerns brought by
computer systems with multiple processor chips. The
patents state that the MEE also protects the Quick-Path
Interconnect (QPI, § 2.9.1) traffic using link-layer en-
cryption.

6.1.3 Microcode Modifications

According to the SGX patents, all the SGX instructions
are implemented in microcode. This can also be de-
duced by reading the SDM’s pseuodocode for all the
instructions, and realizing that it is highly unlikely that
any SGX instruction can be implemented in 4 or fewer
micro-ops (§ 2.10), which is the most that can be handled
by the simple decoders used in the hardware fast paths
(S 2.14.1).

The Asynchronous Enclave Exit (AEX, § 5.4.3) behav-
ior is also implemented in microcode. § 2.14.2 draws on
an assortment of Intel patents to conclude that hardware
exceptions (§ 2.8.2), including both faults and interrupts,
trigger microcode events (§ 2.14.2). It follows that the
SGX implementation can implement AEX by modifying
the hardware exception handlers in the microcode.

The SGX initialization sequence is also implemented
in microcode. SGX is initialized in two phases. First, it is
very likely that the boot sequence in microcode (§ 2.14.4)
was modified to initialize the registers associated with
the SGX microcode. The ISCA SGX tutorial states that
the MEE’ keys are initialized during the boot process.
Second, SGX instructions are enabled by setting a bit
in a Model-Specific Register (MSR, § 2.4). This second
phase involves enabling the MEE and configuring the
SAD and TAD to protect the PRM range. Both tasks are
amenable to a microcode implementation.

The SGX description in the SDM implies that the SGX
implementation uses a significant number of new regis-
ters, which are only exposed to microcode. However,

the SGX patents reveal that most of these registers are
actually stored in DRAM.

For example, the patents state that each TCS (§ 5.2.4)
has two fields that receive the values of the DR7 and
IA32 DEBUGCTL registers when the processor enters
enclave mode (§ 5.4.1), and are used to restore the
original register values during enclave exit (§ 5.4.2).
The SDM documents these fields as “internal CREGs”
(CR SAVE DR7 and CR SAVE DEBUGCTL), which
are stated to be “hardware specific registers”.

The SGX patents document a small subset of the
CREGs described in the SDM, summarized in Table 22,
as microcode registers. While in general we trust offi-
cial documentation over patents, in this case we use the
CREG descriptions provided by the patents, because they
appear to be more suitable for implementation purposes.

From a cost-performance standpoint, the cost of regis-
ter memory only seems to be justified for the state used
by the PMH to implement SGX’s memory access checks,
which will be discussed in § 6.2). The other pieces of
state listed as CREGs are accessed so infrequently that
storing them in dedicated SRAM would make very little
sense.

The SGX patents state that SGX requires very few
hardware changes, and most of the implementation is in
microcode, as a positive fact. We therefore suspect that
minimizing hardware changes was a high priority in the
SGX design, and that any SGX modification proposals
need to be aware of this priority.

6.2 SGX Memory Access Protection

SGX guarantees that the software inside an enclave is
isolated from all the software outside the enclave, includ-
ing the software running in other enclaves. This isolation
guarantee is at the core of SGX’s security model.

It is tempting to assume that the main protection
mechanism in SGX is the Memory Encryption Engine
(MEE) described in § 6.1.2, as it encrypts and MACs
the DRAM’s contents. However, the MEE sits in the
processor’s memory controller, which is at the edge of
the on-chip memory hierarchy, below the caches (§ 2.11).
Therefore, the MEE cannot protect an enclave’s memory
from software attacks.

The root of SGX’s protections against software attacks
is a series of memory access checks which prevents the
currently running software from accessing memory that
does not belong to it. Specifically, non-enclave software
is only allowed to access memory outside the PRM range,
while the code inside an enclave is allowed to access non-

93

SDM Name Bits Scope Description
CSR SGX OWNEREPOCH 128 CPU Chip Package Used by EGETKEY (§ 5.7.5)
CR ENCLAVE MODE 1 Logical Processor 1 when executing code inside an enclave
CR ACTIVE SECS 16 Logical Processor The index of the EPC page storing the current en-

clave’s SECS
CR TCS LA 64 Logical Processor The virtual address of the TCS (§ 5.2.4) used to en-

ter (§ 5.4.1) the current enclave
CR TCS PH 16 Logical Processor The index of the EPC page storing the TCS used to

enter the current enclave
CR XSAVE PAGE 0 16 Logical Processor The index of the EPC page storing the first page of

the current SSA (§ 5.2.5)

Table 22: The fields in an EPCM entry.

PRM memory, and the EPC pages owned by the enclave.
Although it is believed [50] that SGX’s access checks

are performed on every memory access check, Intel’s
patents disclose that the checks are performed in the
Page Miss Handler (PMH, § 2.11.5), which only handles
TLB misses.

6.2.1 Functional Description

The intuition behind SGX’s memory access protections
can be built by considering what it would take to imple-
ment the same protections in a trusted operating system
or hypervisor, solely by using the page tables that direct
the CPU’s address translation feature (§ 2.5).

The hypothetical trusted software proposed above can
implement enclave entry (§ 5.4.1) as a system call § 2.8.1
that creates page table entries mapping the enclave’s
memory. Enclave exit (§ 5.4.2) can be a symmetric
system call that removes the page table entries created
during enclave entry. When modifying the page tables,
the system software has to consider TLB coherence is-
sues (§ 2.11.5) and perform TLB shootdowns when ap-
propriate.

SGX leaves page table management under the sys-
tem software’s control, but it cannot trust the software
to set up the page tables in any particular way. There-
fore, the hypothetical design described above cannot be
used by SGX as-is. Instead, at a conceptual level, the
SGX implementation approximates the effect of hav-
ing the page tables set up correctly by inspecting every
address translation that comes out of the Page Miss Han-
dler (PMH, § 2.11.5). The address translations that do
not obey SGX’s access control restrictions are rejected
before they reach the TLBs.

SGX’s approach relies on the fact that software al-
ways references memory using virtual addresses, so all
the micro-ops (§ 2.10) that reach the memory execu-

tion units (§ 2.10.1) use virtual addresses that must be
resolved using the TLBs before the actual memory ac-
cesses are carried out. By contrast, the processor’s mi-
crocode (§ 2.14) has the ability to issue physical memory
accesses, which bypass the TLBs. Conveniently, SGX
instructions are implemented in microcode (§ 6.1.3), so
they can bypass the TLBs and access memory that is
off limits to software, such as the EPC page holding an
enclave’s SECS(̃§ 5.1.3).

The SGX address translation checks use the informa-
tion in the Enclave Page Cache Map (EPCM, § 5.1.2),
which is effectively an inverted page table that covers the
entire EPC. This means that each EPC page is accounted
for by an EPCM entry, using the structure is summarized
in Table 23. The EPCM fields were described in detail
in § 5.1.2, § 5.2.3, § 5.2.4, § 5.5.1, and § 5.5.2.

Field Bits Description
VALID 1 0 for un-allocated EPC

pages
BLOCKED 1 page is being evicted
R 1 enclave code can read
W 1 enclave code can write
X 1 enclave code can execute
PT 8 page type (Table 24)
ADDRESS 48 the virtual address used to

access this page
ENCLAVESECS the EPC slot number for

the SECS of the enclave
owning the page

Table 23: The fields in an EPCM entry.

Conceptually, SGX adds the access control logic il-
lustrated in Figure 86 to the PMH. SGX’s security
checks are performed after the page table attributes-based
checks (§ 2.5.3) defined by the Intel architecture. It fol-

94

Type Allocated by Contents
PT REG EADD enclave code and data
PT SECS ECREATE SECS (§ 5.1.3)
PT TCS EADD TCS (§ 5.2.4)
PT VA EPA VA (§ 5.5.2)

Table 24: Values of the PT (page type) field in an EPCM entry.

lows that SGX’s access control logic has access to the
physical address produced by the page walker FSM.

SGX’s security checks depend on whether the logi-
cal processor (§ 2.9.4) is in enclave mode (§ 5.4) or not.
While the processor is outside enclave mode, the PMH al-
lows any address translation that does not target the PRM
range (§ 5.1). When the processor is inside enclave mode,
the PMH performs the checks described below, which
provide the security guarantees described in § 5.2.3.

First, virtual addresses inside the enclave’s virtual
memory range (ELRANGE, § 5.2.1) must always trans-
late into physical addresses inside the EPC. This way,
an enclave is assured that all the code and data stored
in ELRANGE receives SGX’s confidentiality, integrity,
and freshness guarantees. Since the memory outside
ELRANGE does not enjoy these guarantees, the SGX de-
sign disallows having enclave code outside ELRANGE.
This is most likely accomplished by setting the disable
execution (XD, § 2.5.3) attribute on the TLB entry.

Second, an EPC page must only be accessed by
the code of the enclave who owns the page. For the
purpose of this check, each enclave is identified by
the index of the EPC page that stores the enclave’s
SECS (§ 5.1.3). The current enclave’s identifier is stored
in the CR ACTIVE SECS microcode register during en-
clave entry. This register is compared against the enclave
identifier stored in the EPCM entry corresponding to the
EPC page targeted by the address translation.

Third, some EPC pages cannot be accessed by soft-
ware. Pages that hold SGX internal structures, such as
a SECS, a TCS (§ 5.2.4), or a VA (§ 5.5.2) must only
be accessed by SGX’s microcode, which uses physical
addresses and bypasses the address translation unit, in-
cluding the PMH. Therefore, the PMH rejects address
translations targeting these pages.

Blocked (§ 5.5.1) EPC pages are in the process of
being evicted (§ 5.5), so the PMH must not create new
TLB entries targeting them.

Next, an enclave’s EPC pages must always be accessed
using the virtual addresses associated with them when
they were allocated to the enclave. Regular EPC pages,
which can be accessed by software, are allocated to en-

Prepare TLB entry

Physical
address
in PRM?

Yes

Insert new entry
in TLB

No

Perform Address Translation using FSM

Physical
address in

EPC?

Page Fault

No
Yes

No

Modify TLB entry flags
according to EPCM entry

EPCM
entry EID equals
current enclave’s

ID?

Read EPCM entry for
the physical address

Page Fault

No

EPCM entry
ADDRESS equals translated

virtual address?

Yes

Page Fault

No Yes

Insert new entry in TLB

EPCM entry
blocked?

Page Fault

Yes

EPCM
entry type is

PT_REG?
Yes

Page Fault

No

Executing
enclave
code?

Physical
address
in PRM? Yes

Insert new entry
in TLB

No
Replace TLB
entry address

with abort
page

No

Virtual address
in ELRANGE?

Yes

Page Fault

YesNo

Set XD attribute
on TLB entry

Figure 86: SGX adds a few security checks to the PMH. The checks
ensure that all the TLB entries created by the address translation unit
meet SGX’s memory access restrictions.

95

claves using the EADD (§ 5.3.2) instruction, which reads
in the page’s address in the enclave’s virtual address
space. This address is stored in the LINADDR field in
the corresponding EPCM entry. Therefore, all the PMH
has to do is to ensure that LINADDR in the address trans-
lation’s target EPCM entry equals the virtual address that
caused the TLB miss which invoked the PMH.

At this point, the PMH’s security checks have com-
pleted, and the address translation result will definitely
be added to the TLB. Before that happens, however, the
SGX extensions to the PMH apply the access restrictions
in the EPCM entry for the page to the address translation
result. While the public SGX documentation we found
did not describe this process, there is a straightforward
implementation that fulfills SGX’s security requirements.
Specifically, the TLB entry bits P, W, and XD can be
AND-ed with the EPCM entry bits R, W, and X.

6.2.2 EPCM Entry Representation

Most EPCM entry fields have obvious representations.
The exception is the LINADDR and ENCLAVESECS
fields, described below. These representations explain
SGX’s seemingly arbitrary limit on the size of an en-
clave’s virtual address range (ELRANGE).

The SGX patents disclose that the LINADDR field
in an EPCM entry stores the virtual page num-
ber (VPN, § 2.5.1) of the corresponding EPC page’s
expected virtual address, relative to the ELRANGE base
of the enclave that owns the page.

The representation described above reduces the num-
ber of bits needed to store LINADDR, assuming that the
maximum ELRANGE size is significantly smaller than
the virtual address size supported by the CPU. This desire
to save EPCM entry bits is the most likely motivation for
specifying a processor model-specific ELRANGE size,
which is reported by the CPUID instruction.

The SDM states that the ENCLAVESECS field of an
ECPM entry corresponding to an EPC page indicates
the SECS of belonging to the enclave that owns the
page. Intel’s patents reveal that the SECS address in
ENCLAVESECS is represented as a physical page num-
ber (PPN, § 2.5.1) relative to the start of the EPC. Effec-
tively, this relative PPN is the 0-based EPC page index.

The EPC page index representation saves bits in the
ECPM entry, assuming that the EPCM size is signifi-
cantly smaller than the physical address space supported
by the CPU. The ISCA 2015 SGX tutorial slides men-
tion an EPC size of 96MB, which is significantly smaller
than the physical addressable space on today’s typical

processors, which is 236 - 240 bytes.

6.2.3 PMH Hardware Modifications

The SDM describes the memory access checks per-
formed after SGX is enabled, but does not provide any
insight into their implementation. Intel’s patents hint
at three possible implementations that make different
cost-performance tradeoffs. This section summarizes the
three approaches and argues in favor of the implementa-
tion that requires the fewest hardware modifications to
the PMH.

All implementations of SGX’s security checks en-
tail adding a pair of memory type range regis-
ters (MTRRs, § 2.11.4) to the PMH. These registers are
named the Secure Enclave Range Registers (SERR) in
Intel’s patents. Enabling SGX on a logical processor ini-
tializes the SERR to the values of the Protected Memory
Range Registers (PMRR, § 5.1).

Furthermore, all implementations have the same be-
havior when a logical processor is outside enclave mode.
The memory type range described by the SERR is en-
abled, causing a microcode assist to trigger for every
address translation that resolves inside the PRM. SGX’s
implementation uses the microcode assist to replace the
address translation result with an address that causes
memory access transactions to be aborted.

The three implementations differ in their behavior
when the processor enters enclave mode (§ 5.4) and starts
executing enclave code.

The alternative that requires the least amount of hard-
ware changes sets up the PMH to trigger a microcode
assist for every address translation. This can be done
by setting the SERR to cover all the physical memory
(e.g., by setting both the base and the mask to zero). In
this approach, the microcode assist implements all the
enclave mode security checks illustrated in Figure 86.

A speedier alternative adds a pair of registers to the
PMH that represents the current enclave’s ELRANGE
and modifies the PMH so that, in addition to checking
physical addresses against the SERR, it also checks the
virtual addresses going into address translations against
ELRANGE. When either check is true, the PMH in-
vokes the microcode assist used by SGX to implement
its memory access checks. Assuming the ELRANGE reg-
isters use the same base / mask representation as variable
MTRRs, enclave exists can clear ELRANGE by zeroing
both the base and the mask. This approach uses the same
microcode assist implementation, minus the ELRANGE
check that moves into the PMH hardware.

96

The second alternative described above has the ben-
efit that the microcode assist is not invoked for enclave
mode accesses outside ELRANGE. However, § 5.2.1
argues that an enclave should treat all the virtual mem-
ory addresses outside ELRANGE as untrusted storage,
and only use that memory to communicate with soft-
ware outside the enclave. Taking this into considera-
tion, well-designed enclaves would spend relatively little
time performing memory accesses outside ELRANGE.
Therefore, this second alternative is unlikely to obtain
performance gains that are worth its cost.

The last and most performant alternative would entail
implementing all the access checks shown in Figure 86 in
hardware. Similarly to the address translation FSM, the
hardware would only invoke a microcode assist when a
security check fails and a Page Fault needs to be handled.

The high-performance implementation described
above avoids the cost of microcode assists for all
TLB misses, assuming well-behaved system software.
In this association, a microcode assist results in a
Page Fault, which triggers an Asynchronous Enclave
Exit (AEX, § 5.4.3). The cost of the AEX dominates the
performance overhead of the microcode assist.

While this last implementation looks attractive, one
needs to realize that TLB misses occur quite infrequently,
so a large improvement in the TLB miss speed trans-
lates into a much less impressive improvement in overall
enclave code execution performance. Taking this into
consideration, it seems unwise to commit to extensive
hardware modifications in the PMH before SGX gains
adoption.

6.3 SGX Security Check Correctness

In § 6.2.1, we argued that SGX’s security guarantees
can be obtained by modifying the Page Miss Han-
dler (PMH, § 2.11.5) to block undesirable address trans-
lations from reaching the TLB. This section builds on the
result above and outlines a correctness proof for SGX’s
memory access protection.

Specifically, we outline a proof for the following in-
variant. At all times, all the TLB entries in every log-
ical processor will be consistent with SGX’s security
guarantees. By the argument in § 6.2.1, the invariant
translates into an assurance that all the memory accesses
performed by software obey SGX’s security model. The
high-level proof structure is presented because it helps
understand how the SGX security checks come together.
By contrast, a detailed proof would be incredibly tedious,
and would do very little to boost the reader’s understand-

ing of SGX.

6.3.1 Top-Level Invariant Breakdown

We first break down the above invariant into specific
cases based on whether a logical processor (LP) is ex-
ecuting enclave code or not, and on whether the TLB
entries translate virtual addresses in the current enclave’s
ELRANGE (§ 5.2.1). When the processor is outside en-
clave mode, ELRANGE can be considered to be empty.
This reasoning yields the three cases outlined below.

1. At all times when an LP is outside enclave mode, its
TLB may only contain physical addresses belonging
to DRAM pages outside the PRM.

2. At all times when an LP is inside enclave mode,
the TLB entries for virtual addresses outside the
current enclave’s ELRANGE must contain physical
addresses belonging to DRAM pages outside the
PRM.

3. At all times when an LP is in enclave mode, the
TLB entries for virtual addresses inside the current
enclave’s ELRANGE must match the virtual mem-
ory layout specified by the enclave author.

The first two invariant cases can be easily proven in-
dependently for each LP, by induction over the sequence
of instructions executed by the LP. For simplicity, the
reader can assume that instructions are executed in pro-
gram mode. While the assumption is not true on proces-
sors with out-of-order execution (§ 2.10), the arguments
presented here also hold when the executed instruction
sequence is considered in retirement order, for reasons
that will be described below.

An LP will only transition between enclave mode and
non-enclave mode at a few well-defined points, which are
EENTER (§ 5.4.1), ERESUME (§ 5.4.4), EEXIT (§ 5.4.2),
and Asynchronous Enclave Exits (AEX, § 5.4.3). Ac-
cording to the SDM, all the transition points flush the
TLBs and the out-of-order execution pipeline. In other
words, the TLBs are guaranteed to be empty after every
transition between enclave mode and non-enclave mode,
so we can consider all these transitions to be trivial base
cases for our induction proofs.

While SGX initialization is not thoroughly discussed,
the SDM mentions that loading some Model-Specific
Registers (MSRs, § 2.4) triggers TLB flushes, and that
system software should flush TLBs when modifying
Memory Type Range Registers (MTRRs, § 2.11.4).

97

Given that all the possible SGX implementations de-
scribed in § 6.2.3 entail adding a MTRR, it is safe to
assume that enabling SGX mode also results in a TLB
flush and out-of-order pipeline flush, and can be used by
our induction proof as well.

All the base cases in the induction proofs are serializa-
tion points for out-of-order execution, as the pipeline is
flushed during both enclave mode transitions and SGX
initialization. This makes the proofs below hold when
the program order instruction sequence is replaced with
the retirement order sequence.

The first invariant case holds because while the LP is
outside enclave mode, the SGX security checks added to
the PMH (§ 6.2.1, Figure 86) reject any address transla-
tion that would point into the PRM before it reaches the
TLBs. A key observation for proving the induction step
of this invariant case is that the PRM never changes after
SGX is enabled on an LP.

The second invariant case can be proved using a simi-
lar argument. While an LP is executing an enclave’s code,
the SGX memory access checks added to the PMH reject
any address translation that resolves to a physical address
inside the PRM, if the translated virtual address falls out-
side the current enclave’s ELRANGE. The induction step
for this invariant case can be proven by observing that a
change in an LP’s current ELRANGE is always accom-
panied by a TLB flush, which results in an empty TLB
that trivially satisfies the invariant. This follows from the
constraint that an enclave’s ELRANGE never changes
after it is established, and from the observation that the
LP’s current enclave can only be changed by an enclave
entry, which must be preceded by an enclave exit, which
triggers a TLB flush.

The third invariant case is best handled by recognizing
that the Enclave Page Cache Map (EPCM, § 5.1.2) is
an intermediate representation for the virtual memory
layout specified by the enclave authors. This suggests
breaking down the case into smaller sub-invariants cen-
tered around the EPCM, which will be proven in the
sub-sections below.

1. At all times, each EPCM entry for a page that is
allocated to an enclave matches the virtual memory
layout desired by the enclave’s author.

2. Assuming that the EPCM contents is constant, at
all times when an LP is in enclave mode, the TLB
entries for virtual addresses inside the current en-
clave’s ELRANGE must match EPCM entries that
belong to the enclave.

3. An EPCM entry is only modified when there is no
mapping for it in any LP’s TLB.

The second and third invariant combined prove that
all the TLBs in an SGX-enabled computer always reflect
the contents of the EPCM, as the third invariant essen-
tially covers the gaps in the second invariant. This result,
in combination with the first invariant, shows that the
EPCM is a bridge between the memory layout specifi-
cations of the enclave authors and the TLB entries that
regulate what memory can be accessed by software ex-
ecuting on the LPs. When further combined with the
reasoning in § 6.2.1, the whole proof outlined here re-
sults in an end-to-end argument for the correctness of
SGX’s memory protection scheme.

6.3.2 EPCM Entries Reflect Enclave Author Design

This sub-section outlines the proof for the following in-
variant. At all times, each EPCM entry for a page that
is allocated to an enclave matches the virtual mem-
ory layout desired by the enclave’s author.

A key observation, backed by the SDM pseudocode for
SGX instructions, is that all the instructions that modify
the EPCM pages allocated to an enclave are synchro-
nized using a lock in the enclave’s SECS. This entails the
existence of a time ordering of the EPCM modifications
associated with an enclave. We prove the invariant stated
above using a proof by induction over this sequence of
EPCM modifications.

EPCM entries allocated to an enclave are created
by instructions that can only be issued before the en-
clave is initialized, specifically ECREATE (§ 5.3.1) and
EADD (§ 5.3.2). The contents of the EPCM entries cre-
ated by these instructions contributes to the enclave’s
measurement (§ 5.6), together with the initial data loaded
into the corresponding EPC pages.
§ 3.3.2 argues that we can assume that enclaves with

incorrect measurements do not exist, as they will be re-
jected by software attestation. Therefore, we can assume
that the attributes used to initialize EPCM pages match
the enclave authors’ memory layout specifications.

EPCM entries can be evicted to untrusted DRAM,
together with their corresponding EPC pages, by the
EWB (§ 5.5.4) instruction. The ELDU / ELDB (§ 5.5) in-
structions re-load evicted page contents and metadata
back into the EPC and EPCM. By induction, we can
assume that an EPCM entry matches the enclave au-
thor’s specification when it is evicted. Therefore, if we
can prove that the EPCM entry that is reloaded from
DRAM is equivalent to the entry that was evicted, we

98

can conclude that the reloaded entry matches the author’s
specification.

A detailed analysis of the cryptographic primitives
used by the SGX design to protect the evicted EPC
page contents and its associated metadata is outside the
scope of this work. Summarizing the description in § 5.5,
the contents of evicted pages is encrypted using AES-
GMAC (§ 3.1.3), which is an authenticated encryption
mechanism. The MAC tag produced by AES-GMAC
covers the EPCM metadata as well as the page data, and
includes a 64-bit version that is stored in a version tree
whose nodes are Version Array (VA, (§ 5.5.2) pages.

Assuming no cryptographic weaknesses, SGX’s
scheme does appear to guarantee the confidentiality, in-
tegrity, and freshness of the EPC page contents and asso-
ciated metadata while it is evicted in untrusted memory.
It follows that EWB will only reload an EPCM entry if
the contents is equivalent to the contents of an evicted
entry.

The equivalence notion invoked here is slightly dif-
ferent from perfect equality, in order to account for the
allowable operation of evicting an EPC page and its asso-
ciated EPCM entry, and then reloading the page contents
to a different EPC page and a different EPCM entry, as
illustrated in Figure 69. Loading the contents of an EPC
page at a different physical address than it had before
does not break the virtual memory abstraction, as long
as the contents is mapped at the same virtual address
(the LINEARADDRESS EPCM field), and has the same
access control attributes (R, W, X, PT EPCM fields) as it
had when it was evicted.

The rest of this section enumerates the address trans-
lation attacks prevented by the MAC verification that
occurs in ELDU / ELDB. This is intended to help the
reader develop some intuition for the reasoning behind
using the page data and all the EPCM fields to compute
and verify the MAC tag.

The most obvious attack is prevented by having the
MAC cover the contents of the evicted EPC page, so the
untrusted OS cannot modify the data in the page while it
is stored in untrusted DRAM. The MAC also covers the
metadata that makes up the EPCM entry, which prevents
the more subtle attacks described below.

The enclave ID (EID) field is covered by the MAC tag,
so the OS cannot evict an EPC page belonging to one
enclave, and assign the page to a different enclave when
it is loaded back into the EPC. If EID was not covered by
authenticity guarantees, a malicious OS could read any
enclave’s data by evicting an EPC page belonging to the

victim enclave, and loading it into a malicious enclave
that would copy the page’s contents to untrusted DRAM.

The virtual address (LINADDR) field is covered by
the MAC tag, so the OS cannot modify the virtual mem-
ory layout of an enclave by evicting an EPC page and
specifying a different LINADDR when loading it back.
If LINADDR was not covered by authenticity guarantees,
a malicious OS could perform the exact attack shown in
Figure 55 and described in § 3.7.3.

The page access permission flags (R, W, X) are also
covered by the MAC tag. This prevents the OS from
changing the access permission bits in a page’s EPCM
entry by evicting the page and loading it back in. If
the permission flags were not covered by authenticity
guarantees, the OS could use the ability to change EPCM
access permissions to facilitate exploiting vulnerabilities
in enclave code. For example, exploiting a stack overflow
vulnerability is generally easier if OS can make the stack
pages executable.

The nonce stored in the VA slot is also covered by
the MAC. This prevents the OS from mounting a replay
attack that reverts the contents of an EPC page to an
older version. If the nonce would not be covered by
integrity guarantees, the OS could evict the target EPC
page at different times t1 and t2 in the enclave’s life, and
then provide the EWB outputs at t1 to the ELDU / ELDB
instruction. Without the MAC verification, this attack
would successfully revert the contents of the EPC page
to its version at t1.

While replay attacks look relatively benign, they can
be quite devastating when used to facilitate double spend-
ing.

6.3.3 TLB Entries for ELRANGE Reflect EPCM Con-
tents

This sub-section sketches a proof for the following invari-
ant. At all times when an LP is in enclave mode, the
TLB entries for virtual addresses inside the current
enclave’s ELRANGE must match EPCM entries that
belong to the enclave. The argument makes the assump-
tion that the EPCM contents is constant, which will be
justified in the following sub-section.

The invariant can be proven by induction over the
sequence of TLB insertions that occur in the LP. This
sequence is well-defined because an LP has a single
PMH, so the address translation requests triggered by
TLB misses must be serialized to be processed by the
PMH.

The proof’s induction step depends on the fact that the

99

TLB on hyper-threaded cores (§ 2.9.4) is dynamically
partitioned between the two LPs that share the core, and
no TLB entry is shared between the LPs. This allows
our proof to consider the TLB insertions associated with
one LP independently from the other LP’s insertions,
which means we don’t have to worry about the state (e.g.,
enclave mode) of the other LP on the core.

The proof is further simplified by observing that when
an LP exits enclave mode, both its TLB and its out-of-
order instruction pipeline are flushed. Therefore, the
enclave mode and current enclave register values used by
address translations are guaranteed to match the values
obtained by performing the translations in program order.

Having eliminated all the complexities associated with
hyper-threaded (§ 2.9.4) out-of-order (§ 2.10) execution
cores, it is easy to see that the security checks outlined in
Figure 86 and § 6.2.1 ensure that TLB entries that target
EPC pages are guaranteed to reflect the constraints in the
corresponding EPCM entries.

Last, the SGX access checks implemented in the PMH
reject any address translation for a virtual address in
ELRANGE that does not resolve to an EPC page. It
follows that memory addresses inside ELRANGE can
only map to EPC pages which, by the argument above,
must follow the constraints of the corresponding EPCM
entries.

6.3.4 EPCM Entries are Not In TLBs When Modified

In this sub-section, we outline a proof that an EPCM
entry is only modified when there is no mapping for
it in any LP’s TLB.. This proof analyzes each of the
instructions that modify EPCM entries.

For the purposes of this proof, we consider that setting
the BLOCKED attribute does not count as a modification
to an EPCM entry, as it does not change the EPC page
that the entry is associated with, or the memory layout
specification associated with the page.

The instructions that modify EPCM entries in such a
way that the resulting EPCM entries have the VALID
field set to true require that the EPCM entries were in-
valid before they were modified. These instructions are
ECREATE (§ 5.3.1), EADD (§ 5.3.2), EPA (§ 5.5.2), and
ELDU / ELDB (§ 5.5). The EPCM entry targeted by any
these instructions must have had its VALID field set to
false, so the invariant proved in the previous sub-section
implies that the EPCM entry had no TLB entry associ-
ated with it.

Conversely, the instructions that modify EPCM en-
tries and result in entries whose VALID field is false

start out with valid entries. These instructions are
EREMOVE (§ 5.3.4) and EWB (§ 5.5.4).

The EPCM entries associated with EPC pages that
store Version Arrays (VA, § 5.5.2) represent a special
case for both instructions mentioned above, as these
pages are not associated with any enclave. As these
pages can only be accessed by the microcode used to im-
plement SGX, they never have TLB entries representing
them. Therefore, both EREMOVE and EWB can invalidate
EPCM entries for VA pages without additional checks.
EREMOVE only invalidates an EPCM entry associated

with an enclave when there is no LP executing in enclave
mode using a TCS associated with the same enclave. An
EPCM entry can only result in TLB translations when an
LP is executing code from the entry’s enclave, and the
TLB translations are flushed when the LP exits enclave
mode. Therefore, when EREMOVE invalidates an EPCM
entry, any associated TLB entry is guaranteed to have
been flushed.
EWB’s correctness argument is more complex, as it

relies on the EBLOCK / ETRACK sequence described in
§ 5.5.1 to ensure that any TLB entry that might have been
created for an EPCM entry is flushed before the EPCM
entry is invalidated.

Unfortunately, the SDM pseudocode for the instruc-
tions mentioned above leaves out the algorithm used to
verify that the relevant TLB entries have been flushed.
Thus, we must base our proof on the assumption that
the SGX implementation produced by Intel’s engineers
matches the claims in the SDM. In § 6.4, we propose a
method for ensuring that EWB will only succeed when
all the LPs executing an enclave’s code at the time when
ETRACK is called have exited enclave mode at least once
between the ETRACK call and the EWB call. Having
proven the existence of a correct algorithm by construc-
tion, we can only hope that the SGX implementation uses
our algorithm, or a better algorithm that is still correct.

6.4 Tracking TLB Flushes

This section proposes a straightforward method that the
SGX implementation can use to verify that the system
software plays its part correctly in the EPC page evic-
tion (§ 5.5) process. Our method meets the SDM’s spec-
ification for EBLOCK (§ 5.5.1), ETRACK (§ 5.5.1) and
EWB (§ 5.5.4).

The motivation behind this section is that, at least at
the time of this writing, there is no official SGX doc-
umentation that contains a description of the mecha-
nism used by EWB to ensure that all the Logical Pro-

100

cessors (LPs, § 2.9.4) running an enclave’s code exit
enclave mode (§ 5.4) between an ETRACK invocation
and a EWB invocation. Knowing that there exists a cor-
rect mechanism that has the same interface as the SGX
instructions described in the SDM gives us a reason to
hope that the SGX implementation is also correct.

Our method relies on the fact that an enclave’s
SECS (§ 5.1.3) is not accessible by software, and is
already used to store information used by the SGX mi-
crocode implementation (§ 6.1.3). We store the follow-
ing fields in the SECS. tracking and done-tracking are
Boolean variables. tracked -threads and active-threads
are non-negative integers that start at zero and must
store numbers up to the number of LPs in the computer.
lp-mask is an array of Boolean flags that has one mem-
ber per LP in the computer. The fields are initialized as
shown in Figure 87.

ECREATE(SECS)

� Initialize the SECS state used for tracking.
1 SECS . tracking ← FALSE

2 SECS . done-tracking ← FALSE

3 SECS . active-threads ← 0
4 SECS . tracked -threads ← 0
5 SECS . lp-mask ← 0

Figure 87: The algorithm used to initialize the SECS fields used by
the TLB flush tracking method presented in this section.

The active-threads SECS field tracks the number of
LPs that are currently executing the code of the enclave
who owns the SECS. The field is atomically incremented
by EENTER (§ 5.4.1) and ERESUME (§ 5.4.4) and is
atomically decremented by EEXIT (§ 5.4.2) and Asyn-
chronous Enclave Exits (AEXs, § 5.4.3). Asides from
helping track TLB flushes, this field can also be used by
EREMOVE (§ 5.3.4) to decide when it is safe to free an
EPC page that belongs to an enclave.

As specified in the SDM, ETRACK activates TLB flush
tracking for an enclave. In our method, this is accom-
plished by setting the tracking field to TRUE and the
done-tracking field to FALSE.

When tracking is enabled, tracked -threads is the num-
ber of LPs that were executing the enclave’s code when
the ETRACK instruction was issued, and have not yet ex-
ited enclave mode. Therefore, executing ETRACK atom-
ically reads active-threads and writes the result into
tracked -threads . Also, lp-mask keeps track of the LPs
that have exited the current enclave after the ETRACK

instruction was issued. Therefore, the ETRACK imple-
mentation atomically zeroes lp-mask . The full ETRACK
algorithm is listed in Figure 88.

ETRACK(SECS)

� Abort if tracking is already active.
1 if SECS . tracking = TRUE

2 then return SGX-PREV-TRK-INCMPL

� Activate TLB flush tracking.
3 SECS . tracking ← TRUE

4 SECS . done-tracking ← FALSE

5 SECS . tracked -threads ←
ATOMIC-READ(SECS . active-threads)

6 for i← 0 to MAX-LP-ID

7 do ATOMIC-CLEAR(SECS . lp-mask [i])

Figure 88: The algorithm used by ETRACK to activate TLB flush
tracking.

When an LP exits an enclave that has TLB flush
tracking activated, we atomically test and set the cur-
rent LP’s flag in lp-mask . If the flag was not previ-
ously set, it means that an LP that was executing the
enclave’s code when ETRACK was invoked just exited
enclave mode for the first time, and we atomically decre-
ment tracked -threads to reflect this fact. In other words,
lp-mask prevents us from double-counting an LP when
it exits the same enclave while TLB flush tracking is
active.

Once active-threads reaches zero, we are assured that
all the LPs running the enclave’s code when ETRACK
was issued have exited enclave mode at least once, and
can set the done-tracking flag. Figure 89 enumerates all
the steps taken on enclave exit.

ENCLAVE-EXIT(SECS)

� Track an enclave exit.
1 ATOMIC-DECREMENT(SECS . active-threads)
2 if ATOMIC-TEST-AND-SET(

SECS . lp-mask [LP-ID])
3 then ATOMIC-DECREMENT(

SECS . tracked -threads)
4 if SECS . tracked -threads = 0
5 then SECS . done-tracking ← TRUE

Figure 89: The algorithm that updates the TLB flush tracking state
when an LP exits an enclave via EEXIT or AEX.

Without any compensating measure, the method above

101

will incorrectly decrement tracked -threads , if the LP ex-
iting the enclave had entered it after ETRACK was issued.
We compensate for this with the following trick. When
an LP starts executing code inside an enclave that has
TLB flush tracking activated, we set its corresponding
flag in lp-mask . This is sufficient to avoid counting the
LP when it exits the enclave. Figure 90 lists the steps
required by our method when an LP enters an enclave.

ENCLAVE-ENTER(SECS)

� Track an enclave entry.
1 ATOMIC-INCREMENT(SECS . active-threads)
2 ATOMIC-SET(SECS . lp-mask [LP-ID])

Figure 90: The algorithm that updates the TLB flush tracking state
when an LP enters an enclave via EENTER or ERESUME.

With these algorithms in place, EWB can simply verify
that both tracking and done-tracking are TRUE. This
ensures that the system software has triggered enclave
exits on all the LPs that were running the enclave’s code
when ETRACK was executed. Figure 91 lists the algo-
rithm used by the EWB tracking verification step.

EWB-VERIFY(virtual -addr)

1 physical -addr ← TRANSLATE(virtual -addr)
2 epcm-slot ← EPCM-SLOT(physical -addr)
3 if EPCM [slot].BLOCKED = FALSE

4 then return SGX-NOT-BLOCKED

5 SECS ← EPCM-ADDR(
EPCM [slot].ENCLAVESECS)

� Verify that the EPC page can be evicted.
6 if SECS . tracking = FALSE

7 then return SGX-NOT-TRACKED

8 if SECS . done-tracking = FALSE

9 then return SGX-NOT-TRACKED

Figure 91: The algorithm that ensures that all LPs running an
enclave’s code when ETRACK was executed have exited enclave
mode at least once.

Last, EBLOCK marks the end of a TLB flush tracking
cycle by clearing the tracking flag. This ensures that sys-
tem software must go through another cycle of ETRACK
and enclave exits before being able to use EWB on the
page whose BLOCKED EPCM field was just set to TRUE

by EBLOCK. Figure 92 shows the details.
Our method’s correctness can be easily proven by ar-

guing that each SECS field introduced in this section has

EBLOCK(virtual -addr)

1 physical -addr ← TRANSLATE(virtual -addr)
2 epcm-slot ← EPCM-SLOT(physical -addr)
3 if EPCM [slot].BLOCKED = TRUE

4 then return SGX-BLKSTATE

5 if SECS . tracking = TRUE

6 then if SECS . done-tracking = FALSE

7 then return SGX-ENTRYEPOCH-LOCKED

8 SECS . tracking ← FALSE

9 EPCM [slot].BLOCKED ← TRUE

Figure 92: The algorithm that marks the end of a TLB flushing
cycle when EBLOCK is executed.

its intended value throughout enclave entries and exits.

6.5 Enclave Signature Verification
Let m be the public modulus in the enclave author’s
RSA key, and s be the enclave signature. Since the
SGX design fixes the value of the public exponent e to
3, verifying the RSA signature amounts to computing
the signed message M = s3 mod m, checking that the
value meets the PKCS v1.5 padding requirements, and
comparing the 256-bit SHA-2 hash inside the message
with the value obtained by hashing the relevant fields in
the SIGSTRUCT supplied with the enclave.

This section describes an algorithm for computing the
signed message while only using subtraction and multi-
plication on large non-negative integers. The algorithm
admits a significantly simpler implementation than the
typical RSA signature verification algorithm, by avoiding
the use of long division and negative numbers. The de-
scription here is essentially the idea in [73], specialized
for e = 3.

The algorithm provided here requires the signer to
compute the q1 and q2 values shown below. The values
can be computed from the public information in the sig-
nature, so they do not leak any additional information
about the private signing key. Furthermore, the algorithm
verifies the correctness of the values, so it does not open
up the possibility for an attack that relies on supplying
incorrect values for q1 and q2.

q1 =

⌊
s2

m

⌋
q2 =

⌊
s3 − q1 × s×m

m

⌋

102

Due to the desirable properties mentioned above, it is
very likely that the algorithm described here is used by
the SGX implementation to verify the RSA signature in
an enclave’s SIGSTRUCT (§ 5.7.1).

The algorithm in Figure 93 computes the signed mes-
sage M = s3 mod m, while also verifying that the given
values of q1 and q2 are correct. The latter is necessary
because the SGX implementation of signature verifica-
tion must handle the case where an attacker attempts
to exploit the signature verification implementation by
supplying invalid values for q1 and q2.

1. Compute u← s× s and v ← q1 ×m

2. If u < v, abort. q1 must be incorrect.

3. Compute w ← u− v

4. If w ≥ m, abort. q1 must be incorrect.

5. Compute x← w × s and y ← q2 ×m

6. If x < y, abort. q2 must be incorrect.

7. Compute z ← x− y.

8. If z ≥ m, abort. q2 must be incorrect.

9. Output z.

Figure 93: An RSA signature verification algorithm specialized for
the case where the public exponent is 3. s is the RSA signature and
m is the RSA key modulus. The algorithm uses two additional inputs,
q1 and q2.

The rest of this section proves the correctness of the
algorithm in Figure 93.

6.5.1 Analysis of Steps 1 - 4

Steps 1− 4 in the algorithm check the correctness of q1
and use it to compute s2 mod m. The key observation
to understanding these steps is recognizing that q1 is the
quotient of the integer division s2/m.

Having made this observation, we can use elementary
division properties to prove that the supplied value for q1
is correct if and only if the following property holds.

0 ≤ s2 − q1 ×m < m

We observe that the first comparison, 0 ≤ s2−q1×m,
is equivalent to q1 × m ≤ s2, which is precisely the
check performed by step 2. We can also see that the
second comparison, s2−q1×m < m corresponds to the
condition verified by step 4. Therefore, if the algorithm

passes step 4, it must be the case that the value supplied
for q1 is correct.

We can also plug s2, q1 and m into the integer division
remainder definition to obtain the identity s2 mod m =
s2 − q1 ×m. However, according to the computations
performed in steps 1 and 3, w = s2− q1×m. Therefore,
we can conclude that w = s2 mod m.

6.5.2 Analysis of Steps 5 - 8

Similarly, steps 5− 8 in the algorithm check the correct-
ness of q2 and use it to compute w × s mod m. The key
observation here is that q2 is the quotient of the integer
division (w × s)/m.

We can convince ourselves of the truth of this obser-
vation by using the fact that w = s2 mod m, which was
proven above, by plugging in the definition of the re-
mainder in integer division, and by taking advantage of
the distributivity of integer multiplication with respect to
addition.

⌊
w × s

m

⌋
=

⌊
(s2 mod m)× s

m

⌋
=

⌊
(s2 − b s2m c ×m)× s

m

⌋

=

⌊
s3 − b s2m c ×m× s

m

⌋

=

⌊
s3 − q1 ×m× s

m

⌋
=

⌊
s3 − q1 × s×m

m

⌋
= q2

By the same argument used to analyze steps 1 − 4,
we use elementary division properties to prove that q2 is
correct if and only if the equation below is correct.

0 ≤ w × s− q2 ×m < m

The equation’s first comparison, 0 ≤ w× s− q2 ×m,
is equivalent to q2 ×m ≤ w × s, which corresponds to
the check performed by step 6. The second comparison,
w × s− q2 ×m < m, matches the condition verified by
step 8. It follows that, if the algorithm passes step 8, it
must be the case that the value supplied for q2 is correct.

By plugging w × s, q2 and m into the integer division
remainder definition, we obtain the identity w × s mod
m = w×s−q2×m. Trivial substitution reveals that the

103

computations in steps 5 and 7 result in z = w×s−q2×m,
which allows us to conclude that z = w × s mod m.

In the analysis for steps 1 − 4, we have proven that
w = s2 mod m. By substituting this into the above
identity, we obtain the proof that the algorithm’s output
is indeed the desired signed message.

z = w × s mod m

= (s2 mod m)× s mod m

= s2 × s mod m

= s3 mod m

6.5.3 Implementation Requirements

The main advantage of the algorithm in Figure 93 is that
it relies on the implementation of very few arithmetic
operations on large integers. The maximum integer size
that needs to be handled is twice the size of the modulus
in the RSA key used to generate the signature.

Steps 1 and 5 use large integer multiplication. Steps
3 and 7 use integer subtraction. Steps 2, 4, 6, and 8 use
large integer comparison. The checks in steps 2 and 6
guarantee that the results of the subtractions performed
in steps 3 and 7 will be non-negative. It follows that the
algorithm will never encounter negative numbers.

6.6 SGX Security Properties
We have summarized SGX’s programming model and
the implementation details that are publicly documented
in Intel’s official documentation and published patents.
We are now ready to bring this the information together
in an analysis of SGX’s security properties. We start
the analysis by restating SGX’s security guarantees, and
spend the bulk of this section discussing how SGX fares
when pitted against the attacks described in § 3. We
conclude the analysis with some troubling implications
of SGX’s lack of resistance to software side-channel
attacks.

6.6.1 Overview

Intel’s Software Guard Extensions (SGX) is Intel’s latest
iteration of a trusted hardware solution to the secure re-
mote computation problem. The SGX design is centered
around the ability to create an isolated container whose
contents receives special hardware protections that are
intended to translate into confidentiality, integrity, and
freshness guarantees.

An enclave’s initial contents is loaded by the system
software on the computer, and therefore cannot contain

secrets in plain text. Once initialized, an enclave is ex-
pected to participate in a software attestation process,
where it authenticates itself to a remote server. Upon suc-
cessful authentication, the remote server is expected to
disclose some secrets to an enclave over a secure commu-
nication channel. The SGX design attempts to guarantee
that the measurement presented during software attesta-
tion accurately represents the contents loaded into the
enclave.

SGX also offers a certificate-based identity system that
can be used to migrate secrets between enclaves that have
certificates issued by the same authority. The migration
process involves securing the secrets via authenticated
encryption before handing them off to the untrusted sys-
tem software, which passes them to another enclave that
can decrypt them.

The same mechanism used for secret migration can
also be used to cache the secrets obtained via software
attestation in an untrusted storage medium managed by
system software. This caching can reduce the number
of times that the software attestation process needs to
be performed in a distributed system. In fact, SGX’s
software attestation process is implemented by enclaves
with special privileges that use the certificate-based iden-
tity system to securely store the CPU’s attestation key in
untrusted memory.

6.6.2 Physical Attacks

We begin by discussing SGX’s resilience to the physical
attacks described in § 3.4. Unfortunately, this section
is set to disappoint readers expecting definitive state-
ments. The lack of publicly available details around the
hardware implementation aspects of SGX precludes any
rigorous analysis. However, we do know enough about
SGX’s implementation to point out a few avenues for
future exploration.

Due to insufficient documentation, one can only hope
that the SGX security model is not trivially circum-
vented by a port attack (§ 3.4.1). We are particularly
concerned about the Generic Debug eXternal Connec-
tion (GDXC) [126, 199], which collects and filters the
data transferred by the uncore’s ring bus (§ 2.11.3), and
reports it to an external debugger.

The SGX memory protection measures are imple-
mented at the core level, in the Page Miss Han-
dler (PMH, § 2.11.5) (§ 6.2) and at the chip die level,
in the memory controller (§ 6.1.2). Therefore, the code
and data inside enclaves is stored in plaintext in on-chip
caches (§ 2.11), which entails that the enclave contents

104

travels without any cryptographic protection on the un-
core’s ring bus (§ 2.11.3).

Fortunately, a recent Intel patent [167] indicates that
Intel engineers are tackling at least some classes of at-
tacks targeting debugging ports.

The SDM and SGX papers discuss the most obvi-
ous class of bus tapping attacks (§ 3.4.2), which is the
DRAM bus tapping attack. SGX’s threat model con-
siders DRAM and the bus connecting it to the CPU
chip to be untrusted. Therefore, SGX’s Memory En-
cryption Engine (MEE, § 6.1.2) provides confidentiality,
integrity and freshness guarantees to the Enclave Page
Cache (EPC, § 5.1.1) data while it is stored in DRAM.

However, both the SGX papers and the ISCA 2015
tutorial on SGX admit that the MEE does not protect the
addresses of the DRAM locations accessed when cache
lines holding EPC data are evicted or loaded. This pro-
vides an opportunity for a malicious computer owner to
observe an enclave’s memory access patterns by combin-
ing a DRAM address line bus tap with carefully crafted
system software that creates artificial pressure on the last-
level cache (LLC ,§ 2.11) lines that hold the enclave’s
EPC pages.

On a brighter note, as mentioned in § 3.4.2, we are not
aware of any successful DRAM address line bus tapping
attack. Furthermore, SGX is vulnerable to cache timing
attacks that can be carried out completely in software, so
malicious computer owners do not need to bother setting
up a physical attack to obtain an enclave’s memory access
patterns.

While the SGX documentation addresses DRAM bus
tapping attacks, it makes no mention of the System Man-
agement bus (SMBus, § 2.9.2) that connects the Intel
Management Engine (ME, § 2.9.2) to various compo-
nents on the computer’s motherboard.

In § 6.6.5, we will explain that the ME needs to be
taken into account when evaluating SGX’s memory pro-
tection guarantees. This makes us concerned about the
possibility of an attack that taps the SMBus to reach into
the Intel ME. The SMBus is much more accessible than
the DRAM bus, as it has fewer wires that operate at a
significantly lower speed. Unfortunately, without more
information about the role that the Intel ME plays in a
computer, we cannot move beyond speculation on this
topic.

The threat model stated by the SGX design excludes
physical attacks targeting the CPU chip (§ 3.4.3). Fortu-
nately, Intel’s patents disclose an array of countermea-
sures aimed at increasing the cost of chip attacks.

For example, the original SGX patents [110, 138] dis-
close that the Fused Seal Key and the Provisioning Key,
which are stored in e-fuses (§ 5.8.2), are encrypted with
a global wrapping logic key (GWK). The GWK is a
128-bit AES key that is hard-coded in the processor’s
circuitry, and serves to increase the cost of extracting the
keys from an SGX-enabled processor.

As explained in § 3.4.3, e-fuses have a large feature
size, which makes them relatively easy to “read” using a
high-resolution microscope. In comparison, the circuitry
on the latest Intel processors has a significantly smaller
feature size, and is more difficult to reverse engineer.
Unfortunately, the GWK is shared among all the chip dies
created from the same mask, so it has all the drawbacks
of global secrets explained in § 3.4.3.

Newer Intel patents [67, 68] describe SGX-enabled
processors that employ a Physical Unclonable Func-
tion (PUF), e.g., [175], [133], which generates a symmet-
ric key that is used during the provisioning process.

Specifically, at an early provisioning stage, the PUF
key is encrypted with the GWK and transmitted to the
key generation server. At a later stage, the key generation
server encrypts the key material that will be burned into
the processor chip’s e-fuses with the PUF key, and trans-
mits the encrypted material to the chip. The PUF key
increases the cost of obtaining a chip’s fuse key material,
as an attacker must compromise both provisioning stages
in order to be able to decrypt the fuse key material.

As mentioned in previous sections, patents reveal de-
sign possibilities considered by the SGX engineers. How-
ever, due to the length of timelines involved in patent ap-
plications, patents necessarily describe earlier versions of
the SGX implementation plans, which might not match
the shipping implementation. We expect this might be
the case with the PUF provisioning patents, as it makes
little sense to include a PUF in a chip die and rely on
e-fuses and a GWK to store SGX’s root keys. Deriving
the root keys from the PUF would be more resilient to
chip imaging attacks.

SGX’s threat model excludes power analysis at-
tacks (§ 3.4.4) and other side-channel attacks. This is
understandable, as power attacks cannot be addressed at
the architectural level. Defending against power attacks
requires expensive countermeasures at the lowest levels
of hardware implementation, which can only be designed
by engineers who have deep expertise in both system se-
curity and Intel’s manufacturing process. It follows that
defending against power analysis attacks has a very high
cost-to-benefit ratio.

105

6.6.3 Privileged Software Attacks

The SGX threat model considers system software to be
untrusted. This is a prerequisite for SGX to qualify as
a solution to the secure remote computation problem
encountered by software developers who wish to take ad-
vantage of Infrastructure-as-a-Service (IaaS) cloud com-
puting.

SGX’s approach is also an acknowledgement of the
realities of today’s software landscape, where the sys-
tem software that runs at high privilege levels (§ 2.3)
is so complex that security researchers constantly find
vulnerabilities in it (§ 3.5).

The SGX design prevents malicious software from
directly reading or from modifying the EPC pages that
store an enclave’s code and data. This security property
relies on two pillars in the SGX design.

First, the SGX implementation (§ 6.1) runs in the pro-
cessor’s microcode (§ 2.14), which is effectively a higher
privilege level that system software does not have access
to. Along the same lines, SGX’s security checks (§ 6.2)
are the last step performed by the PMH, so they cannot
be bypassed by any other architectural feature.

This implementation detail is only briefly mentioned
in SGX’s official documentation, but has a large impact
on security. For context, Intel’s Trusted Execution Tech-
nology (TXT, [70]), which is the predecessor of SGX,
relied on Intel’s Virtual Machine Extensions (VMX) for
isolation. The approach was unsound, because software
running in System Management Mode (SMM, § 2.3)
could bypass the restrictions used by VMX to provide
isolation.

The security properties of SGX’s memory protection
mechanisms are discussed in detail in § 6.6.4.

Second, SGX’s microcode is always involved when a
CPU transitions between enclave code and non-enclave
code (§ 5.4), and therefore regulates all interactions be-
tween system software and an enclave’s environment.

On enclave entry (§ 5.4.1), the SGX implementation
sets up the registers (§ 2.2) that make up the execution
state (§ 2.6) of the logical processor (LP § 2.9.4), so
a malicious OS or hypervisor cannot induce faults in
the enclave’s software by tampering with its execution
environment.

When an LP transitions away from an enclave’s code
due to a hardware exception (§ 2.8.2), the SGX imple-
mentation stashes the LP’s execution state into a State
Save Area (SSA, § 5.2.5) area inside the enclave and
scrubs it, so the system software’s exception handler can-

not access any enclave secrets that may be stored in the
execution state.

The protections described above apply to the all the
levels of privileged software. SGX’s transitions between
an enclave’s code and non-enclave code place SMM
software on the same footing as the system software
at lower privilege levels. System Management Inter-
rupts (SMI, § 2.12, § 3.5), which cause the processor to
execute SMM code, are handled using the same Asyn-
chronous Enclave Exit (AEX, § 5.4.3) process as all other
hardware exceptions.

Reasoning about the security properties of SGX’s tran-
sitions between enclave mode and non-enclave mode is
very difficult. A correctness proof would have to take
into account all the CPU’s features that expose registers.
Difficulty aside, such a proof would be very short-lived,
because every generation of Intel CPUs tends to intro-
duce new architectural features. The paragraph below
gives a taste of what such a proof would look like.
EENTER (§ 5.4.1) stores the RSP and RBP register

values in the SSA used to enter the enclave, but stores
XCR0 (§ 2.6), FS and GS (§ 2.7) in the non-architectural
area of the TCS (§ 6.1.3). At first glance, it may seem
elegant to remove this inconsistency and have EENTER
store the contents of the XCR0, FS, and GS registers
in the current SSA, along with RSP and RBP. However,
this approach would break the Intel architecture’s guar-
antees that only system software can modify XCR0, and
application software can only load segment registers us-
ing selectors that index into the GDT or LDT set up by
system software. Specifically, a malicious application
could modify these privileged registers by creating an
enclave that writes the desired values to the current SSA
locations backing up the registers, and then executes
EEXIT (§ 5.4.2).

Unfortunately, the following sections will reveal that
while SGX offers rather thorough guarantees against
straightforward attacks on enclaves, its guarantees are
almost non-existent when it comes to more sophisticated
attacks, such as side-channel attacks. This section con-
cludes by describing what might be the most egregious
side-channel vulnerability in SGX.

Most modern Intel processors feature hyper-threading.
On these CPUs, the execution units (§ 2.10) and
caches (§ 2.11) on a core (§ 2.9.4) are shared by two
LPs, each of which has its own execution state. SGX
does not prevent hyper-threading, so malicious system
software can schedule a thread executing the code of a
victim enclave on an LP that shares the core with an LP

106

executing a snooping thread. This snooping thread can
use the processor’s high-resolution performance counter
[152], in conjunction with microarchitectural knowledge
of the CPU’s execution units and out-of-order scheduler,
to learn the instructions executed by the victim enclave,
as well as its memory access patterns.

This vulnerability can be fixed using two approaches.
The straightforward solution is to require cloud comput-
ing providers to disable hyper-threading when offering
SGX. The SGX enclave measurement would have to
be extended to include the computer’s hyper-threading
configuration, so the remote parties in the software at-
testation process can be assured that their enclaves are
hosted by a secure environment.

A more complex approach to fixing the hyper-
threading vulnerability would entail having the SGX
implementation guarantee that when an LP is executing
an enclave’s code, the other LP sharing its core is either
inactive, or is executing the same enclave’s code. While
this approach is possible, its design would likely be quite
cumbersome.

6.6.4 Memory Mapping Attacks

§ 5.4 explained that the code running inside an enclave
uses the same address translation process (§ 2.5) and
page tables as its host application. While this design
approach makes it easy to retrofit SGX support into ex-
isting codebases, it also enables the address translation
attacks described in § 3.7.

The SGX design protects the code inside enclaves
against the active attacks described in § 3.7. These pro-
tections have been extensively discussed in prior sections,
so we limit ourselves to pointing out SGX’s answer to
each active attack. We also explain the lack of protec-
tions against passive attacks, which can be used to learn
an enclave’s memory access pattern at 4KB page granu-
larity.

SGX uses the Enclave Page Cache
Map (EPCM, § 5.1.2) to store each EPC page’s
position in its enclave’s virtual address space. The
EPCM is consulted by SGX’s extensions to the Page
Miss Handler (PMH, § 6.2.1), which prevent straight-
forward active address translation attacks (§ 3.7.2) by
rejecting undesirable address translations before they
reach the TLB (§ 2.11.5).

SGX allows system software to evict (§ 5.5) EPC
pages into untrusted DRAM, so that the EPC can be
over-subscribed. The contents of the evicted pages and
the associated EPCM metadata are protected by cryp-

tographic primitives that offer confidentiality, integrity
and freshness guarantees. This protects against the active
attacks using page swapping described in § 3.7.3.

When system software wishes to evict EPC pages,
it must follow the process described in § 5.5.1, which
guarantees to the SGX implementation that all the LPs
have invalidated any TLB entry associated with pages
that will be evicted. This defeats the active attacks based
on stale TLB entries described in § 3.7.4.
§ 6.3 outlines a correctness proof for the memory pro-

tection measures described above.
Unfortunately, SGX does not protect against passive

address translation attacks (§ 3.7.1), which can be used
to learn an enclave’s memory access pattern at page gran-
ularity. While this appears benign, recent work [195]
demonstrates the use of these passive attacks in a few
practical settings, which are immediately concerning for
image processing applications.

The rest of this section describes the theory behind
planning a passive attack against an SGX enclave. The
reader is directed to [195] for a fully working system.

Passive address translation attacks rely on the fact that
memory accesses issued by SGX enclaves go through
the Intel architecture’s address translation process (§ 2.5),
including delivering page faults (§ 2.8.2) and setting the
accessed (A) and dirty (D) attributes (§ 2.5.3) on page
table entries.

A malicious OS kernel or hypervisor can obtain the
page-level trace of an application executing inside an
enclave by setting the present (P) attribute to 0 on all
the enclave’s pages before starting enclave execution.
While an enclave executes, the malicious system software
maintains exactly one instruction page and one data page
present in the enclave’s address space.

When a page fault is generated, CR2 contains the
virtual address of a page accessed by enclave, and the
error code indicates whether the memory access was a
read or a write (bit 1) and whether the memory access is
a data access or an instruction fetch access (bit 4). On a
data access, the kernel tracing the enclave code’s memory
access pattern would set the P flag of the desired page to
1, and set the P flag of the previously accessed data page
to 0. Instruction accesses can be handled in a similar
manner.

For a slightly more detailed trace, the kernel can set
a desired page’s writable (W) attribute to 0 if the page
fault’s error code indicates a read access, and only set
it to 1 for write accesses. Also, applications that use
a page as both code and data (self-modifying code and

107

just-in-time compiling VMs) can be handled by setting a
page’s disable execution (XD) flag to 0 for a data access,
and by carefully accounting for the case where the last
accessed data page is the same as the last accessed code
page.

Leaving an enclave via an Asynchronous Enclave
Exit (AEX, § 5.4.3) and re-entering the enclave via
ERESUME (§ 5.4.4) causes the CPU to flush TLB en-
tries that contain enclave addresses, so a tracing kernel
would not need to worry about flushing the TLB. The
tracing kernel does not need to flush the caches either,
because the CPU needs to perform address translation
even for cached data.

A straightforward way to reduce this attack’s power
is to increase the page size, so the trace contains less
information. However, the attack cannot be completely
prevented without removing the kernel’s ability to over-
subscribe the EPC, which is a major benefit of paging.

6.6.5 Software Attacks on Peripherals

Since the SGX design does not trust the system software,
it must be prepared to withstand the attacks described in
§ 3.6, which can be carried out by the system software
thanks to its ability to control peripheral devices on the
computer’s motherboard (§ 2.9.1). This section summa-
rizes the security properties of SGX when faced with
these attacks, based on publicly available information.

When SGX is enabled on an LP, it configures the mem-
ory controller (MC, § 2.11.3) integrated on the CPU chip
die to reject any DMA transfer that falls within the Pro-
cessor Reserved Memory (PRM, § 5.1) range. The PRM
includes the EPC, so the enclaves’ contents is protected
from the PCI Express attacks described in § 3.6.1. This
protection guarantee relies on the fact that the MC is
integrated on the processor’s chip die, so the MC con-
figuration commands issued by SGX’s microcode imple-
mentation (§ 6.1.3) are transmitted over a communication
path that never leaves the CPU die, and therefore can be
trusted.

SGX regards DRAM as an untrusted storage medium,
and uses cryptographic primitives implemented in the
MEE to guarantee the confidentiality, integrity and fresh-
ness of the EPC contents that is stored into DRAM. This
protects against software attacks on DRAM’s integrity,
like the rowhammer attack described in § 3.6.2.

The SDM describes an array of measures that SGX
takes to disable processor features intended for debug-
ging when a LP starts executing an enclave’s code. For
example, enclave entry (§ 5.4.1) disables Precise Event

Based Sampling (PEBS) for the LP, as well as any hard-
ware breakpoints placed inside the enclave’s virtual ad-
dress range (ELRANGE, § 5.2.1). This addresses some
of the attacks described in § 3.6.3, which take advantage
of performance monitoring features to get information
that typically requires access to hardware probes.

At the same time, the SDM does not mention any-
thing about uncore PEBS counters, which can be used
to learn about an enclave’s LLC activity. Furthermore,
the ISCA 2015 tutorial slides mention that SGX does
not protect against software side-channel attacks that
rely on performance counters.

This limitation in SGX’s threat model leaves security-
conscious enclave authors in a rather terrible situation.
These authors know that SGX does not protect their
enclaves against a class of software attacks. At the same
time, they cannot even contemplate attempting to defeat
these attacks on their own, due to lack of information.
Specifically, the documentation that is publicly available
from Intel does not provide enough information to model
the information leakage due to performance counters.

For example, Intel does not document the mapping
implemented in CBoxes (§ 2.11.3) between physical
DRAM addresses and the LLC slices used to cache the
addresses. This mapping impacts several uncore per-
formance counters, and the impact is strong enough to
allow security researches to reverse-engineer the map-
ping [85, 135, 197]. Therefore, it is safe to assume that
a malicious computer owner who knows the CBox map-
ping can use the uncore performance counters to learn
about an enclave’s memory access patterns.

The SGX papers mention that SGX’s threat model
includes attacks that overwrite the flash memory chip
that stores the computer’s firmware, which result in ma-
licious code running in SMM. However, all the official
SGX documentation is silent about the implications of
an attack that compromises the firmware executed by the
Intel ME.
§ 3.6.4 states that the ME’s firmware is stored in the

same flash memory as the boot firmware, and enumer-
ates some of ME’s special privileges that enable it to help
system administrators remotely diagnose and fix hard-
ware and software issues. Given that the SGX design is
concerned about the possibility of malicious computer
firmware, it is reasonable to be concerned about mali-
cious ME firmware.
§ 3.6.4 argues that an attacker who compromises the

ME can carry out actions that are usually classified as
physical attacks. An optimistic security researcher can

108

observe that the most scary attack vector afforded by
an ME takeover appears to be direct DRAM access,
and SGX already assumes that the DRAM is untrusted.
Therefore, an ME compromise would be equivalent to
the DRAM attacks analyzed in § 6.6.2.

However, we are troubled by the lack of documenta-
tion on the ME’s implementation, as certain details are
critical to SGX’s security analysis. For example, the
ME is involved in the computer’s boot process (§ 2.13,
§ 2.14.4), so it is unclear if it plays any part in the SGX
initialization sequence. Furthermore, during the security
boot stage (SEC, § 2.13.2), the bootstrap LP (BSP) is
placed in Cache-As-Ram (CAR) mode so that the PEI
firmware can be stored securely while it is measured.
This suggests that it would be convenient for the ME
to receive direct access to the CPU’s caches, so that the
ME’s TPM implementation can measure the firmware
directly. At the same time, a special access path from the
ME to the CPU’s caches might sidestep the MEE, allow-
ing an attacker who has achieved ME code execution to
directly read the EPC’s contents.

6.6.6 Cache Timing Attacks

The SGX threat model excludes the cache timing attacks
described in § 3.8. The SGX documentation bundles
these attacks together with other side-channel attacks and
summarily dismisses them as complex physical attacks.
However, cache timing attacks can be mounted entirely
by unprivileged software running at ring 3. This section
describes the implications of SGX’s environment and
threat model on cache timing attacks.

The main difference between SGX and a standard
architecture is that SGX’s threat model considers the sys-
tem software to be untrusted. As explained earlier, this
accurately captures the situation in remote computation
scenarios, such as cloud computing. SGX’s threat model
implies that the system software can be carrying out a
cache timing attack on the software inside an enclave.

A malicious system software translates into signifi-
cantly more powerful cache timing attacks, compared to
those described in § 3.8. The system software is in charge
of scheduling threads on LPs, and also in charge of set-
ting up the page tables used by address translation (§ 2.5),
which control cache placement (§ 2.11.5).

For example, the malicious kernel set out to trace an
enclave’s memory access patterns described in § 6.6.4
can improve the accuracy of a cache timing attack by
using page coloring [117] principles to partition [129]
the cache targeted by the attack. In a nutshell, the kernel

divides the cache’s sets (§ 2.11.2) into two regions, as
shown in Figure 94.

Cache

…

RAM

OS

…

Enclave

…

Cache Line

Page

Figure 94: A malicious OS can partition a cache between the
software running inside an enclave and its own malicious code. Both
the OS and the enclave software have cache sets dedicated to them.
When allocating DRAM to itself and to the enclave software, the
malicious OS is careful to only use DRAM regions that map to the
appropriate cache sets. On a system with an Intel CPU, the the OS
can partition the L2 cache by manipulating the page tables in a way
that is completely oblivious to the enclave’s software.

The system software stores all the victim enclave’s
code and data in DRAM addresses that map to the cache
sets in one of the regions, and stores its own code and
data in DRAM addresses that map to the other region’s
cache sets. The snooping thread’s code is assumed to be
a part of the OS. For example, in a typical 256 KB (per-
core) L2 cache organized as 512 8-way sets of 64-byte
lines, the tracing kernel could allocate lines 0-63 for the
enclave’s code page, lines 64-127 for the enclave’s data
page, and use lines 128-511 for its own pages.

To the best of our knowledge, there is no minor modifi-
cation to SGX that would provably defend against cache
timing attacks. However, the SGX design could take a
few steps to increase the cost of cache timing attacks.
For example, SGX’s enclave entry implementation could
flush the core’s private caches, which would prevent
cache timing attacks from targeting them. This measure
would defeat the cache timing attacks described below,

109

and would only be vulnerable to more sophisticated at-
tacks that target the shared LLC, such as [131, 196]. The
description above assumes that hyper-threading has been
disabled, for the reasons explained in § 6.6.3.

Barring the additional protection measures described
above, a tracing kernel can extend the attack described in
§ 6.6.4 with the steps outlined below to take advantage
of cache timing and narrow down the addresses in an ap-
plication’s memory access trace to cache line granularity.

Right before entering an enclave via EENTER or
ERESUME, the kernel would issue CLFLUSH instruc-
tions to flush the enclave’s code page and data page from
the cache. The enclave could have accessed a single code
page and a single data page, so flushing the cache should
be reasonably efficient. The tracing kernel then uses 16
bogus pages (8 for the enclave’s code page, and 8 for
the enclave’s data page) to load all the 8 ways in the 128
cache sets allocated by enclave pages. After an AEX
gives control back to the tracing kernel, it can read the
16 bogus pages, and exploit the time difference between
an L2 cache hit and a miss to see which cache lines were
evicted and replaced by the enclave’s memory accesses.

An extreme approach that can provably defeat cache
timing attacks is disabling caching for the PRM range,
which contains the EPC. The SDM is almost com-
pletely silent about the PRM, but the SGX manuals that
it is based on state that the allowable caching behav-
iors (§ 2.11.4) for the PRM range are uncacheable (UC)
and write-back (WB). This could become useful if the
SGX implementation would make sure that the PRM’s
caching behavior cannot be changed while SGX is en-
abled, and if the selected behavior would be captured by
the enclave’s measurement (§ 5.6).

6.6.7 Software Side-Channel Attacks and SGX

The SGX design reuses a few terms from the Trusted Plat-
form Module (TPM, § 4.4) design. This helps software
developers familiar with TPM understand SGX faster.
At the same time, the term reuse invites the assump-
tion that SGX’s software attestation is implemented in
tamper-resistant hardware, similarly to the TPM design.
§ 5.8 explains that, in fact, the SGX design delegates

the creation of attestation signatures to software that runs
inside a Quoting Enclave with special privileges that
allows it to access the processor’s attestation key. Re-
stated, SGX includes an enclave whose software reads
the attestation key and produces attestation signatures.

Creating the Quoting Enclave is a very elegant way of
reducing the complexity of the hardware implementation

of SGX, assuming that the isolation guarantees provided
by SGX are sufficient to protect the attestation key. How-
ever, the security analysis in § 6.6 reveals that enclaves
are vulnerable to a vast array of software side-channel
attacks, which have been demonstrated effective in ex-
tracting a variety of secrets from isolated environments.

The gaps in the security guarantees provided to en-
claves place a large amount of pressure on Intel’s soft-
ware developers, as they must attempt to implement the
EPID signing scheme used by software attestation with-
out leaking any information. Intel’s ISCA 2015 SGX
tutorial slides suggest that the SGX designers will ad-
vise developers to write their code in a way that avoids
data-dependent memory accesses, as suggested in § 3.8.4,
and perhaps provide analysis tools that detect code that
performs data-dependent memory accesses.

The main drawback of the approach described above
is that it is extremely cumbersome. § 3.8.4 describes
that, while it may be possible to write simple pieces of
software in such a way that they do not require data-
dependent memory accesses, there is no known process
that can scale this to large software systems. For example,
each virtual method call in an object-oriented language
results in data-dependent code fetches.

The ISCA 2015 SGX tutorial slides also suggest that
the efforts of removing data-dependent memory accesses
should focus on cryptographic algorithm implementa-
tions, in order to protect the keys that they handle. This
is a terribly misguided suggestion, because cryptographic
key material has no intrinsic value. Attackers derive ben-
efits from obtaining the data that is protected by the keys,
such as medical and financial records.

Some security researchers focus on protecting cryp-
tographic keys because they are the target of today’s
attacks. Unfortunately, it is easy to lose track of the fact
that keys are being attacked simply because they are the
lowest hanging fruit. A system that can only protect
the keys will have a very small positive impact, as the
attackers will simply shift their focus on the algorithms
that process the valuable information, and use the same
software side-channel attacks to obtain that information
directly.

The second drawback of the approach described to-
wards the beginning of this section is that while eliminat-
ing data-dependent memory accesses should thwart the
attacks described in § 6.6.4 and § 6.6.6, the measure may
not be sufficient to prevent the hyper-threading attacks
described in § 6.6.3. The level of sharing between the
two logical processors (LP, § 2.9.4) on the same CPU

110

core is so high that it is possible that a snooping LP can
learn more than the memory access pattern from the other
LP on the same core.

For example, if the number of cycles taken by an inte-
ger ALU to execute a multiplication or division micro-
op (§ 2.10) depends on its inputs, the snooping LP could
learn some information about the numbers multiplied
or divided by the other LP. While this may be a simple
example, it is safe to assume that the Quoting Enclave
will be studied by many motivated attackers, and that any
information leak will be exploited.

7 CONCLUSION

Shortly after we learned about Intel’s Software Guard
Extensions (SGX) initiative, we set out to study it in the
hope of finding a practical solution to its vulnerability
to cache timing attacks. After reading the official SGX
manuals, we were left with more questions than when we
started. The SGX patents filled some of the gaps in the
official documentation, but also revealed Intel’s enclave
licensing scheme, which has troubling implications.

After learning about the SGX implementation and
inferring its design constraints, we discarded our draft
proposals for defending enclave software against cache
timing attacks. We concluded that it would be impossi-
ble to claim to provide this kind of guarantee given the
design constraints and all the unknowns surrounding the
SGX implementation. Instead, we applied the knowledge
that we gained to design Sanctum [38], which is briefly
described in § 4.9.

This paper describes our findings while studying SGX.
We hope that it will help fellow researchers understand
the breadth of issues that need to be considered before
accepting a trusted hardware design as secure. We also
hope that our work will prompt the research community
to expect more openness from the vendors who ask us to
trust their hardware.

8 ACKNOWLEDGEMENTS

Funding for this research was partially provided by the
National Science Foundation under contract number
CNS-1413920.

REFERENCES

[1] FIPS 140-2 Consolidated Validation Certificate No.
0003. 2011.

[2] IBM 4765 Cryptographic Coprocessor Security Module
- Security Policy. Dec 2012.

[3] Sha1 deprecation policy. http://blogs.
technet.com/b/pki/archive/2013/11/

12/sha1-deprecation-policy.aspx, 2013.
[Online; accessed 4-May-2015].

[4] 7-zip lzma benchmark: Intel haswell. http://www.
7-cpu.com/cpu/Haswell.html, 2014. [On-
line; accessed 10-Februrary-2015].

[5] Bios freedom status. https://puri.sm/posts/
bios-freedom-status/, Nov 2014. [Online; ac-
cessed 2-Dec-2015].

[6] Gradually sunsetting sha-1. http://
googleonlinesecurity.blogspot.com/
2014/09/gradually-sunsetting-sha-1.
html, 2014. [Online; accessed 4-May-2015].

[7] Ipc2 hardware specification. http://fit-pc.
com/download/intense-pc2/documents/
ipc2-hw-specification.pdf, Sep 2014.
[Online; accessed 2-Dec-2015].

[8] Linux kernel: Cve security vulnerabilities, versions
and detailed reports. http://www.cvedetails.
com/product/47/Linux-Linux-Kernel.
html?vendor_id=33, 2014. [Online; accessed
27-April-2015].

[9] Nist’s policy on hash functions. http://csrc.
nist.gov/groups/ST/hash/policy.html,
2014. [Online; accessed 4-May-2015].

[10] Xen: Cve security vulnerabilities, versions and de-
tailed reports. http://www.cvedetails.com/
product/23463/XEN-XEN.html?vendor_
id=6276, 2014. [Online; accessed 27-April-2015].

[11] Xen project software overview. http:
//wiki.xen.org/wiki/Xen_Project_
Software_Overview, 2015. [Online; accessed
27-April-2015].

[12] Seth Abraham. Time to revisit rep;movs -
comment. https://software.intel.com/
en-us/forums/topic/275765, Aug 2006. [On-
line; accessed 23-January-2015].

[13] Tiago Alves and Don Felton. Trustzone: Integrated
hardware and software security. Information Quarterly,
3(4):18–24, 2004.

[14] Ittai Anati, Shay Gueron, Simon P Johnson, and Vin-
cent R Scarlata. Innovative technology for cpu based
attestation and sealing. In Proceedings of the 2nd In-
ternational Workshop on Hardware and Architectural
Support for Security and Privacy, HASP, volume 13,
2013.

[15] Ross Anderson. Security engineering: A guide to build-
ing dependable distributed systems. Wiley, 2001.

[16] Sebastian Anthony. Who actually develops
linux? the answer might surprise you. http:
//www.extremetech.com/computing/
175919-who-actually-develops-linux,
2014. [Online; accessed 27-April-2015].

[17] ARM Limited. AMBA R© AXI Protocol, Mar 2004. Ref-
erence no. IHI 0022B, IHI 0024B, AR500-DA-10004.

111

http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html
https://puri.sm/posts/bios-freedom-status/
https://puri.sm/posts/bios-freedom-status/
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://fit-pc.com/download/intense-pc2/documents/ipc2-hw-specification.pdf
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://www.cvedetails.com/product/23463/XEN-XEN.html?vendor_id=6276
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://software.intel.com/en-us/forums/topic/275765
https://software.intel.com/en-us/forums/topic/275765
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux
http://www.extremetech.com/computing/175919-who-actually-develops-linux

[18] ARM Limited. ARM Security Technology Building
a Secure System using TrustZone R© Technology, Apr
2009. Reference no. PRD29-GENC-009492C.

[19] Sebastian Banescu. Cache timing attacks. 2011. [On-
line; accessed 26-January-2014].

[20] Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid. Recommendation for key man-
agement part 1: General (revision 3). Federal Informa-
tion Processing Standards (FIPS) Special Publications
(SP), 800-57, Jul 2012.

[21] Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid. Secure hash standard (shs).
Federal Information Processing Standards (FIPS) Pub-
lications (PUBS), 180-4, Aug 2015.

[22] Friedrich Beck. Integrated Circuit Failure Analysis: a
Guide to Preparation Techniques. John Wiley & Sons,
1998.

[23] Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the rsa encryption standard
pkcs# 1. In Advances in Cryptology CRYPTO’98,
pages 1–12. Springer, 1998.

[24] D.D. Boggs and S.D. Rodgers. Microprocessor with
novel instruction for signaling event occurrence and
for providing event handling information in response
thereto, 1997. US Patent 5,625,788.

[25] Joseph Bonneau and Ilya Mironov. Cache-collision
timing attacks against aes. In Cryptographic Hardware
and Embedded Systems-CHES 2006, pages 201–215.
Springer, 2006.

[26] Ernie Brickell and Jiangtao Li. Enhanced privacy id
from bilinear pairing. IACR Cryptology ePrint Archive,
2009.

[27] Billy Bob Brumley and Nicola Tuveri. Remote tim-
ing attacks are still practical. In Computer Security–
ESORICS 2011, pages 355–371. Springer, 2011.

[28] David Brumley and Dan Boneh. Remote timing at-
tacks are practical. Computer Networks, 48(5):701–716,
2005.

[29] John Butterworth, Corey Kallenberg, Xeno Kovah, and
Amy Herzog. Bios chronomancy: Fixing the core root
of trust for measurement. In Proceedings of the 2013
ACM SIGSAC conference on Computer & Communica-
tions Security, pages 25–36. ACM, 2013.

[30] J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. In Proceedings of the 9th an-
nual ACM Symposium on Theory of Computing, pages
106–112. ACM, 1977.

[31] David Champagne and Ruby B Lee. Scalable architec-
tural support for trusted software. In High Performance
Computer Architecture (HPCA), 2010 IEEE 16th Inter-
national Symposium on, pages 1–12. IEEE, 2010.

[32] Daming D Chen and Gail-Joon Ahn. Security analysis
of x86 processor microcode. 2014. [Online; accessed
7-January-2015].

[33] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M Frans Kaashoek. Linux
kernel vulnerabilities: State-of-the-art defenses and
open problems. In Proceedings of the Second Asia-
Pacific Workshop on Systems, page 5. ACM, 2011.

[34] Lily Chen. Recommendation for key derivation using
pseudorandom functions. Federal Information Pro-
cessing Standards (FIPS) Special Publications (SP),
800-108, Oct 2009.

[35] Coreboot. Developer manual, Sep 2014. [Online; ac-
cessed 4-March-2015].

[36] M.P. Cornaby and B. Chaffin. Microinstruction pointer
stack including speculative pointers for out-of-order
execution, 2007. US Patent 7,231,511.

[37] Intel Corporation. Intel R© Xeon R© Processor E5 v3
Family Uncore Performance Monitoring Reference
Manual, Sep 2014. Reference no. 331051-001.

[38] Victor Costan, Ilia Lebedev, and Srinivas Devadas.
Sanctum: Minimal hardware extensions for strong soft-
ware isolation. Cryptology ePrint Archive, Report
2015/564, 2015.

[39] J. Daemen and V. Rijmen. Aes proposal: Rijndael, aes
algorithm submission, Sep 1999.

[40] S.M. Datta and M.J. Kumar. Technique for providing
secure firmware, 2013. US Patent 8,429,418.

[41] S.M. Datta, V.J. Zimmer, and M.A. Rothman. System
and method for trusted early boot flow, 2010. US Patent
7,752,428.

[42] Pete Dice. Booting an intel architecture system, part
i: Early initialization. Dr. Dobb’s, Dec 2011. [Online;
accessed 2-Dec-2015].

[43] Whitfield Diffie and Martin E Hellman. New directions
in cryptography. Information Theory, IEEE Transac-
tions on, 22(6):644–654, 1976.

[44] Loı̈c Duflot, Daniel Etiemble, and Olivier Grumelard.
Using cpu system management mode to circumvent op-
erating system security functions. CanSecWest/core06,
2006.

[45] Morris Dworkin. Recommendation for block cipher
modes of operation: Methods and techniques. Fed-
eral Information Processing Standards (FIPS) Special
Publications (SP), 800-38A, Dec 2001.

[46] Morris Dworkin. Recommendation for block cipher
modes of operation: The cmac mode for authentica-
tion. Federal Information Processing Standards (FIPS)
Special Publications (SP), 800-38B, May 2005.

[47] Morris Dworkin. Recommendation for block cipher
modes of operation: Galois/counter mode (gcm) and
gmac. Federal Information Processing Standards
(FIPS) Special Publications (SP), 800-38D, Nov 2007.

[48] D. Eastlake and P. Jones. RFC 3174: US Secure Hash
Algorithm 1 (SHA1). Internet RFCs, 2001.

[49] Shawn Embleton, Sherri Sparks, and Cliff C Zou. Smm
rootkit: a new breed of os independent malware. Secu-

112

rity and Communication Networks, 2010.
[50] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy,

Dmitry Ponomarev, Nael Abu Ghazaleh, and Ryan
Riley. Iso-x: A flexible architecture for hardware-
managed isolated execution. In Microarchitecture (MI-
CRO), 2014 47th annual IEEE/ACM International Sym-
posium on, pages 190–202. IEEE, 2014.

[51] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno.
Cryptography Engineering: Design Principles and
Practical Applications. John Wiley & Sons, 2011.

[52] Christopher W Fletcher, Marten van Dijk, and Srinivas
Devadas. A secure processor architecture for encrypted
computation on untrusted programs. In Proceedings
of the Seventh ACM Workshop on Scalable Trusted
Computing, pages 3–8. ACM, 2012.

[53] Agner Fog. Instruction tables - lists of instruction laten-
cies, throughputs and micro-operation breakdowns for
intel, amd and via cpus. Dec 2014. [Online; accessed
23-January-2015].

[54] Andrew Furtak, Yuriy Bulygin, Oleksandr Bazhaniuk,
John Loucaides, Alexander Matrosov, and Mikhail
Gorobets. Bios and secure boot attacks uncovered.
The 10th ekoparty Security Conference, 2014. [Online;
accessed 22-October-2015].

[55] William Futral and James Greene. Intel R© Trusted
Execution Technology for Server Platforms. Apress
Open, 2013.

[56] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and
Srinivas Devadas. Silicon physical random functions.
In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, pages 148–160.
ACM, 2002.

[57] Blaise Gassend, G Edward Suh, Dwaine Clarke, Marten
Van Dijk, and Srinivas Devadas. Caches and hash
trees for efficient memory integrity verification. In
Proceedings of the 9th International Symposium on
High-Performance Computer Architecture, pages 295–
306. IEEE, 2003.

[58] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and
Eran Tromer. Stealing keys from pcs using a radio:
Cheap electromagnetic attacks on windowed exponen-
tiation. Cryptology ePrint Archive, Report 2015/170,
2015.

[59] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get
your hands off my laptop: Physical side-channel key-
extraction attacks on pcs. Cryptology ePrint Archive,
Report 2014/626, 2014.

[60] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key
extraction via low-bandwidth acoustic cryptanalysis.
Cryptology ePrint Archive, Report 2013/857, 2013.

[61] Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[62] R.T. George, J.W. Brandt, K.S. Venkatraman, and S.P.
Kim. Dynamically partitioning pipeline resources,

2009. US Patent 7,552,255.
[63] A. Glew, G. Hinton, and H. Akkary. Method and ap-

paratus for performing page table walks in a micropro-
cessor capable of processing speculative instructions,
1997. US Patent 5,680,565.

[64] A.F. Glew, H. Akkary, R.P. Colwell, G.J. Hinton, D.B.
Papworth, and M.A. Fetterman. Method and apparatus
for implementing a non-blocking translation lookaside
buffer, 1996. US Patent 5,564,111.

[65] Oded Goldreich. Towards a theory of software protec-
tion and simulation by oblivious rams. In Proceedings
of the 19th annual ACM symposium on Theory of Com-
puting, pages 182–194. ACM, 1987.

[66] J.R. Goodman and H.H.J. Hum. Mesif: A two-hop
cache coherency protocol for point-to-point intercon-
nects. 2009.

[67] K.C. Gotze, G.M. Iovino, and J. Li. Secure provisioning
of secret keys during integrated circuit manufacturing,
2014. US Patent App. 13/631,512.

[68] K.C. Gotze, J. Li, and G.M. Iovino. Fuse attestation to
secure the provisioning of secret keys during integrated
circuit manufacturing, 2014. US Patent 8,885,819.

[69] Joe Grand. Advanced hardware hacking techniques, Jul
2004.

[70] David Grawrock. Dynamics of a Trusted Platform: A
building block approach. Intel Press, 2009.

[71] Trusted Computing Group. Tpm
main specification. http://www.
trustedcomputinggroup.org/resources/
tpm_main_specification, 2003.

[72] Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Rowhammer. js: A remote software-induced fault
attack in javascript. CoRR, abs/1507.06955, 2015.

[73] Shay Gueron. Quick verification of rsa signatures. In
8th International Conference on Information Technol-
ogy: New Generations (ITNG), pages 382–386. IEEE,
2011.

[74] Shay Gueron. A memory encryption engine suitable for
general purpose processors. Cryptology ePrint Archive,
Report 2016/204, 2016.

[75] Ben Hawkes. Security analysis of x86 processor mi-
crocode. 2012. [Online; accessed 7-January-2015].

[76] John L Hennessy and David A Patterson. Computer
Architecture - a Quantitative Approach (5 ed.). Mogran
Kaufmann, 2012.

[77] Christoph Herbst, Elisabeth Oswald, and Stefan Man-
gard. An aes smart card implementation resistant to
power analysis attacks. In Applied cryptography and
Network security, pages 239–252. Springer, 2006.

[78] G. Hildesheim, I. Anati, H. Shafi, S. Raikin, G. Gerzon,
U.R. Savagaonkar, C.V. Rozas, F.X. McKeen, M.A.
Goldsmith, and D. Prashant. Apparatus and method
for page walk extension for enhanced security checks,
2014. US Patent App. 13/730,563.

113

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[79] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,
Vinay Phegade, and Juan Del Cuvillo. Using innovative
instructions to create trustworthy software solutions.
In Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and
Privacy, HASP, volume 13, 2013.

[80] Gael Hofemeier. Intel manageability firmware recovery
agent. Mar 2013. [Online; accessed 2-Dec-2015].

[81] George Hotz. Ps3 glitch hack. 2010. [Online; accessed
7-January-2015].

[82] Andrew Huang. Hacking the Xbox: an Introduction to
Reverse Engineering. No Starch Press, 2003.

[83] C.J. Hughes, Y.K. Chen, M. Bomb, J.W. Brandt, M.J.
Buxton, M.J. Charney, S. Chennupaty, J. Corbal, M.G.
Dixon, M.B. Girkar, et al. Gathering and scattering
multiple data elements, 2013. US Patent 8,447,962.

[84] IEEE Computer Society. IEEE Standard for Ethernet,
Dec 2012. IEEE Std. 802.3-2012.

[85] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Seriously, get off
my cloud! cross-vm rsa key recovery in a public cloud.
Cryptology ePrint Archive, Report 2015/898, 2015.

[86] Intel Corporation. Intel R© Processor Serial Number,
Mar 1999. Order no. 245125-001.

[87] Intel Corporation. Intel R© architecture Platform Basics,
Sep 2010. Reference no. 324377.

[88] Intel Corporation. Intel R© Core 2 Duo and Intel R© Core
2 Solo Processor for Intel R© Centrino R© Duo Processor
Technology Intel R© Celeron R© Processor 500 Series -
Specification Update, Dec 2010. Reference no. 314079-
026.

[89] Intel Corporation. Intel R© Trusted Execution Technol-
ogy (Intel R© TXT) LAB Handout, 2010. [Online; ac-
cessed 2-July-2015].

[90] Intel Corporation. Intel R© Xeon R© Processor 7500 Se-
ries Uncore Programming Guide, Mar 2010. Reference
no. 323535-001.

[91] Intel Corporation. An Introduction to the Intel R© Quick-
Path Interconnect, Mar 2010. Reference no. 323535-
001.

[92] Intel Corporation. Minimal Intel R© Architecture Boot
LoaderBare Bones Functionality Required for Booting
an Intel R© Architecture Platform, Jan 2010. Reference
no. 323246.

[93] Intel Corporation. Intel R© 7 Series Family - Intel R©
Management Engine Firmware 8.1 - 1.5MB Firmware
Bring Up Guide, Jul 2012. Revision 8.1.0.1248 - PV
Release.

[94] Intel Corporation. Intel R© Xeon R© Processor E5-2600
Product Family Uncore Performance Monitoring Guide,
Mar 2012. Reference no. 327043-001.

[95] Intel Corporation. Software Guard Extensions Program-
ming Reference, 2013. Reference no. 329298-001US.

[96] Intel Corporation. Intel R© 64 and IA-32 Architectures

Optimization Reference Manual, Sep 2014. Reference
no. 248966-030.

[97] Intel Corporation. Intel R© Xeon R© Processor 7500 Se-
ries Datasheet - Volume Two, Mar 2014. Reference no.
329595-002.

[98] Intel Corporation. Intel R© Xeon R© Processor E7 v2
2800/4800/8800 Product Family Datasheet - Volume
Two, Mar 2014. Reference no. 329595-002.

[99] Intel Corporation. Software Guard Extensions Program-
ming Reference, 2014. Reference no. 329298-002US.

[100] Intel Corporation. Intel R© 100 Series Chipset Family
Platform Controller Hub (PCH) Datasheet - Volume
One, Aug 2015. Reference no. 332690-001EN.

[101] Intel Corporation. Intel R© 64 and IA-32 Architectures
Software Developer’s Manual, Sep 2015. Reference no.
325462-056US.

[102] Intel Corporation. Intel R© C610 Series Chipset and
Intel R© X99 Chipset Platform Controller Hub (PCH)
Datasheet, Oct 2015. Reference no. 330788-003.

[103] Intel Corporation. Intel R© Software Guard Extensions
(Intel R© SGX), Jun 2015. Reference no. 332680-002.

[104] Intel Corporation. Intel R© Xeon R© Processor 5500 Se-
ries - Specification Update, 2 2015. Reference no.
321324-018US.

[105] Intel Corporation. Intel R© Xeon R© Processor E5-1600,
E5-2400, and E5-2600 v3 Product Family Datasheet -
Volume Two, Jan 2015. Reference no. 330784-002.

[106] Intel Corporation. Intel R© Xeon R© Processor E5 Prod-
uct Family - Specification Update, Jan 2015. Reference
no. 326150-018.

[107] Intel Corporation. Mobile 4th Generation Intel R©
Core R© Processor Family I/O Datasheet, Feb 2015.
Reference no. 329003-003.

[108] Bruce Jacob and Trevor Mudge. Virtual memory: Is-
sues of implementation. Computer, 31(6):33–43, 1998.

[109] Simon Johnson, Vinnie Scarlata, Carlos Rozas,
Ernie Brickell, and Frank Mckeen. Intel R© soft-
ware guard extensions: Epid provisioning and
attestation services. https://software.
intel.com/en-us/blogs/2016/03/09/
intel-sgx-epid-provisioning-and-attestation-services,
Mar 2016. [Online; accessed 21-Mar-2016].

[110] Simon P Johnson, Uday R Savagaonkar, Vincent R
Scarlata, Francis X McKeen, and Carlos V Rozas. Tech-
nique for supporting multiple secure enclaves, Dec
2010. US Patent 8,972,746.

[111] Jakob Jonsson and Burt Kaliski. RFC 3447: Public-Key
Cryptography Standards (PKCS) #1: RSA Cryptogra-
phy Specifications Version 2.1. Internet RFCs, Feb
2003.

[112] Burt Kaliski. RFC 2313: PKCS #1: RSA Encryption
Version 1.5. Internet RFCs, Mar 1998.

[113] Burt Kaliski and Jessica Staddon. RFC 2437: PKCS
#1: RSA Encryption Version 2.0. Internet RFCs, Oct

114

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services

1998.
[114] Corey Kallenberg, Xeno Kovah, John Butterworth, and

Sam Cornwell. Extreme privilege escalation on win-
dows 8/uefi systems, 2014.

[115] Emilia Käsper and Peter Schwabe. Faster and timing-
attack resistant aes-gcm. In Cryptographic Hard-
ware and Embedded Systems-CHES 2009, pages 1–17.
Springer, 2009.

[116] Jonathan Katz and Yehuda Lindell. Introduction to
modern cryptography. CRC Press, 2014.

[117] Richard E Kessler and Mark D Hill. Page placement
algorithms for large real-indexed caches. ACM Trans-
actions on Computer Systems (TOCS), 10(4):338–359,
1992.

[118] Taesoo Kim and Nickolai Zeldovich. Practical and
effective sandboxing for non-root users. In USENIX
Annual Technical Conference, pages 139–144, 2013.

[119] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of dram
disturbance errors. In Proceeding of the 41st annual
International Symposium on Computer Architecuture,
pages 361–372. IEEE Press, 2014.

[120] L.A. Knauth and P.J. Irelan. Apparatus and method
for providing eventing ip and source data address in
a statistical sampling infrastructure, 2014. US Patent
App. 13/976,613.

[121] N. Koblitz. Elliptic curve cryptosystems. Mathematics
of Computation, 48(177):203–209, 1987.

[122] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Dif-
ferential power analysis. In Advances in Cryptology
(CRYPTO), pages 388–397. Springer, 1999.

[123] Paul C Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In Advances
in CryptologyCRYPTO96, pages 104–113. Springer,
1996.

[124] Hugo Krawczyk, Ran Canetti, and Mihir Bellare.
Hmac: Keyed-hashing for message authentication.
1997.

[125] Markus G Kuhn. Electromagnetic eavesdropping risks
of flat-panel displays. In Privacy Enhancing Technolo-
gies, pages 88–107. Springer, 2005.

[126] Tsvika Kurts, Guillermo Savransky, Jason Ratner, Eilon
Hazan, Daniel Skaba, Sharon Elmosnino, and Gee-
yarpuram N Santhanakrishnan. Generic debug external
connection (gdxc) for high integration integrated cir-
cuits, 2011. US Patent 8,074,131.

[127] David Levinthal. Performance analysis guide for
intel R© core i7 processor and intel R© xeon 5500
processors. https://software.intel.com/
sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf, 2010.
[Online; accessed 26-January-2015].

[128] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices, 35(11):168–
177, 2000.

[129] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,
Xiaodong Zhang, and P Sadayappan. Gaining in-
sights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In 14th In-
ternational IEEE Symposium on High Performance
Computer Architecture (HPCA), pages 367–378. IEEE,
2008.

[130] Barbara Liskov and Stephen Zilles. Programming with
abstract data types. In ACM Sigplan Notices, volume 9,
pages 50–59. ACM, 1974.

[131] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 143–158. IEEE, 2015.

[132] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari,
Elaine Shi, Krste Asanovic, John Kubiatowicz, and
Dawn Song. Phantom: Practical oblivious computation
in a secure processor. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 311–324. ACM, 2013.

[133] R. Maes, P. Tuyls, and I. Verbauwhede. Low-Overhead
Implementation of a Soft Decision Helper Data Algo-
rithm for SRAM PUFs. In Cryptographic Hardware
and Embedded Systems (CHES), pages 332–347, 2009.

[134] James Manger. A chosen ciphertext attack on rsa op-
timal asymmetric encryption padding (oaep) as stan-
dardized in pkcs# 1 v2.0. In Advances in Cryptology
CRYPTO 2001, pages 230–238. Springer, 2001.

[135] Clmentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurlien Francillon. Re-
verse engineering intel last-level cache complex ad-
dressing using performance counters. In Proceedings
of the 18th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2015.

[136] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
Trustvisor: Efficient tcb reduction and attestation. In
Security and Privacy (SP), 2010 IEEE Symposium on,
pages 143–158. IEEE, 2010.

[137] David McGrew and John Viega. The galois/counter
mode of operation (gcm). 2004. [Online; accessed
28-December-2015].

[138] Francis X McKeen, Carlos V Rozas, Uday R Sava-
gaonkar, Simon P Johnson, Vincent Scarlata, Michael A
Goldsmith, Ernie Brickell, Jiang Tao Li, Howard C Her-
bert, Prashant Dewan, et al. Method and apparatus to
provide secure application execution, Dec 2009. US
Patent 9,087,200.

[139] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,

115

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R Savagaonkar. Innovative instructions and
software model for isolated execution. HASP, 13:10,
2013.

[140] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical?
In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 113–124. ACM,
2011.

[141] National Institute of Standards and Technology (NIST).
The advanced encryption standard (aes). Federal In-
formation Processing Standards (FIPS) Publications
(PUBS), 197, Nov 2001.

[142] National Institute of Standards and Technology (NIST).
The digital signature standard (dss). Federal Informa-
tion Processing Standards (FIPS) Processing Standards
Publications (PUBS), 186-4, Jul 2013.

[143] National Security Agency (NSA) Central Security Ser-
vice (CSS). Cryptography today on suite b phase-
out. https://www.nsa.gov/ia/programs/
suiteb_cryptography/, Aug 2015. [Online; ac-
cessed 28-December-2015].

[144] M.S. Natu, S. Datta, J. Wiedemeier, J.R. Vash, S. Kotta-
palli, S.P. Bobholz, and A. Baum. Supporting advanced
ras features in a secured computing system, 2012. US
Patent 8,301,907.

[145] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadha-
van, and Angelos D Keromytis. The spy in the sandbox
– practical cache attacks in javascript. arXiv preprint
arXiv:1502.07373, 2015.

[146] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Topics
in Cryptology–CT-RSA 2006, pages 1–20. Springer,
2006.

[147] Scott Owens, Susmit Sarkar, and Peter Sewell. A better
x86 memory model: x86-tso (extended version). Uni-
versity of Cambridge, Computer Laboratory, Technical
Report, (UCAM-CL-TR-745), 2009.

[148] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig,
and Joy Zhang. Accessory: password inference using
accelerometers on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems &
Applications, page 9. ACM, 2012.

[149] D.B. Papworth, G.J. Hinton, M.A. Fetterman, R.P. Col-
well, and A.F. Glew. Exception handling in a processor
that performs speculative out-of-order instruction exe-
cution, 1999. US Patent 5,987,600.

[150] David A Patterson and John L Hennessy. Computer
Organization and Design: the hardware/software inter-
face. Morgan Kaufmann, 2013.

[151] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Man-
gard. Reverse engineering intel dram addressing and
exploitation. ArXiv e-prints, Nov 2015.

[152] Stefan M Petters and Georg Farber. Making worst case

execution time analysis for hard real-time tasks on state
of the art processors feasible. In Sixth International
Conference on Real-Time Computing Systems and Ap-
plications, pages 442–449. IEEE, 1999.

[153] S.A. Qureshi and M.O. Nicholes. System and method
for using a firmware interface table to dynamically load
an acpi ssdt, 2006. US Patent 6,990,576.

[154] S. Raikin, O. Hamama, R.S. Chappell, C.B. Rust, H.S.
Luu, L.A. Ong, and G. Hildesheim. Apparatus and
method for a multiple page size translation lookaside
buffer (tlb), 2014. US Patent App. 13/730,411.

[155] S. Raikin and R. Valentine. Gather cache architecture,
2014. US Patent 8,688,962.

[156] Stefan Reinauer. x86 intel: Add firmware interface
table support. http://review.coreboot.org/
#/c/2642/, 2013. [Online; accessed 2-July-2015].

[157] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, pages 199–212. ACM,
2009.

[158] RL Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126,
1978.

[159] S.D. Rodgers, K.K. Tiruvallur, M.W. Rhodehamel, K.G.
Konigsfeld, A.F. Glew, H. Akkary, M.A. Karnik, and
J.A. Brayton. Method and apparatus for performing op-
erations based upon the addresses of microinstructions,
1997. US Patent 5,636,374.

[160] S.D. Rodgers, R. Vidwans, J. Huang, M.A. Fetterman,
and K. Huck. Method and apparatus for generating
event handler vectors based on both operating mode
and event type, 1999. US Patent 5,889,982.

[161] M. Rosenblum and T. Garfinkel. Virtual machine mon-
itors: current technology and future trends. Computer,
38(5):39–47, May 2005.

[162] Xiaoyu Ruan. Platform Embedded Security Technology
Revealed. Apress, 2014.

[163] Joanna Rutkowska. Intel x86 considered harmful. Oct
2015. [Online; accessed 2-Nov-2015].

[164] Joanna Rutkowska and Rafał Wojtczuk. Preventing
and detecting xen hypervisor subversions. Blackhat
Briefings USA, 2008.

[165] Jerome H Saltzer and M Frans Kaashoek. Principles
of Computer System Design: An Introduction. Morgan
Kaufmann, 2009.

[166] Mark Seaborn and Thomas Dullien. Exploit-
ing the dram rowhammer bug to gain kernel
privileges. http://googleprojectzero.
blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.
html, Mar 2015. [Online; accessed 9-March-2015].

116

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://review.coreboot.org/#/c/2642/
http://review.coreboot.org/#/c/2642/
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[167] V. Shanbhogue, J.W. Brandt, and J. Wiedemeier. Pro-
tecting information processing system secrets from de-
bug attacks, 2015. US Patent 8,955,144.

[168] V. Shanbhogue and S.J. Robinson. Enabling virtu-
alization of a processor resource, 2014. US Patent
8,806,104.

[169] Stephen Shankland. Itanium: A cautionary tale. Dec
2005. [Online; accessed 11-February-2015].

[170] Alan Jay Smith. Cache memories. ACM Computing
Surveys (CSUR), 14(3):473–530, 1982.

[171] Sean W Smith, Ron Perez, Steve Weingart, and Vernon
Austel. Validating a high-performance, programmable
secure coprocessor. In 22nd National Information Sys-
tems Security Conference. IBM Thomas J. Watson Re-
search Division, 1999.

[172] Sean W Smith and Steve Weingart. Building a high-
performance, programmable secure coprocessor. Com-
puter Networks, 31(8):831–860, 1999.

[173] Marc Stevens, Pierre Karpman, and Thomas Peyrin.
Free-start collision on full sha-1. Cryptology ePrint
Archive, Report 2015/967, 2015.

[174] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten
Van Dijk, and Srinivas Devadas. Aegis: architecture for
tamper-evident and tamper-resistant processing. In Pro-
ceedings of the 17th annual international conference
on Supercomputing, pages 160–171. ACM, 2003.

[175] G Edward Suh and Srinivas Devadas. Physical unclon-
able functions for device authentication and secret key
generation. In Proceedings of the 44th annual Design
Automation Conference, pages 9–14. ACM, 2007.

[176] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev,
and Srinivas Devadas. Design and Implementation of
the AEGIS Single-Chip Secure Processor Using Phys-
ical Random Functions. In Proceedings of the 32nd

ISCA’05. ACM, June 2005.
[177] George Taylor, Peter Davies, and Michael Farmwald.

The tlb slice - a low-cost high-speed address translation
mechanism. SIGARCH Computer Architecture News,
18(2SI):355–363, 1990.

[178] Alexander Tereshkin and Rafal Wojtczuk. Introducing
ring-3 rootkits. Master’s thesis, 2009.

[179] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede.
A dynamic and differential cmos logic with signal in-
dependent power consumption to withstand differential
power analysis on smart cards. In Proceedings of the
28th European Solid-State Circuits Conference (ESS-
CIRC), pages 403–406. IEEE, 2002.

[180] UEFI Forum. Unified Extensible Firmware Interface
Specification, Version 2.5, 2015. [Online; accessed
1-Jul-2015].

[181] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni,
Fernando CM Martins, Andrew V Anderson, Steven M
Bennett, Alain Kagi, Felix H Leung, and Larry Smith.
Intel virtualization technology. Computer, 38(5):48–56,

2005.
[182] Wim Van Eck. Electromagnetic radiation from video

display units: an eavesdropping risk? Computers &
Security, 4(4):269–286, 1985.

[183] Amit Vasudevan, Jonathan M McCune, Ning Qu, Leen-
dert Van Doorn, and Adrian Perrig. Requirements for
an integrity-protected hypervisor on the x86 hardware
virtualized architecture. In Trust and Trustworthy Com-
puting, pages 141–165. Springer, 2010.

[184] Sathish Venkataramani. Advanced Board Bring Up -
Power Sequencing Guide for Embedded Intel Archi-
tecture. Intel Corporation, Apr 2011. Reference no.
325268.

[185] Vassilios Ververis. Security evaluation of intel’s active
management technology. 2010.

[186] Filip Wecherowski. A real smm rootkit: Reversing and
hooking bios smi handlers. Phrack Magazine, 13(66),
2009.

[187] Mark N Wegman and J Lawrence Carter. New hash
functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–
279, 1981.

[188] Rafal Wojtczuk and Joanna Rutkowska. Attacking intel
trusted execution technology. Black Hat DC, 2009.

[189] Rafal Wojtczuk and Joanna Rutkowska. Attacking smm
memory via intel cpu cache poisoning. Invisible Things
Lab, 2009.

[190] Rafal Wojtczuk and Joanna Rutkowska. Attacking intel
txt via sinit code execution hijacking, 2011.

[191] Rafal Wojtczuk, Joanna Rutkowska, and Alexander
Tereshkin. Another way to circumvent intel R© trusted
execution technology. Invisible Things Lab, 2009.

[192] Rafal Wojtczuk and Alexander Tereshkin. Attacking
intel R© bios. Invisible Things Lab, 2010.

[193] Y. Wu and M. Breternitz. Genetic algorithm for mi-
crocode compression, 2008. US Patent 7,451,121.

[194] Y. Wu, S. Kim, M. Breternitz, and H. Hum. Compress-
ing and accessing a microcode rom, 2012. US Patent
8,099,587.

[195] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland). IEEE Institute of Electrical and Electronics
Engineers, May 2015.

[196] Yuval Yarom and Katrina E Falkner. Flush+ reload: a
high resolution, low noise, l3 cache side-channel attack.
IACR Cryptology ePrint Archive, 2013:448, 2013.

[197] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and
Gernot Heiser. Mapping the intel last-level cache. Cryp-
tology ePrint Archive, Report 2015/905, 2015.

[198] Bennet Yee. Using secure coprocessors. PhD thesis,
Carnegie Mellon University, 1994.

[199] Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph

117

Shor, and Tsvika Kurts. A fully integrated multi-cpu,
gpu and memory controller 32nm processor. In Solid-
State Circuits Conference Digest of Technical Papers
(ISSCC), 2011 IEEE International, pages 264–266.
IEEE, 2011.

[200] Xiantao Zhang and Yaozu Dong. Optimizing xen vmm
based on intel R© virtualization technology. In Inter-
net Computing in Science and Engineering, 2008. ICI-
CSE’08. International Conference on, pages 367–374.
IEEE, 2008.

[201] Li Zhuang, Feng Zhou, and J Doug Tygar. Keyboard
acoustic emanations revisited. ACM Transactions on
Information and System Security (TISSEC), 13(1):3,
2009.

[202] V.J. Zimmer and S.H. Robinson. Methods and systems
for microcode patching, 2012. US Patent 8,296,528.

[203] V.J. Zimmer and J. Yao. Method and apparatus for
sequential hypervisor invocation, 2012. US Patent
8,321,931.

118

	Overview
	SGX Lightning Tour
	Outline and Troubling Findings

	Computer Architecture Background
	Overview
	Computational Model
	Software Privilege Levels
	Address Spaces
	Address Translation
	Address Translation Concepts
	Address Translation and Virtualization
	Page Table Attributes

	Execution Contexts
	Segment Registers
	Privilege Level Switching
	System Calls
	Faults
	VMX Privilege Level Switching

	A Computer Map
	The Motherboard
	The Intel Management Engine (ME)
	The Processor Die
	The Core

	Out-of-Order and Speculative Execution
	Out-of-Order Execution
	Speculative Execution

	Cache Memories
	Caching Principles
	Cache Organization
	Cache Coherence
	Caching and Memory-Mapped Devices
	Caches and Address Translation

	Interrupts
	Platform Initialization (Booting)
	The UEFI Standard
	SEC on Intel Platforms
	PEI on Intel Platforms

	CPU Microcode
	The Role of Microcode
	Microcode Structure
	Microcode and Address Translation
	Microcode and Booting
	Microcode Updates

	Security Background
	Cryptographic Primitives
	Cryptographic Keys
	Confidentiality
	Integrity
	Freshness

	Cryptographic Constructs
	Certificate Authorities
	Key Agreement Protocols

	Software Attestation Overview
	Authenticated Key Agreement
	The Role of Software Measurement

	Physical Attacks
	Port Attacks
	Bus Tapping Attacks
	Chip Attacks
	Power Analysis Attacks

	Privileged Software Attacks
	Software Attacks on Peripherals
	PCI Express Attacks
	DRAM Attacks
	The Performance Monitoring Side Channel
	Attacks on the Boot Firmware and Intel ME
	Accounting for Software Attacks on Peripherals

	Address Translation Attacks
	Passive Attacks
	Straightforward Active Attacks
	Active Attacks Using Page Swapping
	Active Attacks Based on TLBs

	Cache Timing Attacks
	Theory
	Practical Considerations
	Known Cache Timing Attacks
	Defending against Cache Timing Attacks

	Related Work
	The IBM 4765 Secure Coprocessor
	ARM TrustZone
	The XOM Architecture
	The Trusted Platform Module (TPM)
	Intel's Trusted Execution Technology (TXT)
	The Aegis Secure Processor
	The Bastion Architecture
	Intel SGX in Context
	Sanctum
	Ascend and Phantom

	SGX Programming Model
	SGX Physical Memory Organization
	The Enclave Page Cache (EPC)
	The Enclave Page Cache Map (EPCM)
	The SGX Enclave Control Structure (SECS)

	The Memory Layout of an SGX Enclave
	The Enclave Linear Address Range (ELRANGE)
	SGX Enclave Attributes
	Address Translation for SGX Enclaves
	The Thread Control Structure (TCS)
	The State Save Area (SSA)

	The Life Cycle of an SGX Enclave
	Creation
	Loading
	Initialization
	Teardown

	The Life Cycle of an SGX Thread
	Synchronous Enclave Entry
	Synchronous Enclave Exit
	Asynchronous Enclave Exit (AEX)
	Recovering from an Asynchronous Exit

	EPC Page Eviction
	Page Eviction and the TLBs
	The Version Array (VA)
	Enclave IDs
	Evicting an EPC Page
	Loading an Evicted Page Back into EPC
	Eviction Trees

	SGX Enclave Measurement
	Measuring ECREATE
	Measuring Enclave Attributes
	Measuring EADD
	Measuring EEXTEND
	Measuring EINIT

	SGX Enclave Versioning Support
	Enclave Certificates
	Certificate-Based Enclave Identity
	CPU Security Version Numbers
	Establishing an Enclave's Identity
	Enclave Key Derivation

	SGX Software Attestation
	Local Attestation
	Remote Attestation

	SGX Enclave Launch Control
	Enclave Attributes Access Control
	Licensing
	System Software Can Enforce a Launch Policy
	Enclaves Cannot Damage the Host Computer
	Interaction with Anti-Virus Software

	SGX Analysis
	SGX Implementation Overview
	Execution Core Modifications
	Uncore Modifications
	Microcode Modifications

	SGX Memory Access Protection
	Functional Description
	EPCM Entry Representation
	PMH Hardware Modifications

	SGX Security Check Correctness
	Top-Level Invariant Breakdown
	EPCM Entries Reflect Enclave Author Design
	TLB Entries for ELRANGE Reflect EPCM Contents
	EPCM Entries are Not In TLBs When Modified

	Tracking TLB Flushes
	Enclave Signature Verification
	Analysis of Steps 1 - 4
	Analysis of Steps 5 - 8
	Implementation Requirements

	SGX Security Properties
	Overview
	Physical Attacks
	Privileged Software Attacks
	Memory Mapping Attacks
	Software Attacks on Peripherals
	Cache Timing Attacks
	Software Side-Channel Attacks and SGX

	Conclusion
	Acknowledgements

