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Abstract
We describe an efficient and secure decryption protocol to the
Norwegian Internet voting project. We first adapt Groth’s shuffle-
decryption from 2010 to our purpose, and we prove all security
properties in the random oracle model. We then describe the complete
decryption algorithm, and prove that it maintains the security of the
rest of the protocol.
Keywords: electronic voting protocols, verifiable shuffle, verifiable
decryption.

1 Introduction
The Norwegian government ran remote Internet advance voting trials during the
2011 local election and the 2013 parliamentary election. In 2013, 77.3 % of the
advance votes in the trial municipalities were electronic, and 36.4 % of the total
number [18]. In June 2014, the minister for local government and modernisation
cancelled any further trials [15]. However, in 2016 the system was resurrected for
use in a number of local referendums, and is now being maintained by a private
company.

The larger part of the protocol has been described and proven secure by
Gjøsteen [7] and Gjøsteen and Lund [8]. In this paper, we introduce a new
decryption protocol, and prove it to be secure in the random oracle model.

To fight voter coercion, the Norwegian Internet voting protocol allows each
voter to submit as many ballots as he or she wishes, each cancelling any previous
ballots. However, this implies that the ballot box service needs to store the voter’s
identity with the encrypted ballot. At the end of the voting period, the ballot box
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selects the ballots that should be counted, removes the identities, and submits the
encrypted ballots for decryption and counting.

In order not to reveal any information about the votes to the ballot box service,
the decryption service should shuffle the ballots before publishing the decryption.
This would usually be done through a mixnet. A proper mixnet requires several
mix servers, and they should ideally be run by different organisations. Although
the idea of a mixnet only requires a single trusted party, public trust in the system
suggests that one should at least select organisations that one can trust with a
certain high probability. Each organisation should also have sufficient competence
to guarantee physical security requirements and proper uptime and maintenance.
Furthermore, the ballots should not have to cross the country border at any point
during the mixing. As cryptologists, we could trust our protocols, but we also
need to make sure that the general population feel safe about the election. In a
small country like Norway, this leaves a rather short list of candidate organisations.
Therefore, we want a solution that does not use a full mixnet.

Finally, the decryption should be verifiable and zero knowledge with respect to
the private key and the shuffle.

Related work
There exist numerous verifiable shuffles, that is, constructions to prove that a
player has used a permutation π and some randomizers such that the output {c′i}
decrypts to the same as some input ciphertexts {ci}. Some are based on the
fact that polynomials are stable under permutation of roots. The idea was first
introduced by Neff in 2001 [13, 14], and has in particular been improved by Groth
[9, 10].

The general idea is to prove that the permutation exists using arbitrary data,
and then connect the arbitrary data to the problem in question. For ElGamal,
one can use a variant of Chaum-Pedersen proofs to demonstrate knowledge of the
randomisers.

This work is based on Groth’s 2010 ideas [10]. Bayer and Groth [1] have done
further work with this idea, and traded the size of the proof for more rounds and
some more work for the prover.

Another line of research started by Furukawa and Sako in 2001 use permutation
matrices [5, 4, 17, 20] instead of polynomials.

Most shuffles are tailored for reencrypting mixnets or decrypting mixnets.
During the last years, the shuffles have become increasingly efficient, and are now
practical.



Our contribution
We present a modification of Groth’s shuffle-decryption of homomorphic
encryptions [10]. In particular, we set the length of the mixnet to 1, and remove
unnecessary computations for this case. Groth originally used a statistically hiding
commitment scheme with the protocol. We have exchanged it for one that is
computationally hiding and perfectly binding. We then prove the resulting one-
move protocol to be computationally zero knowledge and unconditionally sound
in the random oracle model and apply the Fiat-Shamir heuristic.

Next, we include our protocol in the Norwegian Internet voting protocol, and
prove that the protocol is still secure.

Outline of the paper
Section 2 introduces the existing protocol, and gives a very brief outline of the
instantiation. We also describe a variant of DDH which will be used in the security
proof. Section 3 describes the verifiable shuffled decryption, the non-interactive
version and proves all the main properties. In Section 4, we show that the protocol
from the previous chapter fulfills the security requirements given by Gjøsteen [7].
Section 5 gives an estimate of the computational cost.

Acknowledgements
The authors wish to thank Kristian Gjøsteen for good discussions and sound
advice. We also wish to thank our peer reviewers for a thorough job and helpful
suggestions.

2 Background
This paper completes an open problem from Gjøsteen and Lund [7, 8], namely an
analysed shuffle and decryption subprotocol. The original protocol, and especially
the composition with the rest of the system was only supported by heuristic
arguments. For simplicity, we use the same notation and security notions. We
give a brief summary, but refer to the above cited papers for more details.

Let q and p be primes such that p = 2q+ 1 and let G = (g)⊆ Z∗p be the cyclic
subgroup of quadratic residues modulo p. The group G has order q.

Consider the following subset of the instantiation of the cryptosystem:

• Let L be the number of options the voter can make on his ballot. The key
generation algorithm K then chooses 2L random ElGamal private keys ai,j
from Z∗q with i ∈ {1,2} and j ∈ 1, . . .L. Set a3,j = a1,j + a2,j (mod q), and
compute corresponding public keys yi,j = gai,j for i∈{1,2,3}. The key is split
so that one can perform partial decryptions for the receipts. For brevity, let
dk1 = (a11,a12, . . . ,a1L), dk2 = (a21,a22, . . . ,a2L) and dk3 = (a31,a32, . . . ,a3L).



This notation is necessary for encoding the number of options available in
Norwegian elections. They are, however, not important for the technical
contribution of this paper. Therefore, we will simplify to just a and y
whenever possible.
• The encryption algorithm E takes as input the encryption key ek, the voter

identity V , and the ballot vector ~v from the set ML of valid messages. It
chooses r r←− Zq and computes x= gr and wi = yr1ivi, for 1≤ i≤ L, and then
computes a proof πE that the ciphertext is well-formed.
It outpus the ciphertext c= (V,x, x̄,w1,w2, . . . ,wL,πE), where x̄ is some value
generated similarly as x.
• The deterministic extraction algorithm X takes as input c. It verifies πE and

computes

w̃ =

w1w2 · · ·wk if order is irrelevant,∏k
i=1w

i
i otherwise.

where k is the number of options used in the ballot. It outputs c̃= (x,w̃).
• The decryption protocol ΠDP which will be described below.

The following algorithm is only used in the security proof.

• Let φ(~m) = (m1,m2, . . . ,mL). The anonymous decryption algorithm D′ takes
as input dk1, c̃ and outputs ~m= φ(w̃x−dk1).

The complete system consists of a number of voters, a ballot box, a receipt
generator, the decryption service and an auditor. The auditor generally checks
that all other parties adhere to the protocol, but in such a way that no secret
information is leaked. In particular, this means that the auditor should check that
the decryption and tally is correct, but without being able to correlate the ballots
to the ciphertexts and identities he received from the ballot box and the receipt
generator. We formalise this property later, and prove that it holds when we apply
our shuffled decryption.

This paper is fairly technical, and assumes some background knowledge about
complex protocols, zero knowledge proofs and commitment schemes. We give a
brief informal introduction to some of the terms here, and refer to other texts for
more details.

A zero knowledge proof must be complete (if both parties, the prover and
the verifier, are honest, then the verifier should accept), sound (a cheating prover
should cause the verifier to reject) and zero knowledge (a verifier should not be able
to learn anything more than whether the relation in question holds or not). We
typically restrict ourselves to honest verifier zero knowledge, in which the verifier
must send truly random values, but might still be curious.



An important tool for such proofs are commitment schemes. These are used
to bind a player to a message (the binding property), but without revealing the
message to anyone else (the hiding property). Such schemes can have at most one
of these properties unconditionally, while the other can only hold computationally.

3 Verifiable shuffled decryption
We will use Groth’s shuffle of known contents (SKC) [10] as a basis for our protocol.
The SKC protocol is unconditionally sound and computationally zero knowledge
when used with a suitable commitment scheme. We will use a variation of Pedersen
commitments [16]. Standard Pedersen commitments are perfectly hiding and
computationally binding. To aid the composition of this protocol into the larger
election protocol, we instead want a scheme that is perfectly binding.

Sample g1, . . . ,gn and y at random from G. In order to commit to n messages
(m1, . . . ,mn), we select a random number r from Zq, and compute

commit(m1, . . . ,mn;r) = (gm1+r
1 , . . . ,gmn+r

n ,yr)

Note that there can only be one opening for each commitment, so the
commitment scheme is unconditionally binding and computationally hiding. In
particular, this means that we can sample random exponents to compute the
generators instead of sampling g1, . . . , gn and y directly, and hence we can use
precomputation techniques on g to speed up the computation. We briefly return
to this in Section 5. We sketch the security proof for this scheme in the appendix.

Groth’s shuffle of known content is described in Figure 1a. The verifier provides
a random point x, and the parties cooperate to construct a polynomial which
proves that a commitment contains a permutation of the known data. One can
later tie secrete data to the same commitment, to get a verifiable shuffle of any
values. We note the following theorem.

Theorem 1 (Theorem 1, [10]). The protocol in Figure 1a is a 4-move public coin
special honest verifier zero-knowledge argument with witness-extended emulation1

for c for being a commitment to a permutation of the messages m1, . . . ,mn. If the
commitment scheme is statistically hiding, then the argument is statistical honest
verifier zero-knowledge. If the commitment scheme is statistically binding, then we
have unconditional soundness, i.e., the protocol is an SHVZK proof.

The soundness is based on the difficulty of choosing a zero of a polynomial
at random, so the forging probability in the case of a statistically binding is

1Witness-extended emulation is a stronger property than merely an knowledge extractor, and
guarantees that one can output both a witness and a simulated transcript of the interaction, in
expected polynomial time.
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bounded by (n− 1) · 2−τ , where τ is some parameter set to achieve sufficiently
strong soundness.

Here, we use the subprotocol as a necessary primitive, and refer to the original
work for more details.

We now proceed to describe a protocol for shuffled decryption. It is similar to
Groth’s protocol for shuffle-decryption, i.e. for mix-nets with several servers for
mixing and partly decryption. Note that the first challenges in the SKC can be
sent with the second round of challenges in the protocol in Figure 1b.

The basic idea is similar to Groth’s shuffle-decryption over many nodes, in
that we tie our data to the commitments of known data, and prove that we know
the values that have been used to transform the data. However, this protocol is
slightly simpler, since the second part of the public input is a set of plaintexts,
and not new ciphertexts. Therefore, we don’t have to prove relations with the
first coordinate of the ElGamal tuples. Instead, the prover must demonstrate that
he knows the decryption key, and that is has been used to decrypt under the
permutation otherwise proven to exist. The key element is then the response f ,
which proves knowledge of the secret key a, which then again is applied to the first
coordinate of the original ciphertexts, causing them to cancel the obfuscation of
the second coordinate.

We prove this secure in the Random Oracle Model. The proofs of the following
propositions can be found in the appendices.

Proposition 1 (Soundness). The protocol for verifiable shuffled decryption is
unconditional sound.

We also achieve good privacy.

Proposition 2 (Zero knowledge). The protocol for verifiable shuffled decryption
is SHVZK.

We finally make this protocol non-interactive by applying the Fiat-Shamir
transformation [3].

4 Completing the e-voting cryptosystem
We now describe the decryption protocol ΠDP and prove that it satisfies the the
security notions in the Norwegian e-voting project. This protocol completes the
instantiation described by Gjøsteen and Lund in [8].

We define ΠDP as follows: The auditor A and the decrypter D both receive or
compute c̃i = X (Vi, ci). In addition, D also receives the decryption key dk1. The
decrypter chooses an random permutation π and computes zi = D′(dk1, c̃π(i)) for
all i. He then sends the decryption to the auditor, and the parties run the protocol
for verifiable shuffled decryption.



There are one completeness notion and two security notions from the Norwegian
e-voting project not proved in Lund and Gjøsteen’s description because the
decryption protocol is missing. We present these notions and prove them for
our decryption protocol.

C2. For any sequence of messages, encrypting, extracting and then running the
decryption protocol should faithfully reproduce the messages, up to the action
of the order map.
For any message and identity sequences ~m1, ~m2, . . . , ~mn and V1,V2, . . . ,Vn, if
the following actions happen:

(ek,dk1,dk2,dk3) ← K; for i from 1 to n: ci ← E(ek,Vi, ~mi),
c̃i ← X (Vi, ci); the protocol ΠDP is run with ek and (c̃1, . . . , c̃n)
as public input and dk1 as the prover’s private input.

Then the prover and verifier in the protocol both output the same
sequence of messages, and that sequence is a permutation of the sequence
ω(~m1), . . . ,ω(~mn).

Since ElGamal is homomorphic, the zero-knowledge proofs are complete and φ
recovers a proper ballot from the product, the completeness requirement will hold.

A-Privacy An adversary that runs the verifier part of the decryption protocol
should not be able to correlate ciphertexts with decryptions. We play the
following game between a simulator and an adversary, and the probability
that the adversary wins should be close to 1/2.
A simulator samples b← {0,1} and computes (ek,dk1,dk2,dk3)←K. The
adversary gets ek, then chooses two sequences of identities V1, . . . ,Vn′ ,
V ′1 , . . . ,V

′
n′′ and corresponding messages ~m1, . . . , ~mn′ , ~m

(0)
1 , . . . , ~m

(0)
n′′ , for some

n′,n′′ < n.
The simulator sets π0 to be the identity map on {1,2, . . . ,n′}, and samples a
random permutation π1 on {1,2, . . . ,n′} and a sequence of random messages
~m

(1)
1 , . . . , ~m

(1)
n′′ . Then the simulator computes c′i ← E(ek,V ′i , ~m

(b)
i ) for i =

1,2, . . . ,n′′ and ci← E(ek,Vi, ~mπb(i)), c̃i←X (Vi, ci) for i = 1,2, . . . ,n′, sends
c′1, . . . , c

′
n′′ , c1, . . . , cn′ to the adversary and runs the prover part of the protocol

ΠDP with appropriate input against the adversary’s verifier.
Finally, the adversary outputs b′ ∈ {0,1} and wins if b= b′.

The first sequence of messages models the votes that will be counted, with
a connection to voter identities. If b = 1, this connection will be broken. The



other sequence of messages are those that will be discarded before decryption, and
the b = 1 case replaces those completely. If the adversary has no advantage in
this game, he cannot say anything about who voted what, and the content of the
discarded votes.
Proposition 3 (A-Privacy). Assume that an adversary bounded by χT against
Decision Diffie-Hellman has advantage at most εDDH and χT < 2τ/2−1, then any
adversary against A-privacy using time at most T has an advantage of at most
(2Tn+ 4T + 2n)2−τ + 3εDDH , where n is the number of ballots to be counted.

Game 1 We begin with the A-privacy game between a simulator and an
adversary. The game requires time at most T and the adversary submits at most
n ballots.

If E1 is the event that the adversary correctly guesses the bit b, the adversary’s
advantage is

ε= |Pr[E1]−1/2|.

Game 2 We now simulate the verifiable shuffled decryption. This can fail if
either the reprogramming of the oracle fails (with probability 4T · 2−τ ), or if
the adversary can break the hiding property of the commitment scheme with
probability εDDH . The event of losing the game is F2, and we have

|Pr[F2]| ≤ 4T ·2−τ + εDDH .

Game 3 We modify the game such that the simulator now selects π at random,
and outputs zi = mπ(i) instead of zi = D′(dk1, c̃π(i)). If Pr[E3] is the event that
adversary correctly guesses the bit b, then |Pr[E3]−Pr[E1]| ≤ 4T ·2−τ + εDDH

Game 4 Next we use the simulator SimI
eqdl described by Gjøsteen and Lund [8,

Section 3.1] to simulate the validity proofs of the ballots, with an according oracle
reprogramming. Then

|Pr[E3]−Pr[E4]| ≤ 2Tn
2τ

Game 5 We now randomise c1, . . . , cn′ , c
′
1, . . . , c

′
n′′ by using random group

elements instead of real encryptions. By Gjøsteen and Lund [8, Lemma 4.2],
we get

|Pr[E5]−Pr[E4]| ≤ 2(n2−τ + εDDH).
This game does not include any information on the bit b, so Pr[E5] = 1/2.

By the triangle inequality, we get

ε≤ (2Tn+ 4T + 2n)2−τ + 3εDDH



D-Integrity An adversary that runs the prover’s part of the protocol ΠDP should
not be able to tamper with the decryption. We play the following game
between a simulator and an adversary, and the probability that the adversary
wins should be close to 0.
A simulator computes (ek,dk1,dk2,dk3)←K. The adversary gets ek and dk1,
then chooses a sequence of identities V1, . . . ,Vn and messages ~m1, . . . , ~mn.
The simulator computes ci←E(ek,Vi, ~mi), c̃i←X (Vi, ci), i= 1,2, . . . ,n, sends
c̃1, . . . , c̃n to the adversary and runs the verifier part of the protocol ΠDP with
appropriate input against the adversary’s prover.
The adversary wins if the verifier run outputs a sequence of messages that
is not a permutation of ω(~m1), . . . ,ω(~mn).

Proposition 4 (D-Integrity). Assume that the number of random oracle queries
from the adversary is limited by time T . Then the probability of the adversary
winning is close to 0.

This follows directly since the protocol for verifiable shuffled decryption is
unconditionally sound.

5 Runtime
Our proposed protocol for verifiable shuffled decryption is efficient, and in
particular when we apply techniques for precomputation and multiexponentiation.
This section is only meant to give a conservative estimate of the real runtime,
given by the number of full square-and-multiply exponentiations, so that one can
compare it against other methods. We keep the analysis simple to ease such
comparison; a more thorough optimisation would most probably result in an even
better result, but so would also be the case for alternative solutions.

According to [12, 11], we can save about 80 % of online computing time with
precomputation and 50 % with multiexponentiation when applicable.

The prover needs to compute 5 full-length commitments, with a total of 5n+5
exponentiations, to an estimated cost of about n full exponentiations. In order
to compute Z, the prover must do a multiexponentiation of length n, which costs
approximately 0.5n. Finally, there are n short exponentiations, at 10 % of the
cost. In total, the prover’s cost is 1.6n.

The verifier have to use ordinary techniques to compute his 2 commitments.
Also, there are 2n short exponentiations and n full exponentiations that
can be computed with multiexponentiation, giving the equivalent of 2.7n full
exponentiations.



The cost is slightly better than just performing a verifiable shuffle followed by
an ordinary protocol for verifiable decryption. One can achieve a lower cost by
also accepting weaker security properties. For a full comparison, see Strand [19]
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Appendix A Security of the commitment scheme
In order to prove that the commitment scheme in Section 3 is computationally
hiding, consider the following problem which is equivalent to the DDH problem
[7, 2, 6].

L-DDH. Given (g0, . . . ,gL) ∈ GL+1 (where at least g1, . . . ,gL are sampled at
random), decide if (x0, . . . ,xL) ∈ GL+1 was sampled uniformly from the set
{(gs0, . . . , gsL) | 0≤ s < q} or uniformly from GL+1.

We now present a distinguisher based on the commitment system. Assume
that (g0, . . . , gL) are given, and that we want to decide whether (x0, . . . ,xL) is a
real Diffie-Hellman tuple. Send (g0, . . . , gL−1;gL) to the adversary, and wait for a
set m0, . . . ,mL−1 of messages. Now compute

c←− (gm0
0 x0, . . . ,g

mL−1
L−1 xL−1;xL)

and send c to the adversary.
Note that there exists an r such that xL = grL, so if (x0, . . . ,xL) is really a

Diffie-Hellman tuple, then c is a commitment to m0, . . . ,mL−1. If not, then c is
a commitment to random messages. Our distinguisher have the same advantage
εDDH as the adversary, on the expense of L extra products.

Appendix B Proof of Proposition 1
Proof. We want to prove that there exists a permutation π such that mπ(i) = zi.
We first note that the shuffle of known content is unconditionally sound, so the
prover must have π and ρ such that cλcd commit(f1, . . . ,fn;0) = commit(λπ(i) +
tπ(i);ρ). Since λ is random, we have, except with probability 2−τ , that c =
commit(π(1), . . . ,π(n);r) for some r. Assume that there exist −d1, . . . ,−dn, then

commit(−d1, . . . ,−dn;rd)commit(f1, . . . ,fn;0) = commit(tπ(1), . . . , tπ(n);rd)

for some rd. Therefore, we must have fi = tπ(i) +di.
All the final checks held, so f,fZ and zZ must have been well-formed. This

allows us to use them in the following computations. Note that one can extract a
from f by rewinding.

Note the equation

ZeX
n∏
i=1

xftii w−tiei zfiei
?= gfZ (1)



which we can rewrite into two parts: One that depends on the exponent e, and
one that doesn’t.

1 = g−fZZeX
n∏
i=1

xftii w−tiei zfiei

= g−erZ−dZZeX
n∏
i=1

x
(ae+da)ti
i w−tiei z

(tπ(i)+di)e
i

= g−erZ−dZZeX
n∏
i=1

x
(ae+da)ti
i (xaimi)−tie z

(tπ(i)+di)e
i

=
(
Zg−rZ

n∏
i=1

(
m−1
π(i)zi

)tπ(i)
zdii

)e
Xg−dZ

(
τ∏
i=1

xtii

)da

All other values above are fixed when e is chosen, so both parts must be 1 with
overwhelming probability. The part that doesn’t depend on e shows that X is
well-formed.

Since e is arbitrary, we must with probability 1−2−τ have

Zg−rZ
n∏
i=1

(
m−1
π(i)zi

)tπ(i)
zdii = 1

This again splits into two parts, where one is dependent of {ti}, while the other
is fixed after the first round. If not both parts equal 1, a dishonest P ∗ must have
guessed {ti} such that a particular group element was hit. This only happens with
probability 1

q .

Zg−rZ
n∏
i=1

zdii = 1

n∏
i=1

(
m−1
π(i)zi

)tπ(i) = 1

which implies that Z is well-formed, and that zi = mπ(i). The probability of P ∗
winning is then at most

n+ 1
2τ + 2

2τ + 1
q
<
n+ 4

2τ .

Appendix C Proof of Proposition 2
Proof. We prove the proposition by describing a simulator that is able to produce
a convincing transcript without using dk1. For completeness, we include the shuffle
of known content in the argument.



1. Select x and β at random. Also select fi for i= 1, . . .n, z, Fi for i= 2, . . .n−1
and z∆ at random.

2. Set F1←− f1−xβ and Fn←− x
∏n
i=1(mi−x). Compute f∆ accordingly.

3. Compute ca←− commit(0, . . . ,0;r).
4. Compute cα and c∆ to fit.

We denote this sampling by

(cα, c∆, cp,f1, . . . ,fn, z,f∆1 , . . . ,f∆n−1 , z∆)←− Simskc(aux ,g,c,m1, . . . ,mn,x,β).

This is indistinguishable from a real transcript. First recall that the
commitment scheme is computationally hiding. Therefore, a computationally
bounded adversary cannot distinguish real and simulated commitments. Now,
the real and simulated fi, z and z∆ are indistinguishable since the real elements
contain a random element not used anywhere else, while the simulated values
are random as well, and so the distributions are equal. Finally, note that f∆ is
indistinguishable from the real construction since the checks on the commitments
and the construction of Fi holds.

We now describe a simulator for the shuffled decryption.

1. Select λ at random. Select a random permutation π, and compute c using
the random permutation. Compute cd according to the real protocol.

2. Select e at random. Also select C1, Z, f , fZ and zZ at random.
3. Compute D and C2 such that yeD = gf and Ce1C2 = commit(fZ ;zZ).
4. Query the oracle for ti for i= 1, . . .n.

5. Compute X and fi such that X = gdZ
(∏n

i=1x
−ti
i

)da and fi = tπ(i) +di.
6. Simulate the shuffle of known contents, Simskc.

Let Simvsd be

(c,cd,D,Z,C1,C2,f1, . . .fn,X,f,fZ , zZ)
←− Simvsd(aux ,g,(x1,w1), . . . ,(xn,wn), z1, . . . , zn,λ,e).

As above, we use that the commitment scheme is computationally hiding,
and that we can simulate the shuffle of known content. Therefore, all simulated
commitments are indistinguishable from the real commitments. Next, f , fZ
and zZ all contain randomness not repeated anywhere else, and so they are
indistinguishable from random numbers. The simulation of D and X ensure that
they are also indistinguishable. We produce Xi as tπ(i) +di. Only the permutation



differs, and since the shuffle of known content is simulated, nobody can distinguish.
Finally, we are left with Z = grZ

∏n
i=1 z

−di
i . Note that rZ is no longer used

in any other commitments, and so Z is indistinguishable from a random group
element.
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