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Abstract. We present the first CCA-secure public-key encryption scheme based on DDH where the
security loss is independent of the number of challenge ciphertexts and the number of decryption queries.
Our construction extends also to the standard k-Lin assumption in pairing-free groups, whereas all prior
constructions starting with Hofheinz and Jager (Crypto ’12) rely on the use of pairings. Moreover, our
construction improves upon the concrete efficiency of existing schemes, reducing the ciphertext overhead
by about half (to only 3 group elements under DDH), in addition to eliminating the use of pairings.
We also show how to use our techniques in the NIZK setting. Specifically, we construct the first tightly
simulation-sound designated-verifier NIZK for linear languages without pairings. Using pairings, we can
turn our construction into a highly optimized publicly verifiable NIZK with tight simulation-soundness.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that of semantic
security against chosen-plaintext attacks (CPA) [15]: it is infeasible to learn anything about the
plaintext from the ciphertext. On the other hand, there is a general consensus within the cryp-
tographic research community that in virtually every practical application, we require semantic
security against adaptive chosen-ciphertext attacks (CCA) [31, 13], wherein an adversary is given
access to decryptions of ciphertexts of her choice.

In this work, we focus on the issue of security reduction and security loss in the construction of
CPA and CCA-secure public-key encryption from the DDH assumption. Suppose we have such a
scheme along with a security reduction showing that attacking the scheme in time t with success
probability ε implies breaking the DDH assumption in time roughly t with success probability ε/L;
we refer to L as the security loss. In general, L would depend on the security parameter λ as well as
the number of challenge ciphertexts Qenc and the number decryption queries Qdec, and we say that
we have a tight security reduction if L depends only on the security parameter and is independent of
both Qenc and Qdec. Note that for typical settings of parameters (e.g., λ = 80 and Qenc, Qdec ≈ 220,
or even Qenc, Qdec ≈ 230 in truly large settings), λ is much smaller than Qenc and Qdec.

In the simpler setting of CPA-secure encryption, the ElGamal encryption scheme already has a
tight security reduction to the DDH assumption [28, 6], thanks to random self-reducibility of DDH
with a tight security reduction. In the case of CCA-secure encryption, the best result is still the

? This is the extended version of an EUROCRYPT 2016 paper of the same name. Compared to the proceedings
version, this version offers a detailed description of (designated-verifier and publicly verifiable) NIZK proof systems,
and of course full proofs.

?? CNRS. Supported by ERC Project aSCEND (639554).
? ? ? Supported by DFG grants HO 4534/2-2, HO 4534/4-1.
† Partially supported by DFG grant KI 795/4-1 and ERC Project ERCC (FP7/615074).
‡ CNRS and Columbia University. Partially supported by the Alexander von Humboldt Foundation, NSF Award

CNS-1445424 and ERC Project aSCEND (639554).



seminal Cramer-Shoup encryption scheme [11], which achieves security loss Qenc.
4 This raises the

following open problem:

Does there exist a CCA-secure encryption scheme with a tight security reduction to the
DDH assumption?

Hofheinz and Jager [17] gave an affirmative answer to this problem under stronger (and pairing-
related) assumptions, notably the 2-Lin assumptions in bilinear groups, albeit with large ciphertexts
and secret keys; a series of follow-up works [24, 26, 5, 16] leveraged techniques introduced in the
context of tightly-secure IBE [10, 7, 19] to reduce the size of ciphertext and secret keys to a relatively
small constant. However, all of these works rely crucially on the use of pairings, and seem to
shed little insight on constructions under the standard DDH assumption; in fact, a pessimist may
interpret the recent works as strong indication that the use of pairings is likely to be necessary for
tightly CCA-secure encryption.

We may then restate the open problem as eliminating the use of pairings in these prior CCA-
secure encryption schemes while still preserving a tight security reduction. From a theoretical stand-
point, this is important because an affirmative answer would yield tightly CCA-secure encryption
under qualitatively weaker assumptions, and in addition, shed insight into the broader question of
whether tight security comes at the cost of qualitative stronger assumptions.

Eliminating the use of pairings is also important in practice as it allows us to instantiate the
underlying assumption over a much larger class of groups that admit more efficient group opera-
tions and more compact representations, and also avoid the use of expensive pairing operations.
Similarly, tight reductions matter in practice because as L increases, we should increase the size
of the underlying groups in order to compensate for the security loss, which in turn increases the
running time of the implementation. Note that the impact on performance is quite substantial, as
exponentiation in a r-bit group takes time roughly O(r3).

1.1 Our Results

We settle the main open problem affirmatively: we construct a tightly CCA-secure encryption
scheme from the DDH assumption without pairings. Moreover, our construction improves upon the
concrete efficiency of existing schemes, reducing the ciphertext overhead by about half, in addition
to eliminating the use of pairings. We refer to Figure 2 for a comparison with prior works.

Overview of our construction. Fix an additively written group G of order q. We rely on implicit
representation notation [14] for group elements: for a fixed generator P of G and for a matrix
M ∈ Zn×tq , we define [M] := MP ∈ Gn×t where multiplication is done component-wise. We rely on
the Dk-MDDH Assumption [14], which stipulates that given [M] drawn from a matrix distribution

Dk over Z(k+1)×k
q , [Mr] for a random vector r in Zkp is computationally indistinguishable from a

uniform vector in Gk+1; this is a generalization of the k-Lin Assumption.

We outline the construction under the k-Lin assumption over G, of which the DDH assumption
is a special case corresponding to k = 1.

In this overview, we will consider a weaker notion of security, namely tag-based KEM security
against plaintext check attacks (PCA) [30]. In the PCA security experiment, the adversary gets
no decryption oracle (as with CCA security), but a PCA oracle that takes as input a tag and a
ciphertext/plaintext pair and checks whether the ciphertext decrypts to the plaintext. Furthermore,
we restrict the adversary to only query the PCA oracle on tags different from those used in the

4 We ignore contributions to the security loss that depend only on a statistical security parameter.
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challenge ciphertexts. PCA security is strictly weaker than the CCA security we actually strive for,
but allows us to present our solution in a clean and simple way. (We show how to obtain full CCA
security separately.)

The starting point of our construction is the Cramer-Shoup KEM. The public key is given by

pk := ([M], [M>k0], [M
>k1]) for M←r Z(k+1)×k

q . On input pk and a tag τ , the encryption algorithm
outputs the ciphertext/plaintext pair

([y], [z]) = ([Mr], [r>M>kτ ]), (1)

where kτ = k0 + τk1 and r←r Zkq . Decryption relies on the fact that y>kτ = r>M>kτ . The KEM
is PCA-secure under k-Lin, with a security loss that depends on the number of ciphertexts Q (via
a hybrid argument) but independent of the number of PCA queries [11, 1].

Following the “randomized Naor-Reingold” paradigm introduced by Chen and Wee on tightly
secure IBE [10], our starting point is (1), where we replace kτ = k0 + τk1 with

kτ =
λ∑
j=1

kj,τj

and pk := ([M], [M>kj,b]j=1,...,λ,b=0,1), where (τ1, . . . , τλ) denotes the binary representation of the
tag τ ∈ {0, 1}λ.

Following [10], we want to analyze this construction by a sequence of games in which we first
replace [y] in the challenge ciphertexts by uniformly random group elements via random self-
reducibility of MDDH (k-Lin), and then incrementally replace kτ in both the challenge ciphertexts
and in the PCA oracle by kτ +m⊥RF(τ), where RF is a truly random function and m⊥ is a random
element from the kernel of M, i.e., M>m⊥ = 0. Concretely, in Game i, we will replace kτ with
kτ + m⊥RFi(τ) where RFi is a random function on {0, 1}i applied to the i-bit prefix of τ . We
proceed to outline the two main ideas needed to carry out this transition. Looking ahead, note
that once we reach Game λ, we would have replaced kτ with kτ + m⊥RF(τ), upon which security
follows from a straight-forward information-theoretic argument (and the fact that ciphertexts and
decryption queries carry pairwise different τ).

First idea. First, we show how to transition from Game i to Game i+ 1, under the restriction that
the adversary is only allowed to query the encryption oracle on tags whose i + 1-st bit is 0; we
show how to remove this unreasonable restriction later. Here, we rely on an information-theoretic
argument similar to that of Cramer and Shoup to increase the entropy from RFi to RFi+1. This is
in contrast to prior works which rely on a computational argument; note that the latter requires
encoding secret keys as group elements and thus a pairing to carry out decryption.

More precisely, we pick a random function RF′i on {0, 1}i, and implicitly define RFi+1 as follows:

RFi+1(τ) =

{
RFi(τ) if τi+1 = 0

RF′i(τ) if τi+1 = 1

Observe all of the challenge ciphertexts leak no information about RF′i or ki+1,1 since they all
correspond to tags whose i+ 1-st bit is 0. To handle a PCA query (τ, [y], [z]), we proceed via a case
analysis:

– if τi+1 = 0, then kτ + RFi+1(τ) = kτ + RFi(τ) and the PCA oracle returns the same value in
both Games i and i+ 1.
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– if τi+1 = 1 and y lies in the span of M, we have

y>m⊥ = 0 =⇒ y>(kτ + m⊥RFi(τ)) = y>(kτ + m⊥RFi+1(τ)),

and again the PCA oracle returns the same value in both Games i and i+ 1.
– if τi+1 = 1 and y lies outside the span of M, then y>ki+1,1 is uniformly random given

M,M>ki+1,1. (Here, we crucially use that the adversary does not query encryptions with
τi+1 = 1, which ensures that the challenge ciphertexts do not leak additional information about
ki+1,1.) This means that y>kτ is uniformly random from the adversary’s view-point, and there-
fore the PCA oracle will reject with high probability in both Games i and i+ 1. (At this point,
we crucially rely on the fact that the PCA oracle only outputs a single check bit and not all of
kτ + RF(τ).)

Via a hybrid argument, we may deduce that the distinguishing advantage between Games i and
i+ 1 is at most Q/q where Q is the number of PCA queries.

Second idea. Next, we remove the restriction on the encryption queries using an idea of Hofheinz,
Koch and Striecks [19] for tightly-secure IBE in the multi-ciphertext setting, and its instantiation
in prime-order groups [16]. The idea is to create two “independent copies” of (m⊥,RFi); we use one
to handle encryption queries on tags whose i + 1-st bit is 0, and the other to handle those whose

i+ 1-st bit is 1. We call these two copies (M∗
0,RF

(0)
i ) and (M∗

1,RF
(1)
i ), where M>M∗

0 = M>M∗
1 = 0.

Concretely, we replace M←r Z(k+1)×k
q with M←r Z3k×k

q . We decompose Z3k
q into the span of

the respective matrices M,M0,M1, and we will also decompose the span of M⊥ ∈ Z3k×2k
q into that

of M∗
0,M

∗
1. Similarly, we decompose M⊥RFi(τ) into M∗

0RF
(0)
i (τ) + M∗

1RF
(1)
i (τ). We then refine the

basis for Z3k
q

basis for span(M⊥)

M M0 M1

M∗0 M∗1

Fig. 1. Solid lines mean orthogonal, that is: M>M∗0 = M>
1M

∗
0 = 0 = M>M∗1 = M>

0M
∗
1.

prior transition from Games i to i+ 1 as follows:

– Game i.0 (= Game i): pick y ← Z3k
q for ciphertexts, and replace kτ with kτ + M∗

0RF
(0)
i (τ) +

M∗
1RF

(1)
i (τ);

– Game i.1: replace y←r Z3k
q with y←r span(M,Mτi+1);

– Game i.2: replace RF
(0)
i (τ) with RF

(0)
i+1(τ);

– Game i.3: replace RF
(1)
i (τ) with RF

(1)
i+1(τ);

– Game i.4 (= Game i+ 1): replace y←r span(M,Mτi+1) with y←r Z3k
q .

For the transition from Game i.0 to Game i.1, we rely on the fact that the uniform distributions over
Z3k
q and span(M,Mτi+1) encoded in the group are computationally indistinguishable, even given a

random basis for span(M⊥) (in the clear). This extends to the setting with multiple samples, with
a tight reduction to the Dk-MDDH Assumption independent of the number of samples.

For the transition from Game i.1 to i.2, we rely on an information-theoretic argument like the
one we just outlined, replacing span(M) with span(M,M1) and M⊥ with M∗

0 in the case analysis.
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In particular, we will exploit the fact that if y lies outside span(M,M1), then y>ki+1,1 is uniformly
random even given M,Mki+1,1,M1,M1ki+1,1. The transition from Game i.2 to i.3 is completely
analogous.

From PCA to CCA. Using standard techniques from [11, 23, 21, 8, 4], we could transform our ba-
sic tag-based PCA-secure scheme into a “full-fledged” CCA-secure encryption scheme by adding
another hash proof system (or an authenticated symmetric encryption scheme) and a one-time sig-
nature scheme. However, this would incur an additional overhead of several group elements in the
ciphertext. Instead, we show how to directly modify our tag-based PCA-secure scheme to obtain a
more efficient CCA-secure scheme with the minimal additional overhead of a single symmetric-key
authenticated encryption. In particular, the overall ciphertext overhead in our tightly CCA-secure
encryption scheme is merely one group element more than that for the best known non-tight
schemes [23, 18].

To encrypt a message M in the CCA-secure encryption scheme, we will (i) pick a random y
as in the tag-based PCA scheme, (ii) derive a tag τ from y, (iii) encrypt M using a one-time
authenticated encryption under the KEM key [y>kτ ]. The naive approach is to derive the tag τ by
hashing [y] ∈ G3k, as in [23]. However, this creates a circularity in Game i.1 where the distribution
of [y] depends on the tag. Instead, we will derive the tag τ by hashing [y] ∈ Gk, where y ∈ Zkq are

the top k entries of y ∈ Z3k
q . We then modify M0,M1 so that the top k rows of both matrices are

zero, which avoids the circularity issue. In the proof of security, we will also rely on the fact that for
any y0,y1 ∈ Z3k

q , if y0 = y1 and y0 ∈ span(M), then either y0 = y1 or y1 /∈ span(M). This allows
us to deduce that if the adversary queries the CCA oracle on a ciphertext which shares the same
tag as some challenge ciphertext, then the CCA oracle will reject with overwhelming probability.

Alternative view-point. Our construction can also be viewed as applying the BCHK IBE→PKE
transform [8] to the scheme from [19], and then writing the exponents of the secret keys in the clear,
thereby avoiding the pairing. This means that we can no longer apply a computational assumption
and the randomized Naor-Reingold argument to the secret key space. Indeed, we replace this with
an information-theoretic Cramer-Shoup-like argument as outlined above.

Prior approaches. Several approaches to construct tightly CCA-secure PKE schemes exist: first,
the schemes of [17, 2, 3, 25, 24, 26] construct a tightly secure NIZK scheme from a tightly secure
signature scheme, and then use the tightly secure NIZK in a CCA-secure PKE scheme following
the Naor-Yung double encryption paradigm [29, 13]. Since these approaches build on the public
verifiability of the used NIZK scheme (in order to faithfully simulate a decryption oracle), their
reliance on a pairing seems inherent.

Next, the works of [10, 7, 19, 5, 16] used a (Naor-Reingold-based) MAC instead of a signature
scheme to design tightly secure IBE schemes. Those IBE schemes can then be converted (using
the BCHK transformation [8]) into tightly CCA-secure PKE schemes. However, the derived PKE
schemes still rely on pairings, since the original IBE schemes do (and the BCHK does not remove
the reliance on pairings).

In contrast, our approach directly fuses a Naor-Reingold-like randomization argument with
the encryption process. We are able to do so since we substitute a computational randomization
argument (as used in the latter line of works) with an information-theoretic one, as described above.
Hence, we can apply that argument to exponents rather than group elements. This enables us to
trade pairing operations for exponentiations in our scheme.

Efficiency comparison with non-tightly secure schemes. We finally mention that our DDH-based
scheme compares favorably even with the most efficient (non-tightly) CCA-secure DDH-based en-
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Reference |pk| |ct| − |m| security loss assumption pairing

CS98 [11] O(1) 3 O(Q) DDH no
KD04, HK07 [23, 18] O(1) 2 O(Q) DDH no
HJ12 [17] O(1) O(λ) O(1) 2-Lin yes
LPJY15 [24, 26] O(λ) 47 O(λ) 2-Lin yes
AHY15 [5] O(λ) 12 O(λ) 2-Lin yes
GCDCT15 [16] O(λ) 10 (resp. 6k + 4) O(λ) SXDH (resp. k-Lin) yes

Ours §4 O(λ) 3 (resp. 3k) O(λ) DDH (resp. k-Lin) no

Fig. 2. Comparison amongst CCA-secure encryption schemes, where Q is the number of ciphertexts, |pk| denotes the size (i.e
the number of groups elements, or exponent of group elements) of the public key, and |ct|−|m| denotes the ciphertext overhead,
ignoring smaller contributions from symmetric-key encryption. We omit [19] from this table since we only focus on prime-order
groups here.

cryption schemes [23, 18]. To make things concrete, assume λ = 80 and a setting with Qenc =
Qdec = 230. The best known reductions for the schemes of [23, 18] lose a factor of Qenc = 230,
whereas our scheme loses a factor of about 4λ ≤ 29. Hence, the group size for [23, 18] should be
at least 22·(80+30) = 2220 compared to 22·(80+9) = 2178 in our case. Thus, the ciphertext overhead
(ignoring the symmetric encryption part) in our scheme is 3 · 178 = 534 bits, which is close to
2 · 220 = 440 bits with [23, 18].5

Perhaps even more interestingly, we can compare computational efficiency of encryption in this
scenario. For simplicitly, we only count exponentiations and assume a naive square-and-multiply-
based exponentiation with no further multi-exponentiation optimizations.6 Encryption in [23, 18]
takes about 3.5 exponentiations (where we count an exponentiation with a (λ+ log2(Qenc +Qdec))-
bit hash value7 as 0.5 exponentiations). In our scheme, we have about 4.67 exponentiations, where
we count the computation of [M>kτ ] – which consists of 2λ multiplications – as 0.67 exponentia-
tions.) Since exponentiation (under our assumptions) takes time cubic in the bitlength, we get that
encryption with our scheme is actually about 29% less expensive than with [23, 18].

However, of course we should also note that public and secret key in our scheme are significantly
larger (e.g., 4λ+ 3 = 323 group elements in pk) than with [23, 18] (4 group elements in pk).

Extension: NIZK arguments. We also obtain tightly simulation-sound non-interactive zero-knowledge
(NIZK) arguments from our encryption scheme in a semi-generic way.

Let us start with any designated-verifier quasi-adaptive NIZK (short: DVQANIZK) argument
system Π for a given language. Recall that in a designated-verifier NIZK, proofs can only be
verified with a secret verification key, and soundness only holds against adversaries who do not
know that key. Furthermore, quasi-adaptivity means that the language has to be fixed at setup time
of the scheme. Let ΠPKE be the variant of Π in which proofs are encrypted using a CCA-secure
PKE scheme PKE. Public and secret key of PKE are of course made part of CRS and verification
key, respectively. Observe that ΠPKE enjoys simulation-soundness, assuming that simulated proofs
are simply encryptions of random plaintexts. Indeed, the CCA security of PKE guarantees that
authentic ΠPKE-proofs can be substituted with simulated ones, while being able to verify (using
a decryption oracle) a purported ΠPKE-proof generated by an adversary. Furthermore, if PKE is
tightly secure, then so is ΠPKE.

5 In this calculation, we do not consider the symmetric authenticated encryption of the actual plaintext (and a
corresponding MAC value), which is the same with [23, 18] and our scheme.

6 Here, optimizations would improve the schemes of [23, 18] and ours similarly, since the schemes are very similar.
7 It is possible to prove the security of [23, 18] using a target-collision-resistant hash function, such that |τ | = λ.

However, in the multi-user setting, a hybrid argument is required, such that the output size of the hash function
will have to be increased to at least |τ | = λ+ log2(Qenc +Qdec).
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When using a hash proof system for Π and our encryption scheme for PKE, this immediately
yields a tightly simulation-sound DVQANIZK for linear languages (i.e., languages of the form
{[Mr] | r ∈ Ztq} for some matrix M ∈ Zn×tq with t < n) that does not require pairings. We stress
that our DVQANIZK is tightly secure in a setting with many simulated proofs and many adversarial
verification queries.

Using the semi-generic transformation of [22], we can then derive a tightly simulation-sound
QANIZK proof system (with public verification), that however relies on pairings. We note that
the transformation of [22] only requires a DVQANIZK that is secure against a single adversarial
verification query, since the pairing enables the public verifiability of proofs. Hence, we can first
optimize and trim down our DVQANIZK (such that only a single adversarial verification query is
supported), and then apply the transformation. This yields a QANIZK with particularly compact
proofs. See Figure 3 for a comparison with relevant existing proof systems.

Reference type |crs| |π| sec. loss assumption pairing

CCS09 [9] NIZK O(1) 2n+ 6t+ 52 O(Qsim) 2-Lin yes
HJ12 [17] NIZK O(1) � 500 O(1) 2-Lin yes
LPJY14 [25] QANIZK O(n+ λ) 20 O(Qsim) 2-Lin yes
KW15 [22] QANIZK O(kn) 2k + 2 O(Qsim) k-Lin yes
LPJY15 [26] QANIZK O(n+ λ) 42 O(λ) 2-Lin yes

Ours §6.2 DVQANIZK O(t+ kλ) 3k + 1 O(λ) k-Lin no
Ours §6.3 QANIZK O(k2λ+ kn) 2k + 1 O(λ) k-Lin yes

Fig. 3. (DV)QANIZK schemes for subspaces of Gn of dimension t < n. |crs| and |π| denote the size (in group elements) of the
CRS and of proofs. Qsim is the number of simulated proofs in the simulation-soundness experiment. The scheme from [22] (as
well as our own schemes) can also be generalized to matrix assumptions [14], at the cost of a larger CRS.

Roadmap. We recall some notation and basic definitions (including those concerning our algebraic
setting and for tightly secure encryption) in Section 2. Section 3 presents our basic PCA-secure
encryption scheme and represents the core of our results. In Section 4, we present our optimized
CCA-secure PKE scheme. Our NIZK-related applications are presented in Section 6.

2 Preliminaries

2.1 Notations

If x ∈ Bn, then |x| denotes the length n of the vector. Further, x ←r B denotes the process of
sampling an element x from set B uniformly at random. For any bit string τ ∈ {0, 1}∗, we denote
by τi the i’th bit of τ . We denote by λ the security parameter, and by negl(·) any negligible function
of λ. For all matrix A ∈ Z`×kq with ` > k, A ∈ Zk×kq denotes the upper square matrix of A and

A ∈ Z`−k×kq denotes the lower ` − k rows of A. With span(A) := {Ar | r ∈ Zkq} ⊂ Z`q, we denote
the span of A.

2.2 Collision resistant hashing

A hash function generator is a PPT algorithm H that, on input 1λ , outputs an efficiently com-
putable function H : {0, 1}∗ → {0, 1}λ.

Definition 1 (Collision Resistance). We say that a hash function generator H outputs collision-
resistant functions H if for all PPT adversaries A,

Advcr
H(A) := Pr[x 6= x′ ∧ H(x) = H(x′)|H←r H(1λ), (x, x′)← A(1λ,H)] = negl(λ).
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2.3 Prime-order groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description
G = (G, q, P ) of an additive cyclic group G of order q for a λ-bit prime q, whose generator is P .

We use implicit representation of group elements as introduced in [14]. For a ∈ Zq, define
[a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix A = (aij) ∈ Zn×mq

we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an element in
G. Note that from [a] ∈ G it is generally hard to compute the value a (discrete logarithm problem
in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zq, one can efficiently compute [ax] ∈ G and
[a+ b] ∈ G.

2.4 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) Assumption [14].

Definition 2 (Matrix Distribution). Let k, ` ∈ N, with ` > k. We call D`,k a matrix distribution
if it outputs matrices in Z`×kq of full rank k in polynomial time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A←r D`,k form an invertible matrix. The
D`,k-Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u])
where A←r D`,k, w←r Zkq and u←r Z`q.

Definition 3 (D`,k-Matrix Diffie-Hellman Assumption D`,k-MDDH). Let D`,k be a matrix
distribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) Assumption holds relative
to GGen if for all PPT adversaries A,

Advmddh
D`,k,GGen(A) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| = negl(λ),

where the probability is taken over G ←r GGen(1λ), A←r Dk,w←r Zkq ,u←r Z`q.

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others) over Z(k+1)×k
q such that the

corresponding Dk-MDDH assumptions are generically secure in bilinear groups and form a hierarchy
of increasingly weaker assumptions. Lk-MDDH is the well known k-Linear Assumption k-Lin with
1-Lin = DDH. In this work we are mostly interested in the uniform matrix distribution U`,k.

Definition 4 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the uniform
distribution over all full-rank `× k matrices over Zq. Let Uk := Uk+1,k.

Lemma 1 (Uk-MDDH ⇔ U`,k-MDDH). Let `, k ∈ N, with ` > k. For any PPT adversary A,
there exists an adversary B (and vice versa) such that T(B) ≈ T(A) and Advmddh

U`,k,GGen(A) =

Advmddh
Uk,GGen(B) .

Proof. This follows from the simple fact that a U`,k-MDDH instance ([A], [z]) can be transformed
into an Uk-MDDH instance ([A′] = [TA], [z′] = [Tz]) for a random (k+1)×` matrix T. If z = Aw,
then z′ = TAw = A′w; if z is uniform, so is z′. Similarly, a Uk-MDDH instance ([A′], [z′]) can
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be transformed into an U`,k-MDDH instance ([A] = [T′A′], [z] = [T′z′]) for a random ` × (k + 1)
matrix T′. ut

Among all possible matrix distributions D`,k, the uniform matrix distribution Uk is the hardest
possible instance, so in particular k-Lin⇒ Uk-MDDH.

Lemma 2 (D`,k-MDDH⇒ Uk-MDDH, [14]). Let D`,k be a matrix distribution. For any PPT ad-
versary A, there exists an adversary B such that T(B) ≈ T(A) and Advmddh

D`,k,GGen(A) = Advmddh
Uk,GGen(B).

Let Q ≥ 1. For W ←r Zk×Qq ,U ←r Z`×Qq , we consider the Q-fold D`,k-MDDH Assumption
which consists in distinguishing the distributions ([A], [AW]) from ([A], [U]). That is, a challenge
for the Q-fold D`,k-MDDH Assumption consists of Q independent challenges of the D`,k-MDDH
Assumption (with the same A but different randomness w). In [14] it is shown that the two
problems are equivalent, where (for Q ≥ ` − k) the reduction loses a factor ` − k. In combination
with Lemma 1 we obtain the following tighter version for the special case of D`,k = U`,k.

Lemma 3 (Random self-reducibility of U`,k-MDDH, [14]). Let `, k,Q ∈ N with ` > k. For any
PPT adversary A, there exists an adversary B such that T(B) ≈ T(A) + Q · poly(λ) with poly(λ)
independent of T(A), and

AdvQ-mddh
U`,k,GGen(A) ≤ Advmddh

U`,k,GGen(B) +
1

q − 1

where AdvQ-mddh
U`,k,GGen(B) := |Pr[B(G, [A], [AW]) = 1] − Pr[B(G, [A], [U]) = 1]| and the probability is

over G ←r GGen(1λ), A←r U`,k,W←r Zk×Qq ,U←r Z`×Qq .

2.5 Public-Key Encryption

Definition 5 (PKE). A Public-Key Encryption (PKE) consists of three PPT algorithms PKE =
(ParamPKE,GenPKE,EncPKE,DecPKE):

– The probabilistic key generation algorithm GenPKE(1λ) generates a pair of public and secret keys
(pk, sk).

– The probabilistic encryption algorithm EncPKE(pk,M) returns a ciphertext ct.
– The deterministic decryption algorithm DecPKE(pk, sk, ct) returns a message M or ⊥, where ⊥

is a special rejection symbol.

We define the following properties:

Perfect correctness. For all λ, we have

Pr

[
DecPKE(pk, sk, ct) = M

∣∣∣∣ (pk, sk)←r GenPKE(1λ);
ct←r EncPKE(pk,M)

]
= 1.

Multi-ciphertext CCA security [6]. For any adversary A, we define

Advind-cca
PKE (A) :=

∣∣∣Pr
[
b = b′

∣∣∣b′ ← ASetup,DecO(·),EncO(·,·)(1λ)
]
− 1/2

∣∣∣
where:
– Setup sets Cenc := ∅, samples (pk, sk) ←r GenKEM(1λ) and b ←r {0, 1}, and returns pk.

Setup must be called once at the beginning of the game.
– DecO(ct) returns DecPKE(pk, sk, ct) if ct /∈ Cenc, ⊥ otherwise.
– If M0 and M1 are two messages of equal length, EncO(M0,M1) returns EncPKE(pk,Mb) and

sets Cenc := Cenc ∪ {ct}.
We say PKE is IND-CCA secure if for all PPT adversaries A, the advantage Advind-cca

PKE (A) is
a negligible function of λ.

9



2.6 Key-Encapsulation Mechanism

Definition 6 (Tag-based KEM). A tag-based Key-Encapsulation Mechanism (KEM) consists
of three PPT algorithms KEM = (GenKEM,EncKEM,DecKEM):

– The probabilistic key generation algorithm GenKEM(1λ) generates a pair of public and secret keys
(pk, sk).

– The probabilistic encryption algorithm EncKEM(pk, τ) returns a pair (K,C) where K is a uni-
formly distributed symmetric key in K and C is a ciphertext, with respect to the tag τ ∈ T .

– The deterministic decryption algorithm DecKEM(pk, sk, τ, C) returns a key K ∈ K.

We define the following properties:

Perfect correctness. For all λ, for all tags τ ∈ T , we have

Pr

[
DecKEM(pk, sk, τ, C) = K

∣∣∣∣ (pk, sk)←r GenKEM(1λ);
(K,C)←r EncKEM(pk, τ)

]
= 1.

Multi-ciphertext PCA security [30]. For any adversary A, we define

Advind-pca
KEM (A) :=

∣∣∣Pr
[
b = b′

∣∣∣b′ ← ASetup,DecO(·,·,·),EncO(·)(1λ)
]
− 1/2

∣∣∣
where:
– Setup sets Tenc = Tdec := ∅, samples (pk, sk)←r GenKEM(1λ), picks b←r {0, 1}, and returns

pk. Setup is called once at the beginning of the game.
– The decryption oracle DecO(τ, C, K̂) computes K := DecKEM(pk, sk, τ, C). It returns 1 if
K̂ = K ∧ τ /∈ Tenc, 0 otherwise. Then it sets Tdec := Tdec ∪ {τ}.

– EncO(τ) computes (K,C)←r EncKEM(pk, τ), sets K0 := K and K1 ←r K. If τ /∈ Tdec∪Tenc,
it returns (C,Kb), and sets Tenc := Tenc ∪ {τ}; otherwise it returns ⊥.

We say KEM is IND-PCA secure if for all PPT adversaries A, the advantage Advind-pca
KEM (A) is

a negligible function of λ.

2.7 Authenticated Encryption

Definition 7 (AE [18]). An authenticated symmetric encryption (AE) with message-space M
and key-space K consists of two polynomial-time deterministic algorithms (EncAE,DecAE):

– The encryption algorithm EncAE(K,M) generates C, encryption of the message M with the
secret key K.

– The decryption algorithm DecAE(K,C), returns a message M or ⊥.

We require that the algorithms satisfy the following properties:

Perfect correctness. For all λ, for all K ∈ K and M ∈M, we have

DecAE(K,EncAE(K,M)) = M.

One-time Privacy and Authenticity. For any PPT adversary A,

Advae-ot
AE (A) :=

∣∣∣∣Pr

[
b′ = b

∣∣∣∣K ←r K; b←r {0, 1}
b′ ←r Aot-EncO(·,·),ot-DecO(·)(1λ,M,K)

]
− 1/2

∣∣∣∣
is negligible, where ot-EncO(M0,M1), on input two messages M0 and M1 of the same length,
EncAE(K,Mb), and ot-DecO(φ) returns DecAE(K,φ) if b = 0, ⊥ otherwise. A is allowed at most
one call to each oracle ot-EncO and ot-DecO, and the query to ot-DecO must be different from
the output of ot-EncO. A is also given the description of the key-space K as input.
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3 Multi-ciphertext PCA-secure KEM

In this section we describe a tag-based Key Encapsulation Mechanism KEMPCA that is IND-PCA-
secure (see Definition 6).

For simplicity, we use the matrix distribution U3k,k in our scheme in Figure 4, and prove it secure
under the Uk-MDDH Assumption (⇔ U3k,k-MDDH Assumption, by Lemma 1), which in turn admits
a tight reduction to the standard k-Lin Assumption. However, using a matrix distribution D3k,k

with more compact representation yields a more efficient scheme, secure under the D3k,k-MDDH
Assumption (see Remark 1).

3.1 Our construction

GenKEM(1λ):

G ←r GGen(1λ); M←r U3k,k
k1,0, . . . ,kλ,1 ←r Z3k

q

pk :=
(
G, [M],

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)
sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncKEM(pk, τ):

r←r Zkq ; C := [r>M>]

kτ :=
∑λ
j=1 kj,τj

K := [r> ·M>kτ ]
Return (C,K) ∈ G1×3k ×G

DecKEM(pk, sk, τ, C):

kτ :=
∑λ
j=1 kj,τj

Return K := C · kτ

Fig. 4. KEMPCA, an IND-PCA-secure KEM under the Uk-MDDH Assumption, with tag-space T = {0, 1}λ. Here,
GGen is a prime-order group generator (see Section 2.3).

Remark 1 (On the use of the Uk-MDDH Assumption). In our scheme, we use a matrix distribution
U3k,k for the matrix M, therefore proving security under the U3k,k-MDDH Assumption ⇔ Uk-
MDDH Assumption (see Lemma 2). This is for simplicity of presentation. However, for efficiency,
one may want to use an assumption with a more compact representation, such as the CI3k,k-MDDH
Assumption [27] with representation size 2k instead of 3k2 for U3k,k.

3.2 Security proof

Theorem 1. The tag-based Key Encapsulation Mechanism KEMPCA defined in Figure 4 has perfect
correctness. Moreover, if the Uk-MDDH Assumption holds in G, KEMPCA is IND-PCA secure.
Namely, for any adversary A, there exists an adversary B such that T(B) ≈ T(A) + (Qdec +Qenc) ·
poly(λ) and

Advind-pca
KEMPCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + (Qdec +Qenc) · 2−Ω(λ),

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Proof of Theorem 1. Perfect correctness follows readily from the fact that for all r ∈ Zkq and

C = r>M>, for all k ∈ Z3k
q :

r>(M>k) = C · k.

11



game y uniform in: k′τ used by EncO and DecO justification/remark

G0 span(M) kτ actual scheme

G1 Z3k
q kτ U3k,k-MDDH on [M]

G2.i Z3k
q kτ + M⊥RFi(τ|i) G1 ≡ G2.0

G2.i.1 τi+1 = 0 : span(M,M0)
kτ + M⊥RFi(τ|i)

U3k,k-MDDH on [M0]

τi+1 = 1 : span(M,M1) U3k,k-MDDH on [M1]

G2.i.2 τi+1 = 0 : span(M,M0)
kτ + M∗0RF

(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

Cramer-Shoup
τi+1 = 1 : span(M,M1) argument

G2.i.3 τi+1 = 0 : span(M,M0)
kτ + M∗0RF

(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Cramer-Shoup
τi+1 = 1 : span(M,M1) argument

G2.i+1 Z3k
q kτ + M⊥RFi+1(τ|i+1) U3k,k-MDDH on [M0]

and [M1]

Fig. 5. Sequence of games for the proof of Theorem 1. Throughout, we have (i) kτ :=
∑λ
j=1 kj,τj ; (ii) EncO(τ) =

([y],Kb) where K0 = [y>k′τ ] and K1 ←r G; (iii) DecO(τ, [y], K̂) computes the encapsulation key K := [y> · k′τ ].

Here, (M∗0,M
∗
1) is a basis for span(M⊥), so that M>

1M
∗
0 = M>

0M
∗
1 = 0, and we write M⊥RFi(τ|i) := M∗0RF

(0)
i (τ|i) +

M∗1RF
(1)
i (τ|i). The second column shows which set y is uniformly picked from by EncO, the third column shows the

value of k′τ used by both EncO and DecO.

We now prove the IND-PCA security of KEMPCA. We proceed via a series of games described in
Figure 6 and 7 and we use Advi to denote the advantage of A in game Gi. We also give a high-level
picture of the proof in Figure 5, summarizing the sequence of games.

Lemma 4 (G0 to G1). There exists an adversary B0 such that T(B0) ≈ T(A) + (Qenc + Qdec) ·
poly(λ) and

|Adv0 −Adv1| ≤ Advmddh
Uk,GGen(B0) +

1

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Here, we use the MDDH assumption to “tightly” switch the distribution of all the challenge
ciphertexts.
Proof of Lemma 4. To go from G0 to G1, we switch the distribution of the vectors [y] sampled by
EncO, using the Qenc-fold U3k,k-MDDH Assumption on [M] (see Definition 4 and Lemma 3).

We build an adversary B′0 against the Qenc-fold U3k,k-MDDH Assumption, such that T(B′0) ≈
T(A) + (Qenc +Qdec) · poly(λ) with poly(λ) independent of T(A), and

|Adv0 −Adv1| ≤ AdvQenc-mddh
U3k,k,GGen(B′0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and Lemma 1 (U3k,k-
MDDH⇔ Uk-MDDH).

Upon receiving a challenge (G, [M] ∈ G3k×k, [H] := [h1| . . . |hQenc ] ∈ G3k×Qenc) for the Qenc-fold
U3k,k-MDDH Assumption, B′0 picks b ←r {0, 1}, k1,0, . . . ,kλ,1 ←r Z3k

q , and simulates Setup, DecO
as described in Figure 6. To simulate EncO on its j’th query, for j = 1, . . . , Qenc, B′0 sets [y] := [hj ],
and computes Kb as described in Figure 6. ut

Lemma 5 (G1 to G2.0). |Adv1 −Adv2.0| = 0.
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Setup: G0,G1, G2.i

Tenc = Tdec := ∅; b←r {0, 1}
G ←r GGen(1λ); M←r U3k,k

M⊥ ←r U3k,2k s.t. M>M⊥ = 0

Pick random RFi : {0, 1}i → Z2k
q

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

Return
pk :=

(
G, [M],

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)

EncO(τ): G0, G1,G2.i

r←r Zkq ; y := Mr; y←r Z3k
q

K0 := [y> · k′τ ]; K1 ←r G
If τ /∈ Tdec ∪ Tenc, return (C := [y],Kb), and set
Tenc := Tenc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G0,G1,G2.i

K := [y> · k′τ ]

Return

{
1 if K̂ = K ∧ τ /∈ Tenc
0 otherwise

Tdec := Tdec ∪ {τ}

Fig. 6. Games G0,G1,G2.i (for 0 ≤ i ≤ λ) for the proof of multi-ciphertext PCA security of KEMPCA in Figure 4.
In each procedure, the components inside a solid (dotted) frame are only present in the games marked by a solid
(dotted) frame.

Proof of Lemma 5. We show that the two games are identically distributed. To go from G1 to G2.0,
we change the distribution of k1,β ←r Z3k

q for β = 0, 1, to k1,β + M⊥RF0(ε), where k1,β ←r Z3k
q ,

RF0(ε) ←r Z2k
q , and M⊥ ←r U3k,2k such that M>M⊥ = 0. Note that the extra term M⊥RF0(ε)

does not appear in pk, since M>(k1,β + M⊥RF0(ε)) = M>k1,β. ut

Lemma 6 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i such that
T(B2.i) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i −Adv2.i+1| ≤ 4 ·Advmddh
Uk,GGen(B2.i) +

4Qdec + 2k

q
+

4

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Proof of Lemma 6. To go from G2.i to G2.i+1, we introduce intermediate games G2.i.1, G2.i.2 and
G2.i.3, defined in Figure 7. We prove that these games are indistinguishable in Lemmas 7-10.

Lemma 7 (G2.i to G2.i.1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i.0 such that
T(B2.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i −Adv2.i.1| ≤ 2 ·Advmddh
Uk,GGen(B2.i.0) +

2

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the challenge
ciphertexts. We proceed in two steps, first, by changing the distribution of all the ciphertexts with
a tag τ such that τi+1 = 0, and then, for those with a tag τ such that τi+1 = 1. We use the MDDH
Assumption with respect to an independent matrix for each step.
Proof of Lemma 7. To go from G2.i to G2.i.1, we switch the distribution of the vectors [y] sampled
by EncO, using the Qenc-fold U3k,k-MDDH Assumption.
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Setup: G2.i, G2.i.1, G2.i.2 , G2.i.3

Tenc = Tdec := ∅; b←r {0, 1}
G ←r GGen(1λ); M←r U3k,k
M⊥ ←r U3k,2k s.t. M>M⊥ = 0

M0,M1 ←r U3k,k

M∗0,M
∗
1 ←r U3k,k s.t.

span(M⊥) = span(M∗0,M
∗
1)

M>M∗0 = M>
1M

∗
0 = 0 = M>M∗1 = M>

0M
∗
1

Pick random RFi : {0, 1}i → Z2k
q .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zkq

and RF
(1)
i : {0, 1}i → Zkq

Pick random RF
(0)
i+1,RF

(1)
i+1 : {0, 1}i+1 → Zkq .

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τi)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Return pk :=
(
G, [M],

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)

EncO(τ): G2.i, G2.i.1,G2.i.2,G2.i.3

y←r Z3k
q

If τi+1 = 0 : r←r Zkq ; r0 ←r Zkq ;y := Mr + M0r0
If τi+1 = 1 : r←r Zkq ; r1 ←r Zkq ;y := Mr + M1r1

K0 := [y> · k′τ ];
K1 ←r G
If τ /∈ Tdec ∪ Tenc, return (C := [y],Kb) and set
Tenc := Tenc ∪ {τ}.
Otherwise, return ⊥.

DecO(τ, C := [y], K̂): G2.i,G2.i.1,G2.i.2,G2.i.3

K := [y>k′τ ]

Return

{
1 if K̂ = K ∧ τ /∈ Tenc
0 otherwise

Tdec := Tdec ∪ {τ}.

Fig. 7. Games G2.i (for 0 ≤ i ≤ λ),G2.i.1, G2.i.2 and G2.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of Lemma 6. For all
τ ∈ {0, 1}λ, we denote by τ|i the i-bit prefix of τ . In each procedure, the components inside a solid (dotted, gray)
frame are only present in the games marked by a solid (dotted, gray) frame.

We introduce an intermediate game G2.i.0 where EncO(τ) is computed as in G2.i.1 if τi+1 = 0,
and as in G2.i if τi+1 = 1. Setup, DecO are as in G2.i.1. We build adversaries B′2.i.0 and B′′2.i.0 such
that T(B′2.i.0) ≈ T(B′′2.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) with poly(λ) independent of T(A), and

Claim 1: |Adv2.i −Adv2.i.0| ≤ AdvQenc-mddh
U3,k,GGen (B′2.i.0).

Claim 2: |Adv2.i.0 −Adv2.i.1| ≤ AdvQenc-mddh
U3k,k,GGen(B′′2.i.0).

This implies the lemma by Lemma 3 (self-reducibility of U3k,k-MDDH), and Lemma 1 (U3k,k-
MDDH⇔ Uk-MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G3k×k, [H] := [h1| . . . |hQenc ] ∈
G3k×Qenc) for the Qenc-fold U3k,k-MDDH Assumption with respect to M0 ←r U3k,k, B′2.i.0 does as
follows:

Setup: B′2.i.0 picks M ←r U3k,k, k1,0, . . . ,kλ,1 ←r Z3k
q , and computes pk as described in Figure 7.

For each τ queried to EncO or DecO, it computes on the fly RFi(τ|i) and k′τ := kτ +M⊥RFi(τ|i),

where kτ :=
∑λ

j=1 kj,τj , RFi : {0, 1}i → Z2k
q is a random function, and τ|i denotes the i-bit

prefix of τ (see Figure 7). Note that B′2.i.0 can compute efficiently M⊥ from M.
EncO: To simulate the oracle EncO(τ) on its j’th query, for j = 1, . . . , Qenc, B′2.i.0 computes [y] as

follows:

if τi+1 = 0 : r←r Zkq ; [y] := [Mr + hj ]

if τi+1 = 1 : [y]←r G3k
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This way, B′2.i.0 simulates EncO as in G2.i.0 when [hj ] := [M0r0] with r0 ←r Zkq , and as in G2.i

when [hj ]←r G3k.

DecO: Finally, B′2.i.0 simulates DecO as described in Figure 7.

Therefore, |Adv2.i −Adv2.i.0| ≤ AdvQenc-mddh
U3k,k,GGen(B′2.i.0).

To prove Claim 2, we build an adversary B′′2.i.0 against the Qenc-fold U3k,k-MDDH Assumption
with respect to a matrix M1 ←r U3k,k, independent from M0, similarly than B′2.i.0. ut

Lemma 8 (G2.i.1 to G2.i.2). For all 0 ≤ i ≤ λ− 1,

|Adv2.i.1 −Adv2.i.2| ≤
2Qdec + 2k

q
,

where Qdec is the number of times A queries DecO.

Here, we use a variant of the Cramer-Shoup information-theoretic argument to move from RFi
to RFi+1, thereby increasing the entropy of k′τ computed by Setup. For the sake of readability, we
proceed in two steps: in Lemma 8, we move from RFi to an hybrid between RFi and RFi+1, and in
Lemma 9, we move to RFi+1.
Proof of Lemma 8. In G2.i.2, we decompose span(M⊥) into two subspaces span(M∗

0) and span(M∗
1),

and we increase the entropy of the components of k′τ which lie in span(M∗
0). To argue that G2.i.1

and G2.i.2 are statistically close, we use a Cramer-Shoup argument [11].

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability at
least 1 − 2k

q over the random coins of Setup, (M‖M0‖M1) forms a basis of Z3k
q . Therefore, we

have span(M⊥) = Ker(M>) = Ker
(
(M‖M1)

>
)
⊕Ker

(
(M‖M0)

>
)
. We pick uniformly M∗

0 and M∗
1 in

Z3k×k
q that generate Ker

(
(M‖M1)

>
)

and Ker
(
(M‖M0)

>
)
, respectively (see Figure 1.1). This way,

for all τ ∈ {0, 1}λ, we can write

M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zkq are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zkq as follows:

RF
(0)
i+1(τ|i+1) :=

{
RF

(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zkq is a random function independent from RF

(0)
i . This way, RF

(0)
i+1 is a

random function.

We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2. We
decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ such that
τi+1 = 0, and the queries with a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G2.i.1 and G2.i.2 is that Setup computes k′τ using the random function

RF
(0)
i in G2.i.1, whereas it uses the random function RF

(0)
i+1 in G2.i.2 (see Figure 7). Therefore, by

definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in G2.i.1 and G2.i.2, and

the outputs of EncO and DecO are identically distributed. �
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Queries with τi+1 = 1:
Observe that for all y ∈ span(M,M1) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G2.i.2︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF
′(0)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

0RF
′(0)
i (τ|i)︸ ︷︷ ︸

=0

=

G2.i.1︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact that M>M∗

0 = M>
1M
∗
0 = 0 and thus y>M∗

0 = 0.

This means that:

– the output of EncO on any input τ such that τi+1 = 1 is identically distributed in G2.i.1 and
G2.i.2;

– the output of DecO on any input (τ, [y], K̂) where τi+1 = 1, and y ∈ span(M,M1) is the same
in G2.i.1 and G2.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 1,
and y /∈ span(M,M1). We introduce intermediate games G2.i.1.j , and G′2.i.1.j for j = 0, . . . , Qdec,
defined as follows:

– G2.i.1.j : DecO is as in G2.i.1 except that for the first j times it is queried, it outputs 0 to any
ill-formed query. EncO is as in G2.i.2.

– G′2.i.1.j : DecO as in G2.i.2 except that for the first j times it is queried, it outputs 0 to any
ill-formed query. EncO is as in G2.i.2.

We show that:

G2.i.1 ≡ G2.i.1.0 ≈s G2.i.1.1 ≈s . . . ≈s G2.i.1.Qdec
≡ G′2.i.1.Qdec

≈s G′2.i.1.Qdec−1 ≈s . . . ≈s G′2.i.1.0 ≡ G2.i.2

where we denote statistical closeness with ≈s and statistical equality with ≡.

It suffices to show that for all j = 0, . . . , Qdec − 1:

Claim 1: in G2.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G2.i.1.j ≈s G2.i.1.j+1, with statistical difference 1/q);

Claim 2: in G′2.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs 0 with overwhelming
probability 1− 1/q (this implies G′2.i.1.j ≈s G′2.i.1.j+1, with statistical difference 1/q)

where the probabilities are taken over the random coins of Setup.

Let us prove Claim 1. Recall that in G2.i.1.j , on its j + 1-st query, DecO(τ, [y], K̂) computes

K := [y>k′τ ], where k′τ :=
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
(see Figure 7). We prove that if

(τ, [y], K̂) is ill-formed, then K is completely hidden from A, up to its j+ 1-st query to DecO. The
reason is that the vector ki+1,1 in sk contains some entropy that is hidden from A. This entropy
is “released” on the j + 1-st query to DecO if it is ill-formed. More formally, we use the fact that
the vector ki+1,1 ←r Z3k

q is identically distributed as ki+1,1 + M∗
0w, where ki+1,1 ←r Z3k

q , and

w←r Zkq . We show that w is completely hidden from A, up to its j + 1-st query to DecO.
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– The public key pk does not leak any information about w, since

M>(ki+1,1 + M∗
0w ) = M>ki+1,1.

This is because M>M∗
0 = 0.

– The outputs of EncO also hide w.

• For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does EncO(τ).

• For τ such that τi+1 = 1, and for any y ∈ span(M,M1), we have:

y>(k′τ + M∗
0w ) = y>k′τ (2)

since M>M∗
0 = M>

1M
∗
0 = 0, which implies y>M∗

0 = 0.

– The first j outputs of DecO also hide w.

• For τ such that τi+1 = 0, k′τ is independent of ki+1,1, and therefore, so does DecO([y], τ, K̂).

• For τ such that τi+1 = 1 and y ∈ span(M,M1), the fact that DecO(τ, [y], K̂) is independent
of w follows readily from Equation (2).

• For τ such that τi+1 = 1 and y /∈ span(M,M1), that is, for an ill-formed query, DecO
outputs 0, independently of w, by definition of G2.i.1.j .

This proves that w is uniformly random from A’s viewpoint.

Finally, because the j+1-st query (τ, [y], K̂) is ill-formed, we have τi+1 = 1, and y /∈ span(M,M1),
which implies that y>M∗

0 6= 0. Therefore, the value

K = [y>(k′τ + M∗
0w)] = [y>k′τ + y>M∗

0︸ ︷︷ ︸
6=0

w]

computed by DecO is uniformly random over G from A’s viewpoint. Thus, with probability 1−1/q
over K ←r G, we have K̂ 6= K, and DecO(τ, [y], K̂) = 0.

We prove Claim 2 similarly, arguing than in G′2.i.1.j , the value K := [y>k′τ ], where k′τ :=
(
kτ +

M∗
0RF

(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
, computed by DecO(τ, [y], K̂) on its j + 1-st query, is completely

hidden from A, up to its j + 1-st query to DecO, if (τ, [y], K̂) is ill-formed. The argument goes
exactly as for Claim 1. � ut

Lemma 9 (G2.i.2 to G2.i.3). For all 0 ≤ i ≤ λ− 1,

|Adv2.i.2 −Adv2.i.3| ≤
2Qdec

q
,

where Qdec is the number of times A queries DecO.

Proof of Lemma 9. In G2.i.3, we use the same decomposition span(M⊥) = span(M∗
0,M

∗
1) as that in

G2.i.2. The entropy of the components of k′τ that lie in span(M∗
1) increases from G2.i.2 to G2.i.3. To

argue that these two games are statistically close, we use a Cramer-Shoup argument [11], exactly
as for Lemma 8.

We define RF
(1)
i+1{0, 1}i+1 → Zkq as follows:

RF
(1)
i+1(τ|i+1) :=

{
RF

(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1
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where RF′
(1)
i : {0, 1}i → Zkq is a random function independent from RF

(1)
i . This way, RF

(1)
i+1 is a

random function.
We show that the outputs of EncO and DecO are statistically close in G2.i.1 and G2.i.2. We

decompose the proof in two cases (delimited with �): the queries with a tag τ ∈ {0, 1}λ such that
τi+1 = 0, and the queries with tag τ such that τi+1 = 1.
Queries with τi+1 = 1:
The only difference between G2.i.2 and G2.i.3 is that Setup computes k′τ using the random function

RF
(1)
i in G2.i.2, whereas it uses the random function RF

(1)
i+1 in G2.i.3 (see Figure 7). Therefore, by

definition of RF
(1)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 1, k′τ is the same in G2.i.2 and G2.i.3, and

the outputs of EncO and DecO are identically distributed. �
Queries with τi+1 = 0:
Observe that for all y ∈ span(M,M0) and all τ ∈ {0, 1}λ such that τi+1 = 0,

G2.i.3︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i) + M∗

1RF
′(1)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

1RF
′(1)
i (τ|i)︸ ︷︷ ︸

=0

=

G2.i.2︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i+1(τ|i+1) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact M>M∗

1 = M>
0M
∗
1 = 0, which implies y>M∗

1 = 0.
This means that:

– the output of EncO on any input τ such that τi+1 = 0 is identically distributed in G2.i.2 and
G2.i.3;

– the output of DecO on any input (τ, [y], K̂) where τi+1 = 0, and y ∈ span(M,M0) is the same
in G2.i.2 and G2.i.3.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 0,
and y /∈ span(M,M0). The rest of the proof goes similarly than the proof of Lemma 8. See the
latter for further details. � ut

Lemma 10 (G2.i.3 to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i.3 such that
T(B2.i.3) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv2.i.3 −Adv2.i+1| ≤ 2 ·Advmddh
Uk,GGen(B2.i.3) +

2

q − 1

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

This transition is symmetric to the transition between G2.i and G2.i.1 (cf. Lemma 7): we use
the MDDH Assumption to “tightly” switch the distribution of all the challenge ciphertexts in two
steps; first, by changing the distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and
then, the distribution of those with a tag τ such that τi+1 = 1, using the MDDH Assumption with
respect to an independent matrix for each step.

Proof of Lemma 10. First, we use the fact that for all τ ∈ {0, 1}λ, M∗
0RF

(0)
i+1(τ|i)+M∗

1RF
(1)
i+1(τ|i+1) is

identically distributed to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k
q is a random function. This
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is because (M∗
0,M

∗
1) is a basis of span(M⊥). That means A’s view can be simulated only knowing

M⊥, and not M∗
0,M

∗
1 explicitly. Then, to go from G2.i.3 to G2.i+1, we switch the distribution of

the vectors [y] sampled by EncO, using the Qenc-fold U3k,k-MDDH Assumption (which is equivalent
to the Uk-MDDH Assumption, see Lemma 1) twice: first with respect to a matrix M0 ←r U3k,k for
ciphertexts with τi+1 = 0, then with respect to an independent matrix M1 ←r U3k,k for ciphertexts
with τi+1 = 1 (see the proof of Lemma 7 for further details). ut

Lemma 6 follows readily from Lemmas 7-10. ut

Lemma 11 (G2.λ). Adv2.λ ≤ Qenc

q .

Proof of Lemma 11. We show that the joint distribution of all the values K0 computed by EncO is
statistically close to uniform over GQenc . Recall that on input τ , EncO(τ) computes

K0 := [y>(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
q is a random function, and y←r Z3k

q (see Figure 6).
We make use of the following properties:

Property 1: all the tags τ queried to EncO, such that EncO(τ) 6= ⊥, are distinct.
Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}. This is because for all

queries (τ, [y], K̂) to DecO such that τ ∈ Tenc, DecO(τ, [y], K̂) = 0, independently of RFλ(τ), by
definition of G2.λ.

Property 3: with probability at least 1 − Qenc

q over the random coins of EncO, all the vectors y

sampled by EncO are such that y>M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is uniformly

random over
(
Z2k
q

)Qenc (from Property 1), independent of the outputs of DecO (from Property 2).
Finally, from Property 3, we get that the joint distribution of all the values K0 computed by EncO
is statistically close to uniform over GQenc , since:

K0 := [y>(kτ + M⊥RFλ(τ)) = [y>kτ + y>M⊥︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

This means that the values K0 and K1 are statistically close, and therefore, Adv3 ≤ Qenc

q . ut

Finally, Theorem 1 follows readily from Lemmas 4-11.
ut

4 Multi-ciphertext CCA-secure Public Key Encryption scheme

4.1 Our construction

We now describe the optimized IND-CCA-secure PKE scheme. Compared to the PCA-secure KEM
from Section 3, we add an authenticated (symmetric) encryption scheme (EncAE,DecAE), and set
the KEM tag τ as the hash value of a suitable part of the KEM ciphertext (as explained in the
introduction). A formal definition with highlighted differences to our PCA-secure KEM appears in
Figure 8.

We prove the security under the Uk-MDDH Assumption, which admits a tight reduction to the
standard k-Lin Assumption.
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GenPKE(1λ):

G ←r GGen(1λ); H←r H(1λ); M←r U3k,k
k1,0, . . . ,kλ,1 ←r Z3k

q

pk :=
(
G, [M],H,

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)
sk := (kj,β)1≤j≤λ,0≤β≤1

Return (pk, sk)

EncPKE(pk,M):

r←r Zkq ; y := Mr
τ := H([y])
kτ :=

∑λ
j=1 kj,τj

K := [r> ·M>kτ ]
φ := EncAE(K,M)
Return ([y], φ)

DecPKE(pk, sk, ([y], φ)):

τ := H([y]); kτ :=
∑λ
j=1 kj,τj ; K := [y>kτ ]

Return DecAE(K,φ).

Fig. 8. PKECCA, an IND-CCA-secure PKE. We color in blue the differences with KEMPCA, the IND-PCA-secure
KEM in Figure 4. Here, GGen is a prime-order group generator (see Section 2.3) , and AE := (EncAE,DecAE) is an
Authenticated Encryption scheme with key-space K := G (see Definition 7).

Theorem 2. The Public Key Encryption scheme PKECCA defined in Figure 8 has perfect correct-
ness, if the underlying Authenticated Encryption scheme AE has perfect correctness. Moreover, if
the Uk-MDDH Assumption holds in G, AE has one-time privacy and authenticity, and H generates
collision resistant hash functions, then PKECCA is IND-CCA secure. Namely, for any adversary A,
there exist adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A) + (Qdec +Qenc) ·poly(λ)
and

Advind-cca
PKECCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + ((4λ+ 2)Qdec +Qenc) ·Advae-ot

AE (B′′)

+ Advcr
H(B′) +Qenc(Qenc +Qdec) · 2−Ω(λ),

(3)

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

We note that the Qenc and Qdec factors in (3) are only related to AE. Hence, when using a
statistically secure (one-time) authenticated encryption scheme, the corresponding terms in (3)
become exponentially small.

Remark 2 (Extension to the multi-user CCA security). We only provide an analysis in the multi-
ciphertext (but single-user) setting. However, we remark (without proof) that our analysis gener-
alizes to the multi-user, multi-ciphertext scenario, similar to [6, 17, 19]. Indeed, all computational
steps (not counting the steps related to the AE scheme) modify all ciphertexts simultaneously, re-
lying for this on the re-randomizability of the Uk-MDDH Assumption relative to a fixed matrix M.
The same modifications can be made to many PKECCA simultaneously by using that the Uk-MDDH
Assumption is also re-randomizable across many matrices Mi. (A similar property for the DDH,
DLIN, and bilinear DDH assumptions is used in [6], [17], and [19], respectively.)

5 Security proof of PKECCA

Theorem 3. The Public Key Encryption scheme PKECCA defined in Figure 8, Section 3 has perfect
correctness, provided the underlying Authenticated Encryption scheme AE has perfect correctness.
Moreover, if the Uk-MDDH Assumption holds in G, AE has one-time privacy and authenticity, and
H generates collision resistant hash functions, then PKECCA is IND-CCA secure. Namely, for any
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adversary A, there exist adversaries B, B′, B′′ such that T(B) ≈ T(B′) ≈ T(B′′) ≈ T(A) + (Qdec +
Qenc) · poly(λ) and

Advind-cca
PKECCA

(A) ≤ (4λ+ 1) ·Advmddh
Uk,GGen(B) + (QencQdec + (4λ+ 2)Qdec +Qenc) ·Advae-ot

AE (B′′)

+ Advcr
H(B′) +Qenc(Qenc +Qdec) · 2−Ω(λ),

(4)
where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

We note that the Qenc and Qdec factors in (4) are only related to AE. Hence, when using
a statistically secure authenticated encryption scheme, the corresponding terms in (4) become
exponentially small.

Setup: G0, G1,G2, G3.i,G4

Cenc := ∅; b←r {0, 1}
Tenc = Tdec := ∅
G ←r GGen(1λ); H←r H(1λ); M←r U3k,k;

M⊥ ←r U3k,2k s.t. M>M⊥ = 0

Pick random RFi : {0, 1}i → Z2k
q

k1,0, . . . ,kλ,1 ←r Z3k
q

For τ ∈ {0, 1}λ, write kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

Return pk :=
(
G, [M],H,

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)

EncO(M0,M1): G0 , G1, G2,G3.i,G4

r←r Zkq ; y := Mr; y←r Z3k
q ;

τ := H([y]); K := [y> · k′τ ]
φ0 := EncAE(K,M0); φ1 := EncAE(K,M1)

Return ([y], φb) and set Cenc := Cenc ∪ {([y], φb)}.

If τ /∈ Tenc ∪ Tdec, return ([y], φb), set Tenc := Tenc ∪ {τ}
and Cenc := Cenc ∪ {([y], φb)}. Otherwise, return ⊥.

DecO([y], φ): G0 , G1,G2,G3.i , G4

τ := H([y]); K := [y> · k′τ ]

If ([y], φ) ∈ Cenc, return ⊥;
otherwise, return DecAE(K,φ).

If ([y], φ) ∈ Cenc or ∃([y′], φ′) ∈ Cenc
with H([y′]) = H([y]) and y′ 6= y, return ⊥;
otherwise, return DecAE(K,φ).
Set Tdec := Tdec ∪ {τ}.

If τ /∈ Tenc, return DecAE(K,φ); else, return ⊥.
Set Tdec := Tdec ∪ {τ}.

Fig. 9. Games G0,G1,G2,G3.i (for 0 ≤ i ≤ λ),G4 for the proof of multi-ciphertext CCA security of PKECCA in
Figure 8. In each procedure, the components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. We color in blue the differences with Figure 6, for the security proof of KEMPCA.

Proof of Theorem 3. Perfect correctness follows from the perfect correctness of AE and the fact that
for all r ∈ Zkq and y = Mr, for all k ∈ Z3k

q :

r>(M>k) = y> · k.

We now prove the IND-CCA security of PKECCA. We proceed via a series of games described
in Figures 9 and 10 and we use Advi to denote the advantage of A in game Gi.

Lemma 12 (G0 to G1). There exist adversaries B0 and B′0 such that T(B0) ≈ T(B′0) ≈ T(A) +
(Qenc +Qdec) · poly(λ) and

|Adv0 −Adv1| = 2Qdec ·Advae-ot
AE (B0) + Advcr

H(B′0) +
Qenc(Qenc +Qdec)

qk
,
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where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Here, we use the collision resistance of H and the one-time authenticity of AE to restrict the
oracles DecO and EncO.
Proof of Lemma 12. First, we use the one-time authenticity of AE to argue that if A queries DecO
on a vector [y] such that y /∈ span(M), then, DecO outputs ⊥, with overwhelming probability over
the random coins of Setup. Second, we use the collision resistance of H to argue that:
(i) if A queries DecO on ([y′], φ′), where for some previous output ([y], φ) of EncO, we have:
H([y]) = H([y′]) and y′ 6= y, then, with overwhelming probability over the random coins of A,
Setup and EncO: DecO outputs ⊥;
(ii) every time EncO outputs a vector [y], its tag H([y]) is fresh (no [y′] with the same tag has been
output by EncO or queried to DecO before), with overwhelming probability over EncO’s random
coins.

We introduce intermediate games G0.j (resp. G1.j) for j = 0, . . . , Qdec, defined as follows: DecO
is as in G0 (resp. G1) except that for the first j times it is queried, it outputs ⊥ to any query ([y], φ)
such that y /∈ span(M). Setup and EncO are as in G0 (resp. G1).

We show that:

G0 ≡ G0.0 ≈AE G0.1 ≈AE . . . ≈AE G0.Qdec
≈CR G1.Qdec

≈AE . . . ≈AE G1.0 ≡ G1

where ≡ denotes statistical equality, ≈AE denotes indistinguishability based on the security of AE,
and ≈CR denotes indistinguishability based on the collision resistance of H.

Namely, we build adversaries B0.j , B1.j for j = 0, . . . , Qdec − 1, and B′0 such that T(B0,j) ≈
T(B1,j) ≈ T(B′0) ≈ T(A) + (Qenc +Qdec) · poly(λ), where poly(λ) is independent of T(A), and such
that

Claim 1: |Adv0.j −Adv0.j+1| ≤ Advae-ot
AE (B0.j) and |Adv1.j −Adv1.j+1| ≤ Advae-ot

AE (B0.j), for
j = 0, . . . , Qdec − 1.

Claim 2: |Adv0.Qdec
−Adv1.Qdec

| ≤ Advcr
H(B′0).

This implies the lemma.
Let us prove Claim 1. It suffices to show that in G0.j and G1.j , with overwhelming probability

over the random coins of Setup, DecO outputs ⊥ to its j + 1-st query if it contains [y] such that
y /∈ span(M).

Recall that in both G0.j and G1.j , on its j + 1-st query ([y], φ), DecO computes

K := [y> · kτ ], where τ = H([y]) and kτ :=
λ∑
ρ=1

kρ,τρ ,

and returns DecAE(K,φ) (or ⊥, see Figure 9). We prove that this value K is hidden from A up to its
j+1-st query to DecO. Then, we use the one-time authenticity of AE to argue that DecAE(K,φ) = ⊥
with overwhelming probability.

To prove K is hidden from A, we show that the vectors k1,0,k1,1 in sk contain some entropy
that is hidden from A. More formally, we use the fact that the vectors k1,β ←r Z3k

q are identically

distributed than k1,β + M⊥w for β = 0, 1, where k1,β ←r Z3k
q , w ←r Zkq , and M⊥ ←r U3k,2k such

that M>M⊥ = 0. We show that w is hidden from A, up to its j + 1-st query to DecO.

– The public key pk does not leak any information about w, since

M>(k1,β + M⊥w ) = M>k1,β.
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This is because M>M⊥ = 0.
– The outputs of EncO also hide w, since for any y ∈ span(M), we have:

y>(kτ + M⊥w ) = y>k′τ (5)

since M>M⊥ = 0 which implies y>M⊥ = 0.
– The first j outputs of DecO also hide w.
• For y ∈ span(M), DecO([y], φ) is independent of w, from Equation (5).
• For y /∈ span(M), DecO([y], φ) = ⊥, independently of w, by definition of G0.j .

Therefore, the value
K = [y>(kτ + M⊥w)] = [y>kτ + y>M⊥︸ ︷︷ ︸

6=0

w]

computed by DecO on its j + 1-st query, is uniformly random over G from A’s view, since y /∈
span(M)⇔ y>M⊥ 6= 0.

Then, by one-time authenticity of AE, there exists an adversary B0.j such that T(B0,j) ≈
T(A) + (Qenc +Qdec) · poly(λ), where poly(λ) is independent of T(A), and

|Adv0.j −Adv0.j+1| ≤ Advae-ot
AE (B0.j).

Let us prove Claim 2. It suffices to show that in G0.Qdec
:

(i) if DecO is queried on ([y], φ), and there exists ([y′], φ′) output previously by EncO, with H([y]) =
H([y′]) and y′ 6= y, then, with overwhelming probability over the random coins of A, Setup and
EncO: DecO outputs ⊥;
(ii) every time EncO outputs a vector [y], its tag H([y]) is fresh (no [y′] with the same tag has been
output by EncO or queried to DecO before), with overwhelming probability over its random coins.

We define B′0 as follows. Upon receiving a challenge H ←r H(1λ) for the collision resistance of
H, B′0 picks b←r {0, 1}, k1,0, . . . ,kλ,1 ←r Z3k

q , and simulates Setup, EncO and DecO as in G0.Qdec
.

(i) Suppose B′0 receives some [y] through a DecO query, such that there is a [y′] from an earlier
EncO query with H([y]) = H([y′]), and y 6= y′. Then, we distinguish the following cases:

Case 1: y 6= y′. Then there is a collision H([y]) = H([y′]) that B′0 can directly output.
Case 2: y = y′ (but y 6= y′). Then, y /∈ span(M) (because y 6= y′), and DecO outputs ⊥, as would

happen both in G0.Qdec
and G1.Qdec

.

(ii) First, note that with probability at least 1 − Qenc(Qenc+Qdec)
qk

over its random coins, EncO

samples vectors [y] whose upper parts [y] are fresh (they are distinct from those previously sampled
by EncO, or queried to DecO). Therefore, conditioned on this fact, if B′0 samples τ := H([y]) that
is not fresh, i.e there exists a pair ([y′],H([y′]) = τ) previously output by EncO or queried to DecO
(along with some symmetric ciphertext φ), then we have H([y]) = H([y′]), and [y] 6= [y′], that is,
B′0 finds a collision.

Summarizing, both games G0.Qdec
and G1.Qdec

proceed identically (as simulated by B′0), unless
(i) Case 1 occurs, or (ii) EncO samples a tag that was output or queried before, in which case B′0
finds a collision, with overwhelming probability over its random coins. ut

Lemma 13 (G1 to G2). There exists an adversary B1 such that T(B1) ≈ T(A) + (Qenc +Qdec) ·
poly(λ) and

|Adv1 −Adv2| = Advmddh
Uk,GGen(B1) +

1

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).
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In Lemma 13, we use the MDDH assumption to “tightly” switch the distributions of all the challenge
ciphertexts, as for Lemma 4 in Section 3.

Lemma 14 (G2 to G3.0). |Adv2 −Adv3.0| = 0.

The proofs of Lemma 13 and 14 are almost identical to those of Lemma 4 and 5, respectively.
See the latter for further details.

Lemma 15 (G3.i to G3.i+1). For all 0 ≤ i ≤ λ− 1, there exist adversaries B3.i and B′3.i such that
T(B3.i) ≈ T(B′3.i) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i −Adv3.i+1| ≤ 4 ·Advmddh
Uk,GGen(B3.i) + 4Qdec ·Advae-ot

AE (B′3.i) +
4

q − 1
+

2k

q
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Proof of Lemma 15. To go from G3.i to G3.i+1, we introduce intermediate games G3.i.1, G3.i.2 and
G3.i.3, defined in Figure 10. We prove that these games are indistinguishable in Lemmas 16-19.

Setup: G3.i, G3.i.1, G3.i.2 , G3.i.3

Cenc := ∅; b←r {0, 1}
G ←r GGen(1λ); H←r H(1λ); M←r U3k,k
M⊥ ←r U3k,2k s.t. M>M⊥ = 0

M0,M1 ←r U2k,k

M∗0,M
∗
1 ←r U3k,k s.t.

span(M⊥) = span(M∗0,M
∗
1)

M>M∗0 =
(

0
M1

)>
M∗0 = 0

M>M∗1 =
(

0
M0

)>
M∗1 = 0

Pick random RFi : {0, 1}i → Z2k
q .

Pick random RF
(0)
i+1 : {0, 1}i+1 → Zkq

and RF
(1)
i : {0, 1}i → Zkq

Pick random RF
(0)
i+1,RF

(1)
i+1 : {0, 1}i+1 → Zkq .

k1,0, . . . ,kλ,1 ←r Z3k
q

For all τ ∈ {0, 1}λ, kτ :=
∑λ
j=1 kj,τj

k′τ := kτ + M⊥RFi(τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i (τ|i)

k′τ := kτ + M∗0RF
(0)
i+1(τ|i+1) + M∗1RF

(1)
i+1(τ|i+1)

Return pk :=
(
G, [M],H,

(
[M>kj,β ]

)
1≤j≤λ,0≤β≤1

)

EncO(M0,M1): G3.i, G3.i.1,G3.i.2,G3.i.3

r←r Zkq ; y := Mr; τ := H([y]); y←r Z2k
q

If τi+1 = 0 : r0 ←r Zkq ;y := Mr + M0r0
If τi+1 = 1 : r1 ←r Zkq ;y := Mr + M1r1

K := [y> · k′τ ]
φ0 := EncAE(K,M0); φ1 := EncAE(K,M1)
If τ /∈ Tenc ∪ Tdec, return ([y], φb), set Tenc := Tenc ∪ {τ}
and Cenc := Cenc ∪ {([y], φb)}. Otherwise, return ⊥.

DecO([y], φ): G3.i,G3.i.1,G3.i.2,G3.i.3

τ := H(y); K := [y>k′τ ]
If ([y], φ) ∈ Cenc or ∃([y′], φ′) ∈ Cenc with H([y′]) = H([y])
and y′ 6= y, return ⊥; otherwise, return DecAE(K,φ).
Set Tdec := Tdec ∪ {τ}.

Fig. 10. Games G3.i (for 0 ≤ i ≤ λ),G3.i.1, G3.i.2 and G3.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of Lemma 15. For all
τ ∈ {0, 1}λ, we denote by τ|i the i-bit prefix of τ . In each procedure, the components inside a solid (dotted, gray)
frame are only present in the games marked by a solid (dotted, gray) frame. We color in blue the differences with
Figure 7, for the security proof of KEMPCA.
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Lemma 16 (G3.i to G3.i.1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.0 such that
T(B3.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i −Adv3.i.1| ≤ 2 ·Advmddh
Uk,GGen(B3.i.0) +

2

q − 1
,

where poly(λ) is independent of T(A).

Here, we use the MDDH Assumption to “tightly” switch the distribution of all the challenge
ciphertexts, as in Lemma 7 in Section 3. We proceed in two steps, first, by changing the distribution
of all the ciphertexts with a tag τ such that τi+1 = 0, and then, for those with a tag τ such that
τi+1 = 1. We use the MDDH Assumption with respect to an independent matrix for each step.
Proof of Lemma 16. The proof of this lemma is essentially as the proof of Lemma 7, in Section 3.
The difference is that now, only the lower part of the vectors [y] sampled by EncO is randomized
using the Qenc-fold U2k,k-MDDH Assumption. The upper part of [y] is used to compute the tag τ .
We call y and y the upper and lower part of y, respectively.

We introduce an intermediate game G3.i.0 where EncO first picks r ←r Zkq , computes [y] :=

[Mr], τ := H([y]), and computes the rest of its output as in G3.i.1 if τi+1 = 0, and as in G3.i

if τi+1 = 1; Setup and DecO are as in G3.i.1. We build adversaries B′3.i.0 and B′′3.i.0 such that
T(B′3.i.0) ≈ T(B′′3.i.0) ≈ T(A) + (Qenc +Qdec) · poly(λ) with poly(λ) independent of T(A), and

Claim 1: |Adv3.i −Adv3.i.0| ≤ AdvQenc-mddh
U2k,k,GGen(B′3.i.0).

Claim 2: |Adv3.i.0 −Adv3.i.1| ≤ AdvQenc-mddh
U2k,k,GGen(B′′3.i.0).

This implies the lemma by Lemma 3 (self-reducibility of U2k,k-MDDH), and Lemma 1 (U2k,k-
MDDH⇔ Uk-MDDH).

Let us prove Claim 1. Upon receiving a challenge (G, [M0] ∈ G2k×k, [H] := [h1| . . . |hQenc ] ∈
G2k×Qenc) for the Qenc-fold U2k,k-MDDH Assumption with respect to M0 ←r U2k,k, B′3.i.0 does as
follows:

Setup: B′3.i.0 picks M←r U3k,k, k1,0, . . . ,kλ,1 ←r Z3k
q , H←r H(1λ), and computes pk as described

in Figure 10. For each τ computed while simulating EncO or DecO, B′3.i.0 computes on the
fly RFi(τ|i), k′τ := kτ + M⊥RFi(τ|i), where RFi : {0, 1}i → Z2k

q is a random function, kτ :=∑λ
j=1 kj,τj , and τ|i denotes the i-bit prefix of τ (see Figure 10). Note that B′3.i.0 can compute

efficiently M⊥ from M.

EncO(M0,M1): on the j’th query, for j = 1, . . . , Qenc, B′3.i.0 samples r← Zkq , computes [y] := [Mr],
τ := H([y]), and computes [y] as follows:

if τi+1 = 0 : [y] := [Mr + hj ]

if τi+1 = 1 : [y]←r G2k

This way, B′3.i.0 simulates EncO as in G3.i.0 when [hj ] := [M0r0] with r0 ←r Zkq , and as in G3.i

when [hj ]←r G2k.

DecO(C, φ): Finally, B′3.i.0 simulates DecO as described in Figure 10.

Therefore, |Adv3.i −Adv3.i.0| ≤ AdvQenc-mddh
U2k,k,GGen(B′3.i.0).

To prove Claim 2, we build an adversary B′′3.i.0 against the Qenc-fold U2k,k-MDDH Assumption
with respect to a matrix M1 ←r U2k,k, independent from M0, similarly than B′3.i.0. ut
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Lemma 17 (G3.i.1 to G3.i.2). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.1 such that
T(B3.i.1) ≈ T(A) + (Qenc +Qdec) · poly(λ), and

|Adv3.i.1 −Adv3.i.2| ≤ 2Qdec ·Advae-ot
AE (B3.i.1) +

2k

q

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

Here, we use a computational variant of the Cramer-Shoup information-theoretic argument to
move from RFi to RFi+1, thereby increasing the entropy of k′τ , as in Lemma 8, in Section 3. For the
sake of readability, we proceed in two steps: in Lemma 17, we move from RFi to an hybrid between
RFi and RFi+1, and in Lemma 18, we move to RFi+1.
Proof of Lemma 17. In G3.i.2, we decompose span(M⊥) into two spaces span(M∗

0) and span(M∗
1),

and we increase the entropy of the vector k′τ computed by EncO and DecO. More precisely, the
entropy of the components of k′τ that lie in span(M∗

0) increases from G3.i.1 to G3.i.2. To argue that
these two games are computationally indistinguishable, we use a Cramer-Shoup argument [11],
together with the one-time authenticity of AE.

Let us first explain how the matrices M∗
0 and M∗

1 are sampled. Note that with probability
1 − 2k

q over the random coins of Setup, (M‖
(

0
M0

)
‖
(

0
M1

)
) forms a basis of Z3k

q . Therefore, we have

span(M⊥) = Ker(M>) = Ker
(
(M‖

(
0

M1

)
)>
)
⊕ Ker

(
(M‖

(
0

M0

)
)>
)
.

We pick uniformly M∗
0 and M∗

1 in Z3k×k
q that generates Ker

(
(M‖

(
0

M1

)
)>
)

and Ker
(
(M‖

(
0

M0

)
)>
)
,

respectively. This way, for all τ ∈ {0, 1}λ, we can write

M⊥RFi(τ|i) := M∗
0RF

(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i),

where RF
(0)
i , RF

(1)
i : {0, 1}i → Zkq are independent random functions.

We define RF
(0)
i+1 : {0, 1}i+1 → Zkq as follows:

RF
(0)
i+1(τ|i+1) :=

{
RF

(0)
i (τ|i) if τi+1 = 0

RF
(0)
i (τ|i) + RF′

(0)
i (τ|i) if τi+1 = 1

where RF′
(0)
i : {0, 1}i → Zkq is a random function independent from RF

(0)
i . This way, RF

(0)
i+1 is a

random function.

We show that the outputs of EncO and DecO are computationally indistinguishable in G3.i.1

and G3.i.2. We decompose the proof in two cases (delimited with �): the queries corresponding to
a tag τ ∈ {0, 1}λ such that τi+1 = 0, and the queries corresponding to a tag τ such that τi+1 = 1.

Queries with τi+1 = 0:
The only difference between G3.i.1 and G3.i.2 is that Setup computes k′τ using the random function

RF
(0)
i in G3.i.1, whereas it uses the random function RF

(0)
i+1 in G3.i.2 (see Figure 10). Therefore, by

definition of RF
(0)
i+1, for all τ ∈ {0, 1}λ such that τi+1 = 0, k′τ is the same in G3.i.1 and G3.i.2, and

the outputs of EncO and DecO are identically distributed. �
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Queries with τi+1 = 1:
Observe that for all y ∈ span(M,

(
0

M1

)
) and all τ ∈ {0, 1}λ such that τi+1 = 1,

G3.i.2︷ ︸︸ ︷
y>
(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i) + M∗

0RF
′(0)
i (τ|i)

)
= y>

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
+ y>M∗

0RF
′(0)
i (τ|i)︸ ︷︷ ︸

=0

=

G3.i.1︷ ︸︸ ︷
y> ·

(
kτ + M∗

0RF
(0)
i (τ|i) + M∗

1RF
(1)
i (τ|i)

)
where the second equality uses the fact M>M∗

0 =
(

0
M1

)>
M∗

0 = 0 and thus y>M∗
0 = 0.

This means that:

– the outputs of EncO that contains [y] whose tag τ = H([y]) is such that τi+1 = 1 are identically
distributed in G3.i.1 and G3.i.2;

– the output of DecO on any input ([y], φ) where τ = H([y]), τi+1 = 1, and y ∈ span(M,
(

0
M1

)
) is

the same in G3.i.1 and G3.i.2.

Henceforth, we focus on the ill-formed queries to DecO, namely those corresponding to τi+1 = 1,
and y /∈ span(M,

(
0

M1

)
). We introduce intermediate games G3.i.1.j , and G′3.i.1.j for j = 0, . . . , Qdec,

defined as follows:

– G3.i.1.j : DecO is as in G3.i.1 except that for the first j times it is queried, it outputs ⊥ to any
ill-formed query. EncO is as in G3.i.2.

– G′3.i.1.j : DecO is as in G3.i.2 except that for the first j times it is queried, it outputs ⊥ to any
ill-formed query. EncO is as in G3.i.2.

We show that:

G3.i.1 ≡ G3.i.1.0 ≈AE G3.i.1.1 ≈AE . . . ≈AE G3.i.1.Qdec
≡ G′3.i.1.Qdec

G′3.i.1.Qdec
≈AE G′3.i.1.Qdec−1 ≈AE . . . ≈AE G′3.i.1.0 ≡ G3.i.2

where ≡ denote statistical equality, and ≈AE denotes indistinguishability based on the security of
AE.

It suffices to show that for all j = 0, . . . , Qdec−1, there exist adversaries B3.i.1.j and B′3.i.1.j against
the one-time authenticity of AE, such that T(B3.i.1.j) ≈ T(B′3.i.1.j) ≈ T(A)+(Qenc +Qdec) ·poly(λ),
with poly(λ) independent of T(A), and such that:

Claim 1: in G3.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs ⊥ with overwhelming
probability 1−Advae-ot

AE (B3.i.1.j) (this implies G3.i.1.j ≈AE G3.i.1.j+1).
Claim 2: in G′3.i.1.j , if the j + 1-st query is ill-formed, then DecO outputs 0 with overwhelming

probability 1−Advae-ot
AE (B′3.i.1.j) (this implies G′3.i.1.j ≈AE G′3.i.1.j+1),

where the probabilities are taken over the random coins of Setup.
We prove Claim 1 and 2 as in Lemma 8, in Section 3, arguing that the encapsulation key K

computed by DecO on an ill-formed j + 1-st query, is completely hidden from A, up to its j + 1-st
query to DecO. The reason is that the vector ki+1,1 in sk contains some entropy that is hidden
from A, and that is “released” on the j + 1-st query, if it is ill-formed. Then, we use the one-time
authenticity of AE to argue that DecO outputs ⊥ with overwhelming probability over the random
coins of Setup.� ut
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Lemma 18 (G3.i.2 to G3.i.3). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.2 such that
T(B3.i.2) ≈ T(A) + (Qenc +Qdec) · poly(λ),

|Adv3.i.2 −Adv3.i.3| ≤ 2Qdec ·Advae-ot
AE (B3.i.2)

where Qenc, Qdec are the number of times A queries DecO, and poly(λ) is independent of T(A).

Proof of Lemma 18. In G3.i.3, we use the same decomposition span(M⊥) = span(M∗
0,M

∗
1) as

that in G3.i.2. The entropy of the component of k′τ that lies in span(M∗
1) increases from G3.i.2 to

G3.i.3. That is, we use a random function RF
(1)
i+1 : {0, 1}i+1 → Zkq in place of the random function

RF
(1)
i : {0, 1}i → Zkq . To argue that these two games are computationally indistinguishable, we use

a computational variant of the Cramer-Shoup argument [11], exactly as in the proof of Lemma 17.

We define RF
(1)
i+1 → Zkq as follows:

RF
(1)
i+1(τ|i+1) :=

{
RF

(1)
i (τ|i) + RF′

(1)
i (τ|i) if τi+1 = 0

RF
(1)
i (τ|i) if τi+1 = 1

where RF′
(1)
i : {0, 1}i → Zkq is a random function independent from RF

(1)
i . This way, RF

(1)
i+1 is a

random function.

We show that the outputs of EncO and DecO are computationally indistinguishable in G3.i.1

and G3.i.2, similarly that in the proof of Lemma 9, in Section 3 (see the latter for further details).
ut

Lemma 19 (G3.i.3 to G3.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B3.i.3 such that
T(B3.i.3) ≈ T(A) + (Qenc +Qdec) · poly(λ) and

|Adv3.i.3 −Adv3.i+1| ≤ 2 ·Advmddh
Uk,GGen(B3.i.3) +

2

q − 1
,

where Qenc, Qdec are the number of times A queries EncO, DecO, respectively, and poly(λ) is
independent of T(A).

This transition is symmetric to the transition between G3.i and G3.i.1 (cf. Lemma 16): we use
the MDDH Assumption to “tightly” switch the distribution of all the challenge ciphertexts in two
steps; first, by changing the distribution of all the ciphertexts with a tag τ such that τi+1 = 0, and
then, the distribution of those with a tag τ such that τi+1 = 1, using the MDDH Assumption with
respect to an independent matrix for each step.

Proof of Lemma 19. First, we use the fact that for all τ ∈ {0, 1}λ, M∗
0RF

(0)
i+1(τ|i)+M∗

1RF
(1)
i+1(τ|i+1) is

identically distributed to M⊥RFi+1(τ|i+1), where RFi+1 : {0, 1}i+1 → Z2k
q is a random function. This

is because (M∗
0,M

∗
1) is a basis of span(M⊥). That means A’s view can be simulated only knowing

M⊥, and not M∗
0,M

∗
1 explicitly. Then, to go from G3.i.3 to G3.i+1, we switch the distribution

of the vectors [y] sampled by EncO, using the Qenc-fold U2k,k-MDDH Assumption (equivalent to
the Uk-MDDH Assumption, see Lemma 1) twice: first with respect to a matrix M0 ←r U2k,k for
ciphertexts with τi+1 = 0, then with respect to an independent matrix M1 ←r U2k,k for ciphertexts
with τi+1 = 1 (see the proof of Lemma 16 for further details). ut

Lemma 15 follows readily from Lemmas 16-19. ut
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Lemma 20 (G3.λ to G4). There exists an adversary B3.λ such that T(B3.λ) ≈ T(A) + (Qenc +
Qdec) · poly(λ), and

|Adv3.λ −Adv4| ≤ QdecQenc ·Advae-ot
AE (B3.λ) +

Qdec

q
,

where Qenc, Qdec are the number of times A queries DecO, and poly(λ) is independent of T(A).

Here, we use the one-time authenticity of AE to restrict the decryption oracle DecO.
Proof of Lemma 20. We use the one-time authenticity of AE to argue that with overwhelming
probability over the random coins of Setup, DecO outputs ⊥ on any input ([y], φ) such that for
some previous output ([y′], φ′) of EncO, H([y′]) = H([y]).

We introduce intermediate games G3.λ.j for j = 0, . . . , Qdec, defined as G3.λ, except that on
its first j query, DecO is as in G4, that is, it outputs ⊥ to any query corresponding to a tag τ
previously output by EncO.

We show that :

G3.λ ≡ G3.λ.0 ≈AE G3.λ.1 ≈AE . . . ≈AE G3.λ.Qdec
≡ G4,

where ≡ denotes statistical equality, and ≈AE denotes indistinguishability based on the security of
AE.

Namely, we build adversaries B3.λ.j for j = 0, . . . , Qdec−1, such that T(B3.λ.j) ≈ T(A)+(Qenc+
Qdec) · poly(λ), where poly(λ) is independent of T(A), and

|Adv3.λ.j −Adv3.λ.j+1| ≤ Qenc ·Advae-ot
AE (B3.λ.j) +

1

q
.

This implies the lemma.
It suffices to show that in G3.λ.j , with overwhelming probability over the random coins of A,

Setup and EncO: DecO outputs ⊥ to its j+ 1-st query if it contains [y?] such that H([y?]) = H([y]),
for [y] that was output previously by EncO.

We build B3.λ.j as follows.

Setup : Upon receiving the description of K := G, B3.λ.j picks M ←r U3k,k, k1,0, . . . ,kλ,1 ←r Z3k
q ,

H ←r H(1λ), and outputs pk as in G4 (see Figure 9). It also picks j? ←r {1, . . . , Qenc}, and
b←r {0, 1}.

EncO(M0,M1) : On the j?’th query, B3.λ.j picks y ←r Z3k
q , calls ot-EncO(Mb,Mb) to get φb :=

EncAE(K?,Mb), for a random K? ←r G. The rest of the simulation goes as in G4 (see Figure 9),
that is: if H([y]) /∈ Tenc ∪ Tdec, B3.λ.j returns ([y, ], φb), sets Tenc := Tenc ∪ {H([y])} and Cenc :=
Cenc ∪ {([y], φb)}, otherwise, it returns ⊥. The other j 6= j? queries are simulated as in G4.

DecO([y], φ): the first j queries are simulated as in G4, the last Qenc−j−1 as in G3.λ. For the j+1-
st query ([y?], φ?), B3.λ.j calls ot-DecO([y?], φ?) to get DecAE(K?, φ?). The rest of the simulation
goes as in G3.i, that is, if ([y?], φ?) ∈ Cenc or ∃([y], φ) ∈ Cenc with H([y?]) = H([y]) and y? 6= y,
B3.λ.j returns ⊥. Otherwise, it returns DecAE(K?, φ?). Finally, it sets Tdec := Tdec ∪ {H([y?])}.

Assume the j + 1-st query ([y?], φ?) to DecO is such that DecO([y?], φ?) = ⊥ in G4, but not
in G3.λ.j . In particular, that means that there exists ([y], φ) ∈ Cenc such that y = y? and φ 6= φ?.
Then, with probability 1/Qenc over the choice of j?, ([y], φ) is the j?’th query of EncO. In that case,
we show that A’s view is simulated as in G3.λ.j if ot-DecO is the real decryption oracle, and as in
G4 if it is the “always ⊥” function. This implies the lemma.

Indeed, the key K? := [y?>(kτ? + M⊥RFλ(τ?))] for τ? := H([y?]) is random, independent from
A’s view up to its j + 1-st query on DecO (except what leaks through EncAE(K?,Mb)). This is
because:
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1. with probability 1/q over the random coins of B3.λ.j , y? ←r Z3k
q /∈ span(M).

2. for all [y] contained in EncO outputs or DecO queries that don’t output ⊥, prior to the j+ 1-st
DecO query, we have H([y]) 6= τ?, by definition of G3.λ.j . That is, the tag τ? is “fresh”. Therefore,
the key

K? := [y?>(kτ? + M⊥RFλ(τ?))] = [y>kτ? + y?>M⊥︸ ︷︷ ︸
6=0

RFλ(τ?)]

is random, independent of A’s view up to its j + 1-st query (except what leaks through
EncAE(K?,Mb)).

This proves that

|Adv3.λ.j −Adv3.λ.j+1| ≤ Qenc ·Advae-ot
AE (B3.λ.j) +

1

q
.

ut

Lemma 21 (G4). There exists an adversary B4 such that T(B4) ≈ T(A) + (Qenc +Qdec) · poly(λ),
such that

Adv4 ≤ Qenc ·Advae-ot
AE (B4) +

Qenc

q
,

where Qenc and Qdec are the number of times A queries DecO, and poly(λ) is independent of T(A).

Proof of Lemma 21. First, we show that the joint distribution of all the values K computed by
EncO is statistically close to uniform over GQenc . Then, we use the one-time privacy of AE on each
one of the Qenc symmetric ciphertexts.

Recall that on input τ , EncO(τ) computes

K := [y>(kτ + M⊥RFλ(τ))],

where RFλ : {0, 1}λ → Z2k
q is a random function, and y←r Z3k

q .
We make use of the following properties:

Property 1: all the tags τ computed by EncO(M0,M1), such that EncO(M0,M1) 6= ⊥, are distinct.
Property 2: the outputs of DecO are independent of {RF(τ) : τ ∈ Tenc}. This is because for all

queries ([y], φ) to DecO such that H([y]) ∈ Tenc, DecO([y], φ) = ⊥, independently of RFλ(τ), by
definition of G4.

Property 3: with probability at least 1 − Qenc

q over the random coins of EncO, all the vectors y

sampled by EncO are such that y>M⊥ 6= 0.

We deduce that the joint distribution of all the values RFλ(τ) computed by EncO is uniformly

random over
(
Z2k
q

)Qenc (from Property 1), independent of the outputs of DecO (from Property 2).
Finally, from Property 3, we get that the joint distribution of all the values K computed by EncO
is statistically close to uniformly random over GQenc , since:

K := [y>(kτ + M⊥RFλ(τ)) = [y>kτ + y>M⊥︸ ︷︷ ︸
6=0 w.h.p.

RFλ(τ)].

Therefore, we can use the one-time privacy of AE to argue that all symmetric ciphertexts φb
computed by EncO don’t reveal b (this uses a Qenc-hybrid argument). ut

Finally, Theorem 3 follows readily from Lemmas 12-21. ut
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6 Tightly secure, Quasi-adaptive Zero-Knowledge arguments for Linear
Subspaces

Here, we show how we can apply our PCA-secure KEM of Section 3 to obtain tightly secure,
(Designated-Verifier) Quasi-Adaptive Non-Interactive Zero-Knowledge arguments ((DV)QANIZK)
for linear subspaces, with strong simulation soundness. In Section 6.1, we recall the definitions
of QANIZK and DVQANIZK arguments. In Section 6.2, we give a generic construction of a
DVQANIZK argument for linear language, from a PCA-secure KEM and a concrete instantia-
tion of this generic construction, using the PCA-secure KEM presented in Section 3. Finally, in
Section 6.3, we give a QANIZK argument for linear language, which is more efficient than simply
upgrading the DVQANIZK in Section 6.2 with pairings.

6.1 Quasi-adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the common reference string
(CRS) is allowed to depend on the specific language for which proofs have to be generated [20].
The CRS is generated in a specific way and contains a fixed part par, produced by an algorithm
Genpar, and a language-dependent part crs. However, for the zero-knowledge property there should
exist a single simulator for the entire class of languages.

For public parameters par produced by Genpar, let Dpar be a probability distribution over a
collection of relations R = {Rρ} parametrized by a string ρ with an associated language Lρ = {y :
∃x s.t. Rρ(y, x) = 1}.

We now give a formal definition of QANIZK for Dpar in its tag-based variant. The tag-based
version can be transformed into a standard QANIZK using a one-time signature.

Definition 8 (QANIZK Argument). A Quasi-adaptive Non-Interactive Zero Knowledge Argu-
ment (QANIZK) Π for a language distribution Dpar consists of five PPT algorithms Π = (Genpar,
Gencrs,Prove, Sim,Ver):
– The probabilistic key generation algorithm Genpar(1

λ) returns the public parameters par.
– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs, and a trapdoor

trap. We assume that crs implicitly contains par and ρ, and that it defines a tag-space T . (This
is the classical QANIZK setting.) If T is not specified then T = {ε} and tags can be ignored in
all algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π, with respect to tag τ ∈ T .
– The probabilistic verification algorithm Ver(crs, τ, y, π) returns 1 or 0, where 1 means that π is

a valid proof of y ∈ Lρ.
– The probabilistic proving algorithm Sim(crs, trap, τ, y) returns a proof π for some y ∈ Y (not

necessarily in Lρ) with respect to tag τ ∈ T .
We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (x, y) with
Rρ(y, x) = 1, all τ ∈ T , we have

Pr[Ver(crs, τ, y, π) = 1|(crs, trap)←r Gencrs(par, ρ);π ←r Prove(crs, τ, x, y)] = 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (crs, trap)
output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove,Sim).
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Unbounded Simulation Soundness [32, 12]. For all PPT adversaries A,

Advuss
Π (A) := Pr

[
win = 1|ASetup,SimO(·,·),VerO(·,·,·)

]
is negligible, where:

– Setup sets win := 0, Tsim := ∅, then samples par ←r Genpar(λ); ρ ←r Dpar; (crs, trap) ←r

Gencrs(par, ρ) and returns crs. We require that Setup must be called once at the beginning of
the game.

– SimO(τ, y) returns π := Sim(crs, trap, τ, y) and sets Tsim := Tsim ∪ {τ}.
– VerO(τ?, y?, π?) sets win = 1 if Ver(crs, τ?, y?, π?) = 1 ∧ y? /∈ Lρ ∧ τ? /∈ Tsim. VerO is called

at most once.

Now, we give the definition of Designated-Verifier QANIZK (DVNIZK) arguments in their tag
based variant. Roughly speaking, a DVQANIZK is a QANIZK where a secret verification key vk
is needed to verify the membership of an instance, unlike a regular QANIZK where only the crs is
needed.

Definition 9 (DVQANIZK Argument). A Designated-Verifier, Quasi-adaptive Non-Interactive
Zero Knowledge Argument (DVQANIZK) Π for a language distribution Dpar consists of five PPT
algorithms Π = (Genpar,Gencrs,Prove,Sim,Ver):
– The probabilistic key generation algorithm Genpar(1

λ) returns the public parameters par.
– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs, a trapdoor trap,

and a verification key vk. We assume that crs implicitly contains par and ρ, and that it defines
a tag-space T . If T is not specified then T = {ε} and tags can be ignored in all algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π, with respect to tag τ ∈ T .

– The probabilistic verification algorithm Ver(crs, vk , τ, y, π) returns 1 or 0, where 1 means that
π is a valid proof of y ∈ Lρ.

– The probabilistic proving algorithm Sim(crs, trap, τ, y) returns a proof π for some y ∈ Y (not
necessarily in Lρ) with respect to tag τ ∈ T .

We require that the algorithms satisfy the following properties:

Perfect completeness. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (x, y) with
Rρ(y, x) = 1, all τ ∈ T , we have

Pr[Ver(crs, vk, τ, y, π) = 1|(crs, trap, vk)←r Gencrs(par, ρ);π ←r Prove(crs, τ, x, y)] = 1.

Perfect zero-knowledge. For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (crs, trap)
output by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T , the distributions

Prove(crs, τ, x, y) and Sim(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove, Sim).

Strong Unbounded Simulation Soundness. For all PPT adversaries A,

Advuss
Π (A) := Pr

[
∃(τ?, y?, π?) ∈ Qver s.t.
y? /∈ Lρ ∧ VerO(τ?, y?, π?) = 1

∣∣∣ASetup,SimO(·,·),VerO(·,·,·)
]

is negligible, where:

– Setup sets Qver = Tsim = Tver := ∅, samples par ←r Genpar(λ); ρ ←r Dpar; (crs, trap, vk) ←r

Gencrs(par, ρ) and returns crs. Setup is called once at the beginning of the game.
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– SimO(τ, y): if τ /∈ Tver ∪ Tsim, it returns π := Sim(crs, trap, τ, y) and sets Tsim := Tsim ∪ {τ};
otherwise, it returns ⊥.

– VerO(τ, y, π) returns 1 if Ver(crs, vk, τ, y, π) = 1∧ τ /∈ Tsim, 0 otherwise. Then it sets Qver :=
Qver ∪ {(τ, y, π)}, Tver := Tver ∪ {τ}.

Unbounded Simulation Soundness. This property is defined as Strong Unbounded Simulation
Soundness except the adversary is only allowed one call to VerO. This is the standard notion of
unbounded simulation soundness [32, 12].

6.2 Generic construction of DVQANIZK argument for linear subspace, with strong
simulation soundness

In this section we describe a tightly-secure, Designated-Verifier Quasi-adaptive Non-Interactive
Zero Knowledge Argument for linear subspaces with strong unbounded simulation-soundness (see
Definition 9).

We use Genpar = GGen. That is, Genpar(1
λ) returns par = G, where G = (G, q, g) contains a

cyclic group G generated by g of order q (see Section 2.3). The probability distribution Dpar returns
a matrix ρ = [M] ∈ Gn×t, for integers n > t. We consider the case of witness sampleable (WS) [20]
distributions, where there exist an efficiently sampleable distribution D′par that outputs M′ ∈ Zn×tq

such that [M′] has the same distribution as [M]. Note that this slightly restricts the set of languages
that can be handled. Given par and ρ, the language LM is defined as

LM =
{

[y] ∈ Gn : ∃ x ∈ Ztq s.t. y = Mx
}
.

The DVNIZK construction is given in Figure 11. When instantiated with the IND-PCA-secure

Gencrs(par, [M] ∈ Gn×t):
(pk, sk)←r GenKEM(1λ)
k←r Znq
crs :=

(
[M>k], pk

)
trap := k
vk := (k, sk)
Return (crs, trap, vk).

Prove(crs, τ, [y],x): // y = Mx

(C,K)←r EncKEM(pk, τ)
[u] := [x> ·M>k] +K
Return (C, [u])

Sim(crs, trap, τ, [y]):

(C,K)←r EncKEM(pk, τ)
[u] := [y> · k] +K
Return (C, [u])

Ver(crs, vk, τ, [y], (C, [u])):

K := DecKEM(pk, sk, τ, C)
Return 1 if K 6= ⊥ ∧ [u] = [y> · k] + K, 0
otherwise.

Fig. 11. DVQANIZK argument Πdv
uss with strong unbounded simulation-soundness, where KEMPCA :=

(GenKEM,EncKEM,DecKEM) is an IND-PCA-secure KEM with key space K := G.

KEM from Figure 4 (Section 3) we obtain the DVQANIZK argument described in Figure 12.

Theorem 4. The DVQANIZK argument Πdv
uss defined in Figure 11 has perfect zero-knowledge.

Suppose in addition that the underlying KEM KEMPCA has perfect completeness, then, so does Πdv
uss.

Finally, if KEMPCA is IND-PCA-secure, then, Πdv
uss has strong unbounded simulation soundness.

Namely, for any adversary A, there exists an adversary B with T(A) ≈ T(B)+(Qsim+Qver)·poly(λ)
such that

Advuss
Πdv

uss
(A) ≤ 2Advind-pca

KEMPCA
(B) +

Qver

q
,
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Gencrs(G, [M] ∈ Gn×t):
B←r U3k,k; k←r Znq ; k1,0, . . . ,kλ,1 ←r Z3k

q

crs :=
(

[M>k], [B],
(
[B>kj,β ]

)
1≤j≤λ,0≤β≤1

)
trap := k

vk :=
(
k, (kj,β)1≤j≤λ,0≤β≤1

)
Return (crs, trap, vk).

Prove(crs, τ, [y],x): // y = Mx

r←r Zkq ; kτ :=
∑λ
j=1 kj,τj

t := Br
[u] := [x> ·M>k + r> ·B>kτ ]
Return ([t], [u]) ∈ G3k+1

Sim(crs, trap, τ, [y]):

r←r Zkq ; kτ :=
∑λ
j=1 kj,τj

t := Br
[u] := [y> · k + r> ·B>kτ ]
Return ([t], [u]) ∈ G3k+1

Ver(crs, vk, τ, [y], ([t], [u])):

kτ :=
∑λ
j=1 kj,τj

Return 1 if [u] = [y> · k + t>kτ ], 0 otherwise.

Fig. 12. DVQANIZK argument Πdv
uss with strong unbounded simulation-soundness under the Uk-MDDH Assumption

(⇔ U3k,k-MDDH Assumption, by Lemma 1) and tag-space T = {0, 1}λ.

where Qsim, Qver, is the number of times A queries SimO, VerO, respectively, and poly(λ) is inde-
pendent of T(A).

Setup: G0,G1

Qver = Tver = Tsim := ∅
(pk, sk)←r GenKEM(1λ); k←r Znq
[M]←r Dpar

Return crs := ([M>k], pk).
//crs defines the tag-space T = {0, 1}λ.

SimO([y], τ): G0, G1

(K,C)←r EncKEM(pk, τ)

K′ := K; K′ ←r G
[u] := [y>k] +K′

If τ /∈ Tsim ∪ Tver, return π := (C, [u]) and set
Tsim := Tsim ∪ {τ}; otherwise return ⊥.

VerO(τ, [y], π := (C, [u])): G0, G1

K := DecKEM(sk, τ, C)
Return 1 if τ /∈ Tsim∧K 6= ⊥∧ [u] = [y>k]+K, 0 otherwise.
Tver := Tver ∪ {τ}; Qver := Qver ∪ {(τ, [y], π)}

Fig. 13. Games G0,G1 for the proof of Theorem 4. In each procedure, the components inside a solid frame are only
present in the games marked by a solid frame.

Proof of Theorem 4. Perfect completeness and perfect zero-knowledge follow readily from the cor-
rectness of KEMPCA, and the fact that for all x ∈ Ztq and y = Mx, for all k ∈ Znq :

x>(M>k) = y>k.

We proceed to establish strong unbounded simulation soundness (see Definition 8), via a series
of games described in Figure 13. We use Advi to denote the advantage of A in Game i.

Lemma 22. There exists an adversary B such that T(B) ≈ T(A) + (Qsim +Qver) · poly(λ) and

|Adv0 −Adv1| ≤ 2Advind-pca
KEMPCA

(B),

where Qsim, Qver, is the number of times A queries SimO, VerO, respectively, and poly(λ) is inde-
pendent of T(A).
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Here, we use the PCA-security of KEMPCA to change the distribution of the simulated proofs.
Proof of Lemma 22. In G1, we switch the distribution of the value of [u] computed by SimO to a
uniformly random element, using the IND-PCA security of KEMPCA.

We build adversary B as follows.

Setup: B calls the Setup oracle for the multi-ciphertext PCA security game (see Definition 6), and
gets pk, the public key of the KEM, which contains the description of a prime-order group
G. Then, B samples M ←r D′par (recall that Dpar is WS, thus, [M] follows distribution Dpar),
k←r Znq , and returns (G, crs := ([M>k], pk), [M]).

SimO(τ, [y]): B calls EncO(τ) and gets (C,Kb) if τ /∈ Tver ∪ Tsim, ⊥ otherwise. In the former case,
B computes [u] := [y>k] +Kb and returns (C, [u]) to A.

VerO(τ, [y], (C, [u])): B computes K̂ := [u] − [y>k], and returns DecO(τ, C, K̂). Note that when
τ /∈ Tsim, we have:

DecO(τ, C, K̂) = 1 iff [u] = [y>k] +K, with K = DecKEM(τ, C) 6= ⊥.

If τ ∈ Tsim, DecO(τ, C, K̂) = 0 and B returns 0.

This way, when b = 0 in the IND-PCA-security game, B simulates the game G0, and when
b = 1, it simulates G1. Note that B can efficiently compute M⊥ from M, and therefore, it can
efficiently check the winning condition of A. Therefore, |Adv0 −Adv1| ≤ 2Advind-pca

KEMPCA
(B). ut

Lemma 23. Adv1 ≤ Qver

q , where Qver is the number of times A queries VerO.

Proof of Lemma 23. We bound Adv1 via an information-theoretic argument. We introduce inter-
mediate games G1.j , for j = 0, . . . , Qver, where Qver is the number of times A queries VerO, defined
as follows: VerO is as in G1 except that for the first j times it is queried, it outputs 0 to any input
containing [y] /∈ ρ. SimO is as in G1.

We show that:
G1 ≡ G1.0 ≈s G1.1 ≈s . . . ≈s G1.Qver

where we denote statistical closeness with ≈s and statistical equality with ≡.
It suffices to show that for all j = 0, . . . , Qver − 1, in G1.j , VerO outputs 0 to its j + 1-st query,

with overwhelming probability 1− 1/q over the random coins of Setup (this implies G1.j ≈s G1.j+1,
with statistical difference 1/q).

The intuition is that the vector k in vk contains some entropy that is hidden to the adversary.
Indeed, in G1, each simulated proof (C, [u]) leaks no information about k, since [u] is uniformly
random. More formally, we use the fact that k←r Znq is identically distributed to k+M⊥w, where

k ←r Znq , w ←r Zn−tq , and M⊥ ←r Un,n−t such that M>M⊥ = 0. We show that w is completely
hidden from A, up to its j + 1-st query to VerO.

– The crs contains no information about w, since M>(k + M⊥w) = M>k.
– For all simulated proofs (C, [u]), u←r Zq is independent from k.
– The first j times it is queried, VerO outputs 0, independently of its input, by definition of G1.j .

Suppose that the j + 1-st query of A to VerO is: (τ?, [y?], π?) such that VerO(τ?, [y?], π?) =
1 ∧ [y?] /∈ LM. This implies that π? := (C?, [u?]) is such that [u?] = [y?>(k + M⊥w)] + K? where
K? := DecKEM(sk, τ, C?); and y?>M⊥ 6= 0.

This means that A has to guess the uniformly random value

[y?>k + y?>M⊥w︸ ︷︷ ︸
6= 0, independent from A’s view

] +K?
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in order to win the game, which succeeds with probability 1/q over the random coins of Setup. ut

This completes the proof of Theorem 4. ut

6.3 Tightly secure, QANIZK argument for linear subspace, with unbounded
simulation soundness

In this section, we show how to adapt the DVQANIZK argument for linear subspace presented
in Section 6.2, to a (publicly verifiable) QANIZK argument. The intuition behind our QANIZK
construction is as follows. We use a (non-generic) technique from [22] to upgrade a DVQANIZK with
unbounded simulation soundness to a QANIZK with unbounded simulation soundness using the
Kernel Diffie-Hellman Assumption over pairing groups. Applying this technique to the DVQANIZK
of Section 6.2 already leads to a QANIZK but as the above transformation only requires unbounded
simulation soundness (in contrast to strong unbounded simulation soundness) we can apply the
transformation to a simplified DVQANIZK leading to considerable efficiency improvements.

In Section 6.3, we recall the definition of pairing groups and recall the definition of the Kernel-
Diffie-Hellman Assumption [27], which is the computational analogue of the MDDH Assumption.
In Section 6.3, we give a QANIZK argument for linear languages.

Pairing groups. Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2, q, P1, P2) of asymmetric pairing groups where G1, G2,
GT are cyclic group of order q for a λ-bit prime q, P1 and P2 are generators of G1 and G2,
respectively, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Define PT := e(P1, P2), which is a generator of GT . We again use implicit representation of group
elements. For s ∈ 1, 2, T and a ∈ Zq, define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs . Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two matrices A, B
with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [27] is a natural computational analogue of
the Dk-MDDH Assumption.

Definition 10 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let Dk be a matrix
distribution and s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman (Dk-KerMDH) Assumption
holds relative to GGen in group Gs if for all PPT adversaries A,

Advkmdh
Dk,GGen(A) := Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←r A(G, [A]s)] = negl(λ),

where the probability is taken over G ←r GGen(1λ), A←r Dk.

Note that we can use a non-zero vector in the kernel of A to test membership in the column space
of A. This means that the Dk-KerMDH assumption is a relaxation of the Dk-MDDH assumption,
as captured in the following lemma from [27].

Lemma 24 ([27]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KerMDH.

Our construction. In this section we describe a Tightly-secure, Quasi-adaptive Non-Interactive
Zero Knowledge Argument for linear spaces with unbounded simulation soundness (see Defini-
tion 8).

We use Genpar = GGen. That is, Genpar(1
λ) returns par = PG, where PG = (G1,G2, q, P1, P2)

describes asymmetric pairing groups (see Section 6.3). The probability distribution Dpar returns a
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matrix ρ = [M]1 ∈ Gn×t
1 , for integers n > t. We again consider the case of witness sampleable (WS)

distributions, see Section 6.2. Given par and ρ, the language LM is defined as

LM =
{

[y]1 ∈ Gn
1 : ∃ x ∈ Ztq s.t. y = Mx

}
.

Our QANIZK construction is given in Figure 14.

Gen(par, [M]1 ∈ Gn×t1 ):

A,B←r Dk
K←r Zn×(k+1)

q

K1,0, . . . ,Kλ,1 ←r Zk×(k+1)
q

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,(

[Kj,bA]1, [B
>
Kj,b]1

)
1≤j≤λ,0≤b≤1

)
trap := K
Return (crs, trap)
//crs defines tag-space T = {0, 1}λ

Prove(crs, τ, [y]1,x): // y = Mx

r←r Zkq ; t := Br

u := x> ·M>K + r> ·
∑λ
j=1 B

>
Kj,τj

Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)
1

Verify(crs, τ, [y], π):

Parse π = ([t]1, [u]1)
Compute Kτ :=

∑λ
j=1 Kj,τj

Check: e([u]1, [A]2) = e([y>]1, [KA]2) +
e([t>]1, [KτA]2)

Sim(crs, trap = K, τ, [y]1):

r←r Zkq ; t := Br

u := y> ·K + r> ·
∑λ
j=1 B

>
Kj,τj

Return π := ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)
1

Fig. 14. QANIZK argument Πuss with (adaptive) unbounded simulation-soundness for WS distributions under the
Dk-MDDH Assumption and tag-space T = {0, 1}λ. Here, B ∈ Zk×kq denotes the upper square matrix of B.

Theorem 5. The protocol Πuss defined in Figure 14 has perfect completeness and perfect zero-
knowledge. Suppose in addition that the distribution of the matrix M is witness sampleable. Then,
under the Dk-MDDH Assumption in G1, and the Dk-KerMDH Assumption in G2, the protocol has
adaptive unbounded simulation soundness (see Definition 8). Namely, for any adversary A, there
exist adversaries B and C such that T(C) ≈ T(B) ≈ T(A) +Qsim · poly(λ) such that

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen(B) + 4λAdvmddh

Dk,GGen(C) + 2−Ω(λ),

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).

Proof of Theorem 5. Perfect completeness and perfect zero-knowledge follow readily from the fact

that for all x ∈ Ztq and y = Mx, for all K ∈ Zn×(k+1)
q :

x>(M>K) = y>K.

We proceed to establish adaptive unbounded simulation soundness. We show that for any ad-
versary A against the simulation soundness, there exist adversaries B and C such that T(C) ≈
T(B) ≈ T(A) +Qsim · poly(λ), and

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen(B) + 4λ ·Advmddh

Dk,GGen(C) + 2−Ω(λ),

where Qsim is the number of times A queries SimO and poly(λ) is independent of T(A).
We proceed via a series of games described in Figure 15, and we use Advi to denote the

advantage of A in Game Gi.
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Setup: G0,G1, G2,i

win := 0; Tsim := ∅; PG ←r GGen(1λ); [M]1 ←r

Dpar;

M←r D′par,
M⊥ ←r Un,n−t s.t. M>M⊥ = 0
Pick random RFi : {0, 1}i → Zn−tq

A,B←r Dk; a⊥ ←r Uk+1,1 s.t. A>a⊥ = 0

K←r Zn×(k+1)
q

K1,0, . . . ,Kλ,1 ←r Zk×(k+1)
q

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,(

[Kj,bA]2, [B
>
Kj,b]1

)
1≤j≤λ,0≤b≤1

)
For all τ ∈ {0, 1}λ, Kτ :=

∑λ
j=1 Kj,τj

K′τ := K + M⊥RFi(τ|i)(a
⊥)

>

Return crs

SimO(τ, [y]): G0,G1,G2,i

r←r Zkq ; t := Br
[u]1 := [y>K′τ ]1 + [t>Kτ ]1

Return ([t]1, [u]1) ∈ Gk1 ×G1×(k+1)
1 and set Tsim := Tsim∪{τ}.

VerO(τ?, [y?]1, ([t
?]1, [u

?]1)): G0 , G1,G2,i

If e([u?]1, [A]2) = e([y?>]1, [K
′
τ?A]2) + e([t?>]1, [Kτ?A]2),

set win = 1.

If [u?]1 = [y?> ·K′τ? ]1 + [t?> ·Kτ? ]1,
set win = 1.

Fig. 15. Games G0,G1,G2,i(0 ≤ i ≤ λ) for the proof of Theorem 5. Here, τ|i denotes the i-bit prefix of τ , and
B ∈ Zk×kq denotes the upper square matrix of B. In each procedure, a solid (dotted) frame indicates that the
command is only executed in the game marked by a solid (dotted) frame.

Lemma 25 (G0 to G1). There exists an adversary B such that T(B) ≈ T(A)+Qsim ·poly(λ), and

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B),

where Qsim is the number of times A queries SimO and poly(λ) is independent of T(A).

Here, we use the Kernel Diffie-Hellman Assumption to change the oracle VerO.

Proof of Lemma 25. To bound |Adv0−Adv1|, it suffices to bound the probability that A produces
(τ?, [y?]1, ([t

?]1, [u
?]1)) that passes VerO in G0 but not in G1. We may rewrite the verification

equation in G0 as

e([u?]1, [A]2) = e([y?>]1, [KA]2) + e([t?>]1, [Kτ?A]2)⇔ e([u?]1 − [y?>K]1 − [t?>Kτ? ]1, [A]2) = 0

Observe that for any (τ?, [y?]1, ([t
?]1, [u

?]1)) that passes verification equation in G0 but not in
G1 the value

[u?]1 − [y?>K]1 − [t?>Kτ? ]1

is a non-zero vector in the kernel of A, which is hard to sample under the Dk-KerMDH assumption.
This means that there exists an adversary B such that T(B) ≈ T(A) +Qsim · poly(λ), and

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen(B),

where Qsim is the number of times A queries SimO and poly(λ) is independent of T(A). ut

Lemma 26 (G1 to G2.0).

Adv1 = Adv2.0.
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Proof of Lemma 26. We show that the two games are statistically identical. To go from G1 to G2.0,

we change the distribution of K ←r Znk×(k+1)
q to K + M⊥RF0(ε)(a

⊥)
>

, where K ←r Zn×(k+1)
q ,

RF0(ε) ←r Zn−tq , M⊥ ←r Un,n−t such that M>M⊥ = 0, and a⊥ ←r Uk+1,k such that A>a⊥. Note

that the extra term M⊥RF0(ε)(a
⊥)
>

does not appear in crs, since M>(K + M⊥RF0(ε)(a
⊥)
>

) =

M>K, and (K + M⊥RF0(ε)(a
⊥)
>

)A = KA. ut

Lemma 27 (G2.i to G2.i+1). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i such that
T(B2.i) ≈ T(A) +Qsim · poly(λ) and

|Adv2.i −Adv2.i+1| ≤ 4 ·Advmddh
Dk,GGen(B2.i) +

4

q − 1
,

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).

Overview of the proof of Lemma 27: Here, we use the Dk-MDDH Assumption to increase the
entropy in the simulated proofs, to move from RFi to RFi+1. We argue that these two games are
computationally indistinguishable similarly than in Lemma 3 in [10], or Lemma 3.5 in [7]. Roughly,
the idea is to build an adversary B2.i against the Dk-MDDH Assumption, that guesses the value β
of the i+ 1-st bit of the tag contained in A’s query to VerO, and program the matrix Ki+1,1−β to
embed an MDDH challenge in the simulated proofs. This way, the entropy of all simulated proof
for a tag τ such that τi+1 = 1− β increases. Formally, we use RFi+1 : {0, 1}i+1 → Zn−tq , defined by

RFi+1(τ|i+1) :=

{
RFi(τ|i) if τi+1 = β

RFi(τ|i) + RF′i(τ|i) if τi+1 = 1− β,

where RF′i : {0, 1}i → Zn−tq is a random function independent from RFi.
The Dk-MDDH Assumption tells us that we can switch a vector [Br]1 in the span of some rank

k matrix [B]1 to a uniformly random vector [w]1 in Gk+1
1 . However, to go from RFi to RFi+1, we

need to switch vectors [Br]1 to vectors with higher entropy, that are neither uniform nor in the span
of [B]1, but of the form [Br + d]1, where [d]1 is an arbitrary vector (whose distribution is neither
uniform over Gk+1

1 , nor uniform over span([B]1). Therefore, we apply the Dk-MDDH Assumption
twice: once to change these vectors to uniformly random (cf Lemma 28), and once again to change
them to vectors of the form [Br + d]1, where [d]1 is arbitrarily chosen (cf Lemma 29).
Proof of Lemma 27.

To go from G2.i to G2.i+1, we introduce intermediate games G2.i.1, G2.i.2 and G2.i.3, defined in
Figure 16. We prove that these games are indistinguishable in Lemma 28, 29, 30, and 31.

Lemma 28 (G2.i to G2.i.1).
Adv2.i.1 = 1/2 ·Adv2.i.

Proof of Lemma 28. The only difference between G2.i and G2.i.1, is that win is set to 1 only when the
i+ 1’st bit of the tag τ? queried to VerO is equal to a random bit β. This happens with probability
1/2, therefore, the advantage of A is divided by 2. ut

Lemma 29 (G2.i.1 to G2.i.2). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i.1 such that
T(B2.i.1) ≈ T(A) +Qsim · poly(λ) and

|Adv2.i.1 −Adv2.i.2| ≤ Advmddh
Dk,GGen(B2.i.1) +

1

q − 1
,

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).
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Setup: G2.i, G2.i.1,G2.i.2, G2.i.3

β ←r {0, 1}
win = 0; Tsim := ∅; PG ←r GGen(1λ)
M←r D′par; M⊥ ←r Un,n−t s.t. M>M⊥ = 0
Pick random RFi : {0, 1}i → Zn−tq .
A,B←r Dk; a⊥ ←r Uk+1,1 s.t. A>a⊥ = 0

K←r Zn×(k+1)
q ; K1,0, . . . ,Kλ,1 ←r Zk×(k+1)

q

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,(

[Kj,bA]2, [B
>
Kj,b]1

)
1≤j≤λ,0≤b≤1

)
For all τ ∈ {0, 1}λ, Kτ :=

∑λ
j=1 Kj,τj

K′τ := K + M⊥RFi(τ|i)(a
⊥)

>

Return crs

SimO(τ, [y]): G2.i,G2.i.1, G2.i.2 , G2.i.3

r←r Zkq ; t := Br

w ←r Zq
[u]1 := [y>K′τ ]1 + [t>Kτ ]1
If τi+1 = 1− β:

[u]1 := [y>K′τ ]1 + [t>Kτ ]1 + [w(a⊥)>]1 +

[y>M⊥RF′i(τ|i)(a
⊥)>]1

Return ([t]1, [u]1) ∈ Gk1 × G1×(k+1)
1 and set

Tsim := Tsim ∪ {τ}.

VerO(τ?, [y?]1, ([t
?]1, [u

?]1)): G2.i, G2.i.1,G2.i.2,G2.i.3

If [u?]1 = [y?> ·K′τ? ]1 + [t?> ·Kτ? ]1 and τ?i+1 = β ,

set win = 1.

Fig. 16. Games G2.i (for 0 ≤ i ≤ λ),G2.i.1, G2.i.2 and G2.i.3 (for 0 ≤ i ≤ λ − 1) for the proof of Lemma 27. For all
τ ∈ {0, 1}λ, we denote by τ|i the i-bit prefix of τ . In each procedure, the components inside a solid (dotted, gray)
frame are only present in the games marked by a solid (dotted, gray) frame.

Here, we use the Dk-MDDH Assumption to tightly “switch” the vector [Br] sampled by SimO
in all the simulated proofs such that τi+1 = 1−β, to a uniformly random vector, thereby increasing
the entropy for these proofs.
Proof of Lemma 29. We build an adversary B′2.i.1 such that T(B′2.i.1) ≈ T(A) +Qsim · poly(λ), and

|Adv2.i.1 −Adv2.i.2| ≤ AdvQsim-mddh
Dk,GGen (B′2.i.1),

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A). This
implies the lemma by Lemma 3 (self-reducibility of Dk-MDDH).

Upon receiving a challenge (PG, [B]1, [H]1 := [h1| . . . |hQsim
]1 ∈ Gk+1×Qsim

1 ) for the Qsim-fold
Dk-MDDH Assumption with respect to B←r Dk, B′2.i.1 does as follows.

– Setup :
B′2.i.1 sets win := 0, Tsim := ∅, M ←r D′ρ, M⊥ ←r Un,n−t such that M>M⊥ = 0, A ←r Dk,
a⊥ ←r Uk+1,1 such that A>a⊥ = 0, K ←r Zn×(k+1)

q . Then, it picks β ←r {0, 1} and for all

(j, b) 6= (i + 1, 1 − β), it picks Kj,b ←r Zk×(k+1)
q . It also picks K̂ ←r Zk×(k+1)

q , and implicitly
defines

Ki+1,1−β := K̂ + B
>−1

B>(a⊥)>.

Recall that B is full rank, thus, wlog., B ∈ Zk×kq , the upper square matrix of B, is invertible.
B denotes the lowest row of B. Finally, it returns

crs :=
(

[A]2, [KA]2, [B]1, [M
>K]1,

(
[Kj,bA]2, [B

>
Kj,b]1

)
(j,b)6=(i,1−β),

[Ki+1,1−βA]2 = [K̂A]2, [B
>
Ki,1−β]1 = [B

>
K̂ + B>(a⊥)>]1

)
.

– SimO(τ, [y]1) : B′2.i.1 defines on the fly RFi(τ|i) where RFi : {0, 1}i → Zn−tq is a random function,

and τ|i denotes the i-bit prefix of τ (see Figure 16). It sets K′τ := K + M⊥RFi(τ|i)(a
⊥)
>

. Then,
to simulate the ρ’th query, for ρ = 1, . . . , Qsim, B′2.i.1 does the following.
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If τi+1 = β : B′2.i.1 computes

r←r Zkq ; [t]1 := [B · r]1;

Kτ :=
∑λ

j=1 Kj,τj (note that B′2.i.1 knows the Kj,τj explicitly, since τi+1 6= 1− β);

[u]1 := [y> ·K′τ ]1 + [t>Kτ ]1.

It returns ([t]1, [u]1) to A.
If τi+1 = 1− β : B′2.i.1 computes

[t]1 := [hρ]1;

[u]1 := [y> ·K′τ ]1 + [t>
∑
j 6=i+1

Kj,τj + t>K̂ + hρ(a
⊥)
>

]1

It returns ([t]1, [u]1) to A.
– VerO(τ?, [y?]1, ([t

?]1, [u
?]1)) :

If τ?i+1 = β, B′2.i.1 defines on the fly RFi(τ
?
|i); computes K′τ? := K + M⊥RFi(τ

?
|i)(a

⊥)
>

; Kτ? :=∑λ
j=1 Kj,τ?j

(note that B′2.i.1 knows the Kj,τ?j
explicitly since τ?i+1 = β 6= 1−β) and sets win = 1

if the following is true:

[y?>]1 ·M⊥ 6= [0]1 ∧ τ /∈ Tsim ∧ [u]1 = [y>K′τ? ]1 + [t>Kτ? ]1.

Let us analyze the simulation of Setup, SimO, and VerO by B′2.i.1. We show that when the
[h1| . . . |hQsim

]1 are distributed according to a real Dk-MDDH distribution, it simulates G2.i.1, and
when the [h1| . . . |hQsim

]1 are uniformly random, it simulates G2.i.2.
First, B′2.i.1 generates a properly distributed crs (that is, as in G2.i.1 or G2.i.2, since the crs

is identically distributed in these two games). This is because the two following distributions are
identical:

Kj+1,β and K̂ + B
>−1

B>(a⊥)
>
,

where Kj+1,β ←r Zk×(k+1)
q , K̂←r Zk×(k+1)

q .
Now, let us analyze the simulation of SimO.

For queries with τi+1 = β: G2.i.1 and G2.i.2 are identically distributed for these queries, since
RFi+1(τ|i+1) = RFi(τ|i).

For queries with τi+1 = 1− β: We use the following notation:

[u\i+1]1 := [y>K′τ ]1 + [t>
λ∑

j 6=i+1

Kj,τj ]1.

When [hρ]1 = [Bvρ]1, where vρ ←r Zkq for ρ = 1, . . . , Qsim, B′2.i.1 computes:

[u]1 := [u\i+1]1 + [t>K̂ + Bvρ(a
⊥)
>

]1

= [u\i+1]1 + [t>K̂ + v>ρB
>︸ ︷︷ ︸

=[t>]1

B
>−1

B>(a⊥)
>

]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>(a⊥)

>
)

︸ ︷︷ ︸
=Ki+1,τi+1

]1

= [u\i+1]1 + [t>Ki+1,τi+1 ]1︸ ︷︷ ︸
in G2.i.1
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When [hρ]1 = [Bvρ + wρek+1]1, where vρ ←r Zkq , wρ ←r Zq for ρ = 1, . . . , Qsim, and ek+1

denotes the k + 1’st vector of the canonical basis of Zk+1
q , B′2.i.1 computes:

[u]1 := [u\i+1]1 + [t>K̂ +
(
Bvρ + wρek+1

)
(a⊥)

>
)]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>(a⊥)

>
)

︸ ︷︷ ︸
=Ki+1,τi+1

+ wρ(a
⊥)> ]1

= [u\i+1]1 + [t>Ki+1,τi+1 ]1 + [wρ(a
⊥)>]1︸ ︷︷ ︸

in G2.i.2

Finally, it is clear that B′2.i.1 simulates VerO as in G2.i.1 and G2.i.2 (VerO is identically distributed
in these two games). This concludes the proof of Lemma 29. ut

Lemma 30 (G2.i.2 to G2.i.3). For all 0 ≤ i ≤ λ − 1, there exists an adversary B2.i.2 such that
T(B2.i.2) ≈ T(A) +Qsim · poly(λ) and

|Adv2.i.2 −Adv2.i.3| ≤ Advmddh
Dk,GGen(B2.i.2) +

1

q − 1
,

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A).

Here, we use the Dk-MDDH Assumption to tightly “switch” the uniformly random vector sam-
pled by SimO in all the simulated proofs such that τi+1 = 1− β, to a vector of the form [Br + d]1,
where d is a vector whose distribution is neither uniform nor in the span of B (see overview of the
proof of Lemma 27).
Proof of Lemma 30. We build an adversary B′2.i.2 such that T(B′2.i.2) ≈ T(A) +Qsim · poly(λ), and

|Adv2.i.2 −Adv2.i.3| ≤ AdvQsim-mddh
Dk,GGen (B′2.i.2),

where Qsim is the number of times A queries SimO, and poly(λ) is independent of T(A). This
implies the lemma by Lemma 3 (self-reducibility of Dk-MDDH).

Upon receiving a challenge (PG, [B]1, [H]1 := [h1| . . . |hQsim
]1 ∈ Gk+1×Qsim

1 ) for the Qsim-fold
Dk-MDDH Assumption with respect to B←r Dk, B′2.i.1 does as follows:

– Setup is simulated exactly as described in the proof of Lemma 29.
– SimO(τ, [y]1) : B′2.i.1 defines on the fly RFi(τ|i) where RFi : {0, 1}i → Zn−tq is a random function,

and τ|i denotes the i-bit prefix of τ (see Figure 15). It sets K′τ := K + M⊥RFi(τ|i)(a
⊥)
>

. Then,
to simulate the ρ’th query, for ρ = 1, . . . , Qsim, B′2.i.1 does the following.

If τi+1 = β : B′2.i.1 computes

r←r Zkq ; [t]1 := [B · r]1;

Kτ :=
∑λ

j=1 Kj,τj (note that B′2.i.1 knows the Kj,τj explicitly, since τi+1 6= 1− β);

[u]1 := [y> ·K′τ ]1 + [t>Kτ ]1.

It returns ([t]1, [u]1) to A.
If τi+1 = 1− β : B′2.i.1 defines on the fly RF′i(τ|i) where RF′i : {0, 1}i → Zn−tq is a random

function, independent of RFi, and computes
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[t]1 := [hρ]1;

[u]1 := [y> ·K′τ ]1 + [t>
∑
j 6=i+1

Kj,τj + t>K̂ +
(
hρ + y>M⊥RF′i(τ|i)

)
(a⊥)

>
]1

It returns ([t]1, [u]1) to A.
– VerO(τ?, [y?]1, ([t

?]1, [u
?]1)) is simulated exactly as described in the proof of Lemma 29.

Let us analyze the simulation of SimO by B′2.i.2. We show that when the [h1| . . . |hQsim
]1 are dis-

tributed according to a real Dk-MDDH distribution, it simulates G2.i.3, and when the [h1| . . . |hQsim
]1

are uniformly random, it simulates G2.i.2.

For queries with τi+1 = β: G2.i.2 and G2.i.3 are identically distributed for these queries, since
RFi+1(τ|i+1) = RFi(τ|i).

For queries with τi+1 = 1− β: We use the following notation:

[u\i+1]1 := [y>K′τ ]1 + [t>
λ∑

j 6=i+1

Kj,τj ]1.

When [hρ]1 = [Bvρ]1, where vρ ←r Zkq for ρ = 1, . . . , Qsim, B′2.i.1 computes:

[u]1 := [u\i+1]1 + [t>K̂ +
(
Bvρ + y>M⊥RF′i(τ|i)

)
(a⊥)

>
]1

= [u\i+1]1 + [t>K̂ + v>ρB
>︸ ︷︷ ︸

=[t>]1

B
>−1

B>(a⊥)
>

+ y>M⊥RF′i(τ|i)(a
⊥)
>

]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>(a⊥)

>
)

︸ ︷︷ ︸
=Ki+1,τi+1

]1 + [y>M⊥RF′i(τ|i)(a
⊥)
>

]1

= [u\i+1]1 + [t>Ki+1,τi+1 ]1 + [y>M⊥RF′i(τ|i)(a
⊥)
>

]1︸ ︷︷ ︸
in G2.i.3

When [hρ]1 = [Bvρ + wρek+1]1, where vρ ←r Zkq , wρ ←r Zq for ρ = 1, . . . , Qsim, and ek+1

denotes the k + 1’st vector of the canonical basis of Zkq , B′2.i.1 computes:

[u]1 := [u\i+1]1 + [t>K̂ +
(
Bvρ + y>M⊥RF′i(τ|i) + wρek+1

)
(a⊥)

>
)]1

= [u\i+1]1 + [t>
(
K̂ + B

>−1
B>(a⊥)

>
)

︸ ︷︷ ︸
=Ki+1,τi+1

+
(
y>M⊥RF′i(τ|i) + wρ

)
(a⊥)> ]1

= [u\i+1]1 + [t>Ki+1,τi+1 ]1 + [γρ(a
⊥)>]1︸ ︷︷ ︸

in G2.i.2

where γρ := wρ + y>M⊥RF′i(τ|i) is uniformly random over Zq.

Finally, it is clear that B′2.i.2 simulates VerO as in G2.i.2 and G2.i.3 (VerO is identically distributed
in these two games). This concludes the proof of Lemma 30. ut
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Lemma 31 (G2.i.3 to G2.i+1).
Adv2.i+1 = 2 ·Adv2.i.3.

This transition is symmetric to the transition between G2.i and G2.i.1.
Proof of Lemma 31. The only difference between G2.i.3 and G2.i+1, is that we remove the extra
condition τi+1 = β in VerO, which is true with probability 1/2 over the choice of a random β ←r

{0, 1}. Therefore, the advantage of A is doubled. ut

Lemma 27 follows readily from Lemmas 28-31. ut

Lemma 32 (G2.λ). Adv2.λ ≤ 1/q.

Proof of Lemma 32. We bound Adv2.λ via an information-theoretic argument. Recall that
VerO(τ?, [y∗], π∗ = ([t?]1, [u

?]1)) sets win = 1 if the following properties are satisfied:

Property 1 : τ? /∈ Tsim
Property 2 : y? /∈ span(M)

Property 3 : [u]1 :=
[
y?>
(
K + M⊥RFλ(τ?)(a⊥)

>)]
1

+ [t?>Kτ? ]1, where RFλ : {0, 1}λ → Zn−tq is

a random function.

We show that the value y?>M⊥RFλ(τ?) ∈ G1 is completely hidden from A, up to its query to
VerO.

We first look at what the adversary’s view leaks about the value RFλ(τ?).

– The crs contains no information about RFλ(τ?).
– If τ? /∈ Tsim, then RFλ(τ?) is independent of {RFλ(τ), τ ∈ Tsim}, because RFλ is a random

function, and therefore, RFλ(τ?) is independent of the outputs of SimO.

Thus, if Property 1 and 2 are satisfied, the value

y?>M⊥︸ ︷︷ ︸
6=0 by Property 1

· RFλ(τ?)︸ ︷︷ ︸
uniformly random, by Property 2

is a uniformly random over G1 from A’s viewpoint. Therefore, Property 3 holds with probability
at most 1/q over the random choice of RFλ(τ?). This proves Adv1,λ ≤ 1/q. ut

Finally, Theorem 5 follows readily from Lemmas 25-32. ut
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