
Safely Exporting Keys from Secure Channels:
On the Security of EAP-TLS and TLS Key Exporters

Christina Brzuska1, Håkon Jacobsen2,?, and Douglas Stebila3,4,??

1 Hamburg University of Technology, Hamburg, Germany
brzuska@tuhh.de

2 Norwegian University of Science and Technology, Trondheim, Norway
hakoja@item.ntnu.no

3 Queensland University of Technology, Brisbane, Australia
4 McMaster University, Hamilton, Ontario, Canada

douglas@stebila.ca

Abstract. We investigate how to safely export additional cryptographic
keys from secure channel protocols, modelled with the authenticated and
confidential channel establishment (ACCE) security notion. For exam-
ple, the EAP-TLS protocol uses the Transport Layer Security (TLS)
handshake to output an additional shared secret which can be used for
purposes outside of TLS, and the RFC 5705 standard specifies a general
mechanism for exporting keying material from TLS. We show that, for
a class of ACCE protocols we call “TLS-like” protocols, the EAP-TLS
transformation can be used to export an additional key, and that the
result is a secure AKE protocol in the Bellare–Rogaway model. Interest-
ingly, we are able to carry out the proof without looking at the specifics
of the TLS protocol itself (beyond the notion that it is “TLS-like”), but
rather are able to use the ACCE property in a semi black-box way. To
facilitate our modular proof, we develop a novel technique, notably an
encryption-based key checking mechanism that is used by the security
reduction. Our results imply that EAP-TLS using secure TLS 1.2 cipher-
suites is a secure authenticated key exchange protocol.

1 Introduction

Secure channel protocols are widely used in practice to allow two parties to au-
thenticate each other and securely transmit data. A common design paradigm
is to use an authenticated key exchange (AKE) protocol to authenticate parties
based on public key certificates and to establish a session key, and then use a
stateful authenticated encryption scheme to encrypt and authenticate the trans-
mission of application data. Real-world secure channel protocols such as TLS,
SSH, IPsec, Google’s QUIC, the EMV chip-and-pin system, and IEEE 802.11i
all follow this paradigm.
? Håkon Jacobsen was supported by a STSM Grant from COST Action IC1306.
?? Douglas Stebila was supported by Australian Research Council (ARC) Discovery

Project grant DP130104304.

2 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

For theoreticians, this paradigm is desirable because it allows for modular
proofs via composability. A classic result by Canetti and Krawczyk [11] shows
how to provably construct a secure channel by running a key exchange protocol
that satisfies standard key indistinguishability notions, and then using the key
output by the AKE protocol as the symmetric key in authenticated encryption.

For practitioners, this paradigm is desirable because it is efficient and allows
to use and combine simple software and hardware components in a variety of
ways to form the overall system.

Despite the merits of modularity, most real-world designs are not as clean.
In TLS versions up to 1.2, a key exchange protocol, the so-called handshake
protocol, is used to establish a premaster secret, which is then used to derive
a master secret, which is then used to derive session keys. The final messages
of the handshake protocol are encrypted using the session keys, and then ap-
plication data can be sent, encrypted using the same session keys. SSH has a
similar design. In this design, the session keys do not satisfy the standard key
indistinguishability notion for key exchange security: an adversary can decide
whether they have been given the real session key or a random one simply by
trial decrypting the encrypted handshake messages.

Early work on proving the security of TLS avoided this problem by showing
that a modified version of the TLS handshake yields indistinguishable session
keys [29], but this is unsatisfactory since it does not consider the TLS protocol
as used in practice. In 2012, Jager, Kohlar, Schäge, and Schwenk (JKSS) [20]
introduced the authenticated and confidential channel establishment (ACCE)
security notion, which treats the key exchange and authenticated encryption
as a single monolithic object, allowing them to prove security of the signed
Diffie–Hellman ciphersuites in the unmodified TLS 1.2 protocol. ACCE has been
applied or adapted to prove security of most other TLS ciphersuites [21,24,26],
as well as SSH [4], QUIC [27,15], and the EMV chip-and-pin system [10].

The ACCE notion is not necessarily ideal to cryptographers; its monolithic
nature can make modular analysis more difficult, and in particular individual
components of ACCE-secure protocols cannot necessarily be used independently.
For example, although TLS 1.2’s signed Diffie–Hellman ciphersuite is ACCE-
secure, one has no security assurance that the session key satisfies any indepen-
dent security notion: we only have the assurance that the session key is safe
to use with the corresponding authenticated encryption scheme in the manner
described by the protocol.

Moreover, practitioners seem to like to use the TLS handshake in order to
establish keying material for their own purposes. A prominent example is the
EAP-TLS protocol [33], which uses the TLS handshake to derive a session key
between two peers in the Extensible Authentication Protocol (EAP) [1]. More
generally, the practice of exporting additional keys from the master secret in the
TLS handshake has been formalized in the proposed IETF standard RFC 5705
on TLS key material exporters [31].

However, is it actually safe to use keys exported from the master secret in
the TLS handshake? Solely assuming ACCE security of TLS does not at first

Safely Exporting Keys from Secure Channels 3

sight seem to say anything about the internal variables of TLS, such as the mas-
ter secret. However, interestingly, inspired by Morrissey, Smart, and Warinschi
(MSW) [29] we can show that the ACCE security of TLS implies that the master
secret is unpredictable. If the master secret were predictable, then we would be
able to break the security of the ACCE channel. This intuition lies at the heart
of our proof which uses the ACCE property of TLS in a (semi-)black-box way.

Our contributions. In this paper we analyze the security of key exporters from
ACCE protocols in the provable security setting. Concretely, for TLS we show
that if one derives an additional exported key from the TLS master secret—
independently of the other handshake messages—then TLS (outputting this ad-
ditional exported key as the session key) constitutes a secure AKE protocol in
the sense of Bellare and Rogaway [2]. However, while our starting point is the
TLS protocol, our result is in fact more general, pertaining to a wider class
of protocols which we call TLS-like ACCE protocols. Roughly speaking, these
are protocols which satisfy the ACCE security notion and, like TLS, establish
a master secret during the handshake, and from the master secret derive both
the channel encryption key and the additional exported key. Apart from this re-
quirement, our result has no other dependencies on the specifics of the protocol.
In other words, our main result is a general theorem showing that the transfor-
mation specified by EAP-TLS as a key exporter turns any ACCE protocol which
has a concept of a master secret into an AKE protocol.

An immediate application of our result is a proof of security in the Bellare-
Rogaway model for TLS Key Material Exporters [31] and EAP-TLS [33]. The
former has never been subject to a formal security analysis, while the latter has
only been analyzed in the symbolic model by He et al. [17] who gave a proof in
the context of IEEE 802.11.

Motivation for our approach. MSW [29] proved that a modified version of the
TLS handshake yields indistinguishable session keys. Specifically, they consid-
ered a variant of TLS were the final messages are sent unencrypted. As an
intermediate step in their analysis, they showed that the TLS master secret is
unpredictable, i.e., that no adversary is able to output the full master secret of a
fresh target session. They modeled the key derivation function (KDF) in TLS as
a random oracle, and as the inputs to the random oracle are unpredictable, the
session keys derived from the master secret are indistinguishable from random.

Similar to MSW, we want to use the fact that the master secret is unpre-
dictable to show that export keys are indistinguishable from random. This should
be possible even for the unmodified TLS protocol, because exported keys are not
used to encrypt messages during the handshake phase. One obvious approach
would be to reuse one of the existing security proofs which shows TLS to be
ACCE secure. Specifically, in these proofs the master secret of a particular ses-
sion is typically swapped out with a completely random value, allowing the rest
of the proof to continue on the assumption that the master secret is completely
hidden from the adversary. Due to the unpredictability of the master secret, the
adversary will not be able to detect the switch. Using this truly random master

4 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

secret, we could extend the proof with one additional step where we derive the
export key through a random oracle query. It would then follow that the derived
export key is indistinguishable from random.

However, such a result could not be re-used across different TLS ciphersuites,
nor hold for future versions of TLS. Instead, for every variant of TLS, one would
have to copy-paste the corresponding security proof and augment it accordingly
to account for the extra export key. This approach is of course inherently non-
modular since it is tied to the innards of each particular proof. Still, it seems
likely that most of these proofs would be fairly similar in terms of technique, and
also reasonably independent of the specific details of the TLS protocol itself.

The question is whether we can isolate exactly those properties of the TLS
protocol that these proofs rely on. If so, we could extract a generic proof of
TLS key exporters that works across different versions unmodified. Moreover, it
would be even better if we could have a result that is not tied to TLS at all, but
rather one that targets an appropriate abstract security notion.

Essentially, this is what we do in this paper. We identify some features of the
TLS protocol which, when added to a generic ACCE protocol, are sufficient to
establish the indistinguishability of the export keys derived from the protocol.
Note that, apart from the features that we identify, the result is completely
independent of the internals of TLS. Below we describe these features.

Technical overview of our result. Surprisingly, the number of additional features
we require in addition to a generic ACCE protocol is rather minimal and consists
of the following three requirements (which we make more precise in Sect. 3). We
call an ACCE protocol that satisfies these requirements TLS-like.

(i) The handshake includes a random nonce from each party.
(ii) Each party maintains a value called the master secret during the handshake.
(iii) The session key is derived from the master secret, the nonces, and possibly

some other public information.

Our result can now be more precisely formulated as follows: starting from
an ACCE secure TLS-like protocol Π, we create an AKE secure protocol Π+,
where Π+ consists of first running protocol Π until a session accepts (according
to Π), then deriving one additional key from the master secret and nonces of
Π. This key—which is distinct from the session key in the underlying protocol
Π—becomes the session key of Π+. In our security proof the key derivation step
will be modeled using a random oracle. The construction of Π+ from Π precisely
captures the definition used in TLS key exporters [31] and EAP-TLS [33].

Note that while we put no security requirements on the master secret of a
TLS-like protocol, it is pivotal in our proof to relate the indistinguishability of
the session keys in Π+ to the ACCE security of Π. As mentioned previously, we
build on the idea used by MSW [29] to show that unless the adversary queries the
random oracle on the exact master secret of a party, it has no advantage in dis-
tinguishing the corresponding exported session key in Π+. MSW proved that an
application key agreement protocol (having indistinguishable session keys) could
be built out of a master key agreement protocol (having unpredictable master

Safely Exporting Keys from Secure Channels 5

secrets). In their security reduction the simulator could simulate the application
key agreement protocol since it had access to a perfect key-checking oracle, al-
lowing it to test the validity of master secrets supplied to the random oracle. Our
proof is complicated by the fact that we do a reduction to a (TLS-like) ACCE
protocol for which there is no key-checking oracle available. The main technical
novelty of our proof is to show that we can still create an approximation of the
key-checking oracle as long as we allow a (small) one-sided error probability.
This emulated key-checking oracle suffices to simulate the AKE experiment of
protocol Π+ in our reduction to the ACCE security of Π.

To give some intuition for our key-checking oracle within the ACCE setting,
suppose we want to test whether the value ms′ is the master secret of some
session π . First, we use ms′, the nonces π accepted with, and the KDF of Π (all
available due to the TLS-like requirement on Π) to derive a guess on π ’s session
key in Π. Next, we obtain a ciphertext C of a random message under π ’s actual
session key in Π, using our access to a left-or-right encryption oracle in the
ACCE game. Finally, we locally decrypt C using the guessed session key of Π,
i.e., we do not use the decrypt oracle of the ACCE game. If this decryption gives
back the random message we started with, we guess that ms′ was the correct
master secret of π ; otherwise, we guess that it was incorrect.

In the above we tacitly assumed that different master secrets derive different
session keys (using the same nonces). Normally, this would follow directly from
the pseudorandomness of the KDF used in Π. However, since we do not require
the master secrets to be independent and uniformly distributed, we cannot invoke
this property of the KDF. Instead, we have to explicitly assume that different
master secrets do not “collide” to the same session key. We expect this property
to hold for most real-world KDFs. Concretely, we show in Theorem 2 (Appx. A)
that the HMAC-based KDF used in TLS has this property.

Alternatives to using the ACCE security notion? The main reason for using the
ACCE security notion in our analysis is that is has proved to be a very useful
model for studying the security of two-stage channel establishment protocols. As
already mentioned, it has been used repeatedly to analyze real-world protocols
such as TLS, SSH, and QUIC. Since our result applies to any ACCE protocol
that is TLS-like, it can be applied to all these protocols in a near black-box
manner. In particular, we can plug in any existing ACCE result without having
to re-do any of the steps carried out in the (ACCE) proof of the protocol itself.
For example, our result applies unmodified to every ciphersuite version of TLS
for which there exist an ACCE proof. Moreover, we can even apply our theorem
to future versions of TLS, as long as these continue to be TLS-like and derive
their channel keys using a collision resistant KDF.

Still, in the specific case of TLS, one might ask whether another approach
could give a simpler, yet equally modular proof of the same result, namely that
EAP-TLS (and more generally, TLS key exporters) constitutes a secure AKE.

Krawczyk, Paterson, and Wee (KPW) [24] showed that all the major hand-
shake variants of TLS satisfy a security notion on its key encapsulation mech-
anism (KEM) called IND-CCCA [18]. If we could reduce the AKE security of

6 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

EAP-TLS to the IND-CCCA security of the TLS-KEM, then the results of KPW
would give us all the major TLS ciphersuites “for free”.

Unfortunately, it is not obvious how such a result can be obtained in a black-
box manner from the KEM in [24]. Technically, in order to reduce the AKE
security of EAP-TLS to the IND-CCCA security of the TLS-KEM, we need
to be able to simulate the key derivation step in the AKE game of EAP-TLS.
This requires knowledge about the sessions’ master secrets. However, the KEM
defined by KPW does not contain the TLS master secret. This means that an
adversary against the TLS-KEM in the IND-CCCA game cannot simulate the
Test-challenge for some adversary playing in the AKE game against EAP-TLS.
Moreover, as remarked by KPW [24, Remark 4], if the KEM key actually was
defined to be the TLS master secret, then the resulting scheme would be insecure
for TLS-RSA provided that RSA PKCS#1v1.5 is re-randomizable5.

Other modular approaches to analyzing TLS. Canetti and Krawczyk [11] pre-
sented a model that allows to analyze protocols in modular way. Unfortunately,
since TLS does not meet the stringent requirement of key indistinguishability, it
cannot be analyzed within their framework. Küsters and Thuengerthal [25] an-
alyzed the core of TLS in their simulation-based universal composability model
called IITM. Unlike some other UC models, the IITM model has the appeal-
ing feature that it does not rely on pre-established session identifiers. Brzuska et
al. [8] introduced a framework that uses so-called key-independent reductions and
allows to analyze protocols such as TLS. Their analysis is in a game-based set-
ting and, up to some small technical differences between models, implies ACCE
security of TLS. Kohlweiss et al. [22] recently used the abstract cryptography
framework by Maurer and Renner [28] for a modular analysis of TLS.

2 Protocol Definitions

2.1 Execution Environment

Parties. A two-party protocol is carried out by a set of parties P = {P1, . . . , PnP}.
Each party Pi has an associated long-term key pair (ski, pki). We presuppose
the existence of a public key infrastructure (PKI) by assuming that every party
has an authenticated copy of all the other parties’ public keys pki. For simplicity
we restrict to the setting of mutual authentication, but our results apply equally
to the server-only authenticated setting.

Sessions. Each party can take part in multiple executions of the protocol, both
concurrently and subsequently. Each run of the protocol is called a session. Let
nπ denote the maximum number of sessions per party; for party Pi’s sth session,
we associate an oracle πsi which embodies this (local) session’s execution of the
5 On the other hand, Bhargavan et al. [6] conjecture that re-randomizing RSA
PKCS#1v1.5 is infeasible, allowing the master secret to be used as the KEM key in
TLS-RSA too. We forgo the issue by not reducing to the KEM-security of TLS.

Safely Exporting Keys from Secure Channels 7

Table 1. State variables for session oracle πsi .

Variable Description
ρ the role ρ ∈ {init, resp} of the session in the protocol execution,

being either the initiator or the responder
pid the identity pid ∈ P of the intended communication partner of πsi
pk the public key of πsi .pid
α the state α ∈ {accepted, rejected, running} of the session oracle
T the ordered transcript of all messages sent and received by πsi
k the symmetric session-key k ∈ K derived by πsi
γ the status γ ∈ {⊥, revealed} of the session key πsi .k

sid a session identifier sid ∈ {0, 1}∗ locally computable by πsi
b a random bit b ∈ {0, 1} sampled at the initialization of πsi
st additional auxiliary state that might be needed by the protocol

protocol, maintains the state specific to this session (as described in Table 1),
and has access to the long-term secret key ski of the party. We put the following
correctness requirements on the variables α, k, sid and pid:

πsi .α = accepted =⇒ πsi .k 6= ⊥ ∧ πsi .sid 6= ⊥, (1)

πsi .α = πtj .α = accepted ∧ πsi .sid = πtj .sid =⇒

πsi .k = πtj .k

πsi .pid = Pj

πtj .pid = Pi

. (2)

Adverserial queries. The adversary is assumed to control the network, and inter-
acts with the oracles by issuing queries to them. Below we describe the admissible
queries.

– NewSession(Pi, ρ, pid): This query creates a new session πsi with at party Pi,
having role ρ and intended partner pid. Based on pid, πsi sets the variable pk
correspondingly. The session’s state is set to πsi .α = running and, if ρ = init,
it also produces the first message of the protocol which is returned to the
adversary.

– Send(πsi ,m): This query allows the adversary to send any message m to
the session oracle πsi . If πsi .α 6= running return ⊥. Otherwise, the oracle
responds according to the protocol specification, which depends on its role
and current internal state.

– Corrupt(Pi): Return the private key Pi.sk held by party Pi. If Corrupt(Pi)
was the τ -th query issued by A, then we say that Pi is τ -corrupted. For
uncorrupted parties we define τ :=∞.

– Reveal(πsi): This query returns the session key πsi .k and sets πsi .γ = revealed.

2.2 AKE Protocols

An authenticated key exchange protocol (AKE) is a two-party protocol satisfying
the syntactical requirement of (1) and (2), and where the security is defined in

8 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

terms of an AKE security experiment played between a challenger and an adver-
sary. This experiment uses the execution environment described in Section 2.1,
but has one additional query:

– Test(πsi): This query may be asked only once during the course of the game.
If πsi .α 6= accepted, then the oracle returns ⊥. Otherwise, based on b = πsi .b,
it returns kb, where k0 ← K is an independent uniformly sampled key and
k1 := πsi .k. The key kb is called the Test-challenge.

The adversary can win in the AKE experiment in one of two ways: (i) by
making a session accept maliciously or (ii) by guessing the secret bit of the
Test-session. We formalize these winning conditions below. We simultaneously
consider AKE protocols with and without perfect forward secrecy (PFS) [13].

Definition 1. Two sessions πsi and πtj are partners if πsi .sid = πtj .sid.

Definition 2. A session πsi is said to be fresh (resp. PFS-fresh), with intended
partner Pj, if

(a) πsi .α = accepted and πsi .pid = Pj when A issued its τ0-th query,
(b) πsi .γ 6= revealed and Pi is uncorrupted (resp. τ -corrupted with τ0 < τ)6,
(c) for any partner oracle πtj of πsi , we have that πtj .γ 6= revealed and Pj is

uncorrupted (resp. τ ′-corrupted with τ0 < τ ′).

Definition 3 (Entity authentication). A session πsi is said to have accepted
maliciously (resp. accepted maliciously with PFS) in the AKE security experi-
ment with intended partner Pj, if

(a) πsi .α = accepted and πsi .pid = Pj when A issued its τ0-th query,
(b) Pi and Pj are uncorrupted (resp. τ - and τ ′-corrupted with τ0 < τ, τ ′), and
(c) there is no unique session πtj such that πsi and πtj are partners.

We let Advauth
Π (A) (resp. Advauth-PFS

Π (A)) denote the probability that an adver-
sary A gets a session to accept maliciously (resp. accepts maliciously with PFS)
during the AKE security experiment.

Definition 4 (Key indistinguishability). An adversary A that issued its
Test-query to session πsi during the AKE security experiment, answers the Test-
challenge correctly (resp. answers the Test-challenge correctly with PFS) if it
terminates with output b′, such that

(a) πsi is fresh (resp. PFS-fresh) with some intended partner Pj, and
(b) πsi .b = b′.

We assign the following advantage measure to the event that A answers the
Test-challenge correctly (resp. answers the Test-challenge correctly with PFS):

Advkey-ind(-PFS)
Π (A) :=

∣∣∣∣Pr[πsi .b = b′]− 1
2

∣∣∣∣ . (3)
6 For simplicity we do not model key-compromise impersonation attacks in this paper,
which should allow Pi itself to be τ -corrupted, with τ < τ0.

Safely Exporting Keys from Secure Channels 9

Definition 5 (AKE security). An adversary A wins (resp. wins with PFS) in
the AKE security experiment if a session to accept maliciously (resp. accept ma-
liciously with PFS) or it answers the Test-challenge correctly (resp. answers the
Test-challenge correctly with PFS). We assign the following advantage measure
to the event that A wins (resp. wins with PFS):

AdvAKE(-PFS)
Π (A) := Advauth(-PFS)

Π (A) + Advkey-ind(-PFS)
Π (A) . (4)

2.3 ACCE Protocols

Jager et al. [20] introduced the notion of authenticated and confidential channel
establishment (ACCE) protocols in order to model TLS. An ACCE protocol is a
two-party protocol satisfying the syntactical requirement of equations (1) and (2)
and where the session key k is used to key a stateful length-hiding authenticated
encryption scheme (sLHAE) stE = (st.Gen, stE.Init, stE.Enc, stE.Dec) (following
the definition in [24]). For correctness, we require that if the deterministic algo-
rithm st.Init produced initial states st0E , st0D, and the ACCE session key k was
used to produce a sequence of encryptions (Ci, sti+1

E)← stE.Enc(k, `,mi, Hi, st
i
E)

where no Ci equal ⊥, then the sequence of decryptions (m′i, sti+1
D)← stE.Dec(k,

Ci, Hi, st
i
D) is such thatm′i = mi for each i ≥ 0. For security, we define an ACCE

security experiment based on the execution environment described in Sect. 2.1
that has the following two additional queries (note that there is no Test query).

– Encrypt(πsi , `,m0,m1, H): This query takes as input a ciphertext length spec-
ification `, two messages m0, m1, and a header H. If πsi .α 6= accepted, the
query returns ⊥. Otherwise, πsi has (by assumption) computed its session
key k and run the stE.Init algorithm of a sLHAE scheme stE to initiate
states πsi .stE and πsi .stD. Depending on the bit πsi .b, this call returns the
encryption of either m0 or m1 using stE. For details, see Fig. 1.

– Decrypt(πsi , C,H): This query takes as input a ciphertext C and a header
H. If πsi .α 6= accepted, then the query returns ⊥. Otherwise, it (statefully)
decrypts (C,H) using the underlying sLHAE scheme stE. For details, see
Fig. 1.

The adversary can win in the ACCE experiment in one of two ways: (i) by
making a session accept maliciously according to Def. 3 (as in the AKE security
experiment), or (ii) by breaking one of the sLHAE channels through guessing
the corresponding session’s secret bit, (we formally define this condition below).
Partnering and freshness in the ACCE experiment are defined exactly like in the
AKE experiment, i.e., according to Def. 1 and Def. 2, respectively.

Definition 6 (Channel security). An adversary A breaks the channel (resp.
breaks the channel with PFS) in the ACCE security experiment if it terminates
with output (πsi , b′), such that

(a) πsi is fresh (resp. PFS-fresh) with some intended partner Pj, and
(b) πsi .b = b′.

10 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Encrypt(πsi , `,m0,m1, H):
1: if πsi .α 6= accepted:
2: return ⊥:
3: u← u+ 1;
4: (C(0), st

(0)
E)← stE.Enc(k, `,m0, H, stE);

5: (C(1), st
(1)
E)← stE.Enc(k, `,m1, H, stE);

6: if C(0) = ⊥ or C(1) = ⊥:
7: return ⊥;
8: (C[u],H[u], stE) := (C(b), H, st

(b)
E)

9: return C[u];

Decrypt(πsi , C,H):
1: if πsi .α 6= accepted:
2: return ⊥:
3: if b = 0:
4: return ⊥;
5: πtj ← πsi ’s partner or ⊥;
6: v ← v + 1;
7: (m, stD)← stE.Dec(k,C,H, stD);
8: if v > πtj .u or C 6= πtj .C[v] or H 6= πtj .H[v]:
9: in-sync← false;
10: if in-sync = false:
11: return m;
12: return ⊥;

Fig. 1. The Encrypt and Decrypt queries of the ACCE security experiment. The vari-
ables k, b, stE, stD,C,H, u and v all belong to the internal state of πsi . The variables C
and H are lists, initially empty. The counters u and v are initialized to 0, and in-sync
is set to true at the beginning of every session πsi . In case πsi does not have a partner
when answering a Decrypt query, then in-sync = false.

We assign the following advantage measure to the event that A breaks the channel
(resp. breaks the channel with PFS):

Advchan(-PFS)
Π (A) :=

∣∣∣∣Pr[πsi .b = b′]− 1
2

∣∣∣∣ . (5)

Definition 7 (ACCE security). An adversary A wins (resp. wins with PFS)
in the ACCE security experiment if it either gets a session to accept maliciously
(resp. accept maliciously with PFS) or breaks the channel (resp. breaks the chal-
lenge with PFS). We assign the following advantage measure to the event that
A wins (resp. wins with PFS) in the ACCE experiment:

AdvACCE(-PFS)
Π (A) := Advauth(-PFS)

Π (A) + Advchan(-PFS)
Π (A) . (6)

3 TLS-like Protocols

Definition 8. An ACCE protocol Π is said to be TLS-like if

(i) each session uniformly at random generates and transmits a distinguished
nonce value n $← {0, 1}λ during its run of the protocol,

(ii) each session holds a variable πsi .ms ∈ {0, 1}λ∪{⊥}, called the master secret,
(iii) if n1, n2 are the two nonces on a session’s transcript T , then the session key

is derived as
k ← Kdf(ms, n1‖n2, FΠ(T)), (7)

where Kdf : {0, 1}λ × {0, 1}2λ × {0, 1}∗ → {0, 1}λ and FΠ : {0, 1}∗ → {0, 1}∗
are deterministic functions.

Safely Exporting Keys from Secure Channels 11

Remark 1. The function FΠ is protocol specific and meant to capture any ad-
ditional input that might be used to derive the session keys. In TLS, FΠ(T) is
the empty string, while for example in IPSec (IKEv2), FΠ(T) is the Security
Parameter Index (SPI) of the initiator and responder.

Remark 2. Clearly TLS is TLS-like, but most other real-world protocols, like
SSH, IPSec and QUIC, belong to this class as well.

4 Constructing an AKE protocol from a TLS-like ACCE
Protocol

4.1 Construction

Let Π be a TLS-like ACCE protocol with key derivation function Kdf and let
G : {0, 1}λ × {0, 1}2λ × {0, 1}∗ → {0, 1}λ be a random oracle. From Π and G
we create an AKE protocol Π+ as follows. Protocol Π+ consists of first running
protocol Π as usual until a session accepts, then it derives an additional key
ek ← G(ms, nC‖nS , aux), where ms is the master secret of Π, nC and nS are
the nonces, and aux ∈ {0, 1}∗ is an (optional) string containing selected values
from the session’s transcript T . The key ek becomes the session key in protocol
Π+. The session identifier in Π+ is inherited from Π.

By construction, a session in Π+ derives (at least) two keys: its “true” session
key in the sense of the AKE-model, i.e., the key ek derived from G, and the
channel encryption key derived in the underlying protocol Π using Π.Kdf. To
avoid confusion, we will call the former key the export key; while we will call the
latter key the channel key and denote it ck. In particular, in the formal AKE
security experiment the session key variable πsi .k will store the export key ek,
while the channel key ck will simply be part of πsi ’s internal state, written πsi .ck.

4.2 Main Result

Informally, our main result shows that the construction described above trans-
forms a TLS-like ACCE protocol Π into an AKE protocol Π+. However, in our
proof we need to rely on two additional assumptions besides the ACCE-notion:
(1) the key derivation function Π.Kdf used to derive the channel keys in Π+

is collision resistant in a particular sense (Def. 9) and (2) the session identifier
allows for public session matching (Def. 10) and contains the sessions’ nonces
and FΠ(T) value (q.v. equation (7)).

Definition 9 (KDF collision resistance). Let KDF be an oracle implement-
ing the key derivation function of a TLS-like ACCE protocol Π. Define the fol-
lowing advantage measure for an adversary A:

AdvKDFcoll
Π.Kdf (A) := Pr

[
((ms,ms′), n, s)← AKDF : KDF(ms, n, s) = KDF(ms′, n, s)

ms 6= ms′

]
.

(8)
A triple ((ms,ms′), n, s) satisfying the criteria in (8) is called a (KDF) collision
for Π.Kdf.

12 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Remark 3. Definition 9 is a variant of the more common notion of collision re-
sistant hash functions. The difference is that KDF collision resistance is about
collisions in the keys, not the messages.

Definition 10 (Public session matching). A session identifier sid allows
for public session matching in security experiment E, if there exists an efficient
algorithm M—having access to all the queries/responses exchanged between A
and the challenger—that can always answer whether or not two accepted sessions
are partners during the execution of E, i.e.:

∀k ∈ N, and ∀πsi , πtj having accepted before A’s τk-th query:

M(πsi , πtj) :=
{

1 if πsi .sid = πtj .sid,
0 otherwise.

(9)

Theorem 1. Let Π be a TLS-like ACCE protocol having a session identifier
that allows for public session matching and contains the sessions’ nonces and
FΠ(T) values. Let Π+ be the protocol derived from Π and random oracle G,
using the construction described in Section 4.1. Then for any adversary A in the
AKE security experiment against Π+

AdvAKE(-PFS)
Π+ (A) ≤ 6·AdvACCE(-PFS)

Π (B)+3·AdvKDFcoll
Π.Kdf (C)+

6qnPnπ
2cλ +

(nPnπ)2

2λ+1 ,

(10)
where λ is the security parameter, nP is the number of parties, nπ is the number
of sessions at each party, q is A’s number of random oracle queries, and c ∈ N
is an arbitrary constant.

The main idea behind the proof of Theorem 1 is to relate the security of the
derived export keys to the security of the channel keys in the underlying ACCE
protocol Π. Roughly speaking, by using the property that TLS-like protocols
derive their channel keys from the master secret and nonces, we establish that
two sessions derive the same export key if and only if they derive the same
channel key (barring certain bad events which we bound). This fact will make it
possible to derive the sessions’ export keys in Π+ independently of their master
secrets, and still fully simulate the random oracle G.

4.3 Proof of Theorem 1

Let A be the adversary in an AKE security experiment against protocol Π+.
From A we construct an algorithm B against the ACCE security of the underly-
ing protocol Π. Our proof proceeds through a sequence of games ([3,32]), where
each consecutive game aims to reduce the challenger’s dependency on the ses-
sions’ master secrets and the random oracle G, in order to derive the export keys
in protocol Π+. Eventually, in the final game, the random oracle G will have
been completely replaced by a local list LG, and the Π+ export keys are derived
independently of the sessions’ master secrets. Thus, at this point, algorithm B
will be able to simulate the game.

Safely Exporting Keys from Secure Channels 13

Game 0. This is the original AKE security experiment for protocol Π+:

AdvAKE(-PFS)
Π+ (A) = AdvG0

Π+(A) . (11)

Game 1. Game 1 proceeds like in Game 0, but aborts if two sessions generate
the same nonce value. Since there are nP · nπ generated nonces, the probability
of there being at least one collision is bounded by (nPnπ)2 · 2−(λ+1). By the
Difference Lemma ([32]) we have

AdvG0
Π+(A) ≤ AdvG1

Π+(A) +
(nPnπ)2

2λ+1 . (12)

The remaining games are aimed at removing the challenger’s dependency on
the random oracle and enabling it to derive the Π+ export keys without knowing
the sessions’ master secrets. To this end, the challenger will begin to maintain a
list LG which it will use to simulate the random oracle G and derive the sessions’
export keys. The entries of LG are tuples of the form (ms, n, aux, ek, [∗]), where
ms ∈ {0, 1}λ ∪ {⊥}, n ∈ {0, 1}2λ, aux ∈ {0, 1}∗, ek ∈ {0, 1}λ, and [∗] denotes a
list that contains zero or more session oracles. Specifically, we use the notation
“[]” to denote an empty list, “[πsi]” for a list containing exactly πsi , “[πsi , ∗]” for
a list containing πsi plus zero or more (unspecified) sessions, and “[∗]” for a list
containing zero or more (unspecified) sessions. LG is initially empty and is filled
out either in response to A’s random oracle queries or when a session reaches
the accepted state.

All the remaining games either change the way export keys are derived for
newly accepted sessions (which we call the “Send-code”), or how they answer
random oracle calls (which we call the “G-code”). The evolution of the Send-
code in Game 2 through Game 6 is shown in Fig. 2, while the corresponding
G-code is shown in Fig. 3. We annotate the changes made to a game relative to
the previous one using red boxes. Note that some games make changes to both
the Send-code and G-code simultaneously.

Game 2. This game introduces the list LG. When a session πsi accepts with
master secret ms, nonces n = nC‖nS , and auxiliary data aux, the challenger
uses the Send-code shown in the panel labeled “Game 2” in Fig. 2 to derive its
export key. It uses the G-code shown in the panel labeled “Game 2” in Fig. 3 to
answer the adversary’s random oracle queries. We claim that

AdvG1
Π+(A) = AdvG2

Π+(A) . (13)

Since the challenger considers all of the input values to the random oracle
when answering from LG in this game—in particular, it explicitly looks at the
master secrets of the sessions—and because a random oracle always returns
the same value when given the same input twice, the answers in Game 2 are
distributed exactly like in Game 1.

14 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

. Game 2
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi .sid = πtj .sid:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// look at the master secret
7: if ∃(ms, n, aux, ek, [∗]) ∈ LG:
8: πsi .k ← ek;
9: update (ms, n, aux, ek, [∗]) to (ms, n, aux, ek, [∗, πsi]);

// no match found – derive new key
10: else
11: ek ← G(ms, n, aux);
12: πsi .k ← ek;
13: LG ← LG ∪ {(ms, n, aux, ek, [πsi])};

. Game 3
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi .sid = πtj .sid:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// look at the master secret
7: else if ∃(ms, n, aux, ek, [∗]) ∈ LG:
8: πsi .k ← ek;
9: update (ms, n, aux, ek, [∗]) to (ms, n, aux, ek, [∗, πsi]);

// no match found – derive new key
10: else
11: ek ← G(ms, n, aux);
12: πsi .k ← ek;
13: LG ← LG ∪ {(ms, n, aux, ek, [πsi])};

. Game 4
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi .sid = πtj .sid:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// look at the master secret
7: else if ∃(ms, n, aux, ek, [∗]) ∈ LG:
8: πsi .k ← ek;
9: update (ms, n, aux, ek, [∗]) to (ms, n, aux, ek, [∗, πsi]);

// no match found – derive new key
10: else
11: ek ← G(ms, n, aux);
12: πsi .k ← ek;
13: LG ← LG ∪ {(ms, n, aux, ek, [πsi])};

. Game 5
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi .sid = πtj .sid:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// look at the master secret
7: else if ∃(ms, n, aux, ek, [∗]) ∈ LG:
8: πsi .k ← ek;
9: update (ms, n, aux, ek, [∗]) to (ms, n, aux, ek, [∗, πsi]);

// no match found – derive new key
10: else
11: ek

$← {0, 1}λ;
12: πsi .k ← ek;
13: LG ← LG ∪ {(ms, n, aux, ek, [πsi])};

. Game 6
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi .sid = πtj .sid:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// has G been queried on a master secret ms′ valid for πsi ?
7: else if ∃(ms′, n, aux, ek, []) ∈ LG ∧ KO(πsi ,ms′) = true:
8: πsi .k ← ek;
9: update (ms′, n, aux, ek, []) to (ms′, n, aux, ek, [πsi]);

// no match found – derive new key
10: else
11: ek

$← {0, 1}λ;
12: πsi .k ← ek;
13: LG ← LG ∪ {(⊥, n, aux, ek, [πsi])};

. B’s simulation
// match partner sessions

1: if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧M(πsi , πtj) = 1:
2: πsi .k ← ek;
3: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// match non-fresh sessions based on their channel keys
4: else if ∃(∗, n, aux, ek, [πtj]) ∈ LG ∧ πsi , πtj non-fresh ∧ πsi .ck = πtj .ck:
5: πsi .k ← ek;
6: update (∗, n, aux, ek, [πtj]) to (∗, n, aux, ek, [πtj , πsi]);

// has G been queried on a master secret ms′ valid for πsi ?
7: else if ∃(ms′, n, aux, ek, []) ∈ LG ∧CheckKey(πsi ,ms′) = true:
8: πsi .k ← ek;
9: update (ms′, n, aux, ek, []) to (ms′, n, aux, ek, [πsi]);

// no match found – derive new key
10: else
11: ek

$← {0, 1}λ;
12: πsi .k ← ek;
13: LG ← LG ∪ {(⊥, n, aux, ek, [πsi])};

Fig. 2. How to derive the export key ek of a session πsi that accepted with master
secret ms, nonces n = nC‖nS , and auxiliary data aux, in Game 2 to Game 6, and
in B’s simulation. Variables with underscores denote those that are ‘pattern matched”
against πsi ’s variables. For example, πsi is “matched” to (a, b, c, ek, [∗]) ∈ LG only if
nC‖nS = b, and aux = c. In particular, ms could be different from a.

Safely Exporting Keys from Secure Channels 15

. Game 2
// look for previous G queries on the same values

1: if ∃(ms, n, aux, ek, [∗]) ∈ LG:
2: return ek;

// test if ms matches any already accepted sessions
3: else if ∃(∗, n, aux, ek, [πsi , ∗]) ∈ LG ∧CheckKey(πsi ,ms) = true:
4: return ek;

// no match found – derive new key
5: else
6: ek ← G(ms, n, aux);
7: LG ← LG ∪ {(ms, n, aux, ek, [])};
8: return ek;

. Game 5
// look for previous G queries on the same values

1: if ∃(ms, n, aux, ek, [∗]) ∈ LG:
2: return ek;

// test if ms matches any already accepted sessions
3: else if ∃(⊥, n, aux, ek, [πsi , ∗]) ∈ LG ∧CheckKey(πsi ,ms) = true:
4: return ek;

// no match found – derive new key
5: else
6: ek

$← {0, 1}λ;
7: LG ← LG ∪ {(ms, n, aux, ek, [])};
8: return ek;

. Game 6
// look for previous G queries on the same values

1: if ∃(ms, n, aux, ek, [∗]) ∈ LG:
2: return ek;

// test if ms matches any already accepted sessions
3: else if ∃(⊥, n, aux, ek, [πsi , ∗]) ∈ LG ∧ KO(πsi ,ms) = true:
4: return ek;

// no match found – derive new key
5: else
6: ek

$← {0, 1}λ;
7: LG ← LG ∪ {(ms, n, aux, ek, [])};
8: return ek;

. B’s simulation
// look for previous G queries on the same values

1: if ∃(ms, n, aux, ek, [∗]) ∈ LG:
2: return ek;

// test if ms matches any already accepted sessions
3: else if ∃(⊥, n, aux, ek, [πsi , ∗]) ∈ LG ∧CheckKey(πsi ,ms) = true:
4: return ek;

// no match found – derive new key
5: else
6: ek

$← {0, 1}λ;
7: LG ← LG ∪ {(ms, n, aux, ek, [])};
8: return ek;

Fig. 3. How A’s G queries, being of the form G(ms, n, aux), are answered in Game 2
to Game 6, and in B’s simulation.

In the remaining games, we define ck-colli to be the event that during the run
of Game i, the challenger calls the key derivation function Π.Kdf on two different
master secrets ms 6= ms′, but with the same nonces n = nC‖nS and additional
input FΠ(T), such that Π.Kdf(ms, n, FΠ(T)) = Π.Kdf(ms′, n, FΠ(T)). We call
event ck-colli a channel key collision.

Game 3. In this game the Send-code is modified so that when a session accepts,
the challenger first checks whether the session’s partner is present in a tuple on
LG before deriving its export key (see the panel labeled “Game 3” in Fig. 2).
The G-code remains unchanged. We claim that unless a channel key collision
occurs, then Game 3 and Game 2 are identical.

To see this, suppose the if-check at line 1 of Game 3 matched two sessions πsi
and πtj . This means that πsi .sid = πtj .sid, which by equation (2), implies that they
have the same channel key. Then our assumption that no key collision occurs
further implies that they must also have the same master secret. Hence, the
else-if check at line 7 would also have matched πsi and πtj in Game 2. This shows
that Game 2 and Game 3 matches exactly the same sessions when no channel
key collision occurs, hence

AdvG2
Π+(A) ≤ AdvG3

Π+(A) + Pr[ck-coll3] . (14)

16 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

To bound Pr[ck-coll3] we create an algorithm C′ that finds (KDF) collisions
in Π.Kdf such that

Pr[ck-coll3] ≤ AdvKDFcoll
Π.Kdf (C′) . (15)

Algorithm C′ emulates adversary A and the challenger in an execution of
Game 3 by instantiating all the parties’ long-term keys and running all the
sessions according to the specification of the game. If event ck-coll3 happened
during this run, say due to callsΠ.Kdf(ms, n, FΠ(T)) andΠ.Kdf(ms′, n, FΠ(T)),
then algorithm C′ outputs ((ms,ms′), n, FΠ(T)) as its collision for Π.Kdf.

Since C′ holds all the keys, it can simulate Game 3 perfectly. In particular,
it can correctly simulate the random oracle G in those places where it is called
inside of Game 3 (i.e., line 11 of the Send-code, and line 6 of the G-code). Thus,
the probability that C′ finds a collision in Π.Kdf is exactly the probability that
event ck-coll3 occurs during its simulation of Game 3 for A.

Remark 4. The reason we have to condition on there being no channel key colli-
sion in Game 3 is because we do not assume that equal session identifiers implies
equal master secrets (cf. equation (2)). It is conceivable that two partner sessions
might end up with the same channel key (and export key) even if their master
secrets differ. This would lead to a discrepancy in how G queries are answered
in Game 2 and Game 3.

Game 4. In this game the Send-code is augmented by matching non-fresh
sessions based on their channel keys (see Fig. 2). That is, if two non-fresh sessions
are found to have the same channel key (and the same nonces and auxiliary data),
then they are given the same export key too. Again, as long as a channel key
collision does not occur (event ck-coll4), then Game 4 and Game 3 are identical.
Similarly, to bound Pr[ck-coll4] we build an algorithm C′′ against the collision
resistance of Π.Kdf just like C′ in Game 3. Thus

AdvG3
Π+(A)−AdvG4

Π+(A) ≤ Pr[ck-coll4] ≤ AdvKDFcoll
Π.Kdf (C′′) . (16)

Game 5. In this game the challenger replaces the calls to the random oracle
(both in the Send-code and in the G-code) with strings drawn uniformly at
random. We claim that this change does not affect A’s view compared to Game 4
in any way, hence

AdvG4
Π+(A) = AdvG5

Π+(A) . (17)

To prove (17) we show that the challenger in Game 4 never repeats a call to
the random oracle on the same input. Thus, replacing these calls with uniformly
drawn strings in Game 5 yields exactly the same distribution on the export keys.

Suppose at some point during Game 4 the challenger made the random oracle
call G(ms, n, aux) for the first time (either due to a session accepting, or because
A made this exact G query). Suppose the random oracle responded with ek, and
let t = (ms, n, aux, ek, [∗]) be the tuple that was added to LG in response to this
call.

Safely Exporting Keys from Secure Channels 17

If the adversary later makes a G query on the same values, i.e. a query of the
form G(ms, n, aux), then line 1 of the G-code will be used to answer the query.
Thus, the random oracle call on line 6 of the G-code would never be made on
the same values twice in Game 4.

Likewise, if a session πsi accepts with the same values, i.e., master secret ms,
nonces n = nC‖nS , and auxiliary data aux, after the initial G query was made,
then the else-if check on line 7 of the Send-code would match πsi to t. Thus, the
random oracle call on line 11 of the Send-code would not be made on the same
values twice in Game 4 either.

In the final game the challenger will derive the sessions’ export keys indepen-
dently of their master secrets. To do this, it will use a probabilistic key-checking
oracle KO to test whether the adversary ever queried the random oracle at the
correct master secret of a session. Oracle KO is defined as follows:

KO(πsi ,ms′) :=
{

true with probability 1 when πsi .ms = ms′,
false with probability (1− ε) when πsi .ms 6= ms′ .

(18)

Specifically, KO has a one-sided error probability since it can potentially
return true (with probability ε) when πsi .ms 6= ms. Based on KO we define the
following event, which will be important in our later analysis:

Q : KO returns true when called on a fresh session. (19)

We will later show that A has zero advantage in guessing the Test-challenge
correctly unless Q happens (Lemma 1). Note that, if event Q happened, say due
to a call KO(πsi ,ms′), then this does not necessarily imply that πsi .ms = ms′;
namely, event Q also includes those cases where KO erroneously returns true.

Game 6. Game 6 modifies the else-if clause at line 7 of the Send-code in Game 5
to use the key-checking oracle KO instead of explicitly looking at a session’s
master secret. In addition, if a session accepts without a match on LG, then
Game 6 omits its master secret from the tuple that gets added to LG (line 13).
The G-code of Game 6 is also changed to use KO, as shown in Fig. 3.

We claim that as long as KO does not make a mistake, then Game 6 and
Game 5 are identical:

AdvG5
Π+(A) ≤ AdvG6

Π+(A) + ε . (20)

Let t⊥ denote the tuple derived from t = (ms, n, aux, ek, [∗]) ∈ LG by setting
ms = ⊥. To show (20) we prove the following three invariants.

(i) A session πsi accepts with master secretms, nonces n = nC‖nS and auxiliary
data aux in Game 5 if and only if it accepts with the same master secret,
nonces and auxiliary data, and at the same time instance, in Game 6.

18 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

(ii) A session πsi gets matched to a tuple t ∈ LG by one of the if/else-if clauses
in the Send-code of Game 5 if and only if πsi gets matched to t or t⊥ by the
corresponding else/if-else clause in Game 6.

(iii) A G query is answered using tuple t = (ms, n, aux, ek, [∗]) ∈ LG at line 1 of
the G-code in Game 5 if and only if it is answered by t ∈ LG at line 1, or
t⊥ ∈ LG at line 3, in Game 6.

We only show that (i) holds for the first accepting session since (ii) and (iii)
implies that it also holds for all subsequent sessions.

(i) Fix a tape of random coins and some adversary A, and consider a run of A
in Game 5 and Game 6 using this tape as the source of randomness (both for the
adversary and the challenger). Suppose πsi was the first session that accepted
in this run of Game 5, say with values ms, n = nC‖nS , aux. If A made no G
queries before πsi accepted, then πsi would have accepted with the same values
(and at the same time) in the corresponding run in Game 6 too, since there are
no differences between the two games up until this point. On the other hand,
if A first made, say q0, G queries before πsi accepted, then these queries would
have been answered identically by the G-code in both Game 5 and Game 6 (in
particular, by the else-clause at line 5). Hence, πsi would have accepted identically
in both games also in the case where A made prior G queries.

(ii) Note that the first two if/else-if clauses in the Send-code do not look at the
master secret explicitly (as indicated by the “∗”). Thus, these two checks behave
identically in Game 5 and Game 6.

Next, if πsi got matched to t = (ms, n, aux, ek, [∗]) at line 7 in Game 5,
then we claim that [∗] = []. To see this, suppose [∗] = [πtj , ∗]. Clearly πsi .sid 6=
πtj .sid, since otherwise the if-check at line 1 would already have matched πsi
and t. Furthermore, since we can assume that πsi has not accepted maliciously
(otherwise the game would already have ended), both πsi and πtj must be non-
fresh by the assumption that the nonces are part of the session identifiers and
are unique (Game 1). But then the else-if check at line 4 would have matched πsi
and t, contradicting our assumption that πsi got matched to t at line 7. Hence
[∗] = []. It follows that πsi would also have gotten matched to t at line 7 in
Game 6 (by assumption, πsi .ms = ms, so KO is guaranteed to return true).

Conversely, if πsi got matched to t = (ms′, n, aux, ek, []) at line 7 in Game 6, it
means that KO(πsi ,ms′) = true. Since we have conditioned on KO not making
a mistake, πsi .ms = ms′. Moreover, since line 7 is the only check that considers
tuples having [∗] = [] in Game 5, it follows that πsi would have gotten matched
to t at this line in Game 5 too.

(iii) Line 1 of the G-code ensures that the answers to G queries are consistent
with respect to repeated queries in both Game 5 and Game 6, so we only consider
non-repeated G-queries.

Suppose t = (ms, n, aux, ek, [∗]) ∈ LG was used to answer a G query of the
form G(ms, n, aux) in Game 5. Note that if [∗] = [], then this was a repeated

Safely Exporting Keys from Secure Channels 19

G query, so we assume [∗] = [πsi , ∗]. By (i) and (ii), t⊥ must have been on LG
prior to the G query being made in Game 6, and consequently line 3 would have
been used to answer it in this game (KO is guaranteed to return true since
πsi .ms = ms).

Conversely, if t⊥ = (⊥, n, aux, [πsi , ∗]) ∈ LG was used at line 3 to answer
the query G(ms′, n, aux) in Game 6, then KO(πsi ,ms′) = true. Since we have
conditioned on KO not making a mistake, it follows that πsi .ms = ms′. Thus,
when A makes the G query in Game 5, t would already be on LG by (i) and (ii),
yielding the right answer at line 1.

This establishes (20). We now turn to the analysis of Game 6.

Analyzing Game 6. It remains to bound the right-hand terms in equation (20).
First we show that unless A manages to get event Q to happen (q.v. equation
(19)), then it has zero advantage in guessing the Test-challenge correctly.

Lemma 1. Suppose A issued its Test-query against session πsi during Game 6,
and that it output b′ as its answer to the Test-challenge. Then

Pr[πsi .b = b′ | Q] = 1
2 , (21)

i.e. A has zero advantage in answering the Test-challenge correctly if event Q
did not happen during Game 6.

Proof. That event Q did not happen means that KO never returned true for
any fresh session during Game 6. Since KO is always correct when rejecting a
key, i.e. when outputting false, this implies that A never queried the random
oracle on the correct master secret of any fresh session. In particular, this means
that the derived export key of the Test-session in Game 6 is distributed exactly
like that of a random key. Thus, the hidden bit of the Test-session is independent
of the derived export key from A’s point of view. ut

Lemma 1 implies that it is sufficient to bound the probability of event Q
and the probability of a session accepting maliciously in order to bound A’s
advantage in Game 6. To this end, we construct an ACCE adversary B against
the underlying protocol Π, which instantiates the key-checking oracle KO of
Game 6 with a concrete procedure called CheckKey, such that

AdvG6-auth
Π+ (A) ≤ Advauth-(PFS)

Π (B), (22)

Pr[Q] ≤ 2 ·Advchan-(PFS)
Π (B) +

2 · qnPnπ
2cλ . (23)

Moreover, the CheckKey procedure will allow us to put a concrete bound
on the failure probability ε in equation (20), specifically

ε ≤ 2 · Pr[Q] + AdvKDFcoll
Π.Kdf (C′′′) . (24)

We prove (22), (23), and (24), in Lemmas 3, 4, and 2, respectively.

20 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Description of algorithm B. Algorithm B plays in an ACCE security exper-
iment against protocol Π and will use adversary A of Game 6 to win. Roughly
speaking, algorithm B will simulate Game 6 for A by “embedding” the sessions
in its own ACCE experiment into Game 6 and outfitting them with export keys.
To derive these export keys, B maintains the list LG which it fills out, and an-
swers from, according to the Send and G-code shown in the last panels of Fig. 2
and Fig. 3, respectively (both labeled “B’s simulation”). The difference between
Game 6 and B’s simulation is that B has to “implement” the key-checking oracle
KO and also be able to correctly match partnered sessions.

To match partnered sessions, B uses one of the public session matching al-
gorithmsM guaranteed to exist for sid by the assumption of the theorem.

To instantiate the KO oracle, B uses the aforementioned procedure called
CheckKey, which is formally defined in Algorithm 1 below. We will later show
that CheckKey has the same properties as the key-checking oracle KO (as
defined in equation (18)), but first we describe B’s simulation in detail.

At the beginning of its ACCE security experiment, B receives the public keys
of all the parties from its challenger E which it forwards to A. Then B initializes
LG to an empty list and runs A, answering its queries as follows:

– NewSession(Pi, ρ, pid): B forwards the query to its own ACCE challenger and,
if ρ = init, returns the corresponding response back to A.

– Send(πsi ,m): B forwards the query to its own challenger and returns its
response back to A. Additionally, if m caused πsi to accept then B derives
its export key by running the Send-code shown in the last panel of Fig. 2.

– Corrupt(Pi): B issues Corrupt(Pi) to its own challenger to obtain the secret
key of Pi which it returns back to A.

– G(ms, n, aux): B answers this query by running the G-code shown in the
last panel of Fig. 3.

– Reveal(πsi)/Test(πsi): If πsi .α 6= accepted, then B returns ⊥. Otherwise, there
will be an entry (∗, n, aux, ek, [πsi , ∗]) ∈ LG, and B can use ek to answer the
query.

In addition to the above, B stops and outputs a guess (πsi , b′) to its ACCE
challenger if one of the following events occur.

– Two sessions generated the same nonce: select πsi arbitrarily among the fresh
sessions and draw b′ randomly.

– Event Q happened due to a call to CheckKey(πsi ,ms): if the ciphertext C
decrypted to m0 at line 20 of Algorithm 1, output (πsi , 0), otherwise, if it
decrypted to m1, output (πsi , 1).

– A outputs a guess for the Test-challenge: select πsi arbitrarily among the
fresh sessions and draw b′ randomly7.

This ends the description of algorithm B. Note that the only thing that differs
between B’s simulation and Game 6 is B’s usage of the CheckKey procedure
7 By Lemma 1 it is immaterial whether B outputs a random bit or uses A’s guess on
the Test-challenge, since Q did not happen.

Safely Exporting Keys from Secure Channels 21

and the algorithm M for matching sessions. By definition, the latter is always
correct, so B’s simulation is sound given that CheckKey correctly implements
the KO oracle.

Analysis of CheckKey. We need to show that CheckKey has the same
properties as the key-checking oracle KO used in Game 6, i.e. that it always
returns true if called on the right master secret of a session and returns false
(with high probability) when not. The idea of CheckKey is to derive from the
supplied master secret a guess on the session’s channel key and then compare
this to the channel key actually held by the session.

Algorithm 1 CheckKey(πsi ,ms)

Note: The procedure is parameterized by c ∈ N. Calls on the same input always
return the same value, i.e. CheckKey records its results for every input combination.
To simplify the presentation, we leave out the code that deals with this below.
Precondition: Let (C1, H1), (C2, H2), . . . , (Ck, Hk) be the encrypted handshake mes-
sages (if any) output by πsi during the run of Π+, together with the corresponding
additional data.

1: x, y $← {0, 1}λ;
2: (m0,m1) := (0‖x, 1‖y);
3:
4: // nC , nS are the nonces, and T the transcript, πsi accepted with.
5: ck′ ← Π.Kdf(ms, nC‖nS , FΠ(T));
6:
7: if πsi is non-fresh:
8: ck ← Reveal(πsi);
9: return ck

?= ck′;
10: else
11: C ← Encrypt(πsi , `,m0,m1, H); . obtain an encryption of mπs

i
.b under πsi .ck.

12:
13: // “recreate” a decrypt state st′D matching the encrypt state used to create C.
14: (∗, st′D)← stE.Init;
15: for all (Cr, Hr) do
16: (∗, st′D)← stE.Dec(ck′, Cr, Hr, st′D);
17: for all C’s from previous calls to CheckKey(πsi , ∗) do
18: (∗, st′D)← stE.Dec(ck′, C,H, st′D);
19:
20: (m′, ∗)← stE.Dec(ck′, C,H, st′D); . locally decrypt C using ck′ and st′D.
21: return m′

?
∈ {m0,m1};

For non-fresh sessions this is straightforward since B can just make a Reveal
query in order to obtain their channel keys and make the comparison directly

22 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

(line 9 in Algorithm 1). On the other hand, issuing a Reveal query to a fresh
session would “destroy” its status as a valid target in the ACCE game, preventing
B from capitalizing on the event whereA queries the random oracle on the master
secret of a fresh session.

For fresh sessions CheckKey instead tests the validity of a derived channel
key indirectly by trying to (locally) decrypt a ciphertext that was legitimately
created with the actual channel key of the session. To obtain this ciphertext,
CheckKey exploits B’s access to a left-or-right encryption oracle for every ses-
sion in the ACCE game (i.e., the Encrypt query). However, CheckKey is com-
plicated by the statefulness of the sLHAE scheme. That is, before attempting to
(locally) decrypt the ciphertext at line 20 of Algorithm 1, CheckKey first needs
to “recreate” a valid decryption state. This is done as follows: starting from the
initial state of the sLHAE scheme, CheckKey chronologically decrypts each
encrypted message output by the session during the handshake (if any). Then it
decrypts all ciphertext messages created in prior calls to CheckKey (because
these advance the session’s encrypt state stE). Finally, it attempts the decryp-
tion of C. If the correct channel key was used, then this process is guaranteed to
generate a decryption state st′D that “matches”8 the encrypt state stE which was
used to create the ciphertext C (due to the correctness of the sLHAE scheme).

Since Π.Kdf is deterministic, the above shows that CheckKey(πsi ,ms) will
always return true if ms is equal to the master secret of πsi , since the derived
channel key ck′ will then equal πsi .ck.

Conversely, if CheckKey is called on a wrong master secret, then it does
indeed have a one-sided error probability. In particular, let fresh (resp. non-fresh)
denote that CheckKey was called on a fresh (resp. non-fresh) session, and let
CKerror denote that a call to CheckKey erroneously returned true. Note that
for a fresh session πsi and master secret ms′, this requires that the decryption
of C at line 20 of Algorithm 1 returned one of the two messages (m0,m1) asso-
ciated to the pair (πsi ,ms′). Letting b = πsi .b, we write correctDec for the event
that C decrypted to mb, and wrongDec for the event that it decrypted to mb

9.
Consequently, CKerror can be partitioned as follows, depending on whether the
session was fresh or not.

CKerror = (CKerror ∩ fresh) ∪ (CKerror ∩ non-fresh) (25)
= (CKerror ∩ (correctDec ∪ wrongDec)) ∪ (CKerror ∩ non-fresh) . (26)

By the above we have shown that CheckKey correctly implements the key-
checking oracle KO. Moreover, we can now provide concrete bounds on the error
probability ε in (20) by bounding CKerror.

8 The recreated state st′D does not necessarily have to be equal to the decryption state
held by πsi — it only needs to yield a valid decryption.

9 Event correctDec can either happen legitimately (πsi .ms = ms′), or because of an
error (πsi .ms 6= ms′). On the other hand, event wrongDec can only happen due to
an error.

Safely Exporting Keys from Secure Channels 23

Lemma 2.

Pr[CKerror] = Pr[CKerror ∩ fresh] + Pr[CKerror ∩ non-fresh] (27)
≤ Pr[correctDec] + Pr[wrongDec] + Pr[ck-coll6] (28)
≤ 2 · Pr[Q] + Advck-coll

Π.Kdf (C′′′). (29)

Proof. For CKerror ∩ fresh, note that correctDec and wrongDec are mutually
exclusive since B aborts as soon as one of them happens. Also, in the con-
text of CheckKey, they are both sub-events of Q. Thus, Pr[CKerror ∩ fresh] =
Pr[correctDec] + Pr[wrongDec] ≤ 2 · Pr[Q].

If CKerror ∩ non-fresh happens in Game 6, then event ck-coll6 must by defi-
nition have happened too. Hence Pr[CKerror∩ non-fresh] ≤ Pr[ck-coll6]. Further-
more, the bound Pr[ck-coll6] ≤ Advck-coll

Π.Kdf (C′′′) follows from the same strategy
used in the game hop from Game 2 to 3, and from Game 3 to 4. That is, we
construct an algorithm C′′′ that plays the challenger in Game 6; once ck-coll6
occurs in this game, then C′′′ has found a collision in Π.Kdf. ut

Analysis of B. Having shown that B’s simulation of Game 6 is sound, we now
turn to bounding A’s advantage in Game 6 in terms of B’s advantage in the
ACCE security experiment.

Lemma 3.

AdvG6-auth
Π+ (A) ≤ Advauth-(PFS)

Π (B) . (30)

Proof. Since B’s simulation of Game 6 is sound, and because the protocols Π+

and Π have the same session identifier, it follows that A gets a session to accept
maliciously in Game 6, if and only if the session accepts maliciously in the
underlying ACCE security experiment in B’s simulation. ut

Lemma 4.

AdvG6-chan
Π+ (A) ≤ Pr[Q] ≤ 2 ·Advchan-(PFS)

Π (B) +
2qnPnπ

2cλ . (31)

Proof. The first inequality follows from Lemma 1. The proof of the second in-
equality amounts to a direct calculation based on conditional probabilities. Sup-
pose B halted with output (πsi , b′) in its ACCE security experiment, where πsi is
some fresh session. By conditioning on whether event Q happened or not during
B’s simulation of Game 6 for A, we get that B’s probability of breaking the

24 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

ACCE channel is:

Pr[πsi .b = b′] = Pr[πsi .b = b′ | Q] · Pr[Q] + Pr[πsi .b = b′ | Q] · Pr[Q] (32)
a)= Pr[πsi .b = b′ | Q] · Pr[Q] + 1

2(1− Pr[Q]) (33)

b)=
(=1︷ ︸︸ ︷

Pr[πsi .b = b′ | Q ∩ correctDec] ·Pr[correctDec | Q]

+
=0︷ ︸︸ ︷

Pr[πsi .b = b′ | Q ∩ wrongDec] ·Pr[wrongDec | Q]
)
· Pr[Q]

(34)

+ 1
2(1− Pr[Q])

= Pr[correctDec | Q] · Pr[Q] + 1
2(1− Pr[Q]) (35)

= Pr[correctDec ∩Q]− 1
2 · Pr[Q] + 1

2 (36)

c)=
(

Pr[Q]− Pr[wrongDec ∩Q]
)
− 1

2 Pr[Q] + 1
2 (37)

= 1
2 Pr[Q]− Pr[wrongDec ∩Q] + 1

2 (38)

d)= 1
2 Pr[Q]− Pr[wrongDec] + 1

2 (39)

≥ 1
2 Pr[Q]−

qnPnπ

2cλ + 1
2 . (40)

In a) we used the fact that B outputs a random bit when Q does not happen,
b) and c) used that Q = correctDec ∪ wrongDec and correctDec ∩ wrongDec = ∅,
and d) used that wrongDec ⊆ Q. We prove the final inequality as follows.

Let b = 1− πsi .b and let (m0,m1) be the two messages associated to the pair
(πsi ,ms) in CheckKey. Since mb is independent of the ciphertext C produced
at line 11 of Algorithm 1, the probability that C decrypts to mb at line 20 is
statistically bounded by 2−cλ for any key k. By taking the union bound over
all parties, the number of sessions per party, and the number of random oracle
calls, we get that Pr[wrongDec] ≤ qnPnπ/2cλ.

Solving (40) for Pr[Q] yields the second inequality in Lemma 4. ut

Concluding the proof of Theorem 1. Applying Lemmas 2, 3, and 4, we get
that the right-hand side of equation (20) is bounded by

Advauth-(PFS)
Π (B) + 6 ·Advchan-(PFS)

Π (B) +
6qnPnπ

2cλ + AdvKDFcoll
Π.Kdf (C′′′) . (41)

By collecting all the probabilities from Game 0 to Game 6, and letting C =
maxAdvKDFcoll

Π.Kdf
{C′, C′′, C′′′}, the theorem follows.

Safely Exporting Keys from Secure Channels 25

4.4 Application to EAP-TLS and TLS Key Material Exporters

EAP [1] is a widely used authentication framework which defines a set of generic
message formats and message flows. EAP is not a specific authentication mecha-
nism on its own, but is instead used to encapsulate another concrete authentica-
tion protocol, like TLS, IKEv2 or IEEE 802.1X, known as a method. Each EAP
method can additionally specify a way of generating keying material, known as
export keys, both for internal and external use. For example, in EAP-TLS [33]
the export key ek is derived as follows:

ek := tls.PRF(ms, “client EAP encryption”, nC‖nS) , (42)

where ms is the master secret and nC , nS the nonces established during the
TLS handshake. How export keys should be derived from the TLS handshake in
settings outside of EAP is defined in RFC 5705: “Keying Material Exporters for
Transport Layer Security (TLS)” [31]. Besides a different constant label string,
RFC 5705 defines ek almost exactly as in (42). The only difference is that it also
allows an extra context value aux to be added into the key derivation together
with the nonces. For both EAP-TLS and RFC 5705 the security requirement on
ek is that it be indistinguishable from random.

In order to apply Theorem 1 to EAP-TLS, we have to show that TLS is
in fact a TLS-like ACCE protocol, using a session identifier that satisfies the
requirements of the theorem. Since several works have already proven TLS to
be ACCE secure, it only remains to demonstrate that the session identifier used
in these prior analyses allowed for public session matching and contained the
sessions’ nonces.

As an example, in their analysis of TLS, Krawczyk, Paterson, and Wee [24]
defined their session identifier to consist of the two first flows between the client
and the server, in addition to the client’s KEM-value (either a Diffie-Hellman
share or the pre-master secret encrypted with the server’s public RSA key).
This session identifier includes the parties’ nonces, and allows for public session
matching since it only consists of public values. Thus, using the TLS analysis
of Krawczyk et al. [24], we can apply Theorem 1 with Π = TLS, and Π+ =
EAP-TLS, in order to get the following result.

Corollary 1 (AKE security of EAP-TLS).

AdvAKE
EAP-TLS(A) ≤ 6·AdvACCE

TLS (B)+3·AdvKDFcoll
tls.PRF (C)+

6qnPnπ
2cλ +

(nPnπ)2

2λ+1 , (43)

where Π.Kdf = tls.PRF, and all other quantities are defined as stated in Theo-
rem 1.

Remark 5. The KDF used in TLS is based on HMAC [23], and its KDF collision
resistance follows from the (hash function) collision resistance of the underlying
hash function used in HMAC (see Theorem 2, Appx. A).

26 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Remark 6. JKSS [20] used matching conversations as their partnering mecha-
nism in their analysis of TLS. Since matching conversations contain the parties’
nonces and trivially allow for public session matching, it would seem like JKSS’s
analysis could also be used with Theorem 1 in order to establish Corollary 1.

However, there is a subtle technical difference between the ACCE model
as defined in this paper and the ACCE model as defined by JKSS, stemming
from the difference in choice of partnering mechanism. Specifically, in JKSS’s
definition of ACCE [19, Def. 11] one must forbid the adversary from issuing a
Reveal query towards the server after it sent out its last message, but before the
client to which it has a matching conversation received it. This is to avoid a
trivial attack whereby the adversary re-encrypts the final message towards the
client, getting it to accept maliciously (see [19, Remark 6] for further details)10.

In contrast, the definition of ACCE used in this paper (in particular, Def. 3)
allows all Reveal queries. It should be noted that the trivial attack in JKSS’s
model does not imply any actual weakness in TLS, but rather highlights a pe-
culiarity of using matching conversations as the partnering mechanism when
defining ACCE.

Remark 7. Brzuska et al. [8] defined their session identifier to consist of the
parties’ nonces and identities, together with the TLS pre-master secret. Unfor-
tunately, basing the session identifier upon secret values does not in general
allow for public session matching. For instance, if the KEM used in the TLS
handshake was a re-randomizable encryption scheme [12,30], then the choice of
Brzuska et al. [8] would not allow for public session matching (see also [9] for
further details).

Remark 8. Bhargavan et al. [5] showed that the full TLS protocol, including
resumption and renegotiation, is vulnerable to an unknown key-share attack [7].
The attack allows an adversary to synchronize the master secret and nonces of
two non-partnered sessions, leading them to derive the same channel key. While
the attack carries over to EAP-TLS, it does not invalidate Corollary 1, since
our model does not consider resumption nor renegotiation. However, it should
be noted that this has been done for the sake of simplicity, not because of an
essential limitation in our analysis. Our result can be extended to incorporate
features like renegotiation, resumption or ciphersuite and version negotiation,
either by using the multi-phase ACCE model of Giesen et al. [16] or the multi-
ciphersuite ACCE model of Bergsma et al. [4]. The former has been used to
prove results on TLS with renegotiation [16], while the latter has been used to
prove results on SSH and TLS with ciphersuite and version negotiation [4,14].
Since our proof uses the underlying ACCE protocol in an almost black-box
way, by adopting one of the above models we would essentially “inherit” their
corresponding results for EAP-TLS as well.

10 This extra requirement was not included in the original published version [20], but
was later added to the online version [19].

Safely Exporting Keys from Secure Channels 27

Acknowledgments

We would like to thank Colin Boyd and Britta Hale for helpful comments and
discussions. Part of this work was done while Christina Brzuska was working
for Microsoft Research, Cambridge, UK. Christina Brzuska is grateful to NXP
Semiconductors for supporting her chair for IT Security Analysis. Håkon Jacob-
sen was hosted by Microsoft Research, Cambridge, UK, for parts of this work.
Some of this work performed while Douglas Stebila was hosted by the Norwegian
University of Science and Technology.

A KDF Collision Resistance of the TLS KDF

Let H be a hash function, and let H denote the HMAC function using H as its
underlying hash function, namely

H(k,m) def= H (k ⊕ opad‖H(k ⊕ ipad‖m)) , (44)

where ipad and opad are distinct constants.
The TLS 1.2 KDF is defined as follows, where the variable t depends on how

much keying material is needed.

tls.PRF(ms,L, n) def=
tn

i=1
H(ms,A(i)‖L‖n) (45)

A(1) = H(ms, n) (46)
A(i) = H(ms,A(i− 1)) (47)

In TLS 1.2, L = “key expansion” and n = nC‖nS , where and nC , nS are
the client and server nonces, respectively. For simplicity, we write S = L‖n.
Theorem 2. A KDF collision (Def. 9) in tls.PRF implies a collision in H.
Proof. Suppose tls.PRF(ms,L, n) = tls.PRF(ms′, L, n), with ms 6= ms′. By (45)
we specifically have that

H(ms,A(1)‖S) = H(ms′, A′(1)‖S), (48)

where A′(1) = H(ms′, n). Expanding (48) using (44) we get:

H (ms⊕ opad‖H (ms⊕ ipad‖A(1)‖S))
=

H (ms′ ⊕ opad‖H (ms′ ⊕ ipad‖A′(1)‖S)) .

(49)

Letting X = H (ms⊕ ipad‖A(1)‖S) and Y = H (ms′ ⊕ ipad‖A′(1)‖S) de-
note the “inner” hash function values, (49) becomes:

H(ms⊕ opad‖X) = H(ms′ ⊕ opad‖Y) . (50)

Sincems⊕opad 6= ms′⊕opad, it follows thatms⊕opad‖X andms′⊕opad‖Y
constitute a collision in H. ut

28 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

Remark 9. The construction of tls.PRF in TLS 1.0/1.1 is different from that
in TLS 1.2 (shown in equation (45)). In versions prior to TLS 1.2, tls.PRF is
defined as PMD5 ⊕ PSHA1, where PMD5 and PSHA1 are equal to the right-hand
side of equation (45) with H using MD5 and SHA1, respectively. Theorem 2
only applies to the construction used in TLS 1.2.

References

1. Aboba, B., Blunk, L.J., Vollbrecht, J.R., Carlson, J., Levkowetz, H.: Extensible
Authentication Protocol. RFC 3748, RFC Editor (June 2004), https://tools.
ietf.org/html/rfc3748

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Proceed-
ings of the 13th Annual International Cryptology Conference on Advances in Cryp-
tology. pp. 232–249. CRYPTO ’93, Springer-Verlag New York, Inc., New York, NY,
USA (1994)

3. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Proceedings of the 24th Annual International
Conference on The Theory and Applications of Cryptographic Techniques. pp.
409–426. EUROCRYPT’06, Springer-Verlag, Berlin, Heidelberg (2006)

4. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite
security of the Secure Shell (SSH) Protocol. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. pp. 369–381.
CCS ’14, ACM, New York, NY, USA (2014)

5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.Y.: Triple
handshakes and cookie cutters: Breaking and fixing authentication over TLS. In:
Security and Privacy (SP), 2014 IEEE Symposium on. pp. 98–113 (May 2014)

6. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P., Béguelin, S.Z.:
Proving the TLS handshake secure (as it is). In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 8617, pp. 235–255. Springer (2014)

7. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) Public Key Cryptography,
Second International Workshop on Practice and Theory in Public Key Cryptogra-
phy, PKC ’99, Kamakura, Japan, March 1-3, 1999, Proceedings. Lecture Notes in
Computer Science, vol. 1560, pp. 154–170. Springer (1999)

8. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
relaxed yet composable security notions for key exchange. International Journal of
Information Security 12(4), 267–297 (2013)

9. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security. pp. 51–62. CCS ’11, ACM, New York,
NY, USA (2011)

10. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013. pp. 373–386. ACM (2013)

https://tools.ietf.org/html/rfc3748
https://tools.ietf.org/html/rfc3748

Safely Exporting Keys from Secure Channels 29

11. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) Advances in Cryptology - EURO-
CRYPT 2001, International Conference on the Theory and Application of Cryp-
tographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding. Lecture
Notes in Computer Science, vol. 2045, pp. 453–474. Springer (2001)

12. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp. 565–582.
Springer (2003)

13. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2), 107–125 (Jun 1992)

14. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS
protocol. In: Foo, E., Stebila, D. (eds.) Information Security and Privacy - 20th
Australasian Conference, ACISP 2015, Brisbane, QLD, Australia, June 29 - July
1, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9144, pp. 270–288.
Springer (2015)

15. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014. pp. 1193–1204. ACM (2014)

16. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:
Sadeghi, A., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany, November 4-
8, 2013. pp. 387–398. ACM (2013)

17. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11i and TLS. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security. pp. 2–15. CCS ’05, ACM, New York,
NY, USA (2005)

18. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007, Lecture Notes in
Computer Science, vol. 4622, pp. 553–571. Springer Berlin Heidelberg (2007)

19. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in
the standard model. Cryptology ePrint Archive, Report 2011/219 (2011), https:
//eprint.iacr.org/2011/219

20. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7417,
pp. 273–293. Springer (2012)

21. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, Report 2013/367 (2013), https:
//eprint.iacr.org/2013/367

22. Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (De-
)constructing TLS. Cryptology ePrint Archive, Report 2014/020 (2014), https:
//eprint.iacr.org/2014/020

23. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (Informational) (February 1997), https://tools.ietf.
org/html/rfc2104

https://eprint.iacr.org/2011/219
https://eprint.iacr.org/2011/219
https://eprint.iacr.org/2013/367
https://eprint.iacr.org/2013/367
https://eprint.iacr.org/2014/020
https://eprint.iacr.org/2014/020
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

30 Christina Brzuska, Håkon Jacobsen, and Douglas Stebila

24. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol:
A systematic analysis. In: Canetti, R., Garay, J. (eds.) Advances in Cryptology
– CRYPTO 2013, Lecture Notes in Computer Science, vol. 8042, pp. 429–448.
Springer Berlin Heidelberg (2013)

25. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Proceedings of
the 18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011. pp. 41–50. ACM (2011)

26. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the pre-
shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) Public-Key Cryptography -
PKC 2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8383, pp. 669–684. Springer (2014)

27. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is quic?
provable security and performance analyses. In: 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 214–231. IEEE
Computer Society (2015)

28. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) Innovations
in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 7-9,
2011. Proceedings. pp. 1–21. Tsinghua University Press (2011)

29. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS
handshake protocol. In: Pieprzyk, J. (ed.) Advances in Cryptology - ASIACRYPT
2008, Lecture Notes in Computer Science, vol. 5350, pp. 55–73. Springer Berlin
Heidelberg (2008)

30. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4622, pp. 517–534. Springer (2007)

31. Rescorla, E.: Keying Material Exporters for Transport Layer Security (TLS). RFC
5705, RFC Editor (March 2010), https://tools.ietf.org/html/rfc5705

32. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), https://eprint.iacr.org/
2004/332

33. Simon, D., Aboba, B., Hurst, R.: The EAP-TLS Authentication Protocol. RFC
5216, RFC Editor (March 2008), https://tools.ietf.org/html/rfc5216

https://tools.ietf.org/html/rfc5705
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://tools.ietf.org/html/rfc5216

	 Safely Exporting Keys from Secure Channels:
	1 Introduction
	2 Protocol Definitions
	2.1 Execution Environment
	2.2 AKE Protocols
	2.3 ACCE Protocols

	3 TLS-like Protocols
	4 Constructing an AKE protocol from a TLS-like ACCE Protocol
	4.1 Construction
	4.2 Main Result
	4.3 Proof of Theorem 1
	4.4 Application to EAP-TLS and TLS Key Material Exporters

	A KDF Collision Resistance of the TLS KDF
	References

