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Abstract. In this paper we present two new attacks on cryptosystems
based on principal ideal lattices.
First, we show that, if there is one polynomially large entry in the trans-
formation matrix from trapdoor basis to public basis, we can obtain the
trapdoor basis with high probability. Our attack is quite simple, and
rarely needs to use any lattice-reduction tools. The key point is that
some class of matrices satisfies multiplication commutative law. We use
multiplication commutative law to obtain a linear equation of integer
variables, and find it not difficult to be solved as long as its rank is
larger than half of its number of variables.
Second, we show that, if each entry of the trapdoor basis is polynomi-
ally large, we can obtain the trapdoor basis with high probability. This
attack is a modified version, and we don’t care whether each entry of its
transformation matrix is super-polynomially large. The key point is that
we can obtain many vectors of the inverse ideal, and we can reduce each
of these vectors into polynomially large multiple of its generator.

Keywords: Cryptosystems based on ideal lattices, Trapdoor basis, Pub-
lic basis.

1 Introduction

Cryptosystems based on lattices are important “post quantum cryptosystems”.
From them the most useful are those based on ideal lattices, where multiplication
operation makes many novel applications possible, for example, fully homomor-
phic encryption (FHE) [1]. The ideal lattice has a trapdoor basis which is hidden
by the user, and a public basis which is published. The transformation matrix
from trapdoor basis to public basis is a unimodular matrix, that is, both itself
and its inverse matrix are integer matrices. Such transformation matrix is also
hidden. One security background of these cryptosystems is the hardness of Short
Generator of a Principal Ideal Problem(SG-PIP), introduced in [4].

How large should the transformation matrix be to protect the trapdoor basis
(That is, how large should its entries be)? Up to now there has been no clear an-
swer to this question. The common view is that polynomially large entries of the
transformation matrix seems OK, and no security weakness has been found. For
the special cases of ideal lattices, Hermite normal form (HNF) is “a good choice
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for the public lattice basis” (Chapter 6 of [1]), which has super-polynomially
large transformation matrix. However polynomially large transformation matrix
has never been negated for ideal lattices. On the other hand, it is a general case
for principal ideal lattice that each entry of the trapdoor basis is polynomially
large.

In this paper we show that SG-PIP is not hard under some conditions. Move
detailedly we present two new attacks on cryptosystems based on principal ideal
lattices.

Attack (1). We show that, if there is one polynomially large entry in the
transformation matrix from trapdoor basis to public basis, we can obtain the
trapdoor basis with high probability. Our attack is quite simple, and rarely needs
to use any lattice-reduction tools. The key point is that some class of matrices
satisfies multiplication commutative law. We use multiplication commutative
law to obtain a linear equation of integer variables, and find it not difficult to
be solved as long as its rank is larger than half of its number of variables.

Attack (2). We show that, if each entry of the trapdoor basis is polynomi-
ally large, we can obtain the trapdoor basis with high probability. This attack
is a modified version, and we don’t care whether each entry of its transforma-
tion matrix is super-polynomially large. The key point is that we can obtain
many vectors of the inverse ideal, and we can reduce each of these vectors into
polynomially large multiple of its generator.

2 Preliminaries

2.1 Notations and Definitions

We denote the rational numbers by Q and the integers by Z. We specify that
n-dimensional vectors of Qn and Zn are row vectors. We take Qn×n and Zn×n as
n×n matrices. A matrix U ∈ Zn×n is called a unimodular matrix if U−1 ∈ Zn×n.
In this case the determinant of U is ±1.

We consider the polynomial ring R = Z[X]/(Xn+1), and identify an element
u ∈ R with the coefficient vector of the degree-(n − 1) integer polynomial that
represents u. In this way, R is identified with the integer lattice Zn. Addition
in this ring is done component-wise in their coefficients, and multiplication is
polynomial multiplication modulo the ring polynomial Xn + 1. Similarly, we
consider the polynomial ring Q[X]/(Xn + 1).

For x ∈ R,〈x〉 = {x × u : u ∈ R} is the principal ideal in R generated by x
(alternatively, the sub-lattice of Zn corresponding to this ideal).

We redefine the operation “mod q” as follows: if q is an odd, a(mod q) is
within {−(q−1)/2,−(q−3)/2, . . . , (q−1)/2}; if q is an even, a(mod q) is within
{−q/2,−(q − 2)/2, . . . , (q − 2)/2}.
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2.2 A Class of Matrices and Its Multiplication Commutative Law

Suppose X ⊂ Qn×n is a class of such matrices:
a0 a1 · · · an−1

−an−1 a0 · · · an−2

...
...

. . .
...

−a1 −a2 · · · a0

 ,
where each entry ai ∈ Q.
{X,+, ·} is a ring. If X ∈ X, X−1 ∈ X. More important is that X satisfies

multiplication commutative law, namely, for A,B ∈ X, we have A ·B = B ·A.
In fact {X,+, ·} is a ring-isomorphism of Q[X]/(Xn + 1).

2.3 Principal Ideal Lattice and Its {Trapdoor Basis, Public Basis}

The user randomly chooses a vector b = (b0, b1, · · · , bn−1) ∈ Zn. Then the
trapdoor basis of the ideal lattice is the matrix

BTrap =


b0 b1 · · · bn−1

−bn−1 b0 · · · bn−2

...
...

. . .
...

−b1 −b2 · · · b0

 ∈ X ∩ Zn×n.

In other words, the ideal lattice is the principal ideal 〈b〉. Then the user takes a
unimodular matrix U ∈ Zn×n, and computes the public basis

BPub = U ·BTrap.

He publishes BPub and hides {U,BTrap}.

3 Description of Our Attack (1)

Suppose there is one polynomially large entry in U. Our knowledge is the public
basis BPub, and we want to obtain a trapdoor basis. This trapdoor basis may
not be BTrap, but it should be at least as good as or even better than BTrap,
with same or smaller size.

3.1 Step 1: Obtaining a Linear Equation of the Unimodular Matrix

First, we take a matrix C ∈ X∩Zn×n. To make our attack successful, C should
be sufficiently large. For example, we can take the absolute value of each entry
of C larger than the maximum absolute value of entries of BPub.

Second, we compute matrix D = BPub ·C ·(BPub)−1 ∈ Qn×n. By considering
Multiplication Commutative Law, we have

D = U ·BTrap ·C · (BTrap)−1 ·U−1 = U ·C ·U−1 ∈ Zn×n,



4 Yupu Hu, Zhizhu Lian and Jiangshan Chen

where BTrap disappears, and unknown variables are only entries of U.
Finally, we obtain a linear equation of U:

U ·C−D ·U = O, (3.1)

where O ∈ Zn×n is null matrix.
True value of U is one solution of equation (3.1), so that equation (3.1) has

a reduced rank. If the rank is n2−1, then the thing tends simple. We can search
all possible values of one entry of U, under the assumption that this entry is
polynomially large. For each possible value of this entry, we obtain unique value
of U. However, we find it is almost sure that the rank of equation (3.1) is far
smaller than n2 − 1. To continue our attack, we need three assumptions.

3.2 Step 2: Obtaining and Solving Another Linear Equation
Modular Some Integer

Assumption 1: The rank of equation (3.1) is larger than n2/2.
Our experiments show that Assumption 1 can be easily satisfied. If Assump-

tion 1 doesn’t hold, we can take another matrix C ∈ X ∩ Zn×n, and compute
another D. Now suppose the rank of equation (3.1) is r, and r > n2/2. We
denote

U =


u1 u2 · · · un
un+1 un+2 · · · u2n

...
...

. . .
...

un(n−1)+1 un(n−1)+2 · · · un2

 .
Suppose true value of un2 is polynomially large.

First, we convert equation (3.1) into the following form:

(u1, u2, . . . , ur) = (ur+1, ur+2, . . . , un2)G, (3.2)

where each entry of G is from Q.
Second, we take g0 as the smallest common denominator of entries of G, and

take G(0) = g0G, so that G(0) is an integer matrix. Because u1, u2, . . . , ur are
integers, each entry of

(ur+1, ur+2, . . . , un2)G(0)

must be a multiple of g0.
Finally, we solve the linear equation modular g0,

(ur+1, ur+2, . . . , un2)G(0) (mod g0) = (0, 0, . . . , 0). (3.3)

True value of (ur+1, ur+2, . . . , un2) is one solution of equation (3.3). G(0) has
n2 − r rows and r columns. We know that equation (3.3) has a reduced rank,
that is, the rank is smaller than n2− r. Here we need another assumption as the
follow.
Assumption 2 The rank of equation (3.3) is n2 − r − 1.
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According to Assumption 1, r is larger than n2−r, so it seems that Assump-
tion 2 can be easily satisfied. By searching all possible values of un2 , we obtain
all possible mod g0 values of (ur+1, ur+2, . . . , un2). We need Assumption 3 as
the follow.
Assumption 3 True values of {ur+1, ur+2, . . . , un2} are all within the interval
(−g0/2, g0/2).

Assumption 3 can be easily satisfied if we take C sufficiently large. For ex-
ample if we find g0 larger than any entry of BPub, then the condition is satisfied
with high probability. Assumption 2 and Assumption 3 mean that, if un2 is true
value, then {ur+1, ur+2, . . . , un2−1} obtained from equation (3.3) are true values,
and mod g0 operation is not working.

3.3 Step 3: Searching a Qualified Trapdoor Basis

We search polynomially many values of un2 , and obtain corresponding values
of {ur+1, ur+2, . . . , un2−1} by solving equation (3.3), then obtain corresponding
solution {u1, u2, . . . , ur} of equation (3.2).

For each value of (u1, u2, . . . , un2), we make following 2 checks:

• whether det(U) = ±1, and

• whether U−1 ·BPub ∈ X.

Whenever (u1, u2, . . . , un2) passes these checks, each row of U−1 ·BPub is a
generator of the principal ideal 〈b〉. Finally we obtain several generators. These
generators include true value of b, and the number of these generators is poly-
nomially large. Form them, we choose one with the smallest size, then we have
obtained a qualified trapdoor basis. The cryptosystem has been broken.

A note: a principal ideal may have a lot of generators [4], but they do not
affect our attack.

4 Some Details of Our Attack (1)

4.1 Shape and Rank of Coefficient-Matrix of Equation (3.1)

Denote

D =


d11 d12 . . . d1n
d21 d22 . . . d2n
...

...
. . .

...
dn1 dn2 . . . dnn

 ,
and rewrite equation (3.1) into the form

(u1, u2, . . . , un2)J = (0, 0, . . . , 0),
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where

J =



d11 d21 dn1
. . .

. . . · · ·
. . .

d11 d21 dn1
d12 d22 dn2

. . .
. . . · · ·

. . .

d12 d22 dn2
...

...
. . .

...
d1n d2n dnn

. . .
. . . · · ·

. . .

d1n d2n dnn



−


C

C
. . .

C

 .

Denote

J =


J11 J12 . . . J1n

J21 J22 . . . J2n

...
...

. . .
...

Jn1 Jn2 . . . Jnn

 ,
where each sub-matrix Jij ∈ X ∩ Zn×n.

Lemma 1. Suppose n is a power of 2. Then the rank of equation (3.1) is mul-
tiple of n. Therefore the rank is at most n2 − n.

Lemma 1 is clear. By considering that {X,+, ·} is a field in this case, we can
use Gauss Elimination over X rather than over real numbers.

4.2 Our Experiments

If we take C = aI as the multiple of the unit matrix, equation (3.1) has the
rank 0. Of course there are many other cases in which the ranks of equation
(3.1) are non-larger than n2/2. But our experiments show that, with very high
probability, equation (3.1) has the rank n2−n. Appendix presents 25 examples,
for n = 3, 4, 5, 6, 7 respectively.

5 Description of Our Attack (2)

5.1 Our observation and Preparation

Suppose each entry of b is polynomially large, Then we arbitrarily choose n
vectors {t(1), t(2), . . . , t(n)} from 〈b−1〉 (we know it is an easy task [3]).

We take (mod 1) operation as follows:

{t(1), t(2), . . . , t(n)}(mod 1) = {t∗(1), t∗(2), . . . , t∗(n)}
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We know that {t∗(1), t∗(2), . . . , t∗(n)} are still vectors of 〈b−1〉, and that each
entry of each vector from {t∗(1), t∗(2), . . . , t∗(n)} is within the interval [−0.5, 0.5).

Suppose t∗(i) = u∗(i) × b−1, where u∗(i) ∈ Zn, i = 1, 2, . . . , n. Then u∗(i) =
t∗(i) × b, and

‖ u∗(i) ‖≤
√
n ‖ t∗(i) ‖ · ‖ b ‖≤ n

2
‖ b ‖ .

This inequality means that, for i = 1, 2, . . . , n, each entry of u∗(i) is at most
polynomially large.

Take the first row (α1, α2, . . . , αn) of matrix BPub. We know that

(α1, α2, . . . , αn) = (u1, u2, . . . , un)× b,

where (u1, u2, . . . , un) ∈ Zn is the first row of U.
Take the matrix

B∗Pub =


(α1, α2, . . . , αn)× t∗(1)

(α1, α2, . . . , αn)× t∗(2)

...

(α1, α2, . . . , αn)× t∗(n)

 ,
then

B∗Pub =


u∗(1)

u∗(2)

...
u∗(n)

 ·

u1 u2 · · · un
−un u1 · · · un−1

...
...

. . .
...

−u2 −u3 · · · u1

 .
We denote

U∗ =


u∗(1)

u∗(2)

...
u∗(n)

 , B∗Trap =


u1 u2 · · · un
−un u1 · · · un−1

...
...

. . .
...

−u2 −u3 · · · u1

 .
therefore we have

B∗Pub = U∗ ·B∗Trap,

where B∗Trap ∈ X∩Zn×n. B∗Pub is public, while {U∗,B∗Trap} are hidden. The
relation of {B∗Pub,U∗,B∗Trap} is somewhat like the relation of {BPub,U,BTrap},
so that a similar attack can be easily constructed. In fact {B∗Pub,U∗,B∗Trap}
are quite suitable for our attack, because each entry of U∗ is at most polynomi-
ally large. There is one difference that U∗ is not a unimodular matrix, so that
we need a modified version of checking procedure.

5.2 Procedure of Our Attack (2)

We take C∗ ∈ X ∩ Zn×n, where C∗ should be sufficiently large. Then we com-
pute D∗ = B∗Pub · C∗ · (B∗Pub)−1 ∈ Qn×n ( D∗ 6∈ Zn×n), and by considering
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Multiplication Commutative Law, we have D∗ = U∗ ·C∗ ·U∗−1. Then we obtain
a linear equation of U∗:

U∗ ·C∗ −D∗ ·U∗ = O. (5.1)

True value of U∗ is one solution of equation (5.1), so that equation (5.1)
has a reduced rank. Suppose the rank of equation (5.1) is r, and r > n2/2. We
denote

U∗ =


u∗1 u∗2 · · · u∗n
u∗n+1 u∗n+2 · · · u∗2n

...
...

. . .
...

u∗n(n−1)+1 u
∗
n(n−1)+2 · · · u

∗
n2

 .
Then we convert equation (5.1) into the following form:

(u∗1, u
∗
2, . . . , u

∗
r) = (u∗r+1, u

∗
r+2, . . . , u

∗
n2)G∗, (5.2)

where each entry of G∗ is from Q. Then we take g∗0 as the smallest common

denominator of entries of G∗, and take G∗(0) = g∗0G∗, so that G∗(0) is an
integer matrix. Because u∗1, u

∗
2, . . . , u

∗
n(n−1) are integers, each entry of

(u∗r+1, u
∗
r+2, . . . , u

∗
n2)G∗(0)

must be a multiple of g∗0 . Then we solve the linear equation modular g∗0 ,

(u∗r+1, u
∗
r+2, . . . , u

∗
n2)G∗(0) (mod g∗0) = (0, 0, . . . , 0). (5.3)

True value of (u∗r+1, u
∗
r+2, . . . , u

∗
n2) is one solution of equation (5.3). G∗(0)

has n2 − r rows and r columns, r > n2 − r. Then we assume that the rank
of equation (5.3) is n2 − r − 1, which can be easily satisfied. By searching all
possible values of u∗n2 ( u∗n2 is at most polynomially large), we obtain all possible
mod g∗0 values of (u∗r+1, u

∗
r+2, . . . , u

∗
n2). Then we assume that true values of

{u∗r+1, u
∗
r+2, . . . , u

∗
n2} are all within the interval (−g∗0/2, g∗0/2), which is almost

sure to be satisfied because each of true values of {u∗r+1, u
∗
r+2, . . . , u

∗
n2} is at

most polynomially large.
For each possible value of (u∗r+1, u

∗
r+2, . . . , u

∗
n2), we obtain corresponding so-

lution {u∗1, u∗2, . . . , u∗r} of equation (5.2).
For each value of (u∗1, u

∗
2, . . . , u

∗
n2) (that is , for each value of U∗), we make

the following check:
• whether U∗−1 ·B∗Pub ∈ X ∩ Zn×n.
If it passes this check, we denote

U∗−1 ·B∗Pub =


u1 u2 · · · un
−un u1 · · · un−1

...
...

. . .
...

−u2 −u3 · · · u1

 ,
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denote (b0, b1, . . . , bn−1) = (u1, u2, . . . , un)−1 × (α1, α2, . . . , αn), and check

• whether (b0, b1, . . . , bn−1) ∈ Zn, and

• whether

BPub ·


b0 b1 · · · bn−1

−bn−1 b0 · · · bn−2

...
...

. . .
...

−b1 −b2 · · · b0


−1

is a unimodular matrix.

If it passes these two checks, then such vector (b0, b1, . . . , bn−1) is a generator
of the principal ideal. Finally we obtain several generators. These generators
include true value of b, and the number of these generators is polynomially
large. Form them, we choose one with the smallest size, then we have obtained
a qualified trapdoor basis.

6 Impact of Our Attacks

Our attacks greatly reduce the security background of cryptosystems based on
principal ideal lattices. To resist our attacks, the system must prove that

– each entry of transformation matrix is super-polynomially large, and

– for arbitrarily chosen vector from the inverse ideal, it is negligible that some
entry of multiple vector is polynomially large.
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Appendix

Our experiments show that, with very high probability, equation (3.1) has the
rank n2 − n. Here we present 25 examples, for n = 3, 4, 5, 6, 7 respectively.
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Example 1. Take n = 3,

U =

29 10 1
11 11 2
32 15 2

 ,C =

 8 9 3
−3 8 9
−9 −3 8

 ∈ X ∩ Z3×3.

Then

D =

−21943 −13452 24516
−20370 −12499 22758
−30849 −18918 34466

 ,
and we have the rank of equation (3.1) is 6 = 32 − 3 > 32/2.

Example 2. Take n = 3,

U =

13 4 4
14 5 4
16 5 5

 ,C =

 4 7 0
0 4 7
−7 0 4

 ∈ X ∩ Z3×3.

Then

D =

 −962 63 728
−1078 67 819
−1197 77 907

 ,
and we have the rank of equation (3.1) is 6 = 32 − 3 > 32/2.

Example 3. Take n = 3,

U =

 9 4 1
21 5 4
14 5 2

 ,C =

 1 3 8
−8 1 3
−3 −8 1

 ∈ X ∩ Z3×3.

Then

D =

3557 1105 −3946
7359 2294 −8174
5269 1639 −5848

 ,
and we have the rank of equation (3.1) is 6 = 32 − 3 > 32/2.

Example 4. Take n = 3,

U =

17 7 3
9 3 2
21 8 4

 ,C =

 8 9 8
−8 8 9
−9 −8 8

 ∈ X ∩ Z3×3.

Then

D =

2905 3166 −3706
1449 1590 −1853
3502 3825 −4471

 ,
and we have the rank of equation (3.1) is 6 = 32 − 3 > 32/2.
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Example 5. Take n = 3,

U =

7 21 4
6 21 4
8 26 5

 ,C =

 7 1 2
−2 7 1
−1 −2 7

 ∈ X ∩ Z3×3.

Then

D =

−461 −447 739
−446 −415 701
−565 −537 897

 ,
and we have the rank of equation (3.1) is 6 = 32 − 3 > 32/2.

Example 6. Take n = 4,

U =


34 17 11 4
19 11 9 4
10 6 5 2
37 19 13 5

 ,C =


3 7 1 3
−3 3 7 1
−1 −3 3 7
−7 −1 −3 3

 ∈ X ∩ Z4×4.

Then

D =


4176 2132 −562 −4780
2278 1216 −374 −2617
1168 628 −196 −1343
4526 2330 −634 −5184

 ,
and we have the rank of equation (3.1) is 12 = 42 − 4 > 42/2.

Example 7. Take n = 4,

U =


17 30 19 4
9 19 7 1
5 14 13 3
18 33 23 5

 ,C =


3 5 7 5
−5 3 5 7
−7 −5 3 5
−5 −7 −5 3

 ∈ X ∩ Z4×4.

Then

D =


−222396 31642 −69942 213634
−118822 16908 −37368 114140
−111854 15915 −35174 107444
−250546 35647 −78794 240674

 ,
and we have the rank of equation (3.1) is 12 = 42 − 4 > 42/2.

Example 8. Take n = 4,

U =


20 19 5 2
11 12 3 1
7 9 5 4
21 20 6 3

 ,C =


2 7 8 9
−9 2 7 8
−8 −9 2 7
−7 −8 −9 2

 ∈ X ∩ Z4×4.



12 Yupu Hu, Zhizhu Lian and Jiangshan Chen

Then

D =


−6957 2180 −1440 5955
−3865 1213 −795 3305
−7207 2249 −1565 6201
−8537 2672 −1788 7317

 ,
and we have the rank of equation (3.1) is 12 = 42 − 4 > 42/2.

Example 9. Take n = 4,

U =


9 12 20 4
5 15 23 4
3 8 16 3
10 14 25 5

 ,C =


4 8 6 2
−2 4 8 6
−6 −2 4 8
−8 −6 −2 4

 ∈ X ∩ Z4×4.

Then

D =


−65940 10324 −32080 63794
−74958 11730 −36456 72516
−48974 7662 −23816 47378
−80668 12628 −39242 78042

 ,
and we have the rank of equation (3.1) is 12 = 42 − 4 > 42/2.

Example 10. Take n = 4,

U =


20 19 5 2
11 12 3 1
7 9 5 4
21 20 6 3

 ,C =


3 6 6 10
−10 3 6 6
−6 −10 3 6
−6 −6 −10 3

 ∈ X ∩ Z4×4.

Then

D =


117 572 1872 −788
24 45 140 −72
34 232 753 −306
124 668 2168 −903

 ,
and we have the rank of equation (3.1) is 12 = 42 − 4 > 42/2.

Example 11. Take n = 5,

U =


31 35 15 11 3
37 36 17 11 3
22 26 16 11 4
3 4 1 1 0
33 38 18 13 4

 ,C =


4 1 2 7 7
−7 4 1 2 7
−7 −7 4 1 2
−2 −7 −7 4 1
−1 −2 −7 −7 4

 ∈ X ∩ Z5×5.

Then

D =


40065 −4856 11868 −21624 −38146
46027 −5559 13665 −24730 −43874
31533 −3816 9350 −16992 −30039
3853 −469 1139 −2087 −3664
43848 −5314 12989 −23667 −41749

 ,
and we have the rank of equation (3.1) is 20 = 52 − 5 > 52/2.
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Example 12. Take n = 5,

U =


34 24 11 7 1
49 26 13 9 2
32 17 11 15 4
17 5 6 13 4
37 24 12 10 2

 ,C =


1 3 2 2 2
−2 1 3 2 2
−2 −2 1 3 2
−2 −2 −2 1 3
−3 −2 −2 −2 1

 ∈ X ∩ Z5×5.

Then

D =


580 464 5167 −3499 −4010
1441 622 6592 −4267 −5890
3089 584 5267 −2862 −6854
3229 396 2978 −1200 −5517
1404 545 5691 −3638 −5264

 ,
and we have the rank of equation (3.1) is 20 = 52 − 5 > 52/2.

Example 13. Take n = 5,

U =


18 11 10 18 4
27 24 10 11 2
21 14 10 15 3
6 3 3 5 1
19 12 12 22 5

 ,C =


9 2 5 8 5
−5 9 2 5 8
−8 −5 9 2 5
−5 −8 −5 9 2
−2 −5 −8 −5 9

 ∈ X ∩ Z5×5.

Then

D =


18135 −9785 29674 −66832 −14972
27442 −14943 45420 −102080 −22729
20335 −11026 33472 −75290 −16818
5369 −2904 8809 −19822 −4437
20356 −10970 33258 −74933 −16797

 ,
and we have the rank of equation (3.1) is 20 = 52 − 5 > 52/2.

Example 14. Take n = 5,

U =


32 19 12 11 4
38 25 19 15 5
14 15 12 10 3
3 4 3 3 1
35 21 13 13 5

 ,C =


6 5 6 9 6
−6 6 5 6 9
−9 −6 6 5 6
−6 −9 −6 6 5
−5 −6 −9 −6 6

 ∈ X ∩ Z5×5.

Then

D =


23699 9919 −31811 87736 −27236
31125 13052 −41824 115334 −35790
17540 7343 −23543 64923 −20162
4655 1945 −6242 17214 −5348
26448 11066 −35498 97904 −30392

 ,
and we have the rank of equation (3.1) is 20 = 52 − 5 > 52/2.
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Example 15. Take n = 5,

U =


65 26 29 15 5
45 15 17 8 2
33 13 14 7 1
11 8 8 5 2
68 29 32 17 6

 ,C =


5 7 1 8 10
−10 5 7 1 8
−8 −10 5 7 1
−1 −8 −10 5 7
−7 −1 −8 −10 5

 ∈ X ∩ Z5×5.

Then

D =


59174 −6482 −5367 20898 −53053
39048 −4203 −3555 13885 −35066
30168 −3328 −2714 10633 −27039
11895 −1386 −1064 4097 −10601
62863 −6926 −5696 22150 −56329

 ,
and we have the rank of equation (3.1) is 20 = 52 − 5 > 52/2.

Example 16. Take n = 6,

U =


13 16 13 5 4 1
11 14 4 2 5 1
9 11 7 2 2 0
11 17 9 5 7 2
6 9 6 4 5 2
15 19 16 7 6 2

 ,C =


0 4 1 5 5 4
−4 0 4 1 5 5
−5 −4 0 4 1 5
−5 −5 −4 0 4 1
−1 −5 −5 −4 0 4
−4 −1 −5 −5 −4 0

 ∈ X ∩ Z6×6.

Then

D =


−6302 384 766 544 −2978 5502
−4958 248 817 358 −2135 4210
−3846 228 485 328 −1799 3348
−6712 347 1070 492 −2926 5720
−4127 220 642 306 −1817 3526
−7918 476 997 670 −3710 6894

 ,
and we have the rank of equation (3.1) is 30 = 62 − 6 > 62/2.

Example 17. Take n = 6,

U =


9 11 8 4 1 0
12 10 10 9 4 3
7 9 9 6 2 1
10 7 12 11 5 2
10 6 8 8 4 3
12 13 10 6 2 1

 ,C =


7 5 7 8 6 5
−5 7 5 7 8 6
−6 −5 7 5 7 8
−8 −6 −5 7 5 7
−7 −8 −6 −5 7 5
−5 −7 −8 −6 −5 7

 ∈ X ∩ Z6×6.

Then

D =


32205 2664 1834 −4910 11079 −33035
39112 3229 2253 −5990 13496 −40144
30980 2554 1781 −4736 10680 −31791
39042 3207 2252 −5980 13488 −40073
29787 2450 1724 −4570 10297 −30578
40441 3343 2311 −6174 13925 −41490

 ,
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and we have the rank of equation (3.1) is 30 = 62 − 6 > 62/2.

Example 18. Take n = 6,

U =


19 11 17 18 7 2
10 9 15 19 9 3
6 5 10 13 6 2
2 2 3 7 4 2
2 3 5 9 5 2
19 12 18 21 9 3

 ,C =


8 6 10 10 9 4
−4 8 6 10 10 9
−9 −4 8 6 10 10
−10 −9 −4 8 6 10
−10 −10 −9 −4 8 6
−6 −10 −10 −9 −4 8

 ∈ X ∩ Z6×6.

Then

D =


−19862 −7180 9128 −7655 −3410 21907
−17489 −6293 8069 −6615 −3146 19260
−11367 −4096 5256 −4291 −2054 12517
−5009 −1802 2325 −1850 −945 5510
−6790 −2440 3148 −2520 −1271 7469
−21830 −7882 10042 −8366 −3799 24068

 ,

and we have the rank of equation (3.1) is 30 = 62 − 6 > 62/2.

Example 19. Take n = 6,

U =


14 17 3 11 8 2
15 19 1 12 6 1
10 14 2 9 5 1
5 8 1 6 4 1
4 9 2 8 7 2
15 20 4 14 11 3

 ,C =


1 9 5 4 8 9
−9 1 9 5 4 8
−8 −9 1 9 5 4
−4 −8 −9 1 9 5
−5 −4 −8 −9 1 9
−9 −5 −4 −8 −9 1

 ∈ X ∩ Z6×6.

Then

D =


−7539 2048 458 −5522 −851 6733
−7405 1993 469 −5409 −844 6617
−5343 1414 313 −3766 −660 4782
−3417 947 196 −2546 −365 3049
−4447 1276 233 −3414 −430 3960
−9205 2534 540 −6816 −1005 8215

 ,

and we have the rank of equation (3.1) is 30 = 62 − 6 > 62/2.

Example 20. Take n = 6,

U =


13 16 13 5 4 1
11 14 4 2 5 1
9 11 7 2 2 0
11 17 9 5 7 2
6 9 6 4 5 2
15 19 16 7 6 2

 ,C =


9 6 3 1 6 2
−2 9 6 3 1 6
−6 −2 9 6 3 1
−1 −6 −2 9 6 3
−3 −1 −6 −2 9 6
−6 −3 −1 −6 −2 9

 ∈ X ∩ Z6×6.
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Then

D =


−2478 −179 913 1006 −2149 1942
−1402 −115 573 583 −1260 1086
−1461 −87 526 603 −1250 1128
−2083 −109 683 840 −1736 1629
−1214 −44 377 496 −988 936
−2905 −191 1042 1181 −2492 2269

 ,
and we have the rank of equation (3.1) is 30 = 62 − 6 > 62/2.

Example 21. Take n = 7,

U =



16 12 14 11 10 3 2
7 10 9 9 7 2 1
12 19 17 22 18 5 2
2 7 5 9 7 2 0
6 9 7 11 13 4 3
4 6 5 7 9 3 2
18 14 16 13 13 4 3


,C =



8 6 0 7 6 9 8
−8 8 6 0 7 6 9
−9 −8 8 6 0 7 6
−6 −9 −8 8 6 0 7
−7 −6 −9 −8 8 6 0
0 −7 −6 −9 −8 8 6
−6 0 −7 −6 −9 −8 8


∈ X ∩ Z7×7.

Then

D =



−228589 −9970 −27221 87537 −4386 −86724 236209
−135784 −5934 −16123 51925 −2635 −51461 140286
−263952 −11561 −31339 100938 −5108 −100038 272704
−78927 −3470 −9354 30159 −1540 −29886 81536
−130604 −5696 −15550 49985 −2496 −49519 134942
−90819 −3960 −10817 34766 −1743 −34427 93838
−263887 −11505 −31429 101054 −5060 −100112 272682


,

and we have the rank of equation (3.1) is 42 = 72 − 7 > 72/2.

Example 22. Take n = 7,

U =



15 10 12 6 4 6 2
20 15 11 6 3 2 1
10 12 7 5 5 3 1
8 13 10 7 6 8 3
3 6 4 3 3 3 1
2 5 4 3 3 5 2
16 12 13 7 5 8 3


,C =



9 6 6 5 2 10 5
−5 9 6 6 5 2 10
−10 −5 9 6 6 5 2
−2 −10 −5 9 6 6 5
−5 −2 −10 −5 9 6 6
−6 −5 −2 −10 −5 9 6
−6 −6 −5 −2 −10 −5 9


∈ X ∩ Z7×7.

Then

D =



7904 −771 4854 5362 −18235 5423 −9427
8793 −971 5606 6378 −21041 5765 −10501
7746 −740 4754 5206 −17791 5340 −9249
10339 −868 6126 6564 −22994 7361 −12340
4506 −384 2682 2871 −10046 3200 −5378
4777 −338 2725 2833 −10251 3533 −5702
9785 −892 5910 6451 −22222 6836 −11675


,

and we have the rank of equation (3.1) is 42 = 72 − 7 > 72/2.
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Example 23. Take n = 7,

U =



9 6 17 10 9 4 2
9 6 19 9 6 3 1
11 3 20 11 8 4 1
4 4 8 7 7 2 2
4 2 7 5 5 2 1
1 0 3 1 1 1 0
9 8 19 12 12 5 3


,C =



8 0 5 10 0 1 5
−5 8 0 5 10 0 1
−1 −5 8 0 5 10 0
0 −1 −5 8 0 5 10
−10 0 −1 −5 8 0 5
−5 −10 0 −1 −5 8 0
0 −5 −10 0 −1 −5 8


∈ X ∩ Z7×7.

Then

D =



2563 −160 −709 1718 −1034 2692 −2149
3500 73 −1249 2356 −619 3796 −3246
3956 −6 −1314 2636 −941 4198 −3569
558 −280 79 367 −889 486 −205
918 −142 −171 608 −600 922 −678
552 18 −204 368 −77 611 −519
2192 −320 −438 1470 −1377 2262 −1644


,

and we have the rank of equation (3.1) is 42 = 72 − 7 > 72/2.

Example 24. Take n = 7,

U =



18 16 17 12 9 5 2
24 18 19 10 10 7 2
6 3 5 4 2 0 0
11 9 12 10 7 3 1
10 6 9 5 6 4 1
5 4 5 3 4 3 1
20 19 20 15 12 7 3


,C =



3 9 5 3 5 4 5
−5 3 9 5 3 5 4
−4 −5 3 9 5 3 5
−5 −4 −5 3 9 5 3
−3 −5 −4 −5 3 9 5
−5 −3 −5 −4 −5 3 9
−9 −5 −3 −5 −4 −5 3


∈ X ∩ Z7×7.

Then

D =



−6458 −864 −3321 −2753 10964 −19179 8661
−7659 −1051 −3992 −3319 13152 −22988 10337
−1131 −156 −545 −491 1878 −3266 1514
−4356 −537 −2171 −1788 7193 −12635 5754
−3892 −484 −1973 −1618 6500 −11428 5167
−2577 −317 −1317 −1065 4311 −7587 3418
−8195 −1071 −4201 −3458 13841 −24248 10950


,

and we have the rank of equation (3.1) is 42 = 72 − 7 > 72/2.

Example 25. Take n = 7,

U =



12 16 7 8 4 4 2
9 19 10 12 5 9 3
5 11 5 7 2 4 1
3 9 5 8 2 7 2
2 7 3 3 1 2 0
2 4 3 5 2 5 2
13 17 8 10 5 6 3


,C =



5 7 7 1 10 8 7
−7 5 7 7 1 10 8
−8 −7 5 7 7 1 10
−10 −8 −7 5 7 7 1
−1 −10 −8 −7 5 7 7
−7 −1 −10 −8 −7 5 7
−7 −7 −1 −10 −8 −7 5


∈ X ∩ Z7×7.
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Then

D =



−19476 3133 −3500 5468 −1223 −16716 18635
−27551 4362 −4936 7799 −1697 −23682 26386
−13679 2161 −2429 3842 −829 −11716 13093
−15939 2475 −2854 4535 −933 −13694 15283
−7207 1159 −1280 2034 −470 −6200 6891
−10597 1631 −1914 3029 −601 −9111 10173
−23627 3765 −4254 6655 −1447 −20280 22624


,

and we have the rank of equation (3.1) is 42 = 72 − 7 > 72/2.


