
Cryptanalysis of Indistinguishability Obfuscations of

Circuits over GGH13∗

Daniel Apon†1, Nico Döttling‡2, Sanjam Garg§2, and Pratyay Mukherjee¶2

1University of Maryland, College Park, USA
2University of California, Berkeley, USA

February 27, 2017

Abstract

Annihilation attacks, introduced in the work of Miles, Sahai, and Zhandry (CRYPTO 2016),
are a class of polynomial-time attacks against several candidate indistinguishability obfuscation
(iO) schemes, built from Garg, Gentry, and Halevi (EUROCRYPT 2013) multilinear maps.
In this work, we provide a general efficiently-testable property for two single-input branching
programs, called partial inequivalence, which we show is sufficient for our variant of annihilation
attacks on several obfuscation constructions based on GGH13 multilinear maps.

We give examples of pairs of natural NC1 circuits, which – when processed via Barrington’s
Theorem – yield pairs of branching programs that are partially inequivalent. As a consequence
we are also able to show examples of “bootstrapping circuits,” used to obtain obfuscations for all
circuits (given an obfuscator for NC1 circuits), in certain settings also yield partially inequivalent
branching programs. Prior to our work, no attacks on any obfuscation constructions for these
settings were known.

∗Research supported in part from a DARPA/ARL SAFEWARE award, AFOSR Award FA9550-15-1-0274, NSF
CRII Award 1464397, and a research grant by the Okawa Foundation. The views expressed are those of the authors
and do not reflect the official policy or position of the funding agencies.
†Work done while visiting University of California, Berkeley. E-mail: dapon@cs.umd.edu
‡E-mail: nico.doettling@gmail.com
§E-mail: sanjamg@berkeley.edu
¶E-mail: pratyay85@gmail.com

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Technical Overview . 4
1.3 Roadmap . 8

2 Notations and Preliminaries 8
2.1 Notations . 8
2.2 Matrix Products . 9
2.3 Column Space of a Matrix . 10
2.4 Branching Programs . 12
2.5 Indistinguishability Obfuscation . 12

3 Attack Model for Investigating Annihilation Attacks 13
3.1 Annihilation Attack Model . 13
3.2 Obfuscation in the Annihilation Attack Model . 14
3.3 Abstract Indistinguishability Obfuscation Security 15

4 Partially Inequivalent Branching Programs 15

5 Annihilation Attack for Partially Inequivalent Programs 17

6 Extending the Abstract Attack to GGH13 Multilinear Maps 21
6.1 The GGH13 Scheme: Background . 21
6.2 Translating the Abstract Attack to GGH13 . 22
6.3 Completing the Attack for Large Enough Circuits . 23

7 Example of Partially Inequivalent Circuits 23
7.1 Simple Pairs of Circuits that are Partially Inequivalent 23
7.2 Larger Pairs of Circuits that are Partially Inequivalent 24
7.3 Universal Circuit Leading to Partially Inequivalent Branching Programs 26

A Some details on our implementation 30

B Definition of Indistinguishability Obfuscation. 33
B.1 Indistinguishability Obfuscation . 33

2

1 Introduction

An obfuscator is a program compiler which hides all partial implementation details of a program,
intuitively. This is formalized via the notion of indistinguishability obfuscation [BGI+01]: we say
an obfuscator O is an indistinguishability obfuscator if it holds for every pair C0, C1 of functionally
equivalent circuits (i.e. computing the same function) that O(C0) and O(C1) are indistinguishable.
A recent surge of results has highlighted the importance of this notion: virtually “any cryptographic
task” can be achieved assuming indistinguishability obfuscation and one-way functions [SW14].

All known candidate constructions of indistinguishability obfuscation, e.g. [GGH+13b, BGK+14,
AB15], are based on multilinear-maps [GGH13a, CLT13, GGH15]1, which have been the subjects
of various attacks [CHL+15, CGH+15a, CFL+16, HJ16, CLLT16a]. Among them, the attacks
(e.g. [GGH13a, HJ16]) on GGH13 [GGH13a] multilinear maps required explicit access to “low-level”
encodings of zero, or differently represented low-level encodings of zero, in the form of an encoded
matrix with a zero eigenvalue [CGH+15b]; such low-level zero-encodings do not appear naturally in
obfuscation constructions(except for a few specially designed programs [CGH+15a]). Recently Miles,
Sahai, and Zhandry [MSZ16] introduced a new class of polynomial-time2 attacks without requiring
low-level zeros against several obfuscation constructions [BR14, BGK+14, AGIS14, MSW14, PST14]
and [BMSZ16a], when instantiated with the GGH13 multilinear maps.

More specifically, Miles et al. [MSZ16] exhibit two simple branching programs (and also programs
padded with those) that are functionally equivalent, yet their BGKPS-obfuscations (put forward by
Barak et al. in [BGK+14]) and similar constructions [BR14, AGIS14, MSW14, PST14, BMSZ16b]
are efficiently distinguishable.3 Additionally they show that their attacks extend to any two branch-
ing programs with those two simple programs (respectively) padded into them. However, the branch-
ing programs considered there, in particular the all-identity branching program, do not appear “in
the wild”. More specifically, obfuscation constructions for circuits first convert an NC1 circuit into
a branching program (e.g. via Barrington’s transformation) that possibly results in programs with
complex structures, even if one starts with simple circuits. This brings us to the following open
question:

Is it possible to attack obfuscations of complex branching programs generated from NC1 circuits?

1.1 Our Contributions

In this work, we are able to answer the above question affirmatively. In particular, our main
contributions are:

• We first define a general and efficiently-testable property of two single-input4 branching pro-
grams called partial inequivalence (discussed below) and demonstrate an annihilation attack

1The work of [AJN+16] might be seen as an exception to this: Assuming the (non-explicit) existence of indistin-
guishability obfuscation, they provide an explicit construction of an indistinguishability obfuscator.

2Several subexponential-time or quantum-polynomial-time [CDPR16, ABD16, CJL16] attacks on GGH13 multi-
linear maps also have been considered. We do not consider these in this paper.

3To avoid repetitions, from now on we will refer to the obfuscation constructions of [BGK+14, BR14, AGIS14,
MSW14, PST14] by BGKPS-like constructions.

4The branching programs, where any pair of matrices in the sequence depends on a single input location, are
called single-input branching programs. Such branching programs naturally evolve from Barrington’s transformation
on circuits.

3

against BGKPS-like obfuscations of any two (large enough) branching programs that satisfy
this property.

• Next, using implementation in Sage [S+16] (see Appendix A for details on the implementation)
we give explicit examples of pairs of (functionally equivalent) natural NC1 circuits, which
when processed via Barrington’s Theorem yield pairs of branching programs that are partially
inequivalent – and thus, attackable.

• As a consequence of the above result, we are also able to show that the “bootstrapping
circuit(s)” technique used to boost iO for NC1 to iO for P/poly, for a certain choice of the
universal circuit, yield partially inequivalent branching programs in a similar manner – and
are, thus, also attackable.

Our general partial inequivalence condition is broad and seems to capture a wide range of
natural single-input branching programs. However, we require the program to be large enough.5

Additionally, we need the program to output 0 on a large number of its inputs.
Finally, our new annihilation attacks are essentially based on linear system solvers and thus quite

systematic. This is in contrast with the attacks of Miles et al. [MSZ16] which required an exhaustive
search operation rendering it hard to extend their analysis for branching programs with natural
structural complexity. Therefore, at a conceptual level, our work enhances the understanding of
the powers and the (potential) limits of annihilation attacks.

One limitation of our technique is that they do not extend to so-called dual-input branching
programs. We leave it as an interesting open question.

A Concurrent and Independent work. Concurrent and independent to our work,6 Chen et
al. [CGH16a] provides a polynomial time attack against the GGHRSW construction [GGH+13b]
based on GGH13 (and also GGH15 [GGH15]) maps that works for so-called “input-partitioning”
branching programs. Nonetheless, their attacks are not known to extend [CGH16b] for complex
branching programs evolved from NC1 circuits (e.g. via Barrington’s Transformation). Hence, our
work stands as the only work that breaks obfuscations of NC1 circuits based on GGH13 till date.

Change in Obfuscation landscape. Given our work and the work of Chen et al. [CGH16a] the
new attack landscape against GGH13-based obfuscators is depicted in Figure 1. We refer the reader
to [AJN+16, Figure 13] for the state of the art on obfuscation constructions based on CLT13 and
GGH15 multilinear maps.

1.2 Technical Overview

Below, after providing some additional backgrounds on multilinear maps and known attacks, we
provide a overview of our annihilation attacks.

Multilinear Maps: Abstractly. As a first approximation, one can say that a cryptographic
multilinear map system encodes a value a ∈ Zp (where p is a large prime) by using a homomorphic
encryption scheme equipped with some additional structure. In other words, given encodings of

5Note that, for our implementation we consider circuits that are quite small, only depth 3, and the resulting
Barrington programs are of length 64. However, using the implementation we then “boost” the attack to a much
larger NC1 circuits that suffice for the real-world attack (discussed in Section 6)to go through.

6The first draft of this paper appeared online concurrently as their first draft [CGH16a]. At the same time another
independent work [CLLT16b] appeared that provided attacks against several CLT13 based obfuscators for a broader
class of programs.

4

Branching
Programs

NC1 Circuits
(Barrington’s)

NC1-to-P/poly
[GGH+13b, App14]
[BGL+15, GIS+10]

GGHRSW[GGH+13b] ⊗ © ©

BGKPS-like constructions [BR14,
BGK+14, AGIS14]
[PST14, MSW14, BMSZ16a]

× ⊗ ⊗

Obfuscations from weak
multilinear
maps [GMM+16, DGG+16]

© © ©

Figure 1: The Attack Landscape for GGH13-based Obfuscators. In all cases, the multilinear
map is [GGH13a]. © means no attack is known. × means a prior attack is known, and we present
more general attacks for this setting. ⊗ means we give the first known attack in this setting and
⊗ means a new attack is discovered concurrently to ours (namely [CGH16a]).

a and b, one can perform homomorphic computations by computing encodings of a + b and a · b.
Additionally, each multilinear map encoding is associated with some level described by a value
i ∈ {1 . . . κ} for a fixed universe parameter κ. Encodings can be added only if they are at the same
level: Enci(a)⊕Enci(b)→ Enci(a+b). Encodings can be multiplied: Enci(a)�Encj(b)→ Enci+j(a·b)
if i + j ≤ κ but is meaningless otherwise. We naturally extend the encoding procedure and the
homomorphic operations to encode and to compute on matrices, respectively, by encoding each term
of the matrix separately. Finally, the multilinear map system comes equipped with a zero test: an
efficient procedure for testing whether the input is an encoding of 0 at level-κ. However, such
zero-test procedure is not perfect as desired when instantiated with concrete candidate multilinear
maps. In particular we are interested in the imperfection in GGH13 map.

An Imperfection of the GGH13 Multilinear Maps. Expanding a little on the abstraction
above, a fresh multilinear map encoding of a value a ∈ Zp at level i is obtained by first sampling
a random value µ from Zp and then encoding Enci(a + µ · p). Homomorphic operations can be
performed just as before, except that the randomnesses from different encodings also get computed
on. Specifically, Enci(a+ µ · p)⊕ Enci(b+ ν · p) yields Enci(a+ b+ (µ+ ν) · p) and multiplication
Enci(a + µ · p) � Encj(b + ν · p) yields Enci+j(a · b + (b · µ + a · ν + µ · ν · p) · p) if i + j ≤ κ but
is meaningless otherwise. An imperfection of the zero-test procedure is a feature characterized by
two phenomena:

1. On input Encκ(0 + r · p) the zero-test procedure additionally reveals r in a somewhat “scram-
bled” form.

2. For certain efficiently computable polynomials f and a collection of scrambled values {ri} it
is efficient to check if f({ri}) = 0 mod p or not for any choice of ri’s.

7

This imperfection has been exploited to perform attacks in prior works, such as the one by Miles

7One can alternatively consider the scrambled values as polynomials over {ri} and then check if f({ri}) is identi-
cally zero in Zp.

5

et al. [MSZ16].8

Matrix Branching Programs. A matrix branching program of length ` for n-bit inputs is a

sequence BP =
{
A0,

{
Ai,0, Ai,1

}`
i=1
, A`+1

}
, where A0 ∈ {0, 1}1×5, Ai,b’s for i ∈ [`] are in {0, 1}5×5

and A`+1 ∈ {0, 1}5×1. Without providing details, we note that the choice of 5× 5 matrices comes
from Barrington’s Theorem [Bar86]. We use the notation [n] to describe the set {1, . . . , n}. Let inp
be a fixed function such that inp(i) ∈ [n] is the input bit position examined in the ith step of the
branching program. The function computed by this matrix branching program is

fBP (x) =

{
0 if A0 ·

∏`
i=1Ai,x[inp(i)] ·A`+1 = 0

1 if A0 ·
∏`
i=1Ai,x[inp(i)] ·A`+1 6= 0

,

where x[inp(i)] ∈ {0, 1} denotes the inp(i)th bit of x.
The branching program described above inspects one bit of the input in each step. More

generally, multi-arity branching programs inspect multiple bits in each step. For example, dual-
input programs inspect two bits during each step. Our strategy only works against single-input
branching programs, hence we restrict ourselves to that setting.

Exploiting the Imperfection/Weakness. At a high level, obfuscation of a branching program
BP = {A0, {Ai,0, Ai,1}`i=1, A`+1} yields a collection of encodings {M0, {Mi,0,Mi,1}`i=1,M`+1}, say
all of which are obtained at level-1.9 We let {Z0, {Zi,0, Zi,1}`i=1, Z`+1} denote the randomnesses
used in the generation of these encodings, where each Z corresponds to a matrix of random values
(analogous to r above) in Zp. For every input x such that BP (x) = 0, we have that M0 �⊙`

i=1Mi,x[inp(i)] �M`+1 is an encoding of 0, say of the form Enc(0 + rx · p) from which rx can be
learned in a scrambled form. The crucial observations of Miles et al. [MSZ16] are: (1) for every
known obfuscation construction, rx is a program dependent function of {Z0, {Zi,0, Zi,1}`i=1, Z`+1},
and (2) for a large enough m ∈ Z the values {rxk}mk=1 must be correlated, which in turn implies
that there exists a (program-dependent) efficiently computable function fBP and input choices
{xBPk }mk=1 such that for all k ∈ [m], BP (xBPk) = 0 and fBP ({rxBP

k
}mk=1) = 0 mod p.10 Further,

just like Miles et al. we are interested in constructing an attacker for the indistinguishability
notion of obfuscation. In this case, given two arbitrarily distinct programs BP and BP ′ (such
that ∀x,BP (x) = BP ′(x)) an attacker needs to distinguish between the obfuscations of BP and
BP ′. Therefore, to complete the attack, it suffices to argue that for the sequence of {r′

xBP ′
k

} values

obtained from execution of BP ′ it holds that, fBP ({r′
xBP ′
k

}mk=1) 6= 0 mod p. Hence, the task of

attacking any obfuscation scheme reduces to the task of finding such distinguishing function fBP .
Miles et al. [MSZ16] accomplishes that by presenting specific examples of branching programs,

both of which implement the constant zero function, and a corresponding distinguishing function.
They then extend the attack to other related branching programs that are padded with those

8Recent works such as [GMM+16, DGG+16], have attempted to realize obfuscation schemes secure against such
imperfection and are provably secure against our attacks. We refer to them as obfuscations from weak multilinear
maps (see Figure 1).

9Many obfuscation constructions use more sophisticate leveling structure, typically referred to as so-called “strad-
dling sets”. However we emphasize that, this structure does not affect our attacks. Therefore we will just ignore this
in our setting.

10This follows from the existence of an annihilating polynomial for any over-determined non-linear systems of
equations. We refer to [Kay09] for more details.

6

constant-zero programs. The details of their attack [MSZ16] is quite involved, hence we jump
directly to the intuition behind our envisioned more general attacks.

Partial Inequivalence of Branching Programs and Our Attacks. We start with the fol-
lowing observation. For BGKPS-like-obfuscations for any branching program BP = {A0, {Ai,0,
Ai,1}`i=1, A`+1} the value sx = rx mod p looks something like: 11

sx '
∏̀
i=1

αi,x[inp(i)]

 `+1∑
i=0

i−1∏
j=0

Aj,xinp(j) · Zi,x[inp(i)] ·
`+1∏
j=i+1

Aj,xinp(j)

︸ ︷︷ ︸
tx

,

where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} are the randomnesses contributed by the corresponding encodings.
Let x denote the value obtained by flipping every bit of x (a.k.a. the bitwise complement). Now
observe that the product value Λ =

∏`
i=1 αi,x[inp(i)] · αi,x[inp(i)] is independent of x. Therefore,

ux = sx · sx = Λ · tx · tx. Absorbing Λ in the {Zi,0, Zi,1}`i=1, we have that ux is quadratic in
the randomness values {Z0, {Zi,0, Zi,1}`i=1, Z`+1}, or linear in the random terms ZZ ′ obtained by
multiplying every choice of Z,Z ′ ∈ {Z0, {Zi,0, Zi,1}`i=1, Z`+1}. In other words if BP evaluates to 0
both on inputs x and x, the values revealed by two zero-test operations give one linear equation
where the coefficients of the linear equations are program dependent. Now, if BP implements a
“sufficiently non-evasive” circuit,(e.g. a PRF) such that there exist sufficiently many such inputs
x, x for which BP (x) = BP (x) = 0, then collecting sufficiently many values {xBPk , uxBP

k
}mk=1, we get

a dependent system of linear relations. Namely, there exist {νBPk }mk=1 such that
∑m

k=1 ν
BP
k ·uxBP

k
=

0. In other words,
∑m

k=1 ν
BP
k · rxBP

k
· rxBP

k
= 0 mod p, where {νBPk }mk=1 depends only on the

description of the branching program BP .
We remark that, in the process of linearization above we increased (by a quadratic factor) the

number of random terms in the system. However, this can be always compensated by using more
equations, because the number of random terms is O(poly(n)) (n is the input length) whereas the
number of choices of input x is 2O(n) which implies that there are exponentially many rx available.

Note that for any branching program BP ′ that is “different enough” from BP , we could ex-
pect that

∑m
k=1 ν

BP
k · r′

xBP
k
· r′
xBP
k
6= 0 mod p where r′

xBP
k

are values revealed in executions of an

obfuscation of BP ′. This is because the values {νBPk }mk=1 depend on the specific implementation of

BP through terms of the form
∏i−1
j=0Aj,x[inp(i)] and

∏`+1
j=i+1Aj,x[inp(i)] in sx above. Two branching

programs that differ from each other in this sense are referred to as partially inequivalent.12

What Programs are Partially Inequivalent? Attack on NC1 circuits. The condition
we put forth seems to be fairly generic and intuitively should work for large class of programs. In
particular, we are interested in the programs generated from NC1 circuits. However, due to complex
structures of such programs the analysis becomes quite non-trivial.13 Nonetheless, we manage to

11Obtaining this expression requires careful analysis that is deferred to the main body of the paper. Also, by abuse
of notation let A0,xinp(0)

= A0, A`+1,xinp(`+1)
= A`+1, Z0,xinp(0)

= Z0 and Z`+1,xinp(`+1)
= Z`+1.

12Note that the only other constraint we need is that both BP and BP ′ evaluates to 0 for sufficiently many inputs,
which we include in the definition (c.f. Def. 4.2) of partial inequivalence.

13Note that, the analysis of Miles et al. uses 2× 2 matrices in addition to using simple branching programs. These
simplifications allow them to base their analysis on many facts related to the structures of these programs. Our aim
here is to see if the attack works for programs obtained from NC1 circuits, in particular via Barrington’s Theorem.
So, unfortunately it is not clear if their approach can be applicable here as the structure of the programs yielded via
Barrington’s Theorem become much complex structurally (and also much larger in size) to analyze.

7

show via implementation in Sage [S+16] (c.f. Appendix A) that the attack indeed works on a pair
of branching programs obtained from a pair of simple NC1 circuits, (say C0, C1) (see Sec. 7 for
the circuit descriptions) by applying Barrington’s Theorem. The circuits take 4 bits of inputs and
on any input they evaluate to 0. In our attack we use all possible 16 inputs. Furthermore, we
can escalate the attack to any pair of NC1 circuits (E0, E1) where Eb = ¬Cb ∧Db (b ∈ {0, 1}) for
practically any two NC1 circuits D0, D1 (we need only one input x for which D(x) = D(x) = 0).
We now take again a sequence of 16-inputs such that we vary the parts of all the inputs going into
Cb and keep the part of inputs read by Db fixed to x. Intuitively, since the input to Db is always
the same, each evaluation chooses the exactly same randomnesses (that is Zi’s) always. Hence
in the resulting system all the random variables can be replaced by a single random variable and
hence ¬Cb ∧ Db can be effectively “collapsed” to a much smaller circuit ¬Cb ∧ 0 (0 refers to the
smallest trivial circuit consisting of only identities). Finally, again via our Sage-implementation we
show that for circuits ¬C0 ∧ 0 and ¬C1 ∧ 0 the corresponding branching programs are partially
inequivelent.

As a consequence of the above we are also able to show examples of universal circuits Ub for
which the same attack works. Since the circuit D can be almost any arbitrary NC1 circuit, we can,
in particular use any universal circuit U ′ and carefully combine that with C to obtain our attackable
universal circuit U that results in partially inequivalent Barrigton programs when compiled with
any two arbitrary NC1 circuits. The details are provided in Section 7.3.

1.3 Roadmap

The rest of the paper is organized as follows. We provide basic definitions in Sec. 2. In Sec. 3
we formalize our abstract-attack model that is mostly similar to the attack model considered by
Miles et al. [MSZ16]. In Sec. 4 we formalize partial inequivalence of two branching programs.
In Sec. 5 we describe our annihilation attack in the abstract model for two partially inequivalent
branching programs. In Sec. 6 we then extend the abstract attack to real-world attack in GGH13
setting. Finally in Sec. 7 we provide details on our example NC1 circuits for which the corresponding
branching programs generated via Barrington’s Theorem are partially inequivalent.

Additionally, in Appendix A we provide some details on our implementations in Sage.

2 Notations and Preliminaries

2.1 Notations

We denote the set of natural numbers {1, 2, . . .} by N, the set of all integers {. . . ,−1, 0, 1 . . .} by
Z and the set of real numbers by R. We use the notation [n] to denote the set of first n natural

numbers, namely [n]
def
= {1, . . . , n}.

For any bit-string x ∈ {0, 1}n we let x[i] denotes the i-th bit. For a matrix A we denote its
i-th row by A[i, ?], its j-th column by A[?, j] and the element in the i-th row and j-th column by
A[i, j]. The i-th element of a vector v is denoted by v[i].

Bit-Strings. The compliment of x ∈ {0, 1}n is denoted by x and defined as: x
def
= 1n ⊕ x, where

⊕ denotes the bitwise XOR operation. The hamming weight of x ∈ {0, 1}n denoted by Ham(x) is
equal to

∑
i x[i] .

8

Matrices. The transpose of A is denoted by AT . We denote matrix multiplications between two
matrices A and B by A · B whereas scalar multiplications between one scalar a with a matrix (or
scalar) A by aA. A boolean matrix is a matrix for which each of its entries is from {0, 1}. A
permutation matrix is a boolean matrix such that each of its rows and columns has exactly one 1.
Concatenation of two matrices A,B of dimensions d1 × d2 and d1 × d′2 is a d1 × (d2 + d′2) matrix
denoted by [A | B]. For multiple matrices A1, A2, . . . , Am the concatenation is denoted as [âi∈[n]Ai].

Vectors. Matrices of dimension 1× d and d× 1 are referred to as row-vectors and column-vectors,
respectively. Unless otherwise mentioned, by default we assume that a vector is a row-vector.
Any matrix operation is also applicable for vectors. For example, the inner product a · b is a

scalar defined as a · b def
=
∑d

i=1 a[i]b[i], where a and b are row and column vectors of dimension
d respectively. We define the vectorization of any matrix M of dimension d1 × d2 to be a column
vector of dimension d1d2× 1 that is obtained by concatenating the rows of the matrix M and then
taking the transpose. We denote:

vec (M) =
[
M [1, ?] |M [2, ?] | · · · |M [d1, ?]

]T
.

Note that if M is a column-vector then vec (M) = M and if M is a row-vector then vec (M) = MT .

2.2 Matrix Products

Below, we provide additional notation and background on matrix products that will be needed in
our technical sections.

Definition 2.1 (Matrix Tensor Product (Kronecker Product)). The Tensor Product of a d1 × d2

matrix A and a d′1 × d′2 matrix B is a d1d
′
1 × d2d

′
2 matrix defined as:

A⊗B =

 A[1, 1]B · · · A[1, d2]B
...

. . .
...

A[d1, 1]B · · · A[d1, d2]B

where A[i, j]B is a matrix of dimension d′1 × d′2 that is a scalar product of the scalar A[i, j] and
matrix B.

Property 2.2 (Rule of Mixed Product). Let A,B,C and D be matrices for which the matrix
multiplications A ·B and C ·D is defined. Then we have:

(A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D).

Property 2.3 (Matrix Equation via Tensor Product). Let A,X and B be matrices such that the
multiplication A ·X ·B is defined, then we have that:

vec (A ·X ·B) = (A⊗BT) · vec (X)

We define a new matrix product.

Definition 2.4 (Row-wise Tensor Product of Matrices). Let A and B be two matrices of dimensions
d1 × d2 and d1 × d′2 respectively. Then the row-wise tensor product of A and B is a matrix C of
dimension d1 × d2d

′
2 such that each row of C is a tensor product of rows of A and B. Formally,

C = A�B where C[i, ?]
def
= A[i, ?]⊗B[i, ?].

9

The following fact is straightforward to see.

Fact 2.5 (Concatenation of Row-wise Tensors). Let A
def
= [A1 | A2 | · · · | Am] and B

def
= [B1 | B2 | · · · | Bn]

be two matrices, then we have:

A�B = [âi∈[m],j∈[n]Ai �Bj].

Definition 2.6 (Permutation Equivalence). Let A,B be matrices with dimensions d1× d2, then A
and B are called permutation equivalent if there exists a permutation matrix P such that A = B ·P .
We denote by A

per
= B

Property 2.7. For any two matrices A and B of dimensions d1 × d2 and d1 × d′2 respectively we
have that:

A�B
per
= B �A

Proof. Let C
def
= A�B then for any k ∈ [d2d

′
2] the k-th column of C can be written as:

C[?, k] =

 A[1, j]B[1, i]
...

A[d1, j]B[d1, i],

where i = k mod d′2 and j = k−i

d′2
+ 1. For ` ∈ [d′2], define the matrix

D` = [C[?, `] | C[?, `+ d′2] | . . . | C[?, `+ d′2(d2 − 1)]].

Observe that we can express B �A as follows:

B �A = [D1 | . . . | Dd′2
] = (A�B) · P

where P is a permutation matrix that maps the k-th column of A�B to the d2(i−1)+j-th column
where i = k mod d′2 and j = k−i

d′2
+ 1.

2.3 Column Space of a Matrix

Our attacks will require certain properties on the column space of certain matrices which we
elaborate on below.

Definition 2.8 (Column Space of a matrix). Let A be a matrix of dimension d1 × d2. Then the
column space of A is defined as the vector space generated by linear combinations of its columns,
formally the column space contains all vectors generated as

∑d2
i=1 ciA[?, i] for all choices of ci ∈ R.

We denote the column-space of A by colsp (A).

Definition 2.9 (Null-space of a matrix). 14 Let A be a matrix of dimension d1 × d2. Then the
null-space of A consists of all vectors v of dimension 1 × d1 for which v · A = 0. We denote the
null-space of A by nullsp(A).

We state some basic property of the above vector spaces.

14Traditionally such space is called left-null space or co-kernel.

10

Property 2.10 ([Ogu16]). Let A and B be two matrices of dimensions d1×d2. Then the following
statements are equivalent:

• colsp (A) = colsp (B).

• nullsp(A) = nullsp(B).

• There exists an invertible square matrix C such that A · C = B.

Corollary 2.11. Since A
per
= B is a special case of item-3 in the above property, we have that

A
per
= B =⇒ colsp (A) = colsp (B).

Combining above corollary along with Property 2.7 we can get the following corollary.

Corollary 2.12. For any two matrices A and B having equal number of rows we have that

colsp (A�B) = colsp (B �A)

Next we prove the following lemma that will be useful later in Sec. 7.

Lemma 2.13. Let A and B be two boolean matrices of dimensions d1 × d2 and d1 × d′2 such that
both A and B have equal number of 1’s in each of its rows. Then we have:

colsp (A) ⊆ colsp (A�B) and colsp (B) ⊆ colsp (A�B)

Proof. For each column A[?, j] of A, we define the matrix Wj ∈ {0, 1}d1×d
′
2 as a row-wise tensor

product between A[?, j] and B:
Wj = A[?, j] �B.

Summing up the columns of Wj we get:

∑
j′

Wj [?, j
′] =

 A[1, j]
∑

j′ B[1, j′]
...

A[d1, j]
∑

j′ B[d1, j
′]

 = c(A[?, j]).

for some integer c. Moreover we can write A�B as:

A�B = [W1 |W2 | . . . |Wd2].

Hence there is a linear combination of columns of A � B that generates the j-th column of A for
any j ∈ [d2]. This allows us to conclude that colsp (A) ⊆ colsp (A�B). Now similar to the proof
of the statement colsp (A) ⊆ colsp (A�B) we can prove that:

colsp (B) ⊆ colsp (B �A) .

From Corollary 2.12 we get that colsp (A�B) = colsp (B �A). This allows us to conclude that
colsp (B) ⊆ colsp (A�B).

11

2.4 Branching Programs

In this subsection, we recall definitions of branching programs.

Definition 2.14 (w-ary Input-Oblivious Matrix Branching Program [BGK+14]). A w-ary input
oblivious matrix branching program of dimension d, length ` over n-bit inputs is given by a tuple,

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}w , A`+1)

where inp(·) : [`] → [n]w is a function such that inp(i) is the set of w bit locations of the input
examined in step i; Ai,b are permutation matrices over {0, 1}d×d and A0 ∈ {0, 1}1×d \(0d)T , A`+1 ∈
{0, 1}d×1 \ 0d are fixed bookend vectors such that:

A0 ·A ·A`+1 =

{
0 if and only if A = Id×d
1 otherwise.

(1)

The output of the matrix branching program on an input x ∈ {0, 1}n is given by:

A(x) =

1 if A0

(∏
i∈[`]Ai,x[inp(i)]

)
A`+1 = 1

0 if A0

(∏
i∈[`]Ai,x[inp(i)]

)
A`+1 = 0

,

where inp(i) denotes the set of locations that are inspected at step i of A and x[inp(i)] denotes the
bits of x at locations inp(i). A w-ary branching program is said to be input-oblivious if the function
inp is fixed and independent of the program A.

Remark 2.15. A 1-ary branching program is also called a single-input branching program. Un-
less otherwise stated we will always assume that any branching program is single-input and input-
oblivious.

Barrington [Bar86] showed that all circuits in NC1 can be equivalently represented by a branch-
ing program of polynomial length. We provide the theorem statement below adapted to our defi-
nition of branching programs.

Theorem 2.16 (Barrington’s Theorem[Bar86]). For any depth-D, fan-in-2 boolean circuit C, there
exists an input oblivious branching program of matrix-dimension 5 and length at most 4D that
computes the same function as the circuit C.

Given a circuit C of depth D, Barrington’s Theorem provides yield a single-input branching
program of matrix dimension 5 implementing circuit C. We stress that the specific implementa-
tion obtained by use of Barrigton’s depends on the specific choices made in its implementation
and therefore the obtained implementation is not unique. Sometimes the branching program ob-
tained via applying Barrington’s Theorem to a circuit is called the Barrington-implementation of
that circuit. We choose a specific one for our Sage-implementation. The details are provided in
Appendix. A.

2.5 Indistinguishability Obfuscation

Below, we recall the notion of indistinguishability obfuscation (iO).

12

Definition 2.17 (Indistinguishability Obfuscator (iO)[GGH+13b]). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are
satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α
such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

3 Attack Model for Investigating Annihilation Attacks

Miles, Sahai, and Zhandry [MSZ16] describe an abstract obfuscation scheme, designed to encompass
the main ideas of BGKPS-like-obfuscations [BGK+14, BR14, AGIS14, PST14, MSW14, BMSZ16a]
for the purposes of investigating annihilation attacks. We use the same abstract attack model as
the starting point for our new attacks. Below, we first describe the model, obfuscation in this model
and what violating indistinguishability obfuscation security means.

3.1 Annihilation Attack Model

We describe the abstract annihilation attack model. An abstract model is parameterized with n
arbitrary secret variables X1, ..., Xn, m random secret variables Z1, ..., Zm, a special secret variable
g. Then the public variables Y1, . . . , Ym are such that Yi := qi({Xj}j∈[n])+gZi for some polynomials
qi. The polynomials are defined over a field F.15 An abstract model attacker A may adaptively
make two types of queries:

• Type 1: Pre-Zeroizing Computation. In a Type 1 query, the adversary A submits
a “valid” polynomial pk on the public Yi. Here, valid polynomials are those polynomials as
enforced by the graded encodings.16

Then, we expand the representation of the (public) polynomial on Yi in order to express pk as
a polynomial of the (private) formal variables Xj , Zi, g stratified in the powers of g as follows:

pk = p
(0)
k + g · p(1)

k + g2 · p(2)
k +

If pk is identically 0 or if p
(0)
k is not identically 0, then the adversary A receives ⊥ in return.

Otherwise, the adversary A receives a new handle to a new variable Wk, which is set to be

Wk := pk/g = p
(1)
k + g · p(2)

k + g2 · p(3)
k +

15Looking ahead, the arbitrary variables represent the plain-texts (the branching program or circuit to be obfus-
cated) of encoding, the random variables represent the randomness of encodings generated by the obfuscator, the
variable g represents the “short” generator g of the ideal lattice and the public variables represent the encodings
available to the attacker.

16For example, for a branching program obfuscation it must be a correct (and complete) evaluation of a branching
program on some specific input as directed by the inp function of the program.

13

• Type 2: Post-Zeroizing Computation. In a Type 2 query, the adversary A is allowed
to submit arbitrary polynomials r of polynomial degree, on the Wk that it has seen so far.
We again view r({Wk}) as a polynomial of the (secret) formal variables Xj , Zi, g, and write
it as:

r = r(0) + g · r(1) + g2 · r(2) +

If r(0) is identically 0, then the adversary A receives 0 in return. Otherwise, the adversary A
receives 1 in return.

Comparing the Abstract Model to other Idealized Models. We briefly compare the Ab-
stract Model described above to the ideal graded encoding model that has traditionally been used
to argue about obfuscation security in prior works, e.g. as in the [BR14, BGK+14]. All adversarial
behavior allowed within the Ideal Graded Encoding model is captured by Type 1 queries in the
Abstract Model and the Type 2 queries are not considered. The works of [GMM+16, DGG+16]
argue security in this new model also referred to as the Weak Multilinear Map Model.

3.2 Obfuscation in the Annihilation Attack Model

The abstract obfuscator O takes as input a single-input branching program A of length `, input
length n. We describe our obfuscation using notation slightly different from Miles et al. [MSZ16] as
it suits our setting better and is closer to notation of branching programs (Def. 2.4). The branching
program has an associated input-indexing function inp : [`]→ [n]. The branching program has 2`+2
matrices A0, {Ai,b}i∈[`],b∈{0,1}, A`+1. In most generality, in order to evaluate a branching program
on input x, we compute the matrix product

A(T) = A0 ·
∏̀
i=1

Ai,x[inp(i)] ·A`+1,

where x[inp(i)] denotes the bit of x at locations described by the set inp(i). Finally the program
outputs 0 if and only if A(T) = 0.

The abstract obfuscator randomizes its input branching program by sampling random matrices
{Ri}i∈[`+1] (Killian randomizers) and random scalars {αi,b}i∈[`],b∈{0,1}, then setting

Ã0 := A0 ·Radj1 , Ãi,b := αi,b(Ri ·Ai,b ·Radji+1), Ã`+1 := R`+1 ·A`+1.

that are the abstract model’s arbitrary secret variables. Here Radj denotes the adjugate matrix of
R that satisfies Radj ·R = det(R) · I. Then the obfuscator defines the public variables to be

Y0 := Ã0 + gZ0; Yi,b := Ãi,b + gZi,b; Y`+1 := Ã`+1 + gZ`+1,

where g is the special secret variable and Zis are the random variables. This defines the abstract
obfuscated program O(A) = {Yi}i. The set of valid Type 1 polynomials consists of all the honest
evaluations of the branching program. This is, the allowed polynomials are

px = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1,

for all x ∈ {0, 1}n.17

17Looking ahead, the Zis are random noise component sampled in the encoding procedure of GGH13 maps and g
is a “short” generator of the ideal lattice. The abstract model is agnostic to the exact choice of those variables, but
only depends on the structure of the variables.

14

3.3 Abstract Indistinguishability Obfuscation Security

We define security of iO in the abstract model. Formally consider the following indistinguishability
game consisting of three phases.

Set Up. The adversary A comes up with a pair of matrix branching programs (A0,A1) that are
(i) functionally equivalent, (ii) of same length and (iii) input oblivious and some auxiliary
information aux. A outputs the pair (A0,A1) to the challenger.

Challenge. The challenger applies the abstract obfuscator O to a branching program, uniformly
chosen as Ab ← {A0,A1} and returns the public variables {Y0, {Yi,b}, Y`+1}, generated by
applying O to Ab, to the adversary.

Pre-zeroing (Type-1) Queries. In this phase the adversary makes several type-1 valid queries
pk and gets back handles {W1,W2, . . .}.

Post-zeroing (Type-2) Query. In this phase the adversary makes one type-2 query r with some
degree poly(λ) polynomial Q over the formal variables corresponding to handles {W1,W2, . . .}
and receives a bit as a response from the challenger. Finally A outputs its guess b′ ∈ {0, 1}.

Definition 3.1 (Abstract iO Security). An abstract obfuscation candidate O is called an indistin-
guishability obfuscator if for any probabilistic polynomial time adversary A the probability that A
guesses the choice of Ab correctly is negligibly close to 1/2. Formally, in the above game

|Pr[b = b′]− 1/2| ≤ negl(λ)

for any security parameter λ ∈ N, where the probability is over the randomness of A and the
challenger.

4 Partially Inequivalent Branching Programs

In this section, we provide a formal condition on two branching programs, namely partial inequiv-
alence, that is sufficient for launching a distinguishing attack in the abstract model. In Section 5
we prove that this condition is sufficient for the attack.18

All the below definitions consider single-input branching programs, but they naturally extends
to multi-input setting.

Definition 4.1 (Partial Products). Let A = (inp, A0, {Ai,b}i∈[`],b∈{0,1} , A`+1) be a single-input
branching program of matrix-dimension d and length ` over n-bit input.

1. For any input x ∈ {0, 1}n and any index i ∈ [`+1]∪{0} we define the vectors φ
(i)
A,x as follows:

φ
(i)
A,x

def
=

(
A0 ·

∏i−1
j=1Aj,x[inp(j)]

)
⊗
(∏`

j=i+1Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d2 if i ∈ [`](∏`

j=1Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d if i = 0

A0 ·
∏`
j=1Aj,x[inp(j)] ∈ {0, 1}1×d if i = `+ 1

,

18We note that this condition is not necessary. Looking ahead, we only consider first order partially inequivalent
programs in paper and remark that higher order partially inequivalent programs could also be distinguished using
our techniques.

15

Additionally, define φ̃
(i)
A,x for any such branching program as:

φ̃
(i)
A,x

def
=

[φ

(i)
A,x | 0d

2
] if i ∈ [`] and x[inp(i)] = 0

[0d
2 | φ(i)

A,x] if i ∈ [`] and x[inp(i)] = 1

φ
(i)
A,x if i = 0 or `+ 1

,

where inp is a function from [`]→ [n] and that x[inp(i)] denotes the bit of x corresponding to
location described by inp(x).

2. Then the linear partial product vector φA,x and the quadratic partial product vector
ψA,x of A with respect to x are defined as:

φA,x
def
= [φ̃

(0)
A,x | · · · | φ̃

(`+1)
A,x] ∈ {0, 1}1×(2d+2`d2).

ψA,x
def
= φA,x ⊗ φA,x ∈ {0, 1}1×(2d+2`d2)2 ,

where x = x⊕ 1n is the compliment of x.

3. For a set of inputs X = {x1, x2, . . . , xm} the the linear partial product matrix ΦA,X and
the quadratic partial product matrix ΨA,X of A with respect to X are defined as:

ΦA,X
def
=

φA,x1
φA,x2

...
φA,xm

 ∈ {0, 1}m×(2d+2`d2)

ΨA,X
def
= ΦA,X � ΦA,X + ΦA,X � ΦA,X =

ψA,x1 +ψA,x1
ψA,x2 +ψA,x2

...
ψA,xm +ψA,xm

 ∈ {0, 1}m×(2d+2`d2)2 ,

where X
def
= {x1, x2, . . .}.

19

Definition 4.2 (Partial Inequivalence). Let A0 and A1 be two single-input matrix branching pro-
grams of matrix-dimension d and length ` over n-bit input. Then they are called partially in-
equivalent if there exists a polynomial in security parameter sized set X of inputs such that:

• For every x ∈ X, we have that A0(x) = A1(x) = 0 and A0(x) = A1(x) = 0.

• colsp (ΨA0,X) 6= colsp (ΨA1,X) .

19Note that in the above definition we add the row-wise tensors. Looking ahead, this is done to capture the
commutativity in the polynomial multiplications. Namely since for any two ring elements z1, z2 we have z1z2 = z2z1,
their coefficients add up. Also note that the sum in the above expression equivalently double the coefficients of the
quadratic terms z21 , z

2
2 . But, due to our choices of inputs x, x we would only have such terms for the bookends which

are nonetheless always stays the same (in fact they are independent of the actual program) and does not affect the
column-space.

16

Lemma 4.3. For any matrix branching program A we have that for any two inputs x, x′ the linear
partial product vectors φA,x and φA,x′ contain the same number of 1’s.

Proof. Note that for any input x and index i, via definition of φ
(i)
A,x, we have:

φ
(i)
A,x =

(
A0 · Px,1 ⊗AT`+1 · Px,2

)
for some x dependent permutations Px,1 and Px,2. Note that A0 is a row vector and therefore A0·Px,1
is also a row vector. Since Px,1 is a permutation, we conclude that Ham(A0 ·Px,1) = Ham(A0) where
Ham(A0) is the hamming weight of the vector A0 (specifically, the number of locations at which
it is 1). Similarly, Ham(Px,2 · A`+1) = Ham(A`+1). Hence, the Ham(φA,x) = Ham(A0)Ham(A`+1)
which is independent of x. Consequently, Ham(φA,x) = (` + 2)Ham(A0)Ham(A`+1) which is also
independent of x. This concludes the proof.

5 Annihilation Attack for Partially Inequivalent Programs

In this section, we describe an abstract annihilation attack against any two branching programs
that are partially inequivalent. In this section, we show an attack only in the abstract model and
provide details on how it can be extended to the real GGH13 setting in Section 6 . Formally we
prove the following theorem.

Theorem 5.1. Let O be the generic obfuscator described in Sec. 3.2. Then for any two functionally
equivalent same length single-input branching programs A0,A1 that are partially inequivalent there
exists a probabilistic polynomial time attacker that distinguishes between between O(A0) and O(A1)
with noticeable probability in the abstract attack model (violating Definition 3.1).

Proof of Theorem 5.1. Below we provide the proof.

Setup for the attack. The given branching programs A0 and A1 are provided to be functionally
equivalent and partially inequivalent. Therefore there exists a set X such that: (1) for all x ∈
X,A0(x) = A0(x) = A1(x) = A1(x) = 0, and (2) colsp (ΨA0,X) 6= colsp (ΨA1,X) . We will assume
that the adversary has access to X as auxiliary information.

Challenge. A receives as a challenge the obfuscation of the branching program: A ∈ {A0,A1}
by the challenger. Recall from the description of the abstract obfuscator that, the obfuscation of
program A = (inp, A0, {Ai,b}i∈[`],b∈{0,1} , A`+1), denoted by O(A) consists of the following public
variables:

Y0 := A0 ·Radj1 + gZ0, Yi,b := αi,bRi ·Ai,b ·Radji+1 + gZi,b, Y0 := R`+1 ·A`+1 + gZ0,

where the arbitrary secret variables are:

Ã0
def
= A0 ·Radj1 , Ãi,b

def
= αi,b(Ri,b ·Ai,b ·Radji,b), Ã`+1

def
= R`+1 ·A`+1;

for random variables (i.e. Killian randomizers) R1, {Ri}, R`+1 and the random secret variables are
denoted by Z0, {Zi,b}i∈[`],b∈{0,1} , Z`+1 and the special secret variable is g. Via change of variables
we can equivalently write:

Y0 := (A0 + gZ0) ·Radj1 ; Yi,b := αi,bRi · (Ai,b + gZi,b) ·Radji+1; Y`+1 := R`+1 · (A`+1 + gZ`+1).

17

Pre-Zeroizing Computation (Type-1 queries). On receiving the obfuscation of A ∈ {A0,A1},
O(A) = {Y0, {Yi,b}, Y`+1} the attacker, in the pre-zeroizing step, performs a “valid” Type-1 queries
on all the inputs X,X where X = {x1, . . . , xm}, X = {x1, . . . , xm}. That is, for any x ∈ {0, 1}n,
and the abstract obfuscation O(A), the attacker queries the polynomial:

PA,x = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1.

Then, expressing PA,x stratified as powers of g we obtain:

PA,x = P
(0)
A,x({Yi}i) + g · P (1)

A,x({Yi}i) + ...+ g`+2 · P (`+2)
A,x ({Yi}i)

for some polynomials P
(j)
A,x({Yi}i) (j ∈ {0, ..., `+ 1}). However, by Lemma 5.2 we have that:

P
(0)
A,x = ρα̂xA(x)

for ρ
def
=
∏
i det(Ri) (or ρI =

∏
iR

adj
i Ri) and α̂x

def
=
∏`
i=1 αi,xinp(i) . Since for x ∈ X we have that

A(x) = 0 , the polynomial P
(0)
A,x is identically 0. Consequently, for each such Type 1 query the

attacker receives a new handle to a variable WA,x that can be expressed as follows:

WA,x = PA,x/g = P
(1)
A,x + g · P (2)

A,x + ...+ g`+1 · P (`+2)
A,x .

Analogously, the attacker obtains handles WA,x. After obtaining handles

{(WA,x1 ,WA,x1), ...(WA,xm ,WA,xm)}

the attacker starts the post-zeroizing phase.

Post-Zeroizing Computation. The goal of post-zeroizing computation is to find a polynomial
Qann of degree poly(λ) such that following holds for some b ∈ {0, 1}:

(i) Qann(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) ≡ 0.

(ii) Qann(P
(1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) 6≡ 0.

Clearly, this leads to an attack on the obfuscation security(c.f. Definition 3.1) as A would receive

0 from the challenger if and only if Qann(P
(1)
A,x1

, P
(1)
A,x1

..., P
(1)
A,xm

, P
(1)
A,xm

) is identically zero, hence it
would receive 0 if and only if Ab is chosen by the challenger in the challenge phase. To find such
Qann the attacker continues as follows. Observe that by Lemma 5.2, for every x ∈ X we have that:

P
(1)
A,x = ρα̂x(φA,x · zT) (2)

P
(1)
A,x = ρα̂x(φA,x · zT) (3)

Next, multiplying the polynomials P
(1)
A,x and P

(1)
A,x (Eq. 2 and Eq. 3) we get:

P̃
(1)
A,x

def
= P

(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · zT)⊗ (φA,x · zT)

)
(4)

= ρ2α̂
(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
(5)

= ρ2α̂(ψA,x · zT ⊗ zT)

18

where α̂
def
= α̂xα̂x is now independent of input x.20 Similarly we can also have:

P̃
(1)
A,x

def
= P

(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · zT)⊗ (φA,x · zT)

)
= ρ2α̂

(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
= ρ2α̂(ψA,x · zT ⊗ zT)

However, since field multiplication is commutative, adding we get:

P̃
(1)
A,x + P̃

(1)
A,x = 2P

(1)
A,xP

(1)
A,x = ρ2α̂(ψA,x · zT ⊗ zT) + ρ2α̂(ψA,x · zT ⊗ zT)

= ρ2α̂(ψA,x +ψA,x) · (zT ⊗ zT)

Using the given conditions that ΨA0,X and ΨA1,X have distinct column spaces (and hence
distinct left-kernel) the attacker can efficiently compute (e.g. via Gaussian Elimination) a vector
vann ∈ {0, 1}1×m that belongs to it left-kernel, call it the annihilating vector, such that for some
b ∈ {0, 1} we have:

vann ·ΨAb,X = 0 but vann ·ΨA1−b,X 6= 0.

The corresponding annihilation polynomial Qann can be written as:

Qann
vann

(WA,x1 ,WA,x1 , . . . ,WA,xm ,WA,xm) = vann ·

WA,x1WA,x1
...

WA,xmWA,xm

Observe that the coefficient of g0 in the expression Qann

vann
(WA,x1 ,WA,x1 , . . . ,WA,xm ,WA,xm) from

above is equal to Qann
vann

(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

). Moreover this value for A = Ab is:

Qann
vann

(P
(1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) = vann ·
ΨAb,X

2
· (z ⊗ z)T ≡ 0

but for A1−b:

Qann
vann

(P
(1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) = vann ·
ΨA1−b,X

2
· (z ⊗ z)T 6≡ 0.

Hence, the response to Type 2 query is sufficient to distinguish between obfuscation of Ab and
A1−b in the abstract model. This concludes the proof.

Evaluations of P
(0)
A,x and P

(1)
A,x. Below we provide a lemma that described what the terms P

(0)
A,x

and P
(1)
A,x look like.

Lemma 5.2. For every x ∈ {0, 1}n, we have that:

P
(0)
A,x = ρα̂xA(x)

P
(1)
A,x = ρα̂x(φA,x · zT),

where ρ
def
=
∏
i det(Ri) and α̂x

def
=
∏`
i=1 αi,xinp(i) and z is a vector consisting of the random terms

Z0, Zi,b, and Z`+1 used to generate the obfuscation terms Y0, Yi,b, and Y`+1 in an appropriate se-
quence.

20Here, we use the fact that the branching programs are single-input. For multi-input programs we do not know
how to make α̂ independent of x. The rest of the analysis does not require the programs to be single-input.

19

Proof of Lemma 5.2. For each x ∈ {0, 1}n note that:

P
(0)
A,x = Ã0 ·

∏̀
i=1

Ãi,x[inp(i)] · Ã`+1

= A0 ·Radj1 ×
∏̀
i=1

(
αi,xinp(i)Ri ·Ai,x[inp(i)] ·R

adj
i+1

)
×R`+1 ·A`+1

= ρα̂xA(x)

for ρ
def
=
∏
i det(Ri) (or ρI =

∏
iR

adj
i Ri) and α̂x

def
=
∏`
i=1 αi,xinp(i) .

Also, note that for any x ∈ {0, 1}n we can express P
(1)
A,x as:

P
(1)
A,x = Z0 ·Radj1 ·

∏̀
j=1

Ãj,x[inp(j)] · Ã`+1

+
∑̀
i=1

Ã0 ·
i−1∏
j=1

Ãj,x[inp(j)] ·
(
αi,x[inp(i)]Ri · Zi,x[inp(i)] ·R

adj
i+1

)
·
∏̀
j=i+1

Ãj,x[inp(j)] · Ã`+1

+ Ã0 ·

∏̀
j=1

Ãj,x[inp(j)] ·R`+1 · Z`+1

= ρα̂x

Z0 ·
∏̀
j=1

Aj,x[inp(j)] ·A`+1

+ ρα̂x

∑̀
i=1

A0 ·
i−1∏
j=1

Aj,x[inp(j)] · Zi,x[inp(i)] ·
∏̀
j=1

Aj,x[inp(j)] ·A`+1

+ ρα̂x

A0 ·
∏̀
j=1

Aj,x[inp(j)] · Z`+1

 (6)

Now, define:

z0
def
= vec (Z0) ∈ {0, 1}d×1 , z`+1

def
= vec (Z`+1) ∈ {0, 1}d×1,

and
zi,b

def
= vec (Zi,b) ∈ {0, 1}d

2×1

Now, we set
zi =

[
zTi,0 | zTi,1

]
.

And finally set, as

z
def
= [z0 | z1 | . . . | z` | z`+1] ∈ {0, 1}1×(2`+2)d2

20

where z consists of all random secret variables involved in O(A). Next using the property of tensor
products (Property 2.3) we can rewrite Eq. 6 as:

P
(1)
A,x = vec

(
P

(1)
A,x

)
= ρα̂xvec

Z0 ·
∏̀
j=1

Aj,x[inp(j)] ·A`+1

+ ρα̂x

∑̀
i=1

vec

A0 ·
i−1∏
j=1

Aj,x[inp(j)] · Zi,x[inp(i)] ·
∏̀
j=1

Aj,x[inp(j)] ·A`+1

+ ρα̂xvec

A0 ·
∏̀
j=1

Aj,x[inp(j)] · Z`+1

= ρα̂x

∏̀
j=1

Aj,x[inp(j)] ·A`+1

T

· z0

+ ρα̂x
∑̀
i=1

A0 ·
i−1∏
j=1

Aj,x[inp(j)]

⊗
 ∏̀
j=i+1

Aj,x[inp(j)] ·A`+1

T

· zi,x[inp(i)]

+ ρα̂x

A0 ·
∏̀
j=1

Aj,x[inp(j)]

 · z`+1 (7)

= ρα̂x

(
φ

(0)
A,x · z0 +

∑̀
i=1

φ
(i)
A,x · zi,x[inp(i)] + φ

(`+1)
A,x · z`+1

)

= ρα̂x

(
φ̃

(0)
A,x · z0 +

∑̀
i=1

φ̃
(i)
A,x · zi + φ̃

(`+1)
A,x · z`+1

)
= ρα̂x(φA,x · zT). (8)

6 Extending the Abstract Attack to GGH13 Multilinear Maps

In this section, we show that an attack in abstract model described in Section 3.1 can be translated
to an attack in the GGH13 setting. This part of the attack is heuristic and analogous to some of
the previous attacks on GGH13 such as in [GGH13a, MSZ16, CHL+15].

6.1 The GGH13 Scheme: Background

In the GGH13 scheme [GGH13a], the plaintext space is a quotient ring R/gR, where R is the
ring of integers in a cyclotomic number field and g ∈ R is a “small prime element.” The space of
encodings is Rq = R/qR for a large (exponential in the security parameter λ) modulus q. We write
[·]q to denote operations are done in Zq.

A uniformly random secret z1 . . . zk ∈ Rq is chosen, and used to encode plaintext values as
follows: A plaintext element a ∈ R/gR is encoded at the level-1 as u = [c/z]q, where the numerator
c is a “small” element in the coset of a; i.e. c = a+gr for a small random term r ∈ R, chosen from
an appropriate distribution. We describe the GGH13 and our attack assuming use of “symmetric”

21

multilinear maps just for simplicity of notation. Note that in our attacks we compute on provided
multilinear maps encodings in a prescribed manner. Furthermore, the z always vanish in our
attacks. Therefore, the attack immediately generalize to the “asymmetric GGH” setting, with
many distinct choices of z’s and we continue to use the “symmetric” notation for simplicity.

Addition and subtraction of encodings at the same level is performed by addition in Rq, and
outputs an encoding of the sum of the encoded plaintext values at the same level. Multiplication of
encodings at levels t1 and t2 yields a new level-t1 + t2 encoding of the product of the corresponding
plaintexts.

The level-k encodings of the zero plaintext, 0 ∈ R/gR, have the form u = [gr/zk]q. Public
parameter of the GGH13 multilinear maps include a public zero-testing parameter pzt = [hzk/g]q,
for a “somewhat small’ element h ∈ R, which is roughly of size

√
q. The zero-test operation involves

multiplying pzt by a level-k encoding u, and checking if the result [pzt ·u]q is much smaller than the
modulus q. Note that if u is indeed an encoding of zero then we have that [pzt ·u]q = [hr]q. If h, r,
are much smaller than q then we have that this computed value will also be much smaller than q.
On the other hand if u = [c/zk]q is not an encoding of zero, then we have that [pzt · u]q = [c/g]q
will be large.

6.2 Translating the Abstract Attack to GGH13

In this section, we assume that we are provided programs A0 and A1, set of inputs X and a vector
vann such that vann ·ΨA0,X ·(z⊗z)T ≡ 0 and vann ·ΨA1,X ·(z⊗z)T 6≡ 0. Recall that vann is sufficient
to complete an attack in the abstract model. Given the above we describe an attack strategy of
distinguishing between obfuscations of A0 and A1 generated using GGH13 multilinear maps. We
do this in two steps. In the first step, we will use the abstract attack to compute an element u
whose distribution depends on whether A0 was used or A1 was used. We explain this step in this
subsection below. The second step that involves efficiently testing the distribution from which u is
sampled is described in the next subsection.

Our attack is provided an obfuscation of either A ∈ {A0,A1} and it proceeds as follows. It
mimics the abstract attack for the pre-zeroing computation queries by computing the values using
the provided encodings. Since only “valid” queries were made in the abstract model, therefore the
corresponding computation can be done locally. Specifically, for each x ∈ X, we obtain

[
PA,x

zk

]
q

=

P (0)
A,x + gP

(1)
A,x + g2(. . .)

zk

 .
Since, P

(0)
A,x = 0, zero-testing on this value yields a value that is unreduced mod q. In particular,

zero-test reveals the value:
WA,x = h

(
P

(1)
A,x + g(. . .)

)
.

Using these values, we set u = vann · W̃A,X where

W̃A,X =

WA,x1WA,x1
...

WA,xmWA,xm

22

Note that if A = A0 then we have that u ∈ 〈ρ2α̂h2g〉, where ρ
def
=
∏
i det(Ri) and α̂

def
= α̂xα̂x both

of which are fixed terms. On the other hand, if A = A1 then we have that u 6∈ 〈ρ2α̂h2g〉 with
overwhelming probability by Schwartz-Zippel Lemma.

6.3 Completing the Attack for Large Enough Circuits

In order to complete the attack we need to check if u obtained in the previous step is in the
ideal 〈ρ2α̂h2g〉 or not. Below we describe a method to compute several (heuristically) linearly
independent elements is in the ideal J = 〈ρ4α̂2h4g〉. Note that if u ∈ 〈ρ2α̂h2g〉 then u2 ∈ J as
well. However, since g is prime, if u /∈ 〈ρ2α̂h2g〉 then u2 will not be in J .

Let X1, X2, . . . be disjoint sets of inputs such that for each i we have that Xi ∩ (X ∪X) = ∅,
|Xi| = (2d + 2`d2)2 and that ∀x ∈ Xi we have that A(x) = A(x) = 0.21 Since, the number of
inputs is 2n for a large enough circuit we can define any polynomial number of such sets Xi.

Note that for each i, since the number of equations is larger than the number of variables,
therefore ∃ai, bi such that ai ·ΨA0,Xi = 0 and bi ·ΨA1,Xi = 0. Therefore, for A ∈ {A0,A1} we can

conclude that (ai · W̃A,Xi)(bi · W̃A,Xi) ∈ J = 〈ρ4α̂2h4g〉 where

W̃A,Xi =

WA,xi,1WA,xi,1
...

WA,xi,mWA,xi,m

and Xi = {xi,1, xi,2, . . . , xi,m}. Repeating this process for each choice of i we obtain several elements
in J . Note that these values are linearly independent except that some of these values (possibly
all of them) might actually be in J ′ = 〈ρ4α̂2h4g2〉. However, this doesn’t affect our attack because
u2 is in J ′ as well.

7 Example of Partially Inequivalent Circuits

In this section, we show examples of pairs of NC1 circuits such that the corresponding Barrington-
implemented22 branching programs are partially inequivalent and therefore are subject to the ab-
stract annihilation attacks shown in Section 5. Note that here we extend the notion of partial
inequivalence from branching programs to circuits in a natural way. Unless otherwise mentioned,
partial inequivaelnce of circuits specifically imply that the corresponding branching programs gen-
erated via applying Barrngton’s Theorem are partially inequivalent.

7.1 Simple Pairs of Circuits that are Partially Inequivalent

Consider the following pair of circuits (C0, C1) each of which implements a boolean function
{0, 1}4 → {0, 1}:

C0(x)]
def
= (x[1] ∧ 1)

∧
(x[2] ∧ 0)

∧
(x[3] ∧ 1)

∧
(x[4] ∧ 0),

C1(x)
def
= (x[1] ∧ 0)

∧
(x[2] ∧ 0)

∧
(x[3] ∧ 0)

∧
(x[4] ∧ 0).

21Since the programs are functionally equivalent we have this condition.
22Recall that by Barrington-implementation of a circuit we mean the single-input branching program produced as

a result of Barrington Theorem on the circuit. Also we implicitly assume that the branching programs are input-
oblivious.

23

Define the set X
def
= {0, 1}4. Now, we provide an implementation (see Appendix A for more details

on the implementation) in Sage[S+16] that evaluates the column spaces of matrices produced via
applying a Barrington-implementation to the above circuits. The outcome from the implementation
led us to conclude the following claim:

Claim 7.1. Let AC0 ,AC1 be the Barrington-Implementation of the circuits C0, C1 respectively,

then we have that: colsp
(

ΨAC0
,X

)
6= colsp

(
ΨAC1

,X

)
.

Remark 7.2. We emphasize that we use branching programs generated with a particular Barrington-
implementation that makes a set of specific choices. We remark that Barrington’s construction can
be implemented in many different ways. However, since in this section we aim to find one concrete
example for which the condition of our abstract attack satisfies, we restrict ourselves to this specific
program. We refer the reader to Appendix A for the details of our implementation. Throughout
this section we refer to this particular Barrington-implementation.

The circuits presented above are of constant size. Looking ahead, though, they are partially
inequivalent and hence (by Theorem 5.1) are susceptible to the abstract attack that does not
translate to a real-world attack in GGH13 setting immediately. For that we need to consider larger
(albeit NC1) circuits which we construct next based on the above circuits.

7.2 Larger Pairs of Circuits that are Partially Inequivalent

We construct pairs of NC1 circuits (in fact, exponentially many of them) that build on the constant-
size circuits described in Sec. 7.1.

Consider any pair of functionally equivalent NC1 circuits (D0, D1) and an input x? ∈ {0, 1}n
such that D0(x?) = D1(x?) = D0(x?) = D1(x?) = 0. Now define the circuits E0, E1 each of which
computes a boolean function {0, 1}n+4 → {0, 1} as follows:

E0(y)
def
= ¬C0(x) ∧D0(x′),

E1(y)
def
= ¬C1(x) ∧D1(x′)

(¬C is the circuit C with output negated) such that for each y ∈ {0, 1}n+4 we have y = x ◦ x′ (◦
denotes concatenation) where x ∈ {0, 1}4 and x′ ∈ {0, 1}n. Define the input-sequence Y

def
= {x◦x? |

x ∈ {0, 1}4} (consisting of 16 inputs). Then we show the following statement.

Lemma 7.3. Let AE0 ,AE1 be the Barrington-implementations of E0, E1 respectively, then we have

that: colsp
(

ΨAE0
,Y

)
6= colsp

(
ΨAE1

,Y

)
.

Proof. As a first step, similar to Claim 7.1 we also verify the following claim via our Sage-
implementations (c.f. Appendix A for more details on the implementation).

Claim 7.4. Let A¬C0∧0,A¬C1∧0 be the Barrington-implementations of the circuits ¬C0∧0,¬C1∧0

respectively, then we have that: colsp
(

ΨA¬C0∧0,X

)
6= colsp

(
ΨA¬C1∧0,X

)
.

Now, recall (Def. 2.4) that any branching program A has the following representation:

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1).

24

Let us call the “core” of A as: A′
def
= {A1,b, . . . , A`,b}b∈{0,1}.23 For any such A′ we define the inverse

as A′−1 def
= {A−1

`,b , A
−1
`−1,b, . . . , A

−1
1,b}b∈{0,1}. Furthermore, for any permutation matrix ρ ∈ S5 (recall

that Barrington-implementation works with matrices in the symmetric group S5). we define an
operation on A′:

ρ(A′)ρ−1 =
{

(ρ ·A1,b), {Ai,b}i∈[`], (A`,b · ρ−1)
}
b∈{0,1}

Now recall that using the construction from Barrington’s Theorem with the above notations we
can write for any choice of E ∈ (E0, E1) (where E = C ∧D)

A′¬C∧D︸ ︷︷ ︸
ΦA¬C∧D,Y

= (ρ(A′¬C)ρ−1)︸ ︷︷ ︸
M0

◦ (%(A′D)%−1)︸ ︷︷ ︸
M1

◦ (ρ(A′¬C)−1ρ−1)︸ ︷︷ ︸
M2

◦ (%(A′D)−1%−1)︸ ︷︷ ︸
M3

(9)

where ρ,% ∈ S5 are specific to the Barrington-implementation (see Appendix A for the exact values
we used) and fixed for a particular implementation. Now we can split the linear partial matrix of
A¬C∧D into four parts:

ΦA¬C∧D,Y
def
= [M0 |M1 |M2 |M3]

where each Mi is corresponding to a part of the core A′C∧D as shown in Eq. 9. However, since we
have Dx? = 0 for all y = x ◦ x? in Y and for any two inputs y1, y2 ∈ Y the sub-input to the circuit
D (corresponding to parts M1 and M3) is same (equal to x?) clearly when i is in the range of M1

or M3 we get that:

φ
(i)
A¬C∧D,y1

= φ
(i)
A¬C∧D,y2

.

which implies that M1,M3 ∈ T where T is a family of all “trivial matrices” with columns which
are either all 0 or all 1 as follows:

· · · 1 · · · 0 · · ·
· · · 1 · · · 0 · · ·
...

. . .
...

...
· · · 1 · · · 0 · · ·

Again, using Barrington’s Theorem for the circuit ¬C ∧ 0 we have that:

A′¬C∧0︸ ︷︷ ︸
ΦA¬C∧0,X

= (ρ(A′¬C)ρ−1)︸ ︷︷ ︸
N0

◦ (%(ID)%−1)︸ ︷︷ ︸
N1

◦ (ρ(A′¬C)−1ρ−1)︸ ︷︷ ︸
N2

◦ (%(ID)−1%−1)︸ ︷︷ ︸
N3

(10)

for X = {0, 1}4 where we again have N1, N3 ∈ T that follows using similar arguments.
Moreover, using again the fact that for any y = x ◦ x? in Y we have that D(x?) = 0, the core

of D would always evaluates to ID on any choice of y ∈ Y . Hence when i lies in the range of

M0,M2 the partial vectors φ
(i)
A¬C∧D,Y

are independent of the part of the program corresponding to
the ranges of M1,M3. Therefore, we can conclude that the i-th partial vectors corresponding to
ranges M0,M2 would be equal to the i-th partial vectors corresponding to ranges N0, N2. Hence,

M0 = N0 and M2 = N2

23The order of the matrices are taken into account here and the evaluation of branching program depends on that.
So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentions we assume that
the set {Ai,b}i∈[`],b∈{0,1} is ordered as {A1,b, . . . , A`,b}b∈{0,1}

25

On the other hand, via exactly the same analysis for the inputs Y = {y | x ◦ x?}x∈{0,1}4 we have
that:

ΦA¬C∧D,Y
= [M0 |M1 |M2 |M3]

ΦA¬C∧0,X
= [N0 | N1 | N2 | N3]

where M1,M3, N1, N3 ∈ T and

M0 = N0 and M2 = N2.

Hence we conclude:

colsp (ΨA¬C∧D,Y) = colsp
([
âi,j [Mi �M j]

]
+
[
âi,j [M i �Mj]

])
(11)

= colsp
([
τ | âi,j∈{0,2}[Mi �M j]

]
+
[
τ ′ | âi,j∈{0,2}[M i �Mj]

])
(12)

for some τ, τ ′ ∈ T . Note that, in the above equations the first step follows from Fact 2.5. In the
second step we first observe that for τ, τ ′ ∈ T and any matrix Mi,M i we have that colsp (τ �Mi) =
colsp (Mi) (resp. colsp

(
τ �M i

)
= colsp

(
M i

)
). Also applying Lemma 4.3 it is straightforward to

verify that each of the matrices {Mi,M i}i∈[3]∪{0} has the same number of 1’s in each row. Hence,
then we use Lemma 2.13 to obtain the final expression. Similarly we get:

colsp (ΨA¬C∧0,X) = colsp
([
âi,j [Ni �N j]

]
+
[
âi,j [N i �Nj]

])
(13)

= colsp
([
σ | âi,j∈{0,2}[Ni �N j]

]
+
[
σ′ | âi,j∈{0,2}[N i �Nj]

])
(14)

for some σ, σ′ ∈ T .
Using the facts, Mk = Nk and Mk = Nk for k ∈ {0, 2} from Eq. 12 and Eq. 14 we get:

colsp (ΨA¬C∧D,Y) = colsp (ΨA¬C∧0,X) .

Now combining this equation with Claim 7.4 the lemma follows.

7.3 Universal Circuit Leading to Partially Inequivalent Branching Programs

In this section we present constructions of (NC1) universal circuits that, when compiled with two
arbitrary distinct (NC1) but functionally equivalent circuits as inputs, then the obfuscations of the
Barrington-implementation of the compiled circuits are distinguishable by the abstract attack.

For any circuit C, its description is denoted by a bit-string, abusing notation slightly we use
the same symbol C to represent the description of C.

Definition 7.5 (Universal Circuits). An universal circuit U is a boolean circuit that computes
a function {0, 1}λ × {0, 1}n → {0, 1} which takes two inputs, a λ-bit circuit-description of some

boolean circuit C : {0, 1}n → {0, 1} and a n-bit input x to output C(x). We denote U(C, x)
def
= C(x).

We also denote the compiled universal circuit with the description of C hard-coded into it by U [C].

26

Theorem 7.6. There exists a family of NC1 universal circuits U = {U1, U2, . . . , Uv} of size v =
O(poly(λ)) such that: given two arbitrary functionally equivalent NC1 circuits G0, G1 that computes
arbitrary boolean function {0, 1}n → {0, 1} satisfying (i) |G0| = |G1| = v and (ii) there exists an
input x? such that G0(x?) = G1(x?) = G0(x?) = G1(x?) = 0; then for at least one i ∈ [v] the
Barrington-implementations of the circuits Ui[G0] and Ui[G1] are partially inequivalent.

Proof. Our construction of the family U is similar to the construction of circuits E0, E1 constructed
in Section 7.1

Construction of the family U . Given a universal circuit U ′ we construct a family of NC1 universal
circuits U = {U1, . . . , Uv} where each Ui is described as follows for any circuit G : {0, 1}n → {0, 1}
we define Ui[G]

Ui[G](y, x) = ¬C(y) ∧ U ′i(G, x) where C = (y[1] ∧G[i])
∧

(y[2] ∧ 0)
∧

(y[3] ∧G[i])
∧

(y[4] ∧ 0),

as the circuit from {0, 1}n+4 → {0, 1}. Since the given circuits must have different descriptions,
they differ by at least one bit location, say ith location. Clearly, assuming that G0[i] = 1 and
G1[i] = 0 the circuit Ui[Gb] is the same as the circuit Eb as described in Sec. 7.2. Hence applying
Lemma 7.3 we conclude that, if G0[i] = 1 and G1[i] = 0 then,

colsp
(

ΨAUi[G0]
,X

)
6= colsp

(
ΨAUi[G1]

,X

)
,

where X = {x ◦ x? | x ∈ {0, 1}4}.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 528–556. Springer, Heidelberg, March 2015.

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814
of LNCS, pages 153–178. Springer, Heidelberg, August 2016.

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 646–658. ACM Press, November 2014.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Univer-
sal constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part
II, volume 9815 of LNCS, pages 491–520. Springer, Heidelberg, August 2016.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 162–172. Springer, Heidelberg, December 2014.

27

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in nc1. In Proceedings of the 18th Annual ACM Sym-
posium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages
1–5, 1986.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg,
August 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer,
Heidelberg, May 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, 47th ACM STOC, pages 439–448. ACM Press, June 2015.

[BMSZ16a] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In EURO-
CRYPT, 2016.

[BMSZ16b] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 764–791. Springer, Heidelberg, May 2016.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25. Springer, Heidelberg, February 2014.

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short gen-
erators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 559–585.
Springer, Heidelberg, May 2016.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new CLT multilinear map over the integers. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 509–536. Springer, Heidelberg, May 2016.

[CGH+15a] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, pages 247–266, 2015.

28

[CGH+15b] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
247–266. Springer, Heidelberg, August 2015.

[CGH16a] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. Cryptology ePrint Archive, Report 2016/998, To appear in
EUROCRYPT 2017, 2016. http://eprint.iacr.org/2016/998.

[CGH16b] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. Personal Communication, 2016.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12.
Springer, Heidelberg, April 2015.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU prob-
lems and cryptanalysis of the GGH multilinear map without an encoding of zero.
IACR Cryptology ePrint Archive, 2016:139, 2016.

[CLLT16a] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Crypt-
analysis of GGH15 multilinear maps. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 607–628. Springer, Heidel-
berg, August 2016.

[CLLT16b] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Ze-
roizing attacks on indistinguishability obfuscation over clt13. Cryptology ePrint
Archive, Report 2016/1011, To appear in PKC 2017, 2016. http://eprint.iacr.

org/2016/1011.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee.
Obfuscation from low noise multilinear maps. Cryptology ePrint Archive, Report
2016/599, 2016. http://eprint.iacr.org/2016/599.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

29

http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/1011
http://eprint.iacr.org/2016/1011
http://eprint.iacr.org/2016/599

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer, Heidelberg, February
2010.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC
2016-B, 2016.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages
537–565. Springer, Heidelberg, May 2016.

[Kay09] N. Kayal. The complexity of the annihilating polynomial. In Computational Complex-
ity, 2009. CCC ’09. 24th Annual IEEE Conference on, pages 184–193, July 2009.

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic
attacks. Cryptology ePrint Archive, Report 2014/878, 2014. http://eprint.iacr.

org/2014/878.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages
629–658. Springer, Heidelberg, August 2016.

[Ogu16] Arthur Ogus. Row equivalence of matrices (lecture notes). https://math.berkeley.
edu/~ogus/old/Math_110-07/Supplements/week6.pdf, 2016. Online; accessed 30
September 2016.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer, Hei-
delberg, August 2014.

[S+16] W. A. Stein et al. Sage Mathematics Software (Version 7.3). The Sage Development
Team, 2016. http://www.sagemath.org.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

A Some details on our implementation

In this section we provide details on our Barrington-implementation and discuss some optimizations
in the Sage-code.

30

http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
https://math.berkeley.edu/~ogus/old/Math_110-07/Supplements/week6.pdf
https://math.berkeley.edu/~ogus/old/Math_110-07/Supplements/week6.pdf

Overview of Barrington’s Programs [Bar89]. Barrington’s construction works over permu-
tations in the symmetric group S5. We assume that permutations are represented as matrices for
all practical purpose. A Barrington-implementation specifies permutations α,β,γ,ρ,% ∈ S5 such
that the following holds:

• α,β are 5-cycles.

• γ = αβα−1β−1 and one can verify that γ is also a cycle.

• ρ · γ · ρ−1 = α.

• % · γ · %−1 = β.

We define some syntaxes for branching programs. Some of them are redefinitions from Sec. 7.2
(provided in the proof of Lemma 7.3 as it uses some details on Barrington-implementations).

Core of a Branching Program. Recall (Def. 2.4) that any branching program A has the
following representation:

A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1).

Let us call the “core” of A as: A′
def
= {A1,b, . . . , A`,b}b∈{0,1}.24 For any such A′ we define the

inverse as A′−1 def
= {A−1

`,b , A
−1
`−1,b, . . . , A

−1
1,b}b∈{0,1}. Furthermore, for any permutation matrix ρ ∈ S5

we define an operation on A′:

ρ(A′)ρ−1 =
def
=
{

(ρ ·A1,b), {Ai,b}i∈[`], (A`,b · ρ−1)
}
b∈{0,1}

γ-computation. Any branching program AC = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1) is said to be
γ-computes a boolean circuit C if the following holds:

∏̀
i=1

Ai,x[inp(i)] =

{
γ when C(x) = 1

ID5×5 when C(x) = 0

If AC0 ,AC1 γ-computes C0, C1 then one can construct AC0∧C1 that γ-computes C = C0 ∧ C1 as
follows:

A′C0∧C1 = (ρ(A′C0)ρ−1) ◦ (%(A′C1)%−1) ◦ (ρ(A′C0)−1ρ−1) ◦ (%(A′C1)−1%−1)

and with the same bookends.25

Let us also define the operation (A′) · γ as (A′) · γ def
= {A1,b, . . . , A`b · γ}b∈{0,1} that has the

final pairs right-multiplied with γ. Then one can construct another branching program A¬C that
γ-computes the circuit ¬C as follows:

A′¬C = (A′
−1
C) · γ

24The order of the matrices are taken into account here and the evaluation of branching program depends on that.
So, essentially we abuse notations of sets to denote an ordered tuple here. Unless otherwise mentioned we assume
that the set {Ai,b}i∈[`],b∈{0,1} is ordered as {A1,b, . . . , A`,b}b∈{0,1}

25Our input function is a fixed one and designed as suggested by Barrington’s Theorem. Namely to compute a
program of size 4 on 2-bit input, αβα−1β−1 we use input function inp = (1 → 1, 1 → 2, 3 → 1, 4 → 2), that is the
first position of the program reads the first bit, the fourth position the second and so on. Similarly for AND operation
the input-functions can be extended with adjusted indexes. For more details we refer to Barrington’s result [Bar86].

31

Since any boolean circuit can be converted to a circuit containing only NOT (¬) and AND (∧)
gates Barrington’s theorem [Bar86] follows.

Our Barrington-implementation. In our implementations the branching programs are single-
input and input-oblivious. We stress that the input-obliviousness comes automatically from our
choice of circuits.

We choose the following permutations for our implementation:

α
def
= (1→ 2→ 3→ 4→ 5) =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

β
def
= (1→ 3→ 5→ 4→ 2) =

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

γ
def
= (1→ 3→ 2→ 5→ 4) =

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

ρ
def
= (α→ γ) = (1→ 1, 2→ 3, 3→ 2, 4→ 5, 5→ 4) =

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

%
def
= (β → γ) = (1→ 1, 3→ 3, 5→ 2, 4→ 5, 2→ 4) =

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0

We fix the bookends to:

A0
def
=
[
1 0 0 0 0

]
and A`+1

def
=

0
1
1
1
1

Source Code and Experimental Set-Up. We provide an implementation in Sage [S+16].
The sage-executable file named implementations.sagews and a corresponding pdf file (implementa-
tions.pdf) of our source-code can be found at https://people.eecs.berkeley.edu/~pratyay85/
Implementations.zip. The code can be run on the SageMath cloud server (https://sagemath.
cloud/). The approximate performance for the 2 circuits on the SageMath cloud are given below:

32

https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://people.eecs.berkeley.edu/~pratyay85/Implementations.zip
https://sagemath.cloud/
https://sagemath.cloud/

Circuit Approx time Approx memory

C 3100 sec (∼ 55 minutes) 4 GB
¬C ∧ 0 33400 sec (∼ 10 hours) 9 GB

Optimizations. Our source-code is not low-level optimized. However, to run the quadratic attack
in practical time we required some algorithmic optimization in order to get the program terminated
in reasonable time. In particular, since the number of columns for the quadratic partial matrix,
ΨA,X becomes squared compared to number of columns in the linear matrices ΦA,X ,ΦA,X , even
for the case of the simplest circuits (AC or A¬C) the estimated time to compute directly ΨA,X

as (ΦA,X � ΦA,X + ΦA,X � ΦA,X) becomes huge. Instead, we first remove the columns that are
all-zero in both ΦA,X ,ΦA,X since the corresponding random variables zi,b appear in neither of the
linear partial matrices. Then we observe that, even after performing that removal, there are many
columns that are all-zero in exactly one of ΦA,X ,ΦA,X . Hence we first collect those that appear
in both and then those appear in one of them. Let us call these three parts MX ,MX and MX,X .
Then we have:

Φ?
A,X = [MX |MX,X] Φ?

A,X
= [MX |MX,X]

where Φ?
A,X (resp. Φ?

A,X
) is the same as ΦA,X (resp. ΦA,X) but without some all 0 columns (those

appear in none).
Then we compute

N = MX � ΦA,X +MX � ΦA,X + ΦA,X � ΦA,X + ΦA,X � ΦA,X

per
= ΨA,X

by combining Fact 2.5 with the above observation. This reduced the number of row-wise tensor
product by at least 2 (even after removing the all-zero columns) as we are not computing tensor
products from both directions for the matrices containing columns that appear only once.

B Definition of Indistinguishability Obfuscation.

B.1 Indistinguishability Obfuscation

Below, we recall the notion of indistinguishability obfuscation (iO).

Definition B.1 (Indistinguishability Obfuscator (iO)[GGH+13b]). A uniform PPT machine iO
is called an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are
satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α
such that the following holds: For all security parameters λ ∈ N, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

33

	Introduction
	Our Contributions
	Technical Overview
	Roadmap

	Notations and Preliminaries
	Notations
	Matrix Products
	Column Space of a Matrix
	Branching Programs
	Indistinguishability Obfuscation

	Attack Model for Investigating Annihilation Attacks
	Annihilation Attack Model
	Obfuscation in the Annihilation Attack Model
	Abstract Indistinguishability Obfuscation Security

	Partially Inequivalent Branching Programs
	Annihilation Attack for Partially Inequivalent Programs
	Extending the Abstract Attack to GGH13 Multilinear Maps
	The GGH13 Scheme: Background
	Translating the Abstract Attack to GGH13
	Completing the Attack for Large Enough Circuits

	Example of Partially Inequivalent Circuits
	Simple Pairs of Circuits that are Partially Inequivalent
	Larger Pairs of Circuits that are Partially Inequivalent
	Universal Circuit Leading to Partially Inequivalent Branching Programs

	Some details on our implementation
	Definition of Indistinguishability Obfuscation.
	Indistinguishability Obfuscation

