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Abstract. Universal circuits (UCs) can be programmed to evaluate any circuit of a given size k. They
provide elegant solutions in various application scenarios, e.g. for private function evaluation (PFE)
and for improving the flexibility of attribute-based encryption (ABE) schemes. The optimal size of a
universal circuit is proven to be Ω(k log k). Valiant (STOC’76) proposed a size-optimized UC construc-
tion, which has not been put in practice ever since. The only implementation of universal circuits was
provided by Kolesnikov and Schneider (FC’08), with size O(k log2 k).
In this paper, we refine the size of Valiant’s UC and further improve the construction by (at least) 2k.
We show that due to recent optimizations and our improvements, it is the best solution to apply in the
case for circuits with a constant number of inputs and outputs. When the number of inputs or outputs
is linear in the number of gates, we propose a more efficient hybrid solution based on the two existing
constructions. We validate the practicality of Valiant’s UC, by giving an example implementation for
PFE using these size-optimized UCs.
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1 Introduction

Any computable function f(x) can be represented as a Boolean circuit with input bits x = (x1, . . . , xu).
Universal circuits (UCs) are programmable circuits, which means that beyond the true u inputs, they receive
p = (p1, . . . , pm) program bits as further inputs. By means of these program bits, the universal circuit is
programmed to evaluate the function, such that UC (x, p) = f(x). The advantage of universal circuits in
general is that one can apply the same UC for computing different functions of the same size. An analogy
between universal circuits and a universal Turing machine allows to turn any function into data in the form
of a program description. Thus, the size-depth problem of UCs can be related to the time-space problem for
Turing machines [Val76].

Efficient constructions considering both the size and the depth of the UC were proposed. The first ap-
proach was the optimization of the size by Valiant [Val76], resulting in a construction with asymptotically
optimal size O(k log k) and depth O(k), where k denotes the size of the simulated circuits. The second opti-
mization was proposed with respect to the UC depth in [CH85], where a construction with linear depth O(d)

in the simulated circuit depth d and size O( k3d
log k ) was designed. In this paper, due to the applications that

we revisit in §1.2, e.g., diagnostic programs, blinded policies and database queries, we concentrate on the
existing size-optimized UCs and note, that the asymptotically optimal size is Ω(k log k) [Val76,Weg87].

The most prominent application of universal circuits is the evaluation of private functions based on secure
function evaluation (SFE) or secure two-party computation. SFE enables two parties P1 and P2 to evaluate a
publicly known function f(x, y) on their private inputs x and y, ensuring that none of the participants learns
anything about the other participant’s input. SFE ensures that both P1 and P2 learn the correct result of the
evaluation. Many secure computation protocols use Boolean circuits for representing the desired functionality,
such as Yao’s garbled circuit protocol [Yao82, Yao86, LP09a] and the GMW protocol [GMW87]. In some
applications the function itself should be kept secret. This setting is called private function evaluation (PFE),
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where we assume that only one of the parties P1 knows the function f(x), whereas the other party P2 provides
the input to the private function. P2 learns no information about f besides the size of the circuit defining
the function and the number of inputs and outputs.

PFE can be reduced to SFE [AF90,SYY99,Pin02,KS08b] by securely evaluating a UC that is programmed
by P1 to evaluate the function f on P2’s input x. Thus, P1 provides the program bits for the UC and P2

provides his private input x into an SFE protocol that computes a UC. The complexity of PFE in this
case is determined mainly by the complexity of the UC construction. The security follows from that of the
SFE protocol that is used to evaluate the UC. If the SFE protocol is secure against semi-honest, covert or
malicious adversaries, then the PFE protocol is secure in the same adversarial setting.

1.1 Related Work on Universal Circuits and Private Function Evaluation

Universal Circuits. Valiant presented an asymptotically optimal universal circuit construction with size
≈ 4.75(u + v + k∗) log2(u + v + k∗) [Val76], relying on edge-universal graphs. u, k and v denote the re-
spective number of inputs, gates and outputs in the simulated circuit, and k∗ is the number of gates in
the equivalent fanout-2 circuit, with k ≤ k∗ ≤ 2k + v. Valiant’s size-optimized UC construction was re-
capitulated in [Weg87, §4.8]. However, Valiant’s construction has been considered to be mostly a proof of
existence of a universal circuit, whereas details needed for the practical realization, e.g., how to derive
the program for the UC are left open. Kolesnikov and Schneider proposed a UC construction with size
≈ 0.75k log22 k + 2.25k log2 k + k log2 u + (0.5k + 0.5v) log2 v [KS08b, Sch08]. They present the first imple-
mentation of PFE using UCs by extending the Fairplay secure computation framework [MNPS04]. Some
building blocks of this construction are of interest, but due to its asymptotically non-optimal size, we show
in §3.2 that Valiant’s UC construction results in smaller UCs for circuits in the most general case. The UC
constructions from [Val76,KS08b] were generalized for circuits consisting of gates with more than two inputs
in [SS08]. In this paper, we show the practicality of Valiant’s UC construction.

In concurrent and independent work [LMS16], Lipmaa et al. also bring the same UC construction to
practice. They detail a k-way recursive construction for UCs, instantiate it for k ∈ {2, 4} as in [Val76], and
descrease its total number of gates compared to that of Valiant’s construction. However, in contrast to our
optimizations, their number of AND gates is exactly the same and therefore their improvement does not
affect PFE with UC, when XOR gates are evaluated for free [KS08a]. Currently their implementation for
generating and programming UCs supports the 2-way recursive construction, the same construction that we
study and realize in practice in this work.

Private Function Evaluation. In [KM11], Katz and Malka presented an approach for PFE that does not rely
on UCs. They use (singly) homomorphic public-key encryption as well as a symmetric-key encryption scheme
and achieve constant-round PFE with linear communication complexity. However, the number of public-key
operations is linear in the circuit size and due to the gap between the efficiency of public-key and symmetric-
key operations, this results in a less efficient protocol for circuits with reasonable size. Their protocol is secure
against semi-honest adversaries and uses Yao’s garbled circuit technique [Yao86]. Mohassel and Sadeghian
consider PFE with semi-honest adversaries in [MS13]. Their generic PFE framework can be instantiated
with different secure computation protocols. The first version uses homomorphic encryption with which they
achieve linear complexity in the circuit size and the second alternative relies solely on oblivious transfers (OT),
that results in a method with O(k log k) symmetric-key operations, where k denotes the circuit size. The
OT-based construction is more desirable in practice, since using OT extension, the number of expensive
public-key operations can significantly be reduced, s.t. it is independent of the number of OTs [IKNP03,
ALSZ13]. The asymptotical complexity of the OT-based construction of [MS13] and Valiant’s UCs for PFE
is the same, and therefore we compare these solutions for PFE in more detail in §4.2. Mohassel et al. extend
the framework from [MS13] to malicious adversaries in [MSS14] and show that an actively secure PFE
framework with linear complexity O(k) is feasible, using singly homomorphic encryption.

1.2 Applications of Universal Circuits

Universal circuits have several applications, which we summarize in this section.
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Private Function Evaluation. As mentioned before, UCs can be used to securely evaluate a private function
using a generic secure computation protocol. [CCKM00] shows an application for secure computation, where
evaluating UCs or other PFE protocols would ensure privacy: when autonomous mobile agents migrate
between several distrusting hosts, the privacy of the inputs of the hosts is achieved using SFE, while privacy
of the mobile agent’s code can be guaranteed with PFE. Privacy-preserving credit checking using garbled
circuits is described in [FAZ05]. Their original scheme cannot represent any policy, though by evaluating
a UC, their scheme can be extended to more complicated credit checking policies. [OI05] show a method
to filter remote streaming data obliviously, using secret keywords and their combinations. Their scheme can
additionally preserve data privacy by using PFE to search the matching data with a private search function.
Privacy-preserving evaluation of diagnostic programs was considered in [BPSW07], where the owner of the
program does not want to reveal the diagnostic method and the user does not want to reveal his data. Example
applications for such programs include medical systems [BFK+09] and remote software fault diagnosis, where
in both cases the function and the user’s input are desired to be handled privately. In the protocol presented
in [BPSW07], the diagnostic programs are represented as binary decision trees or branching programs which
can easily be converted into a Boolean circuit representation and evaluated using PFE based on universal
circuits. Besides, PFE can be applied to create blinded policy evaluation protocols [FAL06,FLA06]. [FAL06]
utilizes UCs for so-called oblivious circuit policies and [DDKZ13] for hiding the circuit topology in order to
create one-time programs. Further applications of PFE given in [MS13] are evaluation of branching programs
on encrypted data [IP07] and privacy-preserving intrusion detection [NSMS14]. Since PFE using UCs utilizes
general secure computation protocols, it is possible to outsource the function and the data to two or multiple
servers (using XOR secret sharing) and then run private queries on these. This is not directly possible with
other PFE protocols, e.g., with the protocol presented in [KM11] or the homomorphic encryption-based
protocols from [MS13,MSS14].

Beyond Private Function Evaluation. Besides being used for PFE, UCs can be applied in various other sce-
narios. Efficient verifiabile computation on encrypted data was studied in [FGP14]. A verifiable computation
scheme was proposed for arbitrary computations and a UC is required to hide the function. [GGPR13] make
use of universal circuits for reducing the verifier’s preprocessing step. In [GHV10], a multi-hop homomorphic
encryption scheme is proposed that also uses a universal circuit evaluator to achieve the privacy of the func-
tion. When the common reference string is dependent on a function that the verifier is interested in outsourc-
ing, then the function description can be provided as input to a UC of appropriate size. In [PKV+14,FVK+15],
universal circuits are used for hiding queries in database management systems (DBMSs). The Blind Seer
DBMS was improved in [PKV+14] by making use of a simpler UC for evaluating queries, which does not hide
the circuit topology. The authors mention that in case the topology of the SQL formula and the circuit have
to be kept private, a UC can be utilized. As described in [Att14], the Attribute-Based Encryption (ABE)
schemes for any polynomial-size circuits of [GGH+13] and [GVW13] can be turned into ciphertext-policy
ABE by using universal circuits. The ABE scheme of [GGHZ14] also uses UCs.

Implied Theoretical Results. We mention two theoretical results relying on UCs. Both the depth-optimized
UC construction from [CH85] and Valiant’s size-optimized method were adapted in [BFGH10] to construct
universal quantum circuits. The design of universal parallel computers were inspired by Valiant’s universal
circuit construction as well [GP81,Mey83].

1.3 Outline and Our Contributions

In §2, we revisit the two existing size-optimized UC constructions of [Val76,KS08b]. We put an emphasis on
the asymptotically size-optimal method proposed by Valiant in [Val76]. This complex construction makes
use of an internal graph representation and programs a so-called edge-universal graph. However, the algo-
rithm for programming a universal circuit is not explicitly described and in the presence of the included
optimizations is not straightforwardly applicable. In §2.1, we recapitulate Valiant’s recursive edge-universal
graph construction and describe how the construction of UCs can be reduced to this problem. In §2.2, we
briefly summarize the main building blocks of the UC construction of [KS08b]. To help understanding the
construction, we recapitulate our notations in Appendix A.
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Optimized Size and Depth of Valiant’s UC Construction: In §3, we elaborate on the concrete size of Valiant’s
UC construction. We refine upper and lower bounds for the size of the edge-universal graph and approximate
a closed formula with ≤ 2% deviation from the actual size in §3.1. We include two optimizations detailed in
§3.2, achieving altogether a linear improvement of at least 4u+ 4v + 2k. We give hybrid constructions for
cases with many inputs and outputs in the same section. In §3.2, we compare the refined concrete size and
the depth of Valiant’s construction with that of [KS08b] and conclude the advantage of Valiant’s method
(potentially using building blocks from [KS08b]).

Valiant’s Size-Optimized UC Construction in Practice: In §4, we detail the steps of our algorithm for a prac-
tical realization of Valiant’s UC construction and provide an example application for PFE. We describe the
internal representations and the algorithms in our UC compiler in §4.1, along with detailed implementations
of universal gates and switches. We compare our resulting PFE with the OT-based protocol from [MS13] in
§4.2. We show concrete example circuits and elaborate on the number of symmetric-key operations and the
performance of our UC compiler.

2 Existing Universal Circuit Constructions

In this section, we summarize the two size-optimized universal circuit constructions: of [Val76] in §2.1 and
of [KS08b] in §2.2.

2.1 Valiant’s Universal Circuit Construction

In this section, we describe Valiant’s edge-universal graph construction for graphs for which all nodes have
at most one incoming and at most one outgoing edge and detail how two such graphs can be used for
constructing universal circuits [Val76].

Edge-Universal Graphs. G = (V,E) is a directed graph with the set of nodes V = {1, . . . , n} and the set
of edges E ⊆ V ×V . A directed graph has fanin or fanout ℓ if each of its nodes has at most ℓ edges directed
into or out of it, respectively. Γℓ(n) denotes the set of all acyclic directed graphs with n nodes and fanin
and fanout ℓ. Further on, we require a labelling of the nodes in a topological order, i.e., i > j implies that
there is no directed path from i to j. In a graph in Γℓ(n) , a topological ordering can always be found with
computational complexity O(n+ ℓn).

An edge-embedding of graph G = (V,E) into G′ = (V ′, E′) is a mapping that maps V into V ′ one-
to-one, with possible additional nodes in V ′, and E into directed paths in E′, such that they are pairwise
edge-disjoint, i.e., an edge can be used only in one path. A graph G′ is edge-universal for Γℓ(n) if it has
distinguished poles {p1, . . . , pn} ⊆ V ′ and every graph G ∈ Γℓ(n) with node set V = {1, . . . , n} can be
edge-embedded into G′ by a mapping ϕG such that ϕG : i 7→ pi and ϕG : (i, j) 7→ {path from pole pi to
pole pj} for each i, j ∈ V .

Here, we recapitulate Valiant’s construction for acyclic edge-universal graph for Γ1(n), denoted by Un,
that has fewer than 2.5n log2 n nodes, fanin and fanout 2 and poles with fanin and fanout 1. Valiant presents
another edge-universal graph construction with a lower multiplicative constant 2.375n log2 n. We omit that
version of the algorithm for two reasons: firstly, our aim is to show the practicality of Valiant’s approach and
secondly, including all the optimizations even in the simpler construction is a challenging task in practice. The
more efficient algorithm uses four subgraphs instead of two at each recursion and utilizes a skeleton with a
more complex structure. For more details on this improved algorithm, the reader is referred to [Val76,LMS16].
We leave showing the practicality of the improved method as future work.

Valiant’s Edge-Universal Graph Construction of Size 2.5n log2 n for Γ1(n) Graphs: The edge-universal graph
for Γ1(n), denoted by Un, is constructed with poles {p1, . . . , pn} with fanin and fanout 1, which are connected
according to the skeleton shown in Figures 1a–1b. The poles are emphasized as special nodes with squares, and
the additional nodes are shown as circles. The recursive construction works as follows: the nodes denoted
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Fig. 1: Skeleton of Valiant’s edge-universal graph and optimized cases.
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by {q1, . . . , q⌈n−2
2

⌉} and {r1, . . . , r⌊n−2
2

⌋} are considered as the poles of two smaller edge-universal graphs
called subgraphs Q⌈n−2

2
⌉ and R⌊n−2

2
⌋, respectively, that are otherwise not shown. Since they are poles of the

two subgraphs with such a skeleton but not of Un, they will have at most the allowed fanin and fanout 2:
they inherit one incoming and one outgoing edge from the outer skeleton, and at most one incoming and
one outgoing edge from the subgraph. Q⌈n−2

2
⌉ (and R⌊n−2

2
⌋) is then constructed similarly: the skeleton is

completed and two smaller graphs with sizes ⌈ ⌈n−2
2

⌉−2

2 ⌉ and ⌊
⌈n−2

2
⌉−2

2 ⌋ (and sizes ⌈ ⌊n−2
2

⌋−2

2 ⌉ and ⌊
⌊n−2

2
⌋−2

2 ⌋)
are constructed. For starting off the recursion, U1 is a graph with a single pole while U2 and U3 are graphs
with two and three connected poles, respectively. Valiant gives special constructions for U4, U5 and U6 and
shows that it is possible to obtain the respective edge-universal graphs with altogether 3, 7 and 9 additional
nodes, respectively, as shown in Figures 1c–1e.

We recapitulate the proof from [Val76] that Un is edge-universal for Γ1(n), such that any graph with
n nodes and fanin and fanout 1 can be edge-embedded into Un. According to the definition of edge-embedding,
it has to be shown that given any Γ1(n) graph G with set of edges E, for any (i, j) ∈ E and (k, l) ∈ E we
can find pairwise edge-disjoint paths from pi to pj and from pk to pl in Un. As before, the labelling of nodes
V = {1, . . . , n} in the Γ1(n) graph is according to a topological order of the nodes.

Firstly, each two neighbouring poles of the edge-universal graph, p2s and p2s+1 for s ∈ {1, . . . , ⌈n
2 ⌉}, are

thought of as merged superpoles, with their fanin and fanout becoming 2. In a similar manner, any G ∈ Γ1(n)
graph can be regarded as a Γ2(⌈

n
2 ⌉) graph with supernodes, i.e. each pair (2s, 2s+1) will be merged into one

node in a Γ2(⌈
n
2 ⌉) graph G′ = (V ′, E′). If there are edges between the nodes in G, they are simulated with

loops.1 The set of edges of this graph G is partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2)
are instances of Γ1(⌈

n
2 ⌉) and Γ1(⌊

n
2 ⌋), respectively. This can be done efficiently, as shown later in this section.

The edges in E1 are embedded as directed paths in Q, and the edges in E2 as directed paths in R. Both E1

and E2 have at most one edge directed into and at most one directed out of any supernode and therefore,
there is only one edge from E1 and one from E2 to be simulated going through any superpole in Un as well.
Thus, the edge coming into a superpole (p2s, p2s+1) in E1 is embedded as a path through qs−1, while the
edge going out of the pole in E1 is embedded as a path through qs in the appropriate subgraph. Similarly,
the edges in E2 are simulated as edges through rs−1 and rs. These paths can be chosen disjoint according to
the induction hypothesis. Finally, the paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the paths
from (p2s−1, p2s) to qs and rs can be chosen edge-disjoint due to the skeleton shown in Figures 1a–1b. With
this, Valiant’s graph construction is a valid edge-universal graph construction with asymptotically optimal
size O(n log n), and depth O(n) [Val76].

Valiant’s Edge-Universal Graph Construction of Size 5n log2 n for Γ2(n) Graphs: Given a directed acyclic
graph G ∈ Γ2(n), the set of edges E can be separated into two distinct sets E1 and E2, such that graphs
G1 = (V,E1) and G2 = (V,E2) are instances of Γ1(n), having fanin and fanout 1 for each node [Val76].
Given the set of nodes V = {1, . . . , n}, one constructs a bipartite graph G = (V ,E) with nodes V =
{m1, . . . ,mn,m

′
1, . . . ,m

′
n} and edges E such that (mi,m

′
j) ∈ E if and only if (i, j) ∈ E. The edges of G and

thus the corresponding edges of G can be colored in a way that the result is a valid two-coloring. Having
fanin and fanout at most 2, such coloring can be found directly with the following method, used in the proof
of Kőnig-Hall theorem in [Kő31,LP09b]:

1: while There are uncolored edges in G do
2: Choose an uncolored edge e = (mi,m

′
j) randomly and color the path or cycle that contains it in an

alternating manner: the neighbouring edge(s) of an edge of the first color will be colored with the second
color and vice versa.

3: end while

This coloring can be performed in O(n) steps and it defines the edges in E1 and E2, s.t. E1 contains the
edges colored with color one and E2 the ones with color two and G1 = (V,E1) and G2 = (V,E2) (cf. example
in Figure 7 in Appendix B).

1We note that these G′ graphs are constructed from the original Γ1(n) graph G in order to define the correct
embedding. Therefore, they are not required to be acyclic.
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With this method, the problem of constructing edge-universal graphs for Γ2(n) can be reduced to
the Γ1(n) construction. After constructing two edge-universal graphs for Γ1(n) (i.e. Un,1 and Un,2), their
poles are merged and an edge-universal graph for Γ2(n) is obtained. The merged poles now have fanin and
fanout 2, since the poles of Un,1 and Un,2 previously had fanin and fanout 1. E1 can then be edge-embedded
using the edges of Un,1 and E2 using the edges of Un,2.

Universal Circuits. We now describe how to construct UCs by means of Valiant’s edge-universal graph
construction for Γ2(n) graphs [Val76]. Our goal is to obtain an acyclic circuit built from special gates that
simulate any acyclic Boolean circuit with u inputs, v outputs and k gates. In the circuit, the inputs of the
gates are either connected to an input variable, to the output of another gate or are assigned a fixed constant.
Due to the nature of Valiant’s edge-universal graph construction, we have two restrictions on the original
circuit. Firstly, all the gates must have at most two inputs and secondly, the fanout of inputs and gates must
be at most 2, i.e., each input of the circuit and each output of any gate can only be the input of at most
two later gates. This is necessary in order to guarantee that the graph of the original circuit has fanin and
fanout 2. We note that the first restriction was present in case of the construction in [KS08b] as well, but
the output of any input or any gate could be used multiple times. However, it was proven in [Val76] that the
general case, where the fanout of the circuit can be any integer m ≥ 2, can be transformed to the special case
when m ≤ 2 by introducing copy gates, where the resulting circuit will have k∗ gates with k ≤ k∗ ≤ 2k + v,
where k denotes the number of gates and v the number of outputs in the circuit. We detail how this can be
done in §4.1.

After this transformation, given a circuit C with u inputs, v outputs and k∗ gates with fanin and fanout 2,
the graph of C, denoted by GC consists of a node for each gate, input and output variable and thus is in
Γ2(u + v + k∗). The wires of circuit C are represented by edges in GC . A topological ordering of the gates
is chosen, which ensures that gate gi has no inputs that are outputs of a later gate gj, where j > i. The
inputs and the outputs can be ordered arbitrarily within themselves as long as the inputs are kept before the
topologically ordered gates and the outputs after them. Even though the output nodes cause an overhead
in Valiant’s UC, they are required to fully hide the topology of the circuit in the corresponding universal
circuit. If, in the fanout-2 circuit, one can observe which gates provide the output of the computation, it
might reveal information about the structure of the circuit, e.g. how many times is the result of an output
gate used after being calculated. We ensure by adding nodes corresponding to the outputs that the last v

nodes in Uu+v+k∗ are the ones providing the outputs. We note that our understanding of universal circuits
here slightly differs from Valiant’s, since he constructs Uu+k∗ [Val76].

Therefore, after obtaining GC a Γ2 edge-universal graph Uu+v+k∗ is constructed, into which GC is edge-
embedded. Valiant shows in [Val76] how to obtain the universal circuit corresponding to Uu+v+k∗ and how
to program it according to the edge-embedding of GC . Firstly, the first u poles become inputs, the next
k∗ poles are so-called universal gates, and the last v poles are outputs in the universal circuit. A universal
gate denoted by U(in1, in2; c0, c1, c2, c3), can compute any function with two inputs in1 and in2 and four
control bits c0, c1, c2 and c3 as in Equation 1.

out1 = U(in1, in2; c0, c1, c2, c3) = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (1)

The rest of the nodes of the edge-universal graph are translated into universal switches or X gates,
denoted by (out1, out2) = X(in1, in2; c) that are defined by one control bit c and return the two input values
either in the same or in reversed order as in Equation 2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2)

The programming of the universal circuit means specifying the control bit of each universal switch and the
four control bits of each universal gate. The universal gates are programmed according to the simulated
gates in C and the universal switches according to the paths defined by the edge-embedding of the graph
of the circuit GC in the edge-universal graph Uu+v+k∗ . Depending on if the path takes the same direction
during the embedding (e.g. arrives from the left and continues on the left) or changes its direction at a given
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node (e.g. arrives from the left and continues on the right), the control bit of the universal switch can be
programmed accordingly. In §4.1, we detail our concrete method for programming the universal circuit and
discuss efficient implementations of universal gates and switches.

2.2 Universal Circuit Construction from [KS08b]

The universal circuit construction from [KS08b] is built from three main building blocks (for the structure
cf. Figure 8a in Appendix D) that we summarize in this section. The construction uses efficient building
blocks for hiding the wiring of the u inputs and v outputs, using the fact that the maximum number of
inputs to a circuit with k gates is 2k and the maximum number of outputs is k. A recursive building block
with size O(k log2 k) is constructed for hiding the wiring between the gates.

For hiding the input wiring, a selection block Su
2k≥u is used, i.e., a programmable block that selects

for 2k outputs one of u ≤ 2k inputs. This means that with the u inputs of circuit C, it can be programmed
to assign the output wires according to the original structure of C and assign duplicates to the rest of the
wires. The authors show an efficient implementation of selection blocks with size O(k log k) and depth O(k)
with a small constant factor [KS08b].

For hiding the output wiring, the authors use a smaller selection block. We note that the usage of
their so-called truncated permutation block is enough to program the output wires according to the original
topology of C as no duplicates can occur. This truncated permutation block TP

k≥v
v permutes a subset of

the maximal k inputs to the v ≤ k outputs. An efficient construction of size O(k log v) and depth O(log k)
is given in [KS08b].

A universal block UBk is placed between the input selection block and the output permutation block.
It takes care of the simulation of the gates using universal gates and ensures that each possible wiring can
be implemented in the UC. The universal block construction is recursive, makes use of two universal blocks
of smaller size with a selection block and a mixing block (essentially a layer of universal switches with one
output) in between them. The O(k log2 k) size of this universal block is asymptotically not optimal and
its O(k log k) depth is also a factor of log k larger than Valiant’s UC’s. Thus, despite the efficiency of the
other two building blocks, the construction from [KS08b] yields larger circuits than Valiant’s UC in most
cases. However, we note that using some of its building blocks can be beneficial in some scenarios (cf. §3.2).

3 The Size and the Depth of Valiant’s Construction

In this section, we obtain new formulae for the size and the depth of Valiant’s construction: the Γ1 edge-
universal graph construction is described in §3.1 and the universal circuit construction in §3.2. The size
of the edge-universal graph is the number of nodes, counting all the poles and nodes created while using
Valiant’s construction. The depth of the edge-universal graph is the number of nodes on the longest path
between any two nodes. When considering UCs and the PFE application, since XOR gates can be evaluated
for free in secure computation [KS08a], the ANDsize of the universal circuit is the number of AND gates
that are needed to realize the UC in total. The ANDdepth of the universal circuit in this scenario is the
maximum number of AND gates between any input and output. For the sake of generality, we give the total
size and depth of Valiant’s UC construction with respect to both the AND and XOR gates that are used.
Our implementation of universal gates and switches is optimized for PFE (cf. §4.1) and therefore uses the
fewest AND gates possible. However, the total size and depth can be relevant when optimizing for other
applications, in which case our implementation gives an upper bound that can be improved. For instance,
when XOR and AND gates have the same costs, one needs to minimize the total number of gates instead of
the number of AND gates as in [LMS16].

3.1 The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton, node A in Figure 1a is redundant, since one can choose to embed the edge (y, n − 1) as
(py, pn−1) through Q, and (z, n) as (pz, pn) through R for any y and z nodes [Val76]. Thus, the number of
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graphs, along with Valiant’s upper bound on the same construction and the exact size Exact(n), considering
the size of the embedded graph n ∈ {1, . . . , 100 000}.

nodes other than poles Exact(n), for even n becomes

Exact(n) = 2 · Exact

(

n− 2

2

)

+ 5 ·
n− 2

2
. (3)

For odd n, the construction makes use of n−1
2 poles in Q and n−3

2 poles in R. Then, edge (y, n) is embedded
as (py, pn) through Q for any y node, and node A is again redundant. Thus,

Exact(n) = Exact

(

n− 1

2

)

+ Exact

(

n− 3

2

)

+ 5 ·
n− 3

2
+ 3. (4)

Using these recursive formulae, given the value n, it is possible to obtain the exact number of nodes other
than poles in Un. Valiant includes optimizations for starting off the recursion: for 1, 2, 3, 4, 5 and 6 nodes; the
respective number of additional nodes are 0, 0, 0, 3, 7 and 9 (cf. Figures 1c–1e). Thus, a simple algorithm using
dynamic programming based on the recursion relations of Equations 3-4 yields the exact number of nodes
other than the original n poles that are created during the edge-universal graph construction. It depends on
the parity of the input n at each iteration and unfortunately does not yield a closed formula for the size of
Valiant’s edge-universal graph construction, which is n+ Exact(n).

Valiant states that using his method, an edge-universal graph for Γ1(n) can be found „with fewer than
19
8 n log2 n nodes, and fanin and fanout 2 ” [Val76]. As mentioned in §2.1, we consider the more detailed
algorithm that yields the result with a slightly larger prefactor of 2.5n log2 n instead of 2.375n log2 n. In this
section, we sharpen this bound and give an approximate closed formula for the size of the construction. We
first give upper and lower bounds, and then derive an approximation for a closed formula. For our lower
bound, we consider the case when only the formula for even numbers, i.e., Equation 3, is considered. This
yields our lower bound of

n+ 5





log2 n−1
∑

i=0

2i
(

n

2i+1
−

2(2i+1 − 1)

2i+1

)



 = 2.5n log2 n− 9n+ 5 log2 n+ 10. (5)
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The upper bound can be obtained similarly, considering the case when only the formula for odd numbers
with 5 ·

(

n−1
2

)

is considered

n+ 5





log2 n−1
∑

i=0

2i
(

n

2i+1
−

2i+1 − 1

2i+1

)



 = 2.5n log2 n− 4n+ 2.5 log2 n+ 5. (6)

Figure 2 depicts our upper and lower bounds along with Valiant’s upper bound on the same construction
for up to 100 000 nodes. We observe that the mean of our bounds is very close to the exact number of nodes.
Figure 3 shows that already after a couple of hundreds of poles, it only slightly deviates from the exact
number of nodes Exact(n). Thus, we accept

size(Un) ≈ 2.5n log2 n− 6.5n+ 3.75 log2 n+ 7.5 (7)

as a good approximation of the closed formula for the size of the construction, noting that an estimated
deviation of at most 2% compared to the exact number of nodes, i.e., ε ≤ 0.02 · size(Un) may occur.

The depth of the edge-universal graph, i.e., the maximum number of nodes between any two nodes is
defined by the number of nodes between p1 and pn in the skeleton (cf. Figures 1a–1b). Thus, depth(Un) =
3n− 3 for even n and depth(Un) = 3n− 2 for odd n.

3.2 The Size and the Depth of Valiant’s Universal Circuit

As described in §2.1, a universal circuit is constructed by means of an edge-universal graph for graphs with
fanin and fanout 2, which is in turn constructed from two Γ1 edge-universal graphs with poles merged
together and thus taken only once into consideration. When constructing a UC, the number of inputs u,
the number of outputs v and the number of gates k is public. We set k∗ as the number of gates in the
equivalent fanout-2 circuit, where k ≤ k∗ ≤ 2k + v, in order to be able to later fairly compare with the UC
construction of [KS08b]. We consider k∗ as the public parameter instead of k, since without the knowledge
of the original number of simulated gates, it does not reveal information about the simulated circuit. If the
original k is public, one can hide k∗ by setting it to its maximal value 2k + v. Thus, using Valiant’s UC
construction, a Γ2 edge-universal graph with u + v + k∗ poles is constructed and thus, our approximative
formula for the size of the Γ2 edge-universal graph corresponding to the graph of the circuit would become
2 · size(Uu+v+k∗)− (u+ v+ k∗) and the exact number would be u+ v+ k∗ + 2 ·Exact(u+ v+ k∗), i.e., the
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u+ v + k∗ merged poles of the two edge-universal graphs plus the exact number of nodes other than poles.
Therefore, the size of Valiant’s UC is

size(UCValiant
u,v,k∗ ) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 15(u+ v + k∗)

+ 7.5 log2(u + v + k∗) + 15] · size(X) + k∗ · size(U) (8)

and the depth stays

depth(UCValiant
u,v,k∗ ) ≈ [2(u+ v + k∗)− 2] · depth(X) + k∗ · depth(U). (9)

When transforming the Γ2 edge-universal graph into a UC, the first u poles are associated with inputs,
the last v poles with outputs, and the k∗ poles between are realized with universal gates (cf. Equation 1)
and their programming is defined by the corresponding gates in the simulated circuit. The rest of the nodes
of the edge-universal graph are translated into universal switches (cf. Equation 2), whose programming is
defined by the edge-embedding of the graph of the circuit into the Γ2 edge-universal graph. Thus, the size
and depth of Valiant’s UC can be directly derived from the size of the Γ2 edge-universal graph. However, we
include two optimizations to obtain a smaller size of the UC. The first optimization improves already the
size of the edge-universal graph and the second optimization is applied when translating the edge-universal
graph into a UC description (cf. §4.1).

1. Optimization for Input and Output Nodes: We observe that obviously circuit inputs need no ingo-
ing edges and circuit outputs need no outgoing edges. Therefore, since u, v and k∗ are publicly known, we
optimize by deleting nodes that become redundant while canceling the edges going to the first u (input)
and coming from the last v (output) nodes. Depending on the parity of u, v and u+ v + k∗, the number
of redundant switching nodes is u+ v − 3± 1 in both Γ1 edge-universal graphs that build up the graph
of the UC. Therefore, we have, on average, 2(u + v − 3) redundant nodes, which number we use in our
calculations further on. This optimization also affects the depth by, on average, u+ v − 3.

2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of the Γ1 edge-universal graph
construction there is a fanin-1 node (denoted with B in Figures 1a–1b). Such fanin-1 nodes exist in the
base-cases for a small number of poles as well (cf. Figures 1c–1e). These nodes are important to achieve
fanin and fanout 2 of each nodes in the graph, but can be ignored and replaced with wires when translated
into a circuit description, essentially resulting in the same UC. According to Valiant’s construction, these
gates would translate into universal switches with one real input (and an other arbitrary one). Instead,
we translate each of them into two wires and therefore set the second input to the same as the first one.
Since at least one such node can be ignored in each subgraph when nodes are translated into gates, this
results in altogether around

2 ·





log2(u+v+k∗)−1
∑

i=0

2i



− 1 = 2(u+ v + k∗)− 3 (10)

less gates for the two Γ1 edge-universal graphs. This improvement has no effect on the depth of the
construction.

Since both the size and the depth are dependent on the underlying representation of the circuit building
blocks (of the universal gate U and of the universal switch or X gate), and the secure computation protocol,
we express the size of the universal circuit with the size and depth of U and of X as parameters. Including
the above optimizations of altogether 4(u + v) + 2k∗ − 9, the approximate formula for the size of Valiant’s
optimized UC construction becomes

size(UC opt
u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 17k∗ − 19(u+ v)

+ 7.5 log2(u+ v + k∗) + 24] · size(X) + k∗ · size(U). (11)
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To obtain the exact size of the UC, we use the recursive relations depicted in Equations 3-4 and include our
optimizations. Thus, we obtain

sizeexact(UC
opt
u,v,k∗) = [2 · Exact(u+ v + k∗)− 4(u+ v)− 2k∗ + 9] · size(X) + k∗ · size(U). (12)

From the depth of the edge-universal graph, the depth of the UC becomes

depth(UC opt
u,v,k∗) ≈ [u+ v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (13)

Depending on the application, size(X) and size(U) as well as depth(X) and depth(U) can be optimized.
Due to the PFE application, where XOR gates can be evaluated for free, we assess the ANDsize and AND-
depth of our AND-optimized implementations of universal gates and switches (cf. §4.1). In general, a universal
gate can be realized with 3 AND gates (and 6 XOR gates), and ANDdepth of 2 (total depth of 6). Universal
switches can be realized with only one AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth
of 3) [KS08a].

For private function evaluation, the size and the depth of U can be further optimized depending on
the underlying secure computation protocol. In case the SFE implementation uses Yao’s garbled circuit
protocol [Yao86], both ANDsize(U) and ANDdepth(U) can be minimized to 1, due to the fact that in some
garbling schemes the evaluator does not learn the type of the evaluated gate such as in case of garbled 3-row-
reduction [NPS99]. Therefore, a universal gate can be implemented with one 2-input non-XOR gate [PSS09].

Optimized Hybrid Universal Circuit Construction: We investigate if hybrid methods utilizing building
blocks of both UC constructions, i.e., of both [Val76] summarized in §2.1 and [KS08b] in §2.2, could yield
better size. The simulation of the k gates of the original circuit is asymptotically more efficient using Valiant’s
UC construction due to the logarithmic factor, despite the overhead caused by taking the equivalent fanout-2
circuit with k∗ gates, where k ≤ k∗ ≤ 2k + v. However, we calculate if the modular approach of [KS08b]
using a selection block Su

m≥u for selecting the input variables or a truncated permutation block TP
k∗≥v
v for

the output variables results in a smaller size.
Placing a selection block on top of Valiant’s UC with m universal gates would imply a selection block Su

m≥u

which is then programmed to direct the u inputs of the circuit to the proper inputs of the m universal gates.
Depending on how the output nodes are represented, m is either 2(k∗ + v) for the case when including the
outputs in Valiant’s construction or 2k∗ for the construction with a truncated permutation block. In the latter
case, TPk∗≥v

v takes care of permuting a subset of the outputs of the k∗ gates, resulting in the v outputs of the
UC. A selection block Su

m≥u has size u+m
2 log2 u+m log2 m−u+1 and depth 2 log2 u+2 log2 m+m−2, and a

truncated permutation block TP
k∗≥v
v has size k∗+v

2 log2 v−2v+k∗+1 and depth log2 k
∗+log2 v−1 [KS08b]

(cf. Appendix C).
Let us take three scenarios into consideration, depending on the number of inputs u and the number of

outputs v. The number of gates in the circuit to be simulated is k and the number of gates in the equivalent
fanout-2 circuit is k∗ with k ≤ k∗ ≤ 2k + v.

1. Constant I/O Case: u = c1 constant, v = c2 constant: If both u and v are constant values c1 and c2
respectively, as is the case in many applications that compute a non-trivial function with relatively few
inputs and outputs, the size of the selection block becomes ≈ 2k∗ log2 k

∗+(2+ log2 c1)k
∗ and the size of

the truncated permutation block is ≈ (0.5 log2 c2 + 1) k∗. With Valiant’s UC construction, the overhead
caused by a constant number of inputs and outputs is around 5(c1 + c2) log2 k

∗. The depth of Valiant’s
UC is only affected with constant overhead, while the depth of the selection and permutation blocks are
≈ 2k∗ + 2 log2 k

∗ and ≈ log2 k, respectively. Thus, both for the inputs and the outputs, Valiant’s UC is
an asymptotically better solution in the case with a constant number of inputs and outputs.

2. Many Inputs: u ∼ k, v = c constant: For many inputs where u is around the number of gates k and
we have a constant number of c outputs, we include these c nodes in Valiant’s UC instead of using a
truncated permutation block due to the same reasoning as in the previous case. However, a selection block
can be constructed to direct k inputs to k∗ + c universal gates. Thus, its size becomes ≈ 2k∗ log2 k

∗ +

12



0

2 · 106

4 · 106

6 · 106

8 · 106

1 · 107

1.2 · 107

1.4 · 107

0 10 000 20 000 30 000 40 000 50 000

1.44 · 107

6.72 · 106

3.34 · 106

1.27 · 107
1.23 · 107
1.20 · 107

7.15 · 106

6.12 · 106

S
iz

e
of

th
e

u
n
iv

er
sa

l
ci

rc
u
it

U
C

u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = k

Valiant’s UC, maximal I/O
Valiant’s UC, many inputs
Valiant’s UC, constant I/O
[KS08b] UC, maximal I/O
[KS08b] UC, many inputs
[KS08b] UC, constant I/O
Hybrid, maximal I/O
Hybrid, many inputs

Fig. 4: Comparison between the sizes of the UC constructions for k∗ = k ∈ {0, . . . , 50 000} gates, considering
the three scenarios: constant I/O with constant number of inputs and outputs, many inputs with ∼ k inputs
and constant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

k∗ log2 k+0.5k log2 k+2k∗− k+3c log2 k
∗ and its depth ≈ 2k∗+2 log2 k

∗+2 log2 k. In case of Valiant’s
UC construction, k inputs result in an overhead of ≈ 5k log2 k−9k+5c log2 k for the size and ≈ k for the
depth, since a large part (up to a half) of the circuit is built in order to hide the input wiring. Therefore,
in this scenario it is often worth to use a hybrid method, utilizing the selection block from [KS08b] for
input selection. Our many inputs hybrid construction places a selection block on top of a UC with k∗+ c

universal gates and has approximate size when u ∼ k and v is constant c

size(UCmany I
k,c,k∗ ) ≈ [7k∗ log2 k

∗ + k∗ log2 k + 0.5k log2 k − k − 15k∗

+ (7.5 + 5c) log2 k
∗ + 3c log2 k

∗ +O(1)] · size(X) + k∗ · size(U) (14)

and approximate depth

depth(UCmany I
k,c,k∗ ) ≈ [4k∗ + 2 log2 k

∗ + 2 log2 k +O(1)] · depth(X) + k∗ · depth(U). (15)

3. Maximal I/O Case: u ∼ 2k, v ∼ k: For circuits with u ∼ 2k inputs and v ∼ k outputs, we discuss the
possibility of using both an input selection block and an output permutation block. The size of the selec-
tion block is ≈ 2k∗ log2 k

∗+k∗ log2 k+k log2 k+3k∗−k and its depth becomes ≈ 2k∗ + 2 log2 k
∗ + 2 log2 k,

which is more beneficial (when it comes to the size) than the ≈ 10k log2 k − 12k size overhead and ≈ 2k
depth overhead in Valiant’s construction caused by 2k inputs (up to half of the UC is constructed
for inputs only). The truncated permutation block has size ≈ 0.5k∗ log2 k + 0.5k log2 k + k∗ − 2k and
depth ≈ log2 k

∗ + log2 k, while the same amount of outputs in Valiant’s construction introduces at least
5k log2 k − 9k new switches with depth of ≈ k. Thus, for the case when the maximal 2k inputs and k

outputs are considered, we conclude that it is advantageous to use our maximal I/O hybrid construction,
utilizing Valiant’s graph construction for the k∗ gates [Val76], a selection block for the inputs and a
truncated permutation block for the outputs [KS08b]. This yields an approximate size when u ∼ 2k and
v ∼ k

size(UCmax I/O
2k,k∗,k ) ≈ [7k∗ log2 k

∗ + 1.5k∗ log2 k + 1.5k log2 k − 13k∗ − 3k

+ 7.5 log2 k
∗ +O(1)] · size(X) + k∗ · size(U) (16)
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and an approximate depth

depth(UCmax I/O
2k,k∗,k ) ≈ [4k∗ + 3 log2 k

∗ + 3 log2 k +O(1)] · depth(X) + k∗ · depth(U). (17)

We conclude that in case of a large number of inputs and outputs it is beneficial to construct a hybrid UC,
making use of both existing constructions (cf. §2.1 and §2.2). Most practical applications have input and
output with constant size and only some specific applications use input size linear in the number of gates (e.g.
simple computations on large databases). Thus, we consider Valiant’s construction as the most beneficial
for general purposes, however we have shown, that one can optimize the construction for many inputs or
outputs by adding selection or truncated permutation blocks from [KS08b].

Comparison with the Universal Circuit Construction from [KS08b]. In [KS08b], a universal cir-
cuit construction was proposed with approximate size 1.5k log22 k + 2.5k log2 k. This was calculated with
the doubled size of the universal switches, not yet considering the free-XOR optimizations of [KS08a]. We
recalculated the size of the construction with our additional optimization for the outputs described in §2.2.
We give our detailed calculations in Appendix C, and summarize its exact size here as

size(UC [KS08b]
u,v,k ) = [0.75k log22 k + 2.25k log2 k + (0.5 + k) log u+

(0.5k + 0.5v) log v + 5k − u− 2v] · size(X) + k · size(U), (18)

and from [KS08b] we know that its depth is

depth(UC [KS08b]
u,v,k ) = [k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14] · depth(X) + k · depth(U). (19)

It was concluded in [KS08b] that this construction outperforms Valiant’s construction for circuits with up
to 5 000 gates. However, this was achieved using the assumption that Valiant’s universal circuit has size
≈ 9.5(u+ 2v + 2k) log2(u+ 2v + 2k), which can vary between two to four times its actual size. On the one
hand, a factor of two of this difference is due to the free-XOR optimizations in [KS08a]. On the other
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hand, [KS08b] used the maximal k∗ = 2k + v in their approximation. In §4.2, we show on concrete example
circuits that k∗ stays significantly below this upper bound. The construction described in detail in §2.1 has
a larger constant factor 5, but due to the logarithmic factor it outperforms the construction from [KS08b]
(§2.2) already for a few hundred gates in the constant I/O case. Figure 4 and Figure 5 compare the sizes
and depth of the different UC constructions, respectively in the three scenarios described above, with the
lowest possible gate number k∗ = k. When considering the hybrid approach, the method corresponding to
the given scenario is indeed always the most efficient construction for many inputs and/or outputs. We give
a comparison for the upper bound case k∗ = 2k + v, for the sizes of all universal circuit constructions for
well-known circuits from [TS15] and compare their structure in Appendix D.

4 Implementing Valiant’s Universal Circuit in Practice

In this section, we detail the challenges that we faced while demonstrating the practicality of Valiant’s univer-
sal circuit construction. We show how to construct a universal circuit from a standard circuit description and
how to program it accordingly. We validate our results with an implementation, creating a novel toolchain
for private function evaluation, using two existing frameworks as frontend and backend of our application.
We emphasize that our tool for constructing and programming UC is generic and can easily be adapted to
other secure computation frameworks or other applications of UCs listed in §1.2.

4.1 Our Tool for Universal Circuit Construction and Toolchain for Private Function
Evaluation

The architecture of our toolchain for PFE using UCs is shown in Figure 6. In this section, we describe its
different artifacts and its use of the Fairplay [MNPS04] and ABY [DSZ15] frameworks. Our implementation
is available online at http://encrypto.de/code/UC.

Step 1. Compiling Input Circuits from High-Level Functionality: Due to its easy adoptability, we
decided to use the Fairplay compiler [MNPS04,BNP08] with the FairplayPF extension [KS08b] to translate
the functionality described in the high-level SFDL format to the Fairplay circuit description called Secure
Hardware Definition Language (SHDL). The FairplayPF extension already converts circuits with gates of
an arbitrary fanin into gates with at most two inputs, which is required for Valiant’s construction as well.
However, in case of Valiant’s UC construction, there is another restriction on the input circuit. It has to have
fanout 2, i.e., the outputs of all the gates and inputs can only be used as the input of at most two later gates.

In case the input circuit does not follow this restriction, an algorithm places a binary tree in place of each
gate with fanout larger than 2, following Valiant’s proposition: „Any gate with fanout x+ 2 can be replaced
by a binary fanout tree with x+ 1 gates” [Val76, Corollary 3.1]. This is done using so-called copy gates, i.e.,
identity gates, each of them eliminating one from the extra fanout of the original gate. An upper bound
can be given on the number of copy gates. The class of Boolean functions with u inputs and v outputs that
can be realized by acyclic circuits with k gates and arbitrary fanout, can also be realized with an acyclic
fanout-2 circuit with k ≤ k∗ ≤ 2k+ v gates [Val76, Corollary 3.1]. We give concrete examples in §4.2 on how
this conversion changes the input circuit size for practical circuits and show that in most cases, the resulting
number of gates remains significantly below the upper bound 2k + v.

Step 2. Obtaining the Γ2 Graph of the Circuit: From the SHDL description of a C circuit with fanin
and fanout 2, the Γ2 graph GC of the circuit C can be directly generated as described in §2.1: with the
number of inputs u, the number of outputs v and the number of gates k∗ in circuit C, GC has u + v + k∗

nodes and the wires are represented as edges in the graph. Then, the first u nodes in the topological order
correspond to the inputs, the last v nodes to the outputs and the nodes in between them to the k∗ ordered
gates. We note that since C had fanin and fanout 2, the resulting GC graph is in Γ2(u+ v + k∗).

Therefore in GC , each node can have at most two incoming edges, one defined to be the first and the
other the second. It is possible in the modified SHDL circuit description that an internal value becomes two
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times the first or two times the second input of gates. This is due to the fact that in the original SHDL
circuit with arbitrary fanout, a value could be the input of arbitrary number of later gates. Transforming
the circuit to a fanout-2 circuit by adding copy gates allows a value to be an input only two times, but the
order of the inputs is fixed. Therefore, in such a case when a value is the second time the same input to a
gate (i.e., first or second), besides the two inputs, the two middle bits of the function table of the gate must
be reversed as well (i.e., to compute f(in1, in2) instead of f(in2, in1)) for the correct programming of the
universal circuit in Step 5.

Step 3. Generating Γ2 Edge-Universal Graph Un: Knowing the number of input bits u, the number
of gates k∗ and the number of output bits v one can construct the corresponding edge-universal graph Un,
where n = u+v+k∗, with out input-output optimization from §3.2. We note that no knowledge is necessary
about the topology or the gate tables in circuit C for this step. As we described in §2.1, two edge-universal
graphs for Γ1(n), i.e. Un,1 and Un,2, are merged in order to obtain an edge-universal graph for Γ2(n), such
that the poles are merged and the edges coming into and going out from them become as follows: the edges
in Un,1 will be the first input and output for each pole, the edges in Un,2 will be the second input and output.
For efficiency reasons, we directly generate the merged edge-universal graph, i.e., an edge-universal graph
for Γ2(n), with the poles as common nodes.

We include our optimization for the input and output nodes from §3.2 and Valiant’s optimizations
for n ∈ {2, 3}, but do not consider Valiant’s optimizations for n ∈ {4, 5, 6} (cf. Figures 1c-1e). These special
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Algorithm 1 Supergraph(G)

Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with ⌈n
2
⌉ − 1 nodes ⊲ H Γ2 graph (with possible loops)

2: if there exist an edge (i, j) in G and ⌈ j

2
⌉ − 1 ≥ ⌈ i

2
⌉ then

3: Add edge
(

⌈ i
2
⌉, ⌈ j

2
⌉ − 1

)

in H ⊲ each pair of nodes in G is one node in H

4: end if

5: Partition H into two Γ1 graphs G1 of size ⌈n
2
⌉ − 1 and G2 of size ⌊n

2
⌋ − 1 using Kőnig’s theorem as in §2.1

⊲ in odd case, the (e, ⌈n
2
⌉ − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) 6= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G
9: end if

10: if size(G2) 6= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G
13: end if

14: delete H

15: return G

cases lead to a specific edge-embedding for the nodes and result in linear improvement only in very rare
cases. Moreover, with our second optimization from §3.2, we ignore most of the extra nodes when the graph
is translated into a universal circuit description, i.e., we have for n = {4, 5, 6} only {3, 5, 8} additional nodes
other than poles, respectively, in our implementation which is already an improvement over Valiant’s original
optimizations.

We note that the edge-universal graph (with undefined function tables and control bits for the universal
switches) can be publicly generated. However, the party programming it has to either generate or receive
a copy of it for programming the control bits according to the topology of the simulated circuit (i.e., to
edge-embed GC into Un).

Step 4. Programming Un According to an Arbitrary Γ2(n) Graph: The Γ2 graph of the circuit GC

with n nodes is partitioned into two Γ1(n) graphs GC
1 and GC

2 which are embedded into the two edge-
universal graphs for Γ1(n) that build up Un. Valiant proved in [Val76] that for any topologically ordered
Γ1(n) graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-disjoint paths in Un between the ith

and the jth poles and between the kth and the lth poles. We described Valiant’s method in §2.1 and here we
show the algorithm that uniquely defines these paths in Un.

For the description of our algorithm, we first define a Γ1(n) supergraph, which is a Γ1(n) graph with
additionally a binary tree of Γ1 graphs of decreasing size. These Γ1 graphs uniquely define the embedding
of the edges into Un. When embedding an edge (i, j) of the topologically ordered graph G into the edge-
universal graph, one needs to construct the supergraph of G as described in Algorithm 1 and then look at
the binary tree in the supergraph. The path of the edge (i, j) defines the edge-embedding uniquely. This
means that if edge (⌈ i

2⌉, ⌈
j
2⌉ − 1) is in the left subgraph of G, then it can be embedded through subgraph Q

in Un, otherwise it is in the right subgraph of G and can be embedded through subgraph R in Un. The
unique embedding happens through {r⌈ i

2
⌉, r⌈ j

2
⌉−1} or through {q⌈ i

2
⌉, q⌈ j

2
⌉−1}, utilizing the unique shortest

path between them, through subpoles further identified by smaller subgraphs of G.
When the embedding is done (cf. Appendix E), for defining the control bits, each node x has at most

two nodes that have ingoing edges to x, one is represented as the left parent and one as the right parent of x
in the edge-universal graph. The two consecutive nodes are also saved as left and right children of x. Now,
when x is a switching node and we take edges (v, x) and (x,w) in the path, we save for x if parent v and
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child w are on the same or on the opposite side in the edge-universal graph. This defines the control bit of
each universal switch in the translated universal circuit, where left and right parent and child translate to
first and second input and output, respectively. We note that in order to program Un correctly, we require
that if x is the left (right) parent of v in the edge-universal graph, then v is the left (right) child of x as well.

Step 5. Generating the Output Circuit Description and the Programming of the Universal

Circuit: After embedding the graph of the simulated circuit into the edge-universal graph Un, we write
the resulting circuit in a file using our own circuit description. In the edge-universal graph, each node stores
the program bit resulting from the edge-embedding (control bit c of the corresponding universal switch in
Equation 2) and each pole stores four bits corresponding to the simulated circuit (the four control bits of the
function table, c0, c1, c2, c3 in Equation 1, their order possibly changed in Step 2). Thus, after topologically
ordering Un, one can directly write out the gate identifiers into a circuit file and the program bits to a
programming file.

Our circuit description format starts with enumerating the inputs and ends with enumerating the outputs.
We have universal gates denoted by U , universal switches denoted by X or Y depending on the number of
outputs (X with two outputs and Y with one). We note that we replace any gates that have only one input
by wires in the UC, thus achieving our fanin-1 node optimization from §3.2. The wires are represented in
the following manner:

U in1 in2 out1
X in1 in2 out1 out2 (20)

Y in1 in2 out1

denotes that wire out1 (and possibly out2) is coming from a gate with input wires in1 and in2. The program
bits are not represented in the circuit format, but in a separate file, for each universal gate we save a four-bit
number representing the control bits and for each universal switch we store the control bit. The output nodes
are outputs of Y universal switches and are marked in the end of the file as O o1 o2 . . . ov. The circuit
and its programming are given in plain text files.

Step 6. Evaluating Universal Circuits for PFE in ABY: As an example application of UCs, we
implement PFE using SFE of a universal circuit. We adapted the ABY secure two-party computation frame-
work [DSZ15] for this purpose. Firstly, since ABY uses the free-XOR optimization from [KS08a], we construct
universal gates and switches with low ANDsize and ANDdepth given in §3.2. With the cost metric we con-
sider, X and Y gates have the same AND complexity, optimized in [KS08a] and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1

(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (21)

with ANDsize and ANDdepth of 1 for both universal switches. X gates are realized with one additional XOR
gate compared to Y gates.

Our efficient implementation of generic universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (22)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implementation is generic and works in
all secure computation protocols. However, for Yao’s garbled circuits protocol, one can further optimize it to
ANDsize(U) = ANDdepth(U) = 1, as in some garbling schemes such as the garbled 3-row-reduction [NPS99]
the gate being evaluated remains oblivious to the evaluator.

After constructing the efficient building blocks, the output circuit file of our UC compiler is parsed, a
circuit is generated accordingly and programmed with the input program bits. We conclude that our toolchain
is the first implementation of Valiant’s size-optimized universal circuit that supports efficient private function
evaluation.
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Circuit u k v k∗ − k ( k∗

k
) Valiant [KS08b] OT-based [MS13]

AES-non-exp 256 31 924 128 15 312 (1.48) 1.171 · 107 2.797 · 107 6.243 · 106

AES-expanded 1 536 25 765 128 11 794 (1.46) 9.388 · 106 2.206 · 107 4.942 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 7.146 · 106 1.560 · 107 3.639 · 106

md5 512 43 234 128 31 083 (1.72) 1.942 · 107 3.995 · 107 8.681 · 106

add_32 64 188 33 123 (1.65) 44 968 55 717 20 064
comp_32 64 150 1 60 (1.40) 26 440 40 222 15 424
mult_32x32 64 6 995 64 5 678 (1.81) 2.672 · 106 4.647 · 106 1.184 · 106

Branching_18 72 121 4 3 (1.02) 17 312 30 994 11 995
CreditCheck 25 50 1 6 (1.12) 5 056 9 348 4 199
MobileCode 80 64 16 0 (1.00) 12 528 13 727 5 644

Table 1: The number of symmetric-key operations using different PFE protocols: Valiant’s UC with SFE,
the universal circuit construction from [KS08b] or Mohassel et al.’s OT-based method from [MS13]. u, v and
k denote the number of inputs, outputs and gates in the simulated circuit, and k∗ denotes the number of
gates in the equivalent fanout-2 circuit.

4.2 Comparison of Our PFE-Toolchain with Other PFE Protocols

Mohassel et al. in [MS13] design a generic framework for PFE and apply it to three different scenarios: to
the m-party GMW protocol [GMW87], to Yao’s garbled circuits [Yao86] and to arithmetic circuits using
homomorphic encryption [CDN01]. Both the two-party version of their framework with the GMW protocol
and the solution with Yao’s garbled circuit protocol has two alternatives: using homomorphic encryption
they achieve linear complexity O(k) in the circuit size k and when using a solution solely based on obliv-
ious transfers (OTs), they obtain a construction with O(k log k) symmetric-key operations. The OT-based
construction in both cases is more desirable in practice, since using OT extension the number of public-key
operations can be reduced significantly [IKNP03,ALSZ13].

Since the asymptotical complexity of this construction and using Valiant’s UC for PFE is the same, we
compare these methods for PFE. We revisit the formulas provided in [MS13] for the PFE protocol based
on Yao’s garbled circuits and elaborate on the number of symmetric-key operations when the different PFE
protocols are used. Mohassel et al. show that the total number of switches in their framework is 4k log2(2k)+1
that are evaluated using OT extension, for which they calculate 8k log2(2k) + 8 symmetric-key operations
together with 5k operations for evaluating the universal gates with Yao’s protocol. We count only the work
of the party that performs most of the work, i.e., 4k symmetric-key operations for creating a garbled circuit
with k gates and 3 symmetric-key operations (two calls to a hash function and one call to a pseudorandom
function (PRF)) for each OT using today’s most efficient OT extension of [ALSZ13]. Hence, according to
our estimations, the protocol of [MS13] requires 12 log2(2k) + 4k + 12 symmetric-key operations.

In the same way, we assume that in our case, for evaluating both the universal gates and switches, the
garbler needs 4k symmetric-key operations. Thus, for a fair comparison, we essentially update Table 4 from
the full version of [MS13, Appendix J.1], where Valiant’s UC size was calculated with assumed k∗ = 2k+ v,
without calculating 4 operations for the garbling.

We took our example circuit files of varying size in Table 1 from two different sources and elaborate on
the resulting number of symmetric-key operations using the different constructions. The first 7 circuits we
obtained from the function set of [TS15] and the last three from the FairplayPF extension of the Fairplay
compiler [MNPS04,KS08b]. The example circuits that we took from [TS15] had to be converted to our desired
SHDL format, which was a necessary step in order to be able to elaborate on the performance of these more
complicated circuits as well. We included the NOT gates in the function table of the consecutive gate and
therefore, resulted in smaller gate numbers k for the equivalent SHDL circuits with arbitrary fanout. Then,
these SHDL circuits were considered as input circuits for our tool.

We now compare the size of the three two-party PFE protocols: the two UC-based PFE with secure
computation and the OT-based method of [MS13]. We assess our findings in Table 1. We note that our
numbers are estimations, i.e., we do not consider that [MS13] works with circuits made up solely of NAND
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Circuit
UC Compile UC I/O GMW Yao
Time (ms) Time (ms) Time (ms) Comm. (KByte) Time (ms) Comm. (KByte)

AES-non-exp 2 909.2 6 331.2 5 522.08 137 561.13 2 349.35 88 417.61
AES-expanded 2 103.7 5 063.6 4 136.72 109 033.79 1 878.75 70 097.48
DES-non-exp 1 596.2 4 173.5 2 695.51 76 644.38 1 310.52 48 180.69
md5 4 043.5 8 785.4 7 041.12 169 558.83 3 547.68 110 043.59

add_32 11.4 63.8 31.97 457.77 26.49 224.77
comp_32 5.8 34.1 29.94 340.23 8.90 159.73
mult_32x32 328.9 1 443.2 1 092.46 31 053.53 539.98 18 741.85

Branching_18 4.8 31.4 26.23 307.77 17.34 145.87
CreditCheck 1.2 11.4 26.25 113.35 5.67 45.15
MobileCode 3.2 26.3 25.71 202.50 28.16 103.45

Table 2: Running time and communication for our UC-based PFE implementation with ABY. We include
the compile time, the I/O time of the UC compiler, and the evaluation time (in milliseconds) and the total
communication (in Kilobytes) between the parties in GMW as well as in Yao sharing.

gates. Since Valiant’s UC construction depends also on the number of gates with fanout more than 2 in the
original circuit, we include the number of copy gates, (k∗ − k) in the table. We emphasize the ratio between
the new number of gates k∗ and the original number of gates k and conclude that in general circuits, it is
well below the maximal k∗

k ∼ 2. The size of the UC construction from [KS08b] obviously makes their method
less efficient, in our examples using more than twice as many symmetric-key operations as the method with
Valiant’s UC and four times as many as Mohassel et al.’s efficient OT-based method [MS13]. We conclude
that universal circuits are not the most efficient solution to perform PFE, however, we show the feasibility
of generating and evaluating UCs simulating large circuits. We emphasize that even though the PFE-specific
protocol from [MS13] achieves better results for PFE, universal circuits are generic and can be applied for
various other scenarios (cf. §1.2), and the most efficient UC construction is Valiant’s construction.

Our Experimental Results. We validated the practicality of Valiant’s universal circuit construction with
an efficient implementation. We ran our experiments on two Desktop PCs, each equipped with an Intel
Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are connected via Gigabit-LAN and give our
benchmarks in Table 2. We are able to generate UCs up to around 300 000 gates of the simulated circuit,
i.e., which results in billions of gates in the UC. Until now, the only implementation of universal circuits
was given in [KS08b], which is outperformed by Valiant’s construction already for a couple of hundred gates
(cf. Figures 4-5) due to its asymptotically larger complexity. We show the real practicality of UCs through
experimental results proving the efficiency of our implementation of PFE with the ABY framework [DSZ15].
Furthermore, due to its asymptotically smaller depth, we are also able to evaluate our generated UCs with
the GMW protocol [GMW87], whereas the construction from [KS08b] was only evaluated with Yao’s garbled
circuit protocol. We do not directly compare our runtimes with the method of [MS13], since to the best of
our knowledge, their framework has not yet been implemented.

Converting from circuit descriptions and writing into and reading out from files slows down the pro-
gram significantly, but it still achieves good performance for practical circuits such as AES and DES. Our
implementation in ABY can evaluate most of the circuits in both the GMW and Yao’s protocols, but for
some examples it runs out of memory (e.g. SHA-256). However, improvements on SFE protocols imply im-
provements on UC-based PFE frameworks as well. As can be seen in Table 2, the evaluation time and the
communication in case of Yao’s garbled cirucit protocol is about a factor of two smaller than that of the
GMW protocol. This difference is due to the more efficient universal gate construction with only one gate for
the case of Yao’s protocol in contrast to the universal gates used in the GMW protocol with ANDsize = 3
and ANDdepth = 2.
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A Glossary

UC Universal circuit, a circuit that can be programmed to evaluate
any circuit up to a given size

§1

SFE Secure function evaluation §1
PFE Private function evaluation §1
OT Oblivious Transfer §1.1
G = (V,E) G graph with node set V = {1, . . . , n} and set of edges E ⊆ V ×V §2.1
n Size of graph G, the number of nodes in graph G §2.1
Fanin A graph has fanin ℓ if each of its nodes has at most ℓ ingoing

edges
§2.1

Fanout A graph has fanout ℓ if each of its nodes has at most ℓ outgoing
edges

§2.1

Γℓ(n) The set of all graphs with fanin and fanout ℓ and n nodes §2.1
Un Edge-universal graph for Γ1(n) §2.1
pi Distinguished nodes in Un, called poles, with fanin and fanout 1 §2.1
Superpole A pole that is obtained by merging two poles of the edge-universal

graph, with unified incoming and outgoing edge set
§2.1

Supernode A node that is obtained by merging two nodes as one in a graph,
with unified incoming and outgoing edge set

§2.1

G1, G2 Given G = (V,E) ∈ Γ2(n), G1 = (V,E1) and G2 = (V,E2) are
two Γ1(n) graphs with edge sets E1 and E2, where E = E1 ∪ E2

§2.1

Un,1, Un,2 Un,1 = (V1, E1) and Un,2 = (V2, E2) are two edge-universal graphs

for Γ1(n), that build up and edge-universal graph U
(2)
n = (V,E)

for Γ2(n) by merging their poles, i.e. {p0, p1, . . . , pn} ⊆ {V1∩V2},
E1 ∩ E2 = ∅ and V = V1 ∪ V2 and E = E1 ∪ E2

§2.1

u Number of inputs in simulated circuit C §2.1
v Number of outputs in simulated circuit C §2.1
k Number of gates in simulated circuit C §2.1
k∗ Number of gates in fanout-2 circuit equivalent to simulated cir-

cuit C, k ≤ k∗ ≤ 2k + v

§2.1

GC Graph of circuit C §2.1
Universal gate U A gate that computes any function with two inputs and one out-

put, using four control bits c0, c1, c2, c3 as in Equation 1
§2.1
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X gate A two-output universal switch, that returns its two input values
either in the same or in reversed order depending on control bit c

§2.1

Y gate A one-output universal switch, that returns one of the two input
values depending on control bit c

§4.1

Su
v Selection block from [KS08b], different constructions are given

depending on if u ≥ v, v ≥ u or v = 2u
§2.2

TP
u≥v
v Truncated permutation block from [KS08b] §2.2

UBk Universal block from [KS08b] §2.2
size of graph Number of nodes §3
depth of graph Number of nodes in the longest path §3
size of circuit Number of gates in total §3
depth of circuit Maximum number of gates between any input and output §3
ANDsize Number of AND gates §3
ANDdepth Maximum number of AND gates between any input and output §3
Exact(n) Number of nodes other than poles in Un edge-universal graph §3.1
size(X) Size of the universal switch, in our case the ANDsize, where

ANDsize(X) = ANDsize(Y ) = 1
§3.2

size(U) Size of the universal gate, in our case the ANDsize, where
ANDsize(U) = 3 for the GMW protocol [GMW87], and
ANDsize(U) = 1 for Yao’s protocol [Yao86]

§3.2

depth(X) Depth of the universal switch, in our case the ANDdepth, where
ANDdepth(X) = ANDdepth(Y ) = 1

§3.2

depth(U) Depth of the universal gate, in our case the ANDdepth, where
ANDdepth(U) = 2 for the GMW protocol [GMW87], and
ANDdepth(U) = 1 for Yao’s protocol [Yao86]

§3.2

UC
Valiant
u,v,k∗ Valiant’s universal circuit for circuits with u inputs, v outputs

and k∗ gates
§3.2

UC
many I
k∗,c,k∗ Our many input hybrid construction with Valiant’s UC and input

selection block from [KS08b]
§3.2

UC
max I/O
2k∗,k∗,k∗ Our maximal I/O hybrid construction with Valiant’s UC, input

selection block and output permutation block from [KS08b]
§3.2

SHDL Secure Hardware Description Language: the circuit description
language of the Fairplay compiler [MNPS04]

B Kőnig-Hall Theorem Example

In Figure 7, we give an example partitioning using the Kőnig-Hall theorem [Kő31,LP09b]. This algorithm is
used for the edge-embedding of any graph into Valiant’s edge-universal graph when creating a supergraph
(cf. Algorithm 1) and for deriving an edge-universal graph for Γ2(n) from two Γ1(n) edge-universal graphs
as in §2.1.

C Size of the Universal Circuit Construction in [KS08b]

The universal circuit construction in [KS08b] is built up of one-output universal switches, so-called Y gates
and of two-output universal switches, X gates. In [KS08b], the size of the construction was calculated
assuming size(X) = 2, but due to the results of [KS08a], size(X) = 1. The depth of the building blocks
remain as calculated in [KS08b]. Since the construction uses large blocks built up of X gates, this result
has a significant effect when counting the size of the construction. Throughout the calculation, we use the
notations introduced in [KS08b], and for the detailed description of the building blocks, the reader is referred
to [KS08b]. The size of the so-called mixing block remains the same as in [KS08b], since it is built only from
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(b) Result G1 = (V,E1).
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(c) Result G2 = (V,E2).
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(d) Bipartite G = (V ,E) with random order of coloring.

Fig. 7: An example partitioning using Kőnig-Hall theorem with randomly chosen edges, indicating their order
in the coloring.

Y gates, i.e., size(Mk) = k · size(Y ) = k. A permutation block Pu
u is built from X gates and is thus half the

size as was proposed in [KS08b], size(Pu
u ) = u logu − u + 1. Su

1 selection block is implemented as (u − 1)
Y blocks and thus, its size becomes u − 1. The rest of the building blocks of the construction rely on these
small building blocks and thus become smaller than the original calculation by around a factor of two.
TP

u≥v
v denotes the truncated permutation block that permutes a subset of v ≤ u of the inputs to the v

outputs. EPu
v≥u denotes the expanded permutation block that permutes the u inputs to a subset of u of the

v ≥ u outputs.

size(TPu≥v
v ) = v · size(Su/v

1 ) +

log v−1
∑

i=0

2i
( u

2i+1
+

v

2i+1
− 1

)

· size(X) = 0.5(u+ v) log v − 2v + u+ 1. (23)

size(EPu
v≥u) =

log u−1
∑

i=0

2i
( u

2i+1
+

v

2i+1
− 1

)

= 0.5(u+ v) log u− u+ 1. (24)

size(Su≥v
v ) = size(TPu≥v

v ) + (v − 1) + size(P v
v ) = 0.5(u+ 3v) log v − 2v + u+ 1. (25)

size(Su
v≥u) = size(EPu

v≥u) + (v − 1) + size(P v
v ) = 0.5(u+ v) log u+ v log v − u+ 1. (26)

size(Su
2u) = size(Pu

u ) + (2u− 1) + size(P 2u
2u ) = 3u logu+ u+ 1. (27)

size(UBk) = 2size(UBk/2) + size(Sk/2
k ) + size(Mk)

= k · size(U) +

log k−1
∑

i=0

2i(size(Sk/2i+1

k/2i ) + size(Mk/2i))
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Fig. 8: Structure of the different UC constructions with their respective asymptotic sizes (horizontal) and
depths (vertical).

= k +

log k−1
∑

i=0

2i
(

3k

2i+1
log

(

k

2i+1

)

+
k

2i+1
+ 1 +

k

2i

)

= 0.75k log2 k + 0.75k log k + 2k − 1. (28)

size(UBk)opt = size(UBk)−∆size(UBk)

= 0.75k log2 k + 0.75k log k + 2k − 1− 0.5(k log k − 2k + 2)

= 0.75k log2 k + 0.25k log k + 3k − 2. (29)

We observe that each output of a gate that is simulated in the UC can occur at most once as output of
the circuit. Hence, one can use a more efficient truncated permutation block instead of a selection block for
the outputs (cf. Figure 8a). Therefore, we get

size(UC [KS08b]
u,v ,k ) = size(UBk)opt + size(Su

2k≥u) + size(TPk≥v
v )

=
(

0.75k log2 k + 0.25k log k + 3k − 2
)

+ (0.5(u+ 2k) log u+ 2k log k + 2k − u+ 1)

+ (0.5(k + v) log v − 2v + k + 1)

= 0.75k log2 k + 2.25k log k + (0.5u+ k) log u+ (0.5k + 0.5v) log v + 6k − u− 2v. (30)

depth(UC [KS08b]
u,v ,k ) = depth(UBk)opt + depth(Su

2k≥u) + depth(TPk≥v
v )

= (k log2 k + 4 log2 k − 12) + (2 log2 u+ 2 log2 k + 2k − 1) + (log2 k + log2 v − 1)

= k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14. (31)

D Comparison of Universal Circuit Constructions

As a guideline, we depict the structure of the different UC constructions in Figure 8 along with their asymp-
totical sizes and depths. We see that our maximal I/O hybrid in Figure 8b and out many inputs hybrid in
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Circuit u k v k∗ − k ( k∗

k
) [KS08b] Hybrid Max. I/O Hybrid Many I Valiant

AES-non-exp 256 31 924 128 15 312 (1.48) 6.994 · 106 3.899 · 106 3.698 · 106 3.022 · 106

AES-exp 1 536 25 765 128 11 794 (1.46) 5.515 · 106 3.052 · 106 2.893 · 106 2.422 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 3.899 · 106 2.380 · 106 2.264 · 106 1.847 · 106

DES-exp 832 19 526 64 10 361 (1.53) 3.966 · 106 2.355 · 106 2.241 · 106 1.860 · 106

md5 512 43 234 128 31 083 (1.72) 9.987 · 106 6.431 · 106 6.108 · 106 5.003 · 106

sha-1 512 61 466 160 45 977 (1.75) 1.501 · 107 9.681 · 106 9.196 · 106 7.534 · 106

sha-256 512 132 854 256 87 814 (1.66) 3.647 · 107 2.133 · 107 2.026 · 107 1.658 · 107

add_32 64 188 33 123 (1.65) 13 929 12 528 13 005 11864

add_64 128 380 65 237 (1.62) 34 284 29 006 29 930 27452

comp_32 64 150 1 60 (1.40) 10 056 7 547 7 384 7030

mult_32x32 64 6 995 64 5 678 (1.81) 1.162 · 106 896 949 851 440 693356

Branching_18 72 121 4 3 (1.02) 7 749 4 347 4 253.23 4576

CreditChecking 25 50 1 6 (1.12) 2 337 1 438 1 414 1376

MobileCode 80 64 16 0 (1.00) 3 432 2380 2 713 3 260

Table 4: Comparison between the ANDsizes of the universal circuits for a sample of real-life circuits [TS15],
considering all the UC constructions including our hybrid methods. With bold numbers we emphasize the
best available solution for each circuit.

Figure 8c follow the idea of the modular construction of [KS08b] in Figure 8a, while achieving asymptoti-
cally smaller size and depth due to Valiant’s UC. However, in most cases when constant inputs/outputs are
considered, Valiant’s construction shown in Figure 8d results in smaller sizes than any of the other construc-
tions. For our example circuit set from §4.2 [TS15], we calculate in Table 4 the approximate ANDsizes of
the universal circuits with the generic formulas of Equations 18, 32, 34 and 12 for [KS08b], our maximal I/O
hybrid, our many inputs hybrid and Valiant’s construction with our optimizations, respectively. In almost
all cases, Valiant’s UC achieves the smallest ANDsize, while in the MobileCode example with 80 input and
16 output bits for 64 gates, our maximal I/O hybrid achieves the best performance.

size(UCmax I/O
u,v,k∗ ) ≈ size(UC opt

0 ,0 ,k∗) + size(Su
2k∗≥u) + size(TPk∗≥v

v )

≈ [(5k∗ log2 k
∗ − 17k∗ + 7.5 log2(k

∗) + 24)

+ ((0.5u+ k∗) log2 u+ (2k∗) log2(2k
∗)− u+ 1)

+ (0.5(k∗ + v) log2 v − 2v + k∗ + 1)] · size(X) + k∗ · size(U). (32)

depth(UCmany I
u,v,k∗ ) ≈ depth(UC opt

0 ,0 ,k∗) + depth(Su
2k∗≥u) + depth(TPk∗≥v

v )

≈ [(2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗) + (2k∗)− 2)

+ (log2 k
∗ + log2 v − 1)] · depth(X) + k∗ · depth(U). (33)

size(UCmany I
u,v,k∗ ) ≈ size(UC opt

0 ,v ,k∗) + size(Su
2k∗+2v≥u)

≈ [(5(v + k∗) log2(v + k∗)− 17k∗ − 19v + 7.5 log2(v + k∗) + 24)

+ ((0.5u+ k∗ + v) log2 u+ (2k∗ + 2v) log2(2k
∗ + 2v)− u+ 1)] · size(X)

+ k∗ · size(U). (34)

depth(UCmany I
u,v,k∗ ) ≈ depth(UC opt

0 ,v ,k∗) + depth(Su
2k∗+2v≥u)

≈ [(u + 2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗ + 2v) + (2k∗ + 2v)− 2)] · depth(X)

+ k∗ · depth(U). (35)

Figure 9 shows a comparison of the different UC constructions for the case with the maximum number of
copy gates, i.e., k∗ = 2k + v in the three scenarios discussed in §3.2. However, this is the absolute maximal
value and as shown in Table 1, the factor is in many practical circuits well below 2. In this case we can see
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Fig. 9: Comparison between the sizes of the UC constructions for k∗ = 2k + v ∈ {0, . . . , 50 000} gates,
considering the three scenarios: constant I/O with constant number of inputs and outputs, many inputs
with ∼ k inputs and constant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

that neither of our hybrid methods are beneficial to use: for the maximal I/O case, the best choice is the
UC construction from [KS08b] for circuits with reasonable sizes, while for the many inputs and constant I/O
cases, Valiant’s construction performs best. The reason for this is that the size of the input selection block
in [KS08b] depends on the number of gates as well and is constructed for 2k∗, resulting in a larger overhead
when k∗ = 2k + v. However, in the maximal I/O case we can see that Valiant’s UC, though asymptotically
smaller, performs worse than the construction from [KS08b]. This is due to the fact that when v ∼ k the
k∗ ∼ 3k and we have u ∼ 2k, so we construct an edge-universal graph with ∼ 6k poles, while the construction
of [KS08b] create a universal block for k gates only. Therefore, we conclude that when designing applications
using universal circuits, one needs to calculate which construction is the most beneficial for the given scenario,
for which we provide all the necessary formulae.

E End Cases for Edge-Embedding Γ1 Graphs into Un

The embedding of (i, j) is ready in one of the following three scenarios:

1. Leaf: there are no subgraphs in G anymore,
2. Superpole: ⌈ j

2⌉ − 1 < ⌈ i
2⌉, and therefore (⌈ i

2⌉, ⌈
j
2⌉ − 1) cannot be found in any of the supergraphs

anymore, in which case i is odd and j = i + 1, and the path between pi and pi+1 in the skeleton as in
Figures 1a–1b goes directly through one switching node without entering a subgraph, or

3. Subpole: ⌈ j
2⌉− 1 = ⌈ i

2⌉ and therefore is represented by a loop in a subgraph, in which case i is even and
j = i+ 1, and the path between pi and pi+1 as in Figures 1a–1b goes directly through one subpole and
two to four switching nodes. In this case, which subpole is used is defined by the supergraph G.

Figure 10 shows the one-to-one correspondence between the subgraphs in the supergraph SuperGraph(G)
(cf. Algorithm 1) where G ∈ Γ1(n) and the subgraphs in the edge-universal graph Un and examples for all
the three end cases.
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Fig. 10: End cases for the edge-embedding of Γ1 graphs into Valiant’s edge-universal graph Un
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