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Abstract. In this paper we present a new attack on cryptosystems
based on ideal lattices. We show that, if there is one polynomially large
entry in the transformation matrix from trapdoor basis to public basis,
then we can obtain the trapdoor basis with non-negligible probability.
The key point is that some class of matrices satisfies multiplication com-
mutative law. We use multiplication commutative law to obtain a linear
equation over integers, and find it not difficult to be solved as long as its
rank is larger than half of its number of variables.
By a modified attacking procedure, we break Gentry09 fully homomor-
phic encryption scheme, although each entry of its transformation matrix
is supper-polynomially large. Such modified attacking procedure has a
natural corollary: if we can obtain enough vectors of the inverse ideal,
then we can obtain the trapdoor basis with non-negligible probability,
no matter whetter each entry of the transformation matrix is supper-
polynomially large.
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1 Introduction

Cryptosystems based on lattices are important cryptosystems. From them the
most useful are those based on ideal lattices, where multiplication operation
makes many novel applications possible, for example, fully homomorphic en-
cryption (FHE) [1]. The lattice has a trapdoor basis which is hidden by the
user, and a public basis which is published. The transformation matrix from
trapdoor basis to public basis is a unimodular matrix, that is, both itself and its
inverse matrix are integer matrices. Such transformation matrix is also hidden.
How large should the transformation matrix be to protect the trapdoor basis
(That is, how large should its entries be)? Up to now there has been no clear an-
swer to this question. The common view is that polynomially large entries of the
transformation matrix seems OK, and no security weakness has been found. For
the special case of ideal lattices, Hermite normal form (HNF) is “a good choice
for the public lattice basis” (Chapter 6 of [1]), which has supper-polynomially
large transformation matrix. However it is questionable whether each entry of
this transformation matrix is supper-polynomially large.
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In this paper we present a new attack on cryptosystems based on ideal lat-
tices. We show that, if there is only one polynomially large entry in the trans-
formation matrix from trapdoor basis to public basis, then we can obtain the
trapdoor basis with non-negligible probability. Our attack is quite simple, the
key point is that some class of matrices satisfies multiplication commutative law.
We use multiplication commutative law to obtain a linear equation over integers
(rather than in real numbers), and find it not difficult to be solved as long as its
rank is larger than half of its number of variables.

By a modified attacking procedure, we break Gentry 09 fully homomorphic
encryption scheme, although each entry of its transformation matrix is supper-
polynomially large. Such modified attacking procedure has a natural corollary:
if we can obtain enough vectors of the inverse ideal, then we can obtain the
trapdoor basis with non-negligible probability, no matter whetter each entry of
the transformation matrix is supper-polynomially large.

2 Preliminaries

2.1 Notations and Definitions

We denote the rational numbers by Q and the integers by Z. We specify that
n-dimensional vectors of Qn and Zn are row vectors. We take Qn×n and Zn×n as
n×n matrices. A matrix U ∈ Zn×n is called a unimodular matrix if U−1 ∈ Zn×n.
In this case the determinant of U is ±1.

We consider the polynomial ring R = Z[X]/(Xn+1), and identify an element
u ∈ R with the coefficient vector of the degree-(n − 1) integer polynomial that
represents u. In this way, R is identified with the integer lattice Zn. Addition
in this ring is done component-wise in their coefficients, and multiplication is
polynomial multiplication modulo the ring polynomial Xn + 1.

For x ∈ R,〈x〉 = {x · u : u ∈ R} is the principal ideal in R generated by x
(alternatively, the sub-lattice of Zn corresponding to this ideal).

We redefine the operation “mod q” as follows: if q is an odd, a(mod q) is
within {−(q−1)/2,−(q−3)/2, . . . , (q−1)/2}; if q is an even, a(mod q) is within
{−q/2,−(q − 2)/2, . . . , (q − 2)/2}.

2.2 A Class of Matrices and Its Multiplication Commutative Law

Suppose X ⊂ Zn×n is a class of such matrices:
a0 a1 · · · an−1

−an−1 a0 · · · an−2

...
...

. . .
...

−a1 −a2 · · · a0

 ,

where each entry ai ∈ Z. X satisfies multiplication commutative law, namely, for
A,B ∈ X, we have AB = BA.
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2.3 Ideal Lattice and Its {Trapdoor Basis, Public Basis}

The user randomly chooses a vector b = (b0, b1, · · · , bn−1) ∈ Zn. Then the
trapdoor basis of the ideal lattice is the matrix

BTrap =


b0 b1 · · · bn−1

−bn−1 b0 · · · bn−2

...
...

. . .
...

−b1 −b2 · · · b0

 .

In other words, the ideal lattice is the principal ideal 〈b〉. Then the user takes a
unimodular matrix U ∈ Zn×n, and computes the public basis

BPub = UBTrap.

He publishes BPub and hides {U,BTrap}.

3 A Brief Description of Our Attack

Now our knowledge is the public basis BPub, and we want to obtain a trapdoor
basis. This trapdoor basis may not be BTrap, but it should be at least as good
as or even better than BTrap, with same or smaller size.

3.1 Step 1: Obtaining a Linear Equation of the Unit Matrix

First, we take a matrix C ∈ X, and compute the product BPubC. By considering
Multiplication Commutative Law, we have

BPubC = (UC)BTrap,

although we don’t know U and BTrap.
Second, we compute matrix D = BPubC(BPub)−1 ∈ Qn×n. By considering

Multiplication Commutative Law, we have

D = UBTrapC(BTrap)−1U−1 = UCU−1 ∈ Zn×n.

Finally, we obtain a linear equation of U:

UC−DU = O, (3.1)

where O ∈ Zn×n is null matrix.
True value of U is one solution of equation (3.1), so that equation (3.1) has

a reduced rank. If the rank is n2−1, then the thing tends simple. We can search
all possible values of one entry of U, under the assumption that this entry is
polynomially large. For each possible value of this entry, we obtain unique value
of U. However, we find it is almost sure that the rank of equation (3.1) is far
smaller than n2 − 1. To continue our attack, we need three assumptions.
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3.2 Step 2: Obtaining and Solving Another Linear Equation
Modular Some Integer

Assumption 1: The rank of equation (3.1) is larger than n2/2.

Suppose the rank of equation (3.1) is r, and r is larger than n2/2. We denote

U =


u1 u2 · · · un

un+1 un+2 · · · u2n

...
...

. . .
...

un(n−1)+1 un(n−1)+2 · · · un2

 .

Suppose true value of un2 is polynomially large.

First, we convert equation (3.1) into the following form:

(u1, u2, . . . , ur) = (ur+1, ur+2, . . . , un2)G, (3.2)

where each entry of G is from Q.

Second, we take g0 as the smallest common denominator of entries of G, and
take G(0) = g0G, so that G(0) is an integer matrix. Because u1, u2, . . . , un(n−1)

are integers, each entry of

(ur+1, ur+2, . . . , un2)G(0)

must be a multiple of g0.

Finally, we solve the linear equation modular g0,

(ur+1, ur+2, . . . , un2)G(0) mod g0 = (0, 0, . . . , 0). (3.3)

True value of (ur+1, ur+2, . . . , un2) is one solution of equation (3.3). G(0) has
n2 − r rows and r columns. We know that equation (3.3) has a reduced rank,
that is, the rank is smaller than n2− r. Here we need another assumption as the
follow.
Assumption 2 The rank of equation (3.3) is n2 − r − 1.

According to Assumption 1, r is larger than n2−r, so it seems that Assump-
tion 2 can be easily satisfied. By searching all possible values of un2 , we obtain
all possible mod g0 values of (ur+1, ur+2, . . . , un2). We need Assumption 3 as
the follow.
Assumption 3 True values of {ur+1, ur+2, . . . , un2} are all within the interval
(−g0/2, g0/2).

Assumption 3 can be easily satisfied if we take C sufficiently large. For ex-
ample if we find g0 larger than any entry of BPub, then the condition is satisfied
with large probability. Assumption 2 and Assumption 3 mean that, if un2 is true
value, then {ur+1, ur+2, . . . , un2−1} obtained from equation (3.3) are true values,
and mod g0 operation is not working.
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3.3 Step 3: Solving the Former Linear Equation

We search polynomially many values of un2 , and obtain corresponding values
of {ur+1, ur+2, . . . , un2−1} by solving equation (3.3), then obtain corresponding
solution {u1, u2, . . . , ur} of equation (3.2).

For each value of (u1, u2, . . . , un2), we make following 2 checks:
• whether det(U) = ±1, and
• whether U−1BPub ∈ X.
Whenever (u1, u2, . . . , un2) passes these checks, each row of U−1BPub is a

generator of the principal ideal 〈b〉. Finally we obtain several generators. These
generators include b, and the number of these generators is polynomially large.
Form them, we choose one with the smallest size, then we have obtained a
qualified trapdoor basis. The cryptosystem has been broken.

A note: a principal ideal may have a lot of generators [2], but they do not
affect our attack.

4 Some Details of Our Attack

(To be continued)

5 Breaking Gentry09 Fully Homomorphic Encryption
Scheme

(To be continued)
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