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Abstract. Many efficient cryptographic hash function design strategies
have been explored recently, not least because of the SHA-3 competition.
Almost exclusively these design are geared towards good performance
for long inputs. However, various use cases exist where performance on
short inputs matters more. An example is HMAC, and such functions also
constituting the bottleneck of various hash-based signature schemes like
SPHINCS, or XMSS which is currently under standardization. Secure
functions specifically designed for such applications are scarce. In this
paper, we fill this gap by proposing two short-input hash functions (or
rather simply compression functions) exploiting instructions on modern
CPUs that support the AES. To our knowledge these proposals are the
fastest on modern high-end CPUs, reaching throughputs below one cycle
per hashed byte even for short inputs while still having a very low latency
of no more than 60 cycles. Under the hood, this results comes with several
innovations.
First, we study whether the number of rounds for said functions can be
reduced if collision resistance is not expected, but only second-preimage
resistance. The conclusions is: only a little.
Second, since their inception AES-like designs allow for supportive security
arguments by means of counting and bounding the number of active S-
boxes. However, this ignores powerful attack vectors using truncated
differentials, of which rebound attacks are a popular example. With our
design, we develop for the first time a general tool-based method to
include arguments against attack vectors using truncated differentials.

Keywords: Cryptographic hash functions, second-preimage resistance,
AES-NI, hash-based signatures, post-quantum

1 Introduction

Cryptographic hash functions are often constructed with collision resistance in
mind. Consider e.g. the SHA-3 competition, which involved a large part of the
research community, where collision resistance was one of the main requirements.
Sometimes, cryptographic functions are designed with collision resistance as the
main or only requirement, see e.g. VSH [12].



This is however in contrast to a sizable and perhaps even growing set of
applications that do require cryptographic hashing, but explicitly do not require
collision resistance. Universal one-way hash functions (UOWHF) [4] are, in
principle, candidate functions, but they will not suffice for many applications.

Consider as an example the proof for the HMAC construction. In its first
version from the 90s it does require collision resistance from its hash function [3],
but in later versions the collision resistance requirement is dropped in favor of
milder requirements [2].

Another example are hash-based signature schemes originally introduced by
Lamport [29]. Modern versions like XMSS [10], which is currently submitted
as a draft to the IETF and features short signatures sizes, and the state-less
scheme SPHINCS [7], are getting more and more attention as they are a robust
candidate for quantum-resistant signature schemes, i.e. believed to be secure in
the presence of hypothetical quantum computers. One of the main advantages
of such schemes are that their security reduces to the security properties of the
hash function(s) used.

All of the schemes mentioned require many calls to a hash function, but only
process comparably short inputs. For instance in SPHINCS-256, some 500.000
calls to two hash functions are needed to reach a post-quantum security level of
128 bits. One of those functions compresses a 512-bit string to a 256-bit string
and is used in a Merkle-tree construction, while the other maps a 256-bit string
to a 256-bit string.

Secure short-input keyed hash functions also found applications in protecting
against hash flooding denial of service attacks. This has been addressed with the
SipHash [1] family, but the security requirements are much lower for this setting.

All the examples above share the fact that they do not require collision
resistance from their underlying hash function(s), and also only process short
inputs3. However, almost all hash functions designs are mostly geared towards
good performance on long messages and, as we will show, perform rather poorly
on short inputs.

Contributions. In this paper we explicitly consider second-preimage and preim-
age resistance as sole design goals for cryptographic hash functions, and pay
attention on the short-input performance. We also aim to shed light on the follow-
ing question: How much faster can a hash function become if collision resistance
is dropped from the list of requirements? To that end we limit ourselves to one
particular design strategy that is fairly well understood and scalable: AES-like
designs.

On the practical side we propose two concrete compression function construc-
tions and reach performances better than 1 cycle per byte (cpb) on various Intel
architectures. Competitive designs are considerable slower than that, and even
those speeds also only reached for long messages. Our proposals share strong
similarities with the permutation AESQ that is used in the CAESAR candidate
PAEQ [9].

3 For HMAC, one of the two calls to the hash function used is always for a short input.



On the theoretical side, there are several contributions that come along with
this new proposal: Firstly, we study if the number of rounds for said proposal
can be reduced if collision resistance is not expected, but only second-preimage
resistance. The conclusions is that only one round (5 instead of 6) can be saved.

Secondly, we describe new ways to bound the applicability of attacks. Tra-
ditionally, resistance of key-less constructions like cryptographic hash functions
against collision attacks is almost solely based on arguments that are also found
for keyed constructions like block ciphers. Two possibilities are:

1. A bound on the probability of the best differential trail, denoted p, is com-
pared with the amount of degrees of freedom f . Assuming “ideal message
modification” it is then argued that all available degrees of freedom are spent
magically, i.e. the resulting probability is much higher, namely p2 = p · 2f .
The number of rounds is then chosen to make sure that p2 is below some
security requirement.

2. Again start with a bound on the probability of the best differential trail
denoted by p. Choose a number of rounds r1 to make sure that p is low
enough for the required security level, i.e. log2(1/p). Then add r2 number
of rounds for which are bypassed, based on experience and/or estimates, by
so-called message modification technique. The resulting number of rounds
r = r1 + r2 is then expected to help carry over the security expectations
stemming from r1 rounds in the keyed setting to r rounds in the key-less
setting.

Examples can be found in various SHA-3 candidate submission like Grøstl [16],
ECHO [5], Luffa [13], or the later proposed hash function constructions PHO-
TON [18] or SPN-Hash [11]. There are however various problems with these
approaches. In particular, they do not consider truncated differential trails, and
as such do not cover rebound attacks, and sometimes would require too many
rounds to satisfy, especially with option (1) from above. Thus, approach (1) is
too conservative and at the same time ignores (one of) the most power full attack
vectors. And approach (2) is based on assumptions about message modification
ability of an adversary (essentially solving systems of equations that get harder
and harder with more rounds) while at the same time still ignoring (one of) the
most power full attack vectors.

To somewhat remedy this situation we propose a way to include truncated
differentials in the arguments of type (2) from above. Using this as security
arguments for collision attacks is already novel, and we extend this method to
also cover our new second-preimage attack vector.

Finally we remark at this point that both implementations and parts of the
code used for the security analysis of Haraka are publicly available at [27].



2 Specification of Haraka

Haraka exists in two variants denoted Haraka-512/256 and Haraka-256/256 with
signatures

Haraka-512/256 : F512
2 → F256

2 and

Haraka-256/256 : F256
2 → F256

2 .
(1)

For both variants we claim 256-bit (second)-preimage resistance respectively
128-bit in the presence of quantum computers, but we make no claims about
other non-random properties.

The main components are two permutations denoted π512 and π256 on 512 bits
and 256 bits, respectively. Both Haraka-512/256 and Haraka-256/256 rely on the
well-known Davies-Meyer construction using a permutation with a feed-forward
(applying the XOR operation) of the input. As such, they are defined as

Haraka-512/256(x) = trunc(π512(x)⊕ x) and

Haraka-256/256(x) = π256(x)⊕ x,
(2)

where trunc : F512
2 → F256

2 is a particular truncation function (described below).

2.1 Specification of π512 and π256

In the following, we give our specification of the permutations used in Haraka. In
Section 3 we give our security analysis of the constructions and, based on this,
motivate our design choices in Section 4.3.

The constructions of π512 and π256 are iterated, thus applying a round function
several times to obtain the full permutation. The permutations π512 and π256
operate on states which have the same size as respective inputs. Due to the
similarity of the permutations, much of their description is common to both. In
general, we let b denote the number of blocks of the state, so for π512 we have
b = 4 while for π256 we have b = 2.

Denote the total number of rounds by T and denote by Rt the round with
index t = 0, . . . , T − 1. The state before applying Rt is denoted St, and thus S0

is the initial state. As both π512 and π256 use the AES round function, states are
arranged in matrices of bytes, and we use subscripts to denote the column index,
starting from column zero being the leftmost one. The state size is 4× 4b bytes,
so 4× 16 for π512 and 4× 8 for π256. When we talk about a block, we refer to a
16-byte string consisting of columns x4i‖ · · · ‖x4i+3 for i = 0, . . . , b− 1.

When a stream of bytes is loaded into the state, the order is column first,
such that the first byte of the input stream is in the first row of the first column,
while the last byte of the stream is in the last row of the last column.

Let aes denote the parallel application of m AES rounds to each of the b
blocks of the state. As such, for t = 0, . . . , T − 1, the round function for π512 is
Rt = mix512 ◦ aes while for π256 it is Rt = mix256 ◦ aes. Thus, in both cases, a
single round consists of m rounds of the AES applied to each block of the state,



followed by a linear mixing function. Round constants are injected via the aes
operations (see below). The total number of rounds T = 5 while using m = 2
AES rounds for both Haraka-512/256 and Haraka-256/256.

One of the differences between π512 and π256 are the specifics of the linear
mixing used. In both cases, the mixing itself is comprised of simply permuting the
state columns. For π512, the sixteen columns of the state are permuted such that
each output block contains precisely one column from each of the b = 4 input
blocks. For π256 on the other hand we have b = 2 so we obtain the most even
distribution of the columns by mapping two columns from each of the b = 2 input
blocks to each of the b = 2 output blocks. More specifically, letting x0‖ · · · ‖x15
denote the columns for a state of π512, the columns are permuted by mix512 as

x0‖ · · · ‖x15 7→ x3‖x11‖x7‖x15‖x8‖x0‖x12‖x4‖x9‖x1‖x13‖x5‖x2‖x10‖x6‖x14.

(3)

Likewise for π256 the eight columns denoted x0‖ · · · ‖x7 are permuted by mix256
as

x0‖ · · · ‖x7 7→ x0‖x4‖x1‖x5‖x2‖x6‖x3‖x7. (4)

The round functions for both permutations are depicted in Figure 1.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

aes
aes

aes
aes

aes
aes

aes
aes

(a) For π512

x0 x1 x2 x3 x4 x5 x6 x7

aes
aes

aes
aes

(b) For π256

Fig. 1: Depictions of round functions Rt for π512 (a) and for π256 (b). Each xi
denotes a column of 4 bytes of the state.

Round Constants. For each AES call we use different round constants 4 via
the round key addition. The constants are derived using a similar approach as in
the CAESAR candidate Prøst [24]. Let pi be the least significant bit of the ith
digit after the decimal point of π, then the round constants are defined as

RCj = p128|| . . . ||p2||p1 ∀j = 0 . . . 39. (5)

4 Note that in an earlier version the constants had strong symmetries which allowed
more efficient attacks by exploiting those [23].



The AES layer aesi uses {RC4i, RC4i+1, RC4i+2, RC4i+3} in the case of π512
respectively {RC2i, RC2i+1} for π256. The constants are also given in Table 9 in
the Appendix.

Truncation Function. Let x ∈ F512
2 be some input to the truncation function

trunc. Then trunc(x), which is used in Haraka-512/256, is obtained as concate-
nating two columns from each block: The least significant two from the first two
blocks; the two most significant columns from the last two blocks. As such

trunc(x0‖ · · · ‖x15) = x2‖x3‖x6‖x7‖x8‖x9‖x12‖x13. (6)

3 Security against Truncated Differential Attacks

The three most commonly defined security requirements for a cryptographic hash
functions are

– Preimage resistance: Given an output y it should be computationally
infeasible to find any input x such that y = H(x),

– Second-preimage resistance: Given x, y = H(x) it should be computa-
tionally infeasible to find any x′ 6= x such that y = H(x′), and

– Collision resistance: Finding two distinct inputs x, x′ such that H(x) =
H(x′) should be computationally infeasible.

For any ideal hash function generic attacks exist, which are able to find a
(second-)preimage with a complexity of 2n and collisions with a complexity of
2n/2, where n is the output size of the hash functions in bits. Quantum computers
can improve upon this by using Grover’s algorithm [17] to further reduce the
complexity of finding a (second-)preimage to 2n/2. It is also known that this is
the optimal bound for quantum computing.

In the following sections we discuss common attack vectors which will aid in
choosing appropriate parameters for Haraka to achieve the desired security prop-
erties. We focus on the second-preimage resistance, since the main applications
of Haraka do not require collision resistance.

3.1 Preliminaries

Differential cryptanalysis is one of the most powerful tools in evaluating the
security of cryptographic hash functions. It is also a very natural attack vector as
both collision and second-preimage resistance require the attacker to efficiently
find two distinct inputs yielding the same output.

Definition 1. A differential trail Q is a sequence of differences

α0
R0−−→ α1

R1−−→ · · · RT−1−−−−→ αT (7)

in the states for the application of the function on two distinct inputs.



Definition 2. The differential probability of a differential trail Q is defined as

DP(Q) = Pr(α0 → α1 → . . .→ αT ) =

T−1∏
t=0

Pr(αt → αt+1) (8)

and gives the probability, taken over random choices of the inputs, that the pair
follows the differential trail. The last equality holds if we assume independent
rounds.

The AES round function uses the SubBytes, ShiftRows and MixColumns
operations, which we also denote as SB, SR and MC, respectively. For our further
analysis we are also interested in how truncated differentials [26] propagate
through MixColumns. One property of MixColumns is that the branch number
is 5, i.e. if we have one active byte at the input we will always get four active
bytes at the output. In general if an input column contains a active bytes to
MixColumns, then the probability of having b active bytes in the corresponding
output column, where a+ b ≥ 5, can be approximated with 2(b−4)8.

Differential Trails. One way to estimate DP(Q) for the best trail is to count
the minimum number of active S-boxes. As the maximum differential probability
for the AES S-box is 2−6 this allows to give an upper bound on DP(Q). While
the number of active S-boxes gives a good estimate for the costs of an attack
in the block cipher setting, this is only partially true for cryptographic hash
functions. Consider a pair of inputs (x, x⊕ α) as input to a non-linear function,
like the AES S-box, then S(x⊕K)⊕S(x⊕α⊕K) = β holds only with a certain
probability if the key K is unknown. This can be very useful in the block cipher
settings, where it gives a bound on the probability of the best differential trail.

In the case of hash functions there is no secret key and an attacker has full
control over the input bits. This allows him to choose the pair (x, x⊕ α) such
that S(x)⊕ S(x⊕ α) = β holds with probability 1. The limit of this approach
is only restricted by the number of free and independent values, referred to as
degrees of freedom. This means that the probability of a differential trail can be
very low and contain many active S-boxes, but if the conditions are easy to fulfill
and the attacker has enough degrees of freedom an attack can be very efficient.

A popular technique to count the number of active S-boxes for AES-based
designs is based on mixed integer linear programming (MILP) [31,34]. The
basic idea is to express the restrictions on the differences given by the round
transformations as linear equations and generate a optimization problem which
can be solved with any MILP optimizer, e.g. Gurobi [19] or CPLEX [21]. We use
this technique later to find the minimum number of active S-boxes for Haraka,
which aids us in choosing our parameters.

3.2 Capabilities of the Attacker

One of the main difficulties in the design of hash functions is to estimate the
security margin one expects against a powerful attacker. While bounds on the



probability of differential trails can be useful in the block cipher setting, they
have little meaning for hash functions. There is no secret input and the attacker
can freely choose the messages. This degrees of freedom can be used to solve
conditions imposed by a differential trail and lead to surprisingly efficient attacks.

This was partially addressed in the design of Fugue [20] and SPN-hash [11].
The former assumes that an attacker can improve the probability of a differential
trail by using the degrees of freedom directly, i.e. if one has f degrees of freedom
the probability can be improved by 2f . SPN-hash assumes the attacker can
bypass r2 rounds by estimates from existing attacks and the total number of
rounds is then given by r = r1 + r2, where r1 is chosen such that the probability
of the best differential is low enough for the required security level. A mayor
drawback of this approaches is that they do not resemble the capabilities of an
attacker in practice, which can either lead to too conservative estimates while
also ignoring important attack vectors.

The most powerful collision attacks on AES-based hash functions, like the
rebound attack [30], use truncated differentials combined with a clever use of
the degrees of freedom to reduce the attack complexity. Arguing security against
these type of attacks is a difficult task, as one has to estimate the limits of an
attacker to use the available degrees of freedom in a smart way to reduce the
attack complexity. Additionally, in the second-preimage scenario the attacker has
much less control as the actual values of the state are fixed and the conditions
are instead solved by carefully choosing the differential trails. In the following we
propose a new method to better bound the capabilities of an attacker in practice
under reasonable assumptions.

Truncated Differentials. While the MILP model to count the number of
active S-boxes already uses truncated differentials, it does not cover the costs of
propagation of those. When an attacker tries to utilize a truncated differential
the transitions through MixColumns are probabilistic and, if not controlled by
the attacker, will determine the attack complexity similar to the outbound phase
in the rebound attack.

Independent of the number of rounds, the best we can achieve is a security level
of 256 bits, as an attacker can always use a (fully active) truncated differential
with probability ≈ 1 and the probability that this gives a valid second-preimage
is 2−256.

Utilizing Degrees of Freedom. The previous model still ignores the fact that
a powerful attacker can utilize the available degrees of freedom to reduce the
attack complexity. To take this into account we assume the attacker is able to
use all degrees of freedom in an optimal way, i.e. the attacker has an algorithm
to solve any condition in constant time, as long as there are enough independent
degrees of freedom left.

Without any further restrictions we can not achieve any level of security in
this model, as the attacker can always use a truncated differential which is active
in all bytes and has a probability of 1 and then use the degrees of freedom to



guarantee that f(x)⊕ f(x⊕ α) = 0. However, it is very unlikely that an attacker
can utilize the degrees of freedom unrestricted over many rounds as, after already
two rounds each byte of the state depends on all the others in AES-like designs.

We suggest a more restrictive model of the attacker, in which he is still given
all the previous capabilities but can only solve the conditions for q consecutive
rounds of the cipher. This means, the attacker chooses a state Sk and then is
allowed to solve any conditions for Sk−q, . . . Sk+q in constant time, as long as
there are still degrees of freedom available. The remaining conditions which can
not be solved form our security level. We can formulate this as a MILP problem
with the goal to find the lowest attack complexity over all possible states Sk (for
more details and the application to Haraka see Section 4.1).

This model for truncated differential attacks resembles how collision attacks
on cryptographic hash functions actually work in practice. The attacker can
control how the differences propagate over a part of the state and tries to minimize
the conditions in the remaining rounds [30,35]. The currently best known attacks
on AES-based hash functions utilize the degrees of freedom for up to three
(AES) rounds to reduce the complexity of an attack [33,22]. These results can
not be carried over directly to our construction as we compose our state of four
individual AES states.

However, in the collision setting the attacker can choose both the values and
differences freely, while the second-preimage scenario is much more restrictive
and less degrees of freedom are available. We suggest q = 2, allowing our idealized
attacker to cover a generous 4 rounds with the degrees of freedom to have a
comfortable security margin.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

f f f f f fmix mix mix

Sk

qq

1 2−64 1 112−288112−16

Fig. 2: Truncated model utilizing degrees of freedom for T = 3,m = 2, q = 3. For
finding a collision the attacker would have full control over the middle rounds.
As there are only 352 conditions the attack costs for an idealized attacker would
be 216. The four AES states A, B, C, D are ordered clockwise starting at the top
left as A, C, D, B.

4 Analysis of Haraka

In the following we give the security claims for Haraka and the security analysis
which lead to the proposed parameters.



Security Claims. We claim second-preimage resistance of 256-bits for Haraka.
As will been seen later in the paper, for only one additional round (a performance
penalty of around 20%) we claim 128-bit of collision resistance. We make no claims
about near-collision or other generalizations of this property and distinguishers
of the underlying permutation, because such properties do not seem to be needed
in applications like HMAC or hash-based signature schemes. Overall, this leads
to a conjectured post-quantum security level of 128-bits against both collision
and second-preimage attacks.

Non-randomness that might slightly speed-up second-preimage attacks is not
excluded by our models and bounds, but we conjecture this to be negligible. To
support our conjecture, consider as an example the slight speed-up of second-
preimage attacks [14,15] on the SHA-3 candidate Hamsi [28] which use a very
strong non-random property of the compression function. No such strong property
seem likely to exist for our proposals.

4.1 Second-Preimage Resistance

Generic Attacks. As the output size n = 256, a generic attack exists with a
complexity of 2256 resp. 2128 on a quantum computer.

For iterative hash functions, a generic attack exists which improves upon the
näıve brute force approach [25]. However, this attacks requires long messages
and are not applicable to our construction.

Basic Differential Second-Preimage Attack for Weak Messages. For
finding a second-preimage the attacker can use a differential trail Q leading to a
collision, i.e. f(x⊕ α) = y. However, as the values of the state are fixed by the
output Y , all differentials trails hold either with probability 1 or 0. For a random
message the probability that an attacker succeeds is bounded by DP(Q) and if
Q does not give a second-preimage for y then the attacker has to try a different
trail Q′ 6= Q.

Counting the number of active S-boxes gives a bound on the maximum value
of DP(Q) and can give some insights on the security. We consider both the
number of active S-boxes for the permutation and when the permutation is used
in the DM-mode. As some of the output is truncated, this can potentially reduce
the number of active S-boxes and has to be taken into account.

For Haraka-512/256 the best differential trails have a probability of DP(Q) =
2−780 respectively 2−804 for trails leading to a collision when used in DM-mode.
Correspondingly for Haraka-256/256, those probabilities are 2−480 and 2−630

respectively. For the number of active S-boxes for Haraka-512/256 and Haraka-
256/256 see Table 1. Note that this corresponds to previous work that studied
second-preimage attacks for MD4 [37] and SHA-1 [32].

Truncated Model. We used the model presented in Section 3.2 to find the
optimal number of rounds for our constructions. We denote the input column j
to MixColumns (resp. SubBytes) in round r as MCr

j (SBr
j). We remark that in the



Table 1: Lower bound on the number of active S-boxes in a differential trail for
the permutations used in Haraka, for the permutation when used in DM mode
and for trails leading to a collision when used in DM mode. Table 10 in the
Appendix gives the numbers for a wider choice of parameters.

Permutation DM-mode DM-mode (coll.)

Haraka-256/256 80 80 105
Haraka-512/256 130 128 134

following, consider the number of rounds T and the number of AES rounds per
round m as variables.

We define the costs for an attacker to follow a truncated differential, starting
at state Sk as

CTrunc =

T ·m∑
r=0

4b∑
j=0

Cr
MCj

(9)

where

∀r : 0 ≤ r < k,∀j : 0 ≤ j < 4b : Cr
MCj
≥ (4−

3∑
i=0

MCr
i+4j) · 8

∀r : k ≤ r ≤ T ·m,∀j : 0 ≤ j < 4b : Cr
MCj
≥ (4−

3∑
i=0

SBr
i+4j) · 8

An additional requirement is that the input and output difference in the
non-truncated part of the state are equal to get a valid second-preimage, i.e.
x⊕ α = ∆π512(x⊕ α) which we denote as CCollision. The optimization goal is

minimize: CCollision + CTrunc. (10)

The requirements for Haraka are that each attack under this model costs
at least 2256. We use the previous model to determine the security level of our
construction for different number of rounds T and m. For every parameter set we
use the MILP model to find the lowest attack costs by searching over all possible
starting states Sk. The results can be found in Table 2.

If we don’t allow the attacker to utilize any degrees of freedom T = 4,m = 2
would be sufficient for Haraka-512/256 resp. T = 2,m = 2 for Haraka-256/256.
(see Table 2). However, as discussed in the previous section this approach would be
very optimistic. Taking into account the assumptions we make on the capabilities
of an attacker utilizing the degrees of freedom at least 5 rounds are required (see
Table 3). The solving time increases quickly with the number of rounds and for
the standard parameters (T = 5, m = 2, q = 2) it takes around 17 minutes5 to
find the lower bound for an attack for all possible starting points Sk.

5 Using Gurobi 6.5.0 (linux64), Intel(R) Core(TM) i7-4770S CPU @ 3.10GHz, 16GB
RAM



Table 2: Bounds on the best attack in our truncated setting without utilizing
degrees of freedom over multiple rounds.

(a) Security for π512

m

T 1 2 3 4 5

1 0 32 48 64 64
2 32 128 96 96 96
3 48 192 176 192 192
4 112 256 256 256 256
5 128 256 256 256 256
6 208 256 256 256 256
7 224 256 256 256 256

(b) Security for π256

m

T 1 2 3 4 5

1 0 0 0 0 128
2 0 256 176 192 192
3 184 256 240 256 256
4 176 256 256 256 256
5 256 256 256 256 256
6 240 256 256 256 256
7 256 256 256 256 256

Table 3: Security bounds on the best attack in our truncated setting utilizing
additional degrees of freedom over q rounds for π512 and π256 using m = 2.
Non-bold entries do not obtain the generic bounds and in the case of collision
resistance values above 128 would be outperformed by generic attacks.

(a) Second-preimage π512

T 1 2 3 4 5 6

q = 1 0 96 144 256 256 256
q = 2 0 0 96 128 256 256
q = 3 0 0 0 96 128 256

(b) Collision π512

T 1 2 3 4 5 6

q = 1 0 48 136 176 256 256
q = 2 0 0 40 96 168 256
q = 3 0 0 0 32 96 160

(c) Second-preimage π256

T 1 2 3 4 5 6

q = 1 0 176 192 256 256 256
q = 2 0 128 128 192 256 256
q = 3 0 0 128 128 192 256

(d) Collision π256

T 1 2 3 4 5 6

q = 1 0 168 176 240 256 256
q = 2 0 64 112 160 256 256
q = 3 0 0 64 112 176 256



In Figure 2 we give an example how this attack model works in practice. The
attacker starts in this case at S5 and can control q = 3 rounds in both directions.
When finding a collision the attacker has control over the full state, therefore he
has enough degrees of freedom available to fulfill the conditions for the transitions
through MixColumns. The only remaining part is the transition in the first round
which happens with a probability of 2−16.

Other Preimage and Second-preimage Attacks. Relevant are meet-in-the-
middle (MITM) attacks that are a popular attack vector for preimage attacks
and in turn also suitable to find second-preimages. Perhaps the most relevant
literature pointer here is an attack on the 5-round reduced output transformation
of Grøstl [36]. We did not find a way to extend attacks, even in relaxed settings,
beyond T = 4 rounds.

4.2 Collision Resistance

While we do not require collision resistance, we would still like to discuss the secu-
rity level of our construction with respect to this criteria in the following. Similar
to our arguments for second-preimage security we can apply our truncated model
for finding collisions. The best collision attacks on AES-based hash functions are
based on the rebound attack and covered by our model. However, for finding
a collision an attacker can freely choose the complete internal state and not
only the differences, which translates to more degrees of freedom. Therefore the
expected security level is lower for the same number of rounds (see Table 3).

Nonetheless, the best generic attack also has a lower complexity of 2128,
compared to the second-preimage case, which might suggest that one only requires
2128 in our truncated model. However, it is likely that the more relaxed collision
setting allows to exploit this after using up all degrees of freedom. Consequently,
we suggest to also aim for a security level of 2256 in our truncated model, which
requires adding one round for Haraka-512/256.

4.3 Design Choices

In the following we interpret our security analysis which lead to the proposed
parameters and design choices. We remind again that T denotes the number of
rounds of either π512 or π256, and m denotes the number of AES rounds applied
to each of the b blocks in each round.

Round Parameters T and m. One of the first questions which arise is how the
number of AES rounds and frequency of mixing the individual states influences
the security bounds. From our analysis there is a strong indication that m = 2 is
an optimal choice (see Table 1), as it gives the best trade-off between number of
active S-boxes and the total number of required AES rounds Tmb. We propose
T = 5, as this gives the required security parameters in our truncated model
even when assuming a very powerful attacker controlling more rounds than the
best known attacks are capable of.



Mixing Layers. For the mixing layer, a variety of choices were considered.
The main criteria here were that the layer should be efficiently implementable
(see Section 5.3), while still contributing to a highly secure permutation. Other
potential candidates for the mixing layer are discussed in Appendix C. With
respect to our criteria, for most choices of T and m, using the proposed mix512
and mix256 give a significant higher number of active S-boxes compared to other
approaches.

Truncation Pattern for Haraka-512/256. There are many possible choices
for the truncation pattern for Haraka-512/256. In our analysis we consider
truncation patterns which truncate row-wise or column-wise, as these are most
efficient to implement, due to the way words are stored in memory. For example,
a single column makes up 4 adjacent bytes in memory, thus allowing for more
efficient access. A row can likewise be accessed by first transposing the block.
The pattern we chose is taking the two least significant columns of the first two
states and the two most significant columns of the last two states. This compared
favorably to row-wise patterns or choosing the same two columns from each state.

5 Implementation Aspects and Performance

The compression functions Haraka-512/256 and Haraka-256/256 have been de-
signed with particular target platforms in mind. Specifically, we consider archi-
tectures with hardware acceleration for the AES. To that end, we assume the
existence of an instruction pipeline that can execute a single round of the AES
with a latency of Laes cycles and an inverse throughput of T−1aes instructions per
cycle. Table 4 gives the latencies and inverse throughputs for a single round of the
AES on our target platforms. We remark that our Haswell test machine has an
i7-4600M CPU at 2.90GHz; the Skylake machine has an i7-6700 CPU at 3.40GHz.
We furthermore expect Haraka to be efficiently implementable on ARMv8 due to
the support of AES instructions. We remark that the Turbo Boost technology
has been switched off for all our performance measurements.

Table 4: Latency and inverse throughput for AES instructions on target platforms

Architecture Laes T−1
aes

Haswell 7 1
Skylake 4 1

Naturally, when encrypting a single block with the AES, one must wait Laes

cycles each time the block is encrypted for one round. However, if the inverse
throughput T−1aes is low compared to Laes, and if additional independent data
blocks are available for processing, one can use this data independency to better
utilize the AES pipeline. Thus, in theory, if using k = Laes · T−1aes independent
blocks for the AES, one can encrypt each of those blocks for a single round in
just (k− 1) · T−1aes +Laes cycles, while m rounds of the AES can be completed for
all k blocks in just (k − 1) · T−1aes + Laes ·m cycles, as illustrated in Figure 3.
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Fig. 3: Pipelined AES instructions. A box aesenc(v, i) denotes the application of
the ith AES round to a block v.

5.1 General Construction Considerations

With the above observations in mind, and with the numbers of Table 4, it was
clear from the beginning that our states for Haraka-512/256 and Haraka-256/256
should use b > 1, because otherwise using the AES instruction on the state would
lead to non-optimal pipeline utilization. In Appendix C, we discuss considerations
regarding the mode of operation for the permutations used in our compression
function designs, and how we ended with the choice of using a permutation in
a Davies-Meyer style operation, but where for Haraka-512/256 the output is
truncated to obtain the 2 : 1 compression ratio.

5.2 Multiple Inputs

As described above, the theoretically optimal choice of state blocks would equal
Laes · T−1aes . However, as detailed, the Haraka variants use varying number of
blocks. To that end, we consider for both Haraka-512/256 and Haraka-256/256
the parallel application of the corresponding function to multiple inputs, assuming
that such are available for processing. For example, if k = Laes · T−1aes = 7, with
a state size of b = 4 blocks, one could process two independent inputs x and x′

in parallel, thus artificially extending the state to b = 8 blocks, allowing better
pipeline utilization. We denote the number of parallel inputs processed by P . For
each of our constructions and target platforms, there will be an optimal choice
of P which allows good AES pipeline utilization while, at the same time, keeping
the full context in low-level cache.

5.3 Implementation of Linear Mixing

Consider the case where P = 1, i.e. when considering a single input. Even if the
number of blocks in the state is less than Laes ·T−1aes , a number of the instructions
used for the linear mixing can be hidden after the aes operation. For example,
while the instruction to encrypt the mth AES round of Rt is still being executed
for one or more blocks, while other blocks have already finished, instructions
pertaining to the mixing of the finished blocks can be executed while the AES



instructions for the remaining blocks are allowed to finish. To that end, more so
than otherwise, choosing instructions for the linear mixing layer with low latency
and high throughput is important.

For the implementation of mix512 and mix256, we make use of the punpckhdq
and punpckldq instructions. On both Haswell and Skylake, those instructions
have a latency of 1 clock cycle and an inverse throughput of 1 instruction/cycle.
The mix512 mix256 approaches have the property that each output block contains
columns from each of the input blocks. This is not the case for the other approaches
to linear mixing considered (see Appendix C), and indeed our analysis show that
our approach yields better security properties.

In the case of Haraka-512/256 where the state has b = 4 blocks, mix512 uses
eight instructions in the mixing layer. In the case of Haraka-256/256, where the
state size is b = 2 blocks, the implementation of mix256 can be made with just
one application of each of punpckhdq and punpckldq.

Table 5: Performance of Haraka-512/256 and Haraka-256/256 (in cpb) on Haswell
and Skylake as a function of the number of rounds T . In all cases, the number of
AES rounds per round is fixed to m = 2. The numbers are taken as the minimum
over choices of P in the range P = 1, . . . , 16.

Haraka-512/256 Haraka-256/256

T Haswell Skylake Haswell Skylake

1 0.27 0.16 0.21 0.13
2 0.59 0.31 0.44 0.25
3 0.86 0.43 0.66 0.38
4 1.16 0.58 0.89 0.50
5 1.42 0.71 1.10 0.63
6 1.69 0.83 1.30 0.75
7 1.96 0.97 1.51 0.88
8 2.22 1.11 1.71 1.00

5.4 Discussion of Performance

In the following, we discuss the performance results of the Haraka construction,
both with respect to varying parameters for the construction itself, but also in
the light of other similar constructions of different kinds.

Table 5 gives performance figures for Haraka-512/256 and Haraka-256/256,
using m = 2 but with a varying number of rounds, on both the Haswell and
Skylake micro-architectures. As is evident, with T = 5, we obtain a performance
as high as 0.71 cpb for Haraka-512/256 on Skylake, while on Haswell we obtain
1.42 cpb. For Haraka-256/256, the corresponding numbers with T = 5, as is our
parameter choice, are 0.63 cpb and 1.10 cpb, respectively.

It is interesting to compare against the corresponding functions H and F from
the SPHINCS-256 construction [7], which have identical functional signatures and
similar design criteria. Here, AVX2 implementations utilizing 8-way parallelization



Table 6: Performance comparison for various primitives on the Haswell and
Skylake platforms. The primitives are divided in three categories: AES-NI-based
hash function implementations; Others (including hash functions, stream ciphers
and PRFs); and Compression functions. For the latter, some implementations are
directly derived from the code of the corresponding hash function but reducing it
to a compression function taking a 64-byte input. Numbers for entries marked by
a † are from eBACS [6] (other numbers are obtained by running SUPERCOP).
For Haraka performance numbers, we use P = 1 for a fairer comparison. For the
double-block constructions marked (IV), we mean variants where the chaining
input is used as additional message input.

Haswell Skylake

Type Primitive 64-byte 4-KiB 64-byte 4-KiB

AES-NI ECHO-256 20.38 4.78 18.30 4.26
Grøstl-256 32.22 9.73 28.92 8.50
Fugue-256 58.19 14.86 53.38 14.26

Other ChaCha12 3.69 0.80 3.47 0.79

Salsa20† 6.62 1.48 6.38 1.35
SipHash-2-4 2.12 1.42 2.16 1.41
SipHash-4-8 3.88 2.77 3.97 2.83
BLAKE2S 5.30 5.45 4.77 4.92
BLAKE2B 10.88 5.11 7.92 3.47
Skein-512-256 13.59 5.89 13.08 5.50
BLAKE-256 16.67 7.74 15.19 6.93
SHA-256 28.75 12.75 19.47 7.80
Keccak[c = 512] 24.28 10.51 20.31 9.22
JH-256 28.64 14.05 28.20 13.93
LANE-256 89.41 29.96 70.28 23.40
Whirlpool 68.72 35.91 50.81 27.39

Compression Haraka-256/256 1.29 − 0.72 −
Haraka-512/256 1.78 − 0.97 −
SPHINCS-256-F 11.76 − 11.22 −
SPHINCS-256-H 11.58 − 10.97 −
Hirose (IV) 8.38 − 6.47 −
AbreastDM (IV) 13.45 − 12.97 −
TandemDM (IV) 16.33 − 12.91 −
Hirose 16.64 − 13.05 −
Grøstl-256 24.20 − 19.64 −
AbreastDM 26.77 − 25.73 −
TandemDM 32.44 − 25.69 −
Fugue-256 53.23 − 49.72 −
SHA-256 14.97 − 12.56 −
Keccak[c = 512] 27.94 − 19.67 −
Whirlpool 29.56 − 21.28 −
LANE-256 30.77 − 23.66 −



(i.e. using P = 8) lead to a performance of 1.63 cpb for their H function and 1.64
cpb for their F function on Haswell. By employing the availability of AVX-512
on Skylake, it is reasonable to assume that on this platform, the SPHINCS-256
functions would have their performance doubled. Meanwhile, we remark that even
under this assumption, in both the cases of Haswell and Skylake, our functions
perform favorably in comparison to those of SPHINCS-256.

Table 7: Number of calls to the AES round function, and number of calls to the
AES key schedule assistant function, for AES-NI-based primitives.

Primitive Key length # aesenc # aeskeygenassist

Haraka-512/256 − 40 0
Haraka-256/256 − 20 0
ECHO-256 − 256 0
Grøstl-256 − 240 0
Fugue-256 − 198 0
Hirose 256 112 52
Hirose (IV) 256 56 26
TandemDM 256 112 104
TandemDM (IV) 256 56 52
AbreastDM 256 112 104
AbreastDM (IV) 256 56 52

In some applications, it is likely that several inputs will not be available for
processing in parallel. To that end, it is interesting to compare the performance
for Haraka using P = 1 to the corresponding functions from SPHINCS-256. In
this case, from Table 6 we see that Haraka-256/256 performs very well with
1.29 cpb and 0.72 cpb on Haswell and Skylake, respectievly, while the numbers
for Haraka-512/256 are 1.78 cpb on Haswell and 0.97 cpb on Skylake. From
benchmarking the corresponding SPHINCS-256 functions on the same machines,
using AVX2 implementations and P = 1, we obtain a performance of 11.58
cpb on Haswell and 10.97 cpb on Skylake for their H function, and respectively
11.76 and 11.22 cpb for their F function on Haswell and Skylake respectively.
Thus, when several inputs are not available to draw on for parallelization, our
Haraka-512/256 and Haraka-256/256 constructions perform at least 6.5 times
better than those from SPHINCS-256 on our target platforms.

In Table 6 we compare the performance not only with the SPHINCS-256
functions, but also a wide selection of other functions that are to an extent similar
to our Haraka construction. As an example, we compare against a wide range of
generic hash functions including some with implementations based on AES-NI, as
well as all SHA-3 finalists. We also compare against ChaCha12 which is also used
in SPHINCS-256, as well as the SipHash PRF construction. Furthermore, we
compare against a range of other compression function constructions including the
Hirose, AbreastDM and TandemDM so-called double-block constructions which
were implemented using AES-256 as the underlying block cipher. In some cases,
generic hash functions were converted directly to compression functions by simply



modifying the existing code to strip away the overhead associated with supporting
arbitrary input sizes. We remark that while generic hash functions are designed
to accept inputs of arbitrary lengths, they obtain their stable performance only
for inputs much longer than 64 bytes, due to their overhead associated with
e.g. initialization, as is also evident from the table. To that end, we give their
performance for both the short input of 64 bytes (thus matching the input size of
Haraka-512/256), as well as a long input of 4 KiB. We note that even comparing
against the performance for long messages of 4 KiB, the performance compares
favorably to the Haraka constructions. We remark that for all entries in Table 6
that are based on AES, we give in Table 7 a count on the number of calls to the
AES round function as well as to the instruction for performing one round of the
AES key schedule.

5.5 Performance in SPHINCS

While the previous performance figures provide a good comparison between the
functions itself, the actual performance figures relevant for a hash-based signatures
scheme are the costs for key-generation, signing and verifying a signature. The
total costs for this operations are difficult to derive by only looking at the
performance of the short-input hash function.

We therefore modified the optimized AVX implementation of SPHINCS given
in [7], by replacing all calls to SPHINCS-256-F and SPHINCS-256-H by Haraka-
256/256 resp. Haraka-512/256. Parallel calls to these functions are processed to
the same extend, using 8 calls at the same time, and no further optimizations have
been applied. As can be seen in Table 8, the current performance gains by using
Haraka are between ×1.5 to ×2.8, depending on the platform and operation.

Table 8: Comparison of the AVX implementation of SPHINCS with our imple-
mentation using Haraka. All numbers are given as the total number of cycles
required and measured using SUPERCOP.

Haswell Skylake

SPHINCS-256 Haraka SPHINCS-256 Haraka

Key Generation 3 295 808 2 060 864 2 839 018 1 426 138
Signing 52 249 518 34 938 076 43 517 538 23 312 354
Verify 1 495 416 695 222 1 291 980 452 066

6 Conclusion and Remarks on Future Work

Together with in-depth implementation considerations of modern CPU design,
we presented the seemingly fastest proposal for compression/short-input hashing
on such platforms, with a performance of less than 1 cpb on a Skylake desktop
CPU, both with and without parallelization across multiple inputs. Despite
exploring a larger design-space, the design ended up having strong similarities



with the permutation AESQ that is used in the CAESAR candidate PAEQ [9].
Our implementations for Haraka, as well as code for security analysis, is available
to check out at [27].

We remark that our design is optimized for short inputs, and long-message
performance is out of scope for this paper. Nevertheless, when our compression
function is put into one of the well-understood domain extension methods like
the Sponge construction [8], the resulting long-message speed would still be below
2 cycles per byte, and hence would also be very competitive.

In contrast to competing designs that were the fastest so far, we can give
arguments in favor of its security against important classes of attacks that goes
beyond statements such as: “Nobody seems to be able to break more rounds”. As
a novelty, we also consider attacks using truncated differentials that are bounded,
and thus for the first time also go beyond the argument using bounds on the
number of active S-boxes. This, of course, does not rule out attacks outside of
the models that we consider, and hence more cryptanalysis is needed to establish
more trust in the proposal. Particularly, MITM-style attacks will be an important
attack vector to consider, as no good bounding mechanisms are available yet.

Returning to our initial question: How much faster can a hash function become
if collision resistance is dropped from the list of requirements? In our proposal we
drop from 6 rounds to 5 rounds and still retain security against second-preimage
attacks. We can conclude that the performance gains are rather limited for the
class of hash function design strategies that we consider, namely AES-like designs.
This particularly holds when aiming at pre-quantum security levels that are
higher than those for collision resistance, namely 256 bits rather than 128 bits.
The reason why aiming at higher security levels makes sense is that there is
evidence that (at least for generic attacks) the post-quantum security levels will
in both cases be 128 bits. Of course, this argument does not consider non-generic
attacks that use capabilities of hypothetical quantum computers, and we leave
investigations in this direction as future work.
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A Round Constants

Table 9: Round constants used in π512 and π256.

RC0 0684704ce620c00ab2c5fef075817b9d RC20 d3bf9238225886eb6cbab958e51071b4
RC1 8b66b4e188f3a06b640f6ba42f08f717 RC21 db863ce5aef0c677933dfddd24e1128d
RC2 3402de2d53f28498cf029d609f029114 RC22 bb606268ffeba09c83e48de3cb2212b1
RC3 0ed6eae62e7b4f08bbf3bcaffd5b4f79 RC23 734bd3dce2e4d19c2db91a4ec72bf77d
RC4 cbcfb0cb4872448b79eecd1cbe397044 RC24 43bb47c361301b434b1415c42cb3924e
RC5 7eeacdee6e9032b78d5335ed2b8a057b RC25 dba775a8e707eff603b231dd16eb6899
RC6 67c28f435e2e7cd0e2412761da4fef1b RC26 6df3614b3c7559778e5e23027eca472c
RC7 2924d9b0afcacc07675ffde21fc70b3b RC27 cda75a17d6de7d776d1be5b9b88617f9
RC8 ab4d63f1e6867fe9ecdb8fcab9d465ee RC28 ec6b43f06ba8e9aa9d6c069da946ee5d
RC9 1c30bf84d4b7cd645b2a404fad037e33 RC29 cb1e6950f957332ba25311593bf327c1
RC10 b2cc0bb9941723bf69028b2e8df69800 RC30 2cee0c7500da619ce4ed0353600ed0d9
RC11 fa0478a6de6f55724aaa9ec85c9d2d8a RC31 f0b1a5a196e90cab80bbbabc63a4a350
RC12 dfb49f2b6b772a120efa4f2e29129fd4 RC32 ae3db1025e962988ab0dde30938dca39
RC13 1ea10344f449a23632d611aebb6a12ee RC33 17bb8f38d554a40b8814f3a82e75b442
RC14 af0449884b0500845f9600c99ca8eca6 RC34 34bb8a5b5f427fd7aeb6b779360a16f6
RC15 21025ed89d199c4f78a2c7e327e593ec RC35 26f65241cbe5543843ce5918ffbaafde
RC16 bf3aaaf8a759c9b7b9282ecd82d40173 RC36 4ce99a54b9f3026aa2ca9cf7839ec978
RC17 6260700d6186b01737f2efd910307d6b RC37 ae51a51a1bdff7be40c06e2822901235
RC18 5aca45c22130044381c29153f6fc9ac6 RC38 a0c1613cba7ed22bc173bc0f48a659cf
RC19 9223973c226b68bb2caf92e836d1943a RC39 756acc03022882884ad6bdfde9c59da1



B Active S-boxes

Table 10: Lower bound on the number of active S-boxes in a differential trail for
the permutation and for the permutation when used in our mode for π512 ((a),
(b), (c)) and for π256 ((d), (e), (f)). The cell color indicates the number of active
S-boxes per total number of AES rounds (more transparent means fewer active).

(a) π512 DM-permutation.

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 45 50 55
3 9 45 66 75 84
4 25 80 90 100 125
5 41 130 114 125 154
6 60 150 138 150 195
7 64 170 162 175 224

(b) π512 permutation used in DM-mode.

m

T 1 2 3 4 5

1 0 3 7 17 25
2 3 17 37 46 53
3 7 37 58 71 82
4 17 72 82 96 123
5 33 128 106 121 152
6 52 142 130 146 193
7 60 162 154 171 222

(c) π512 permutation used in DM-mode
leading to collision.

m

T 1 2 3 4 5

1 0 9 13 17 25
2 12 34 37 46 58
3 18 76 60 71 91
4 32 93 84 96 128
5 39 134 108 121 161
6 52 159 132 146 198
7 60 198 156 171 231

(d) π256 permutation.

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(e) π256 permutation used in DM-mode.

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(f) π256 permutation used in DM-mode lead-
ing to collision.

m

T 1 2 3 4 5

1 13 30 21 25 34
2 20 50 42 50 65
3 38 65 63 75 99
4 35 75 84 100 130
5 56 105 105 125 164
6 55 125 126 150 195
7 73 140 147 175 229



C Considerations Regarding Modes of Operation and
Linear Mixing

When designing the general constructions for the compression functions, we
initially had three approaches in mind:

1. Davies-Meyer construction with a block cipher (referred to as dm),
2. Davies-Meyer construction with a permutation (referred to as dmperm), and
3. Sponge construction (referred to as sponge).

For the first construction, we used a state of two blocks initialized to zero.
As part of the round function Rt, we would apply two parallel calls the AES as
part of the aes operation. The actual bits of the message would be taken into the
state over several rounds via a simple message expansion procedure. While the
block cipher approach led to a small context size, the simplicity of the message
expansion implied the possibility for the attacker to control differences injected
even after many rounds, thus obtaining collisions by difference cancellation. While
this can potentially be mitigated by a more complex message expansion, this
would in turn lead to harder analysis and slower implementations.

In order to avoid the negative consequences on security from a too simple
message expansion, and to performance from a too complex message expansion, we
opted to abandon the block cipher-based approach of (1) in favor of a permutation-
based approach. In particular, we load the full message into the state of the
permutation from the beginning. As such, the state size for Haraka-512/256 must
be at least 64 bytes, while that of Haraka-256/256 must be at least 32 bytes,
or, equivalently b = 4 and b = 2 blocks, respectively. With this, we considered
two general approaches, namely (2) and (3) above. Firstly, one approach is to
use a Davies-Meyer construction where the message is loaded into the state
which has the size of the domain in bits. This is the approach we landed on, and
that described in Section 2 above. Finally, with a Sponge-based approach, one
would choose the state size to be larger than the size of the domain. The state is
initialized to some constant, e.g. all zeroes. The message is XORed into the most
significant |M | bits of the state, and a permutation is applied. The output is now
taken as e.g. the most significant 256 bits in the case of both Haraka-512/256
and Haraka-256/256.

While the dm approach above was found to lead to significantly poorer security
margins, in comparison to the dmperm and sponge approaches, we nevertheless
implemented all three approaches in C.

For the sponge approach, we used a state consisting of 6 blocks, or, equivalently,
96 bytes. For dm, we used a state of 2 blocks, initialized to zero. The message
expansion consisted of shuffling message bits and XORing them to other message
bits, so, in other words, a simple linear expansion. In all cases, the permutation
applied in each round had the form of aes (consisting of m rounds of the AES
applied in parallel to each block of the state) followed by a linear mixing. Here, we
focus on a fixed mixing layer (in particular using the blend mixing detailed below)
while, in Section 5.3, we describe considerations regarding different approaches
to the linear mixing.



In our consideration here, the mixing layer is implemented by using the blend
(or pblendw) instruction which is available in Intel CPUs supporting SSE 4.1.
The blend instruction itself takes in two block operands and an 8-bit mask w.
Let y = blendw(a, b) be the blend operation on operands a and b using mask w.
Then the ith least significant 16-bit word of y is determined as the corresponding
word of either a or b, depending on the value of the ith bit of w. As such, blend
gives us essentially a way to mix two blocks without permuting the byte positions.
The mixing using blend is now defined as using blendw on block i with block
i + 1 modulo the number of blocks of the state. Fixing m = 2, i.e. using two
AES rounds per round, Figure 4 details the performance using the three general
construction approaches dm, dmperm and sponge, described above. The numbers
are taken as the minimum over choices of P in the range P = 1, . . . , 16. Note,
that the optimal choice for a particular value of P may not be constant across
choices of the number of rounds T . Evidently, the dm approach has the best
overall performance. The sponge approach is significantly slower than the dmperm
approach when T > 3. To that end, and combined with the observation regarding
the security properties of the dm approach, this led to the overall choice of the
dmperm construction used for both Haraka-512/256 and Haraka-256/256.
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Fig. 4: Performance using m = 2 for each of the three general Haraka-512/256
constructions considered

For the linear mixing layer, we considered several possible approaches:

1. The mix512 and mix256 approaches described in Section 2, using the punpckhdq
and punpckldq instructions;

2. The blend approach, as described above, using the pblendw instruction; and
3. Using a combination of a block-wise byte shuffle and XOR (denoted shuffle-

xor) with the following state block, i.e. where block i updated with a byte
shuffle and XORed with block i+ 1 modulo the number of blocks, to obtain
the updated block. This approach uses the pshufb and pxor instructions.

The effect of each of this operations applied to the state of π512 can be seen in
Figure 5. On both the Haswell and Skylake microarchitectures, the instructions
used for those three approaches all have a latency of one clock cycle, while the
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Fig. 5: Effect of applying one round of the mixing layers on the state of π512.

inverse throughput varies from e.g. 0.33 instructions/cycle for the XOR operation
to 1 instruction/cycle for the punpckhdq and punpckldq instructions.
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Fig. 6: Performance of Haraka-512/256 using m = 2 for each of the three ap-
proaches to linear mixing considered

Figure 6 gives a performance comparison of the three approaches to the linear
mixing layer. As shown, with the exception of the mix512 operation on Haswell,
all other approaches have comparable performance for both Haswell and Skylake.
Concludingly, it makes sense to choose the approach yielding the best security
properties, namely the mix512 and mix256 operations.
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