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Abstract. Security against hardware trojans is currently becoming an essential ingredient to en-
sure trust in information systems. A variety of solutions have been introduced to reach this goal,
ranging from reactive (i.e., detection-based) to preventive (i.e., trying to make the insertion of a tro-
jan more difficult for the adversary). In this paper, we show how testing (which is a typical detection
tool) can be used to state concrete security guarantees for preventive approaches to trojan-resilience.
For this purpose, we build on and formalize two important previous works which introduced “in-
put scrambling” and “split manufacturing” as countermeasures to hardware trojans. Using these
ingredients, we present a generic compiler that can transform any circuit into a trojan-resilient
one, for which we can state quantitative security guarantees on the number of correct executions of
the circuit thanks to a new tool denoted as “testing amplification”. Compared to previous works,
our threat model covers an extended range of hardware trojans while we stick with the goal of
minimizing the number of honest elements in our transformed circuits. Since transformed circuits
essentially correspond to redundant multiparty computations of the target functionality, they also
allow reasonably efficient implementations, which can be further optimized if specialized to certain
cryptographic primitives and security goals.

1 Introduction

While modern cryptography generally assumes adversaries with black box access to their target
primitives, the last two decades have witnessed the emergence of increasingly powerful physical
attacks that circumvent this abstract model. Side-channel analysis [22, 23] and fault attacks [10,
9] are typical examples of such concerns, where the adversary can respectively observe physical
leakages produced by an implementation, or force it to perform erroneous computations. In this
respect, hardware trojan attacks can be viewed as the ultimate physical attack, where the ad-
versary can even modify the implementations at design time, in order to hide a backdoor that
may be used after deployment. This threat has recently gained attention, since the increasing
complexity of electronic systems, and the ongoing trend of outsourcing chip fabrication to a
few specialized foundries, has made it more and more realistic, with possibly catastrophic con-
sequences for security and safety [2, 8]. As documented in [7, 27] the attacks by a malicious
manufacturer are also hard to prevent, since they can lead to very diverse attack vectors, with
various activation mechanisms and payloads.

In this context, and looking back at the already broad literature on countermeasures against
side-channel and fault attacks, an important lesson learned is that the most effective protections
usually rely on a good separation of duties between well-chosen (generally physical) assumptions
and sound mathematical principles to amplify them. Taking one emblematic example, masking
improves security against side-channel attacks by relying on the assumption that physical leak-
ages are noisy, and by amplifiying this noise thanks to secret sharing [13]. Based on the similar
(physical) nature of hardware trojans, it is therefore reasonable to expect that solutions to pre-
vent them may follow a similar path. In this respect, and starting at the hardware level, detection
thanks to side-channels possibly amplified by some fingerprinting has been studied, e.g., in [1, 3,
25]. Very summarized, such approaches are powerful in the sense that they are in principle able
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to detect any type of trojan, including purely physical ones (e.g., triggered by a temperature
change and sending secret messages through an undocumented antenna), which makes them an
important part of the puzzle. But they are also inherently limited by their heuristic nature and
sometimes strong assumptions. For example, they work best in presence of a golden (trusted)
chip that may not be easily available, and the effectiveness of the detection decreases when
reducing the size of the trojan circuitry.

In this paper, we therefore tackle the question whether more formal solutions can help to rule
out well-defined classes of hardware trojan attacks, and achieve stronger resistance in practice.
For this purpose, we build on two important previous works. In the first one, Waksman and
Sethumadhavan consider digitally triggered trojan attacks [29]. A digitally triggered trojan is a
malicious piece of hardware that delivers its payload when a digital input is given to the device.
This can be done, for instance, through so-called “cheat codes” or “time bombs”. The first type
of attack triggers the malicious behavior of the trojan when a certain input is provided to the
device, while “time bombs” activate the trojan, e.g., after the device is executed for a certain
number of times. The work of Waksman and Sethumadhavan provides ad-hoc countermeasures
against these two types of attacks. In particular, they propose to scramble the inputs to defeat
the cheat codes and use power resets to protect against (volatile) time bombs. In the second one,
Imeson et al. introduce the concept of “split manufacturing” for obfuscation, as a way to make it
hard for an adversary to identify the gates of an implementation that he would need to modify to
mount his attack [19]. The main contribution of our work is to provide generic countermeasures
for significantly broader classes of trojan attacks, and to provide a formal framework in which
these countermeasures can be analyzed and concrete security bounds can be derived. We describe
our technical contribution in more detail below.

Types of hardware trojans. Similar to Waksman and Sethumadhavan, we consider a setting
where the production of a device is outsourced to a potentially malicious hardware manufacturer.
The manufacturer produces a set of devices D1, . . . ,D` that supposedly implement functionalities
Γ1, . . . , Γ`, but may contain trojans and react maliciously. As in [29] we restrict the type of
malicious behavior to hardware trojans that are digitally triggered, such as cheat codes or time
bombs. Besides formally modeling such digitally triggered trojans, we also extend the model of
Waksman and Sethumadhavan by not only considering volatile time bombs (i.e., where the clock
needs to be powered) but also non-volatile ones (which may become hard to detect in highly
integrated electronic systems).

The trojan protection schemes. To protect against digitally triggered hardware trojans
we introduce so-called trojan protection schemes. A trojan protection scheme consists of two
components: a circuit transformation TR and a tester T. The transformation describes a method
to compile an arbitrary functionality described as an arithmetic circuit Γ into a protected
specification consisting of a trusted master circuit M and a set of circuits Γ1, . . . , Γ`. We assume
that M has to be implemented in a trusted way and its production is not outsourced to the
malicious hardware manufacturer A, while the devices Di are produced by A. To obtain a
stronger result, we require that M is as simple as possible. For our concrete construction M
will consist of a couple of wires and a small number of simple gates – in particular, the size
(counted as the number of gates) of M is independent of the size of Γ . The implementation of our
transformed circuits therefore follows the same “split manufacturing” principles as introduced
by Imeson et al. [19]. The second component of the trojan protection scheme is a tester T. The
tester verifies if the devices Di correctly implement the functionality Γi. Such tests typically
involve whether the input/output behavior of Di corresponds to the input/output behavior of
the honest specification Γi.

Robustness of trojan protection schemes. The main security guarantee that our trojan
protection scheme shall achieve is called robustness. Informally, robustness is modeled by a game
with two phases. First, in the testing phase the tester T checks whether the devices Di implement



the corresponding specification Γi. If the testing is passed the adversary can in a second phase
interact with the device composed of the trusted master M and the devices Di. Robustness
guarantees that for the same inputs, the outputs produced in the second phase by the device are
identical to the outputs produced by the honest specification Γ . Robustness is parameterized
by two parameters t and n, where t denotes the number of tests carried out by T and n is the
number of executions for which the output produced by the device has to be identical to the
honest specification Γ . Typically, for our constructions we require t > n.

A trojan protection scheme for any functionality Γ . Our main contribution is the design
of a trojan protection scheme that achieves robustness for any functionality Γ . We next give a
high-level description of our trojan protection scheme omitting several technical details.

As a first step, the transformation compiles the specification Γ into three so-called mini-
circuits (Γ 0, Γ 1, Γ 2). These mini-circuits emulate Γ using a passively secure 3-party protocol,
where the inputs to (Γ 0, Γ 1, Γ 2) are secret-shared by the trusted master circuit M.

The first observation in order to achieve robustness is that if the mini-circuits Γ i follow
exactly the secure 3-party protocol, then they do not learn anything about the user provided
input. Hence, a malicious user is hindered in activating the trojan by choosing a special input.
Of course, once Γ i gets implemented by A nothing stops A to produce devices Di that do not
follow the protocol, e.g., by transmitting their shares to the other devices. Such a behavior will,
however, be detected with good probability during the testing phase.

The above only prevents activation of the trojan by a malicious input, but does not deal yet
with an activation via time-bombs. For instance, assume that the trojan is activated only after
the (t + 1)-th execution. If we test devices only for t times, the malicious behavior will not be
detected and achieving robustness is infeasible. To circumvent this, we randomize the number
of tests t′, where t′ is drawn uniformly from {1, . . . , t}. Since (i) the total number of executions
after testing is bounded by n and (ii) test and real executions look the same from the device’s
point of view (due to the 3-party computation), we can bound the probability that malicious
behavior is triggered by time bombs.

Unfortunately, the above gives only a weak security bound. It is, however, easy to amplify
security by letting A produce λ independent copies (D0
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where each such tuple is tested for a random and independent number of times ti. In our final
construction, the master M then runs each of the tuples on independent input sharings and takes
the majority of the results to produce the final output with good robustness. Concretely, we can

guarantee correct execution with probability
(
n
t
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.

Applications of trojan protection schemes. The requirement that t > n can be viewed
as a limitation of our work, but we argue in Section 3 that this condition is in fact necessary
for testing-based security against hardware trojans. Hence, such schemes are only applicable
in settings where there is an a-priori bound on the number of times the device is used. Such
bounded number of executions naturally occurs when a user manually interacts with a device.
Since testing can be automatized it is then feasible to carry out millions of test cases, while
after deployment many devices are used only a few thousand times. There are many examples
of such settings (e.g., opening doors). Their relevance naturally increases with the sensitivity of
the data to protect and not too limited cost constraints, such as electronics in planes used for
starting and landing (which have natural restrictions on the number of executions). We stress
that nothing prevents the master circuit M to count the number of runs, issue a warning when
the executions limit is reached, and then to re-perform a testing phase.

Implementation issues. Despite our primary focus is on the genericity and formal guarantees
of the proposed countermeasure against hardware trojans, we also take implementation issues
into account in our developments. In this respect, we first limit the use of trusted components to
some routing and a couple of gates, as in [19]. We argue in Section 3 why a minimum complexity
(i.e., the presence of gates in M) is necessary for testing-based security against hardware trojans.



Next, and as far as performances are concerned, the main efficiency bottleneck in our trojan
protection scheme is the use of a passively secure 3-party computation protocol. We discuss
the time and area overheads it implies for a mainstream cryptographic functionality such as a
standard block cipher in Section 5.2. And we conclude the paper by showing that better efficiency
can be achieved if we aim for protecting specific cryptographic primitives. In particular, we give
constructions for a PRG and a MAC that only increase the complexity by a linear factor `
(compared to the unprotected scheme), while guaranteeing security except with probability
O(2−`). Notice that these schemes also have two additional benefits compared to our generic
solution: first, except for an initial secret sharing of the inputs their execution does not require the
sometimes costly generation of pseudorandomness, and second they require almost no interaction
between the sub-devices.

Related works. In a separate line of papers, Bayer and Seifert [6] and very recently Wahby et
al. and Ateniese et al. [28, 5] consider a setting where an untrusted ASIC proves, each time it
performs a computation, that the execution is correct. These papers build on a large literature
on verifiable computation, probabilistically checkable proofs and other, related topics. Compared
to our work, such approaches and techniques correspond to a different tradeoff between security
and trust. On the one hand, they cover even broader classes of hardware Trojans and achieve
security for an arbitrary number of executions (unlike us who restrict the number of executions
a-priori). On the other hand, they require a trusted verifier which is typically more complex
than our master circuit that does only routing and and uses a small number of gates.4 These
works also aim at different goals than ours. Namely, whenever a proof of correct execution is
not verified in [6, 28, 5], the system stops. By contrast, we can guarantee a number of correct
executions and therefore are also resistant against denial-of-service attacks.

The work of Haider et al. [18] also shares similarities with ours, and provides a formal analysis
of trojan detection using pre-silicon logic testing tools.

Eventually, our constructions follow the seminal investigations of Ishai et al. who introduced
circuit transformation in the field of side-channel and fault attacks [20, 21]. Their results on
“Private Circuits” (I and II) motivated us to look at generic compilers for trojan-resilient cir-
cuits, which is a natural next step in the study of physical adversaries against cryptographic
hardware. Conceptually, the principles we exploit in our trojan protection schemes are also close
to masking against side-channel attacks. Namely, masking exploits secret sharing and multiparty
computation in order to amplify the impact of noise in leaking cryptographic implementations.
Similarly, we exploit these techniques to amplify the impact of testing against hardware trojans.

2 Trojan protection schemes

2.1 The model of computation

The circuit specification Computation carried out by an algorithm is abstractly defined via
a specification. We model the specification as a circuit Γ , which is represented by a Directed
Acyclic Graph (DAG). The set of vertices of the graph represents the gates of the circuit, while
the edges are the wires connecting the gates. The wires in the circuit carry elements from a finite
field F, while the gates carry out the operations in the finite field or take special task such as
storing values. The simplest case is when F is the binary field, in which case the wires carry bits,
and the gates, for instance, represent the Boolean operations AND (next denoted by �) and
XOR (next denoted by ⊕). For simplicity, all the gates are assumed to have at most fan-in two.
On the other hand, gates may have arbitrary fan-out, where we assume that all output wires
carry the same value. We will also consider the arithmetic circuits, where F is a larger field, and
the gates represent the corresponding arithmetic operations.

4 Comparing the efficiencies of prover sides is more challenging since application-dependent, and is therefore an
interesting scope for further research.



In addition to the standard Boolean/arithmetic gates, we allow the specification Γ to contain
two additional gates: the randomness gates rand and (volatile and non-volatile) memory gates.
The randomness gate has no incoming wires but can have an arbitrary number of outgoing
wires, which carry a random element from F. One may think of rand as a gate producing true
randomness. Next, the non-volatile memory gates (next called registers), are used to store the
results of the computation’s different (clock) cycles and only maintain their state when the chip
is powered. Registers have a single incoming wire and an arbitrary number of outgoing wires.
They can be placed everywhere in the circuit, but we require that each cycle of Γ contains at
least one register. Eventually, non-volatile memory gates (next called memory gates for short)
play a similar role as volatile ones, but maintain their state even if the chip is not powered.

To complete the description of the circuit, we also need to explain how it processes in-
puts/outputs. The circuit takes inputs x ∈ Fα and the outputs y ∈ Fβ as a result of the
computation are delivered to the user. One may view them as wires carrying the inputs and
outputs, respectively, that are connected to the “outside world” of the circuit. For a circuit that
takes as input x and produces output y we write x ← Γ (y) and call it a run of Γ or a round,
which usually takes several clock cycles to be executed.

Beside the public inputs/outputs, the circuit also may keep a (secret) state between runs
of Γ . The secret state of Γ is initially set through the Init operation and kept in non-volatile
memory gates. We write Init(Γ,m) when the initial state of Γ is set to m. Notice that the state
of Γ may change via the public inputs x, in which case we say Γ is stateful. Otherwise, if the
state is only written once via the Init procedure, we say that Γ is stateless. For a computation
on input x and an initial state m ∈ Fs, we write x ← Γ [m](y). If Γ has been run for many
rounds then m may already have been changed.

Circuit compilers The goal of the circuit compiler (or transformer) TR = (TR1,TR2) is to
compile a specification described as a circuit Γ into a protected specification Γ ′. We write for
the compilation process: Γ ′ ← TR1(1

k, `, Γ ), where k is the computational security parameter
(e.g., used for the PRG in our following generic construction) and m′ ← TR2(1

k, `,m) for
compiling the initial state. In the following, we will often abuse notation and omit to explicitly
denote the compiled state by m′ since in our construction it will be just a longer (secret-shared)
vector. Also, we will sometimes omit to mention explicitly the parameter `, when it is clear from
the context. The specification of Γ ′ consists of two parts. First, a set of sub-circuits Γ1, . . . , Γ`
and second, a so-called master circuit M.5 The role of the master circuit M is to manage the
communication between the sub-circuits Γi and the user of these circuits. While these sub-
circuits can be constructed using the above described gates, for ease of notation we choose to
describe them with an additional feature for communication. That is, we allow the sub-circuits
Γi to communicate with M and vice versa. To this end, we introduce commands having the
form (cmd, val), where cmd is a label denoting the command that shall be executed and val
is an accompanied element in F (or a vector thereof). We will consider the following types of
commands:

1. The command ((send, j),x) is sent by Γi to M to specify that Γi wants to send message x
to the circuit j.

2. The command (in,x) is sent by M to Γi to specify that Γi receives message x as input.
3. The command (out,y) is sent by Γi to M to specify that Γi’s output is ready and worth y.

The evaluation of the sub-circuits Γ1, . . . , Γ` with master M on input x with initial state m
producing output y will next be written as y ← (M⇔ Γ1, . . . , Γ`)[m](x), where m is the initial
compiled state. One may think of (M⇔ Γ1, . . . , Γ`) as a circuit composed of the sub-circuits Γi
and M, where the composition is specified by the communication commands between Γi and M.

5 Notice that Γ1, . . . , Γ` and M are described using the circuit model from above and therefore may include
memory cells.



In the following we will often need to describe the view of a circuit Γi. The view of Γi includes
all command/value pairs denoted by (cmd, val) that Γi receives/sends from/to M. The view of
Γi is denoted by View(Γi[m](x)) and contains tuples of the form (cmd, val). Notice that the view
also includes the inputs/outputs given by M to Γi.

The simplest property that we require from the transformation is correctness. That is, for all
m,xi it holds that outputs produced by Γ on initial state m with input xi are identical to the
outputs produced by Γ ′ on initial state m′ with input xi. Notice that if Γ was a randomized
circuit (i.e., it uses rand gates), then we require that the output distributions are computationally
indistinguishable.

The second property that we require is robustness against malicious manufacturers, which
we introduce in the next section. To look ahead, we will typically let the manufacturer produce
devices Di that take the role of Γi, while the master M is required to be implemented honestly.
Of course, due to this assumption, the latter has to be as simple as possible (in our case typically
M will only require wiring devices together and a few very basic operations).

2.2 Security against malicious manufacturers

Consider a circuit specification Γ with initial state m and let (Γ ′,m′) ← (TR1(1
k, `, Γ ),

TR2(1
k, `,m)), where Γ ′ = (M, (Γ1, . . . , Γ`)). We are interested in a setting where a poten-

tial malicious manufacturer A gets as input the specifications (Γ1, . . . , Γ`) and produces a set
of devices D1, . . .D`, where Di supposedly implements some functionality Γi. A device Di takes
some input x and produces an output y. In order to compute y from the input x the device
Di may communicate with the master circuit M, which is implemented honestly. To this end, it
can send and receive commands of the form (cmd, val) to/from M. While the devices Di can in
principle implement any functionality (since they are built by the malicious hardware manufac-
turer), we require that an implementation of Di can be simulated using our circuit model above,
as formalized by the following assumption.

Assumption 1 Let Di be the devices output by A. We require that there exists (possibly prob-
abilistic) circuit specifications Γ̃i such that for all public inputs x ∈ Fα and any initial state
m ∈ Fs, we have View(Di[m](x)) ≡ View(Γ̃i[m](x)).

Informally, the assumption says that as long as a trojan attack can be modeled by a (possibly
probabilistic) circuit, then the attack is within our security model. Note that this allows for fairly
general trojan attacks. For instance, we will not make any assumption of the computational
complexity of the trojan other than it was produced by a PPT adversary A. This, e.g., means
that it can be more complex than the computation carried out by the honest specification Γi.
We note also that some restriction on the power of the trojan attack is necessary. For instance,
if the trojan embeds an antenna into the device that sends secret data via a side-channel to the
attacker, then security is hard to achieve. Looking ahead, at a technical level Assumption 1 is
also crucial for the security proof and shows up in Theorem 1.6 We discuss the plausibility of
Assumption 1 and the attacks that are (not) incorporated in our model in Section 5.4.

Testing Once the devices Di have been produced by the (malicious) manufacturer, they are
tested by a PPT tester T. The goal of T is to verify whether each Di implements its corresponding
functionality given by the circuit specification Γi. We consider black-box testing. That is, T can
specify the inputs of Di and communicate with Di over the specified interface. To this end, the
tester will typically take the role of the master M, i.e., the tester can run the manufactured

6 Concretely, in our construction the devices Di supposedly run a passively secure 3-party protocol. At some
point in the proof we want to replace the physical devices Di by some abstract description of a circuit Γ̃ i

(which is not necessarily the same as Γ i) that emulates the malicious behavior of Di. At this point in the proof
we need Assumption 1.



devices Di on chosen inputs and verify whether the results correspond to the results produced
by the honest functionality Γi. Notice that these tests typically also include the verification of
the communication with M. We will write b ← TD1(.),...,D`(.)(1k, Γ ), where T can interact with
the devices Di via the communication commands and at the end of the test outputs a bit b
indicating whether the test has passed or failed. We call the tester T t-bounded, if each of the
Di is run for at most t times.

Trojan protection schemes A trojan protection scheme Π := (TR,T) consists of the circuit
transformation TR and the testing algorithm T. We model security of the trojan protection
scheme Π against a malicious manufacturer by a robustness game denoted by ROBΠ , given
in Figure 1. In the game, we first run the transformation to obtain the specification of the
protected circuit ((M, {Γi}i),m). Next, the specification is given to the malicious manufacturer
A who outputs a set of devices {Di}i. The devices are tested by T, and if the testing succeeds
then A may interact with zi ← (M⇔ D1, . . . ,D`)[m](xi) by specifying an input xi and receiving
the output zi. We say that A wins the game iff after the testing has succeeded, he manages to
produce an output zi that differs from the output yi of a correct computation on input xi, i.e.,
yi ← Γ [m](xi). Note that for our constructions, we will require that the number of tests t done
by T is larger than the number of executions n. We state the security properties of a trojan
protection scheme as:

Game ROBΠ(A, pub, Γ,m):

((M, {Γi}i),m′)← (TR1(1k, `, Γ ),TR2(1k, `,m))

{Di}i ← A(1k, (M, {Γi}i))
Set the initial state of the devices Init({Di}i,m′)
If TD1(.),...,D`(.)(1k, (M, {Γi}i)) = false then return 0

x1 ← A(1k)
For i = 1 to n repeat:

zi ← (M⇔ D1, . . . ,D`)[m
′](xi)

yi ← Γ [m](xi)
If yi 6= zi then return 1

xi+1 ← A(1k,zi)
Return 0.

Fig. 1. The robustness game ROBΠ .

Definition 1. Let `, n, t, and k be some natural parameters. A trojan protection scheme Π =
(TR,T) is (t, n, ε)-trojan robust if the following two conditions hold:

1. The tester T is t-bounded,
2. For any manufacturer A, any circuit Γ and any initial state m we have:

Pr[ROBΠ(A, `, n, t, k, Γ,m) = 1] ≤ ε,

where the probability is taken over the internal coin tosses of A and the coin tosses of the
game ROBΠ .

To simplify the notation in the sequel we will use a symbol pub as a shorthand for the tu-
ple consisting of “public parameters” in ROB, i.e. we will set pub := (`, n, t, k), and write
ROBΠ(A, pub, Γ,m).

3 Impossibility results

We now discuss some inherent limitations of the testing techniques presented in the previous
section. First, we argue that in most of the realistic applications the maximal number t of testing



rounds should be much larger than the number n of times that the device will be used. For this
purpose, consider a single device D and suppose that the malicious manufacturer designed it in
such a way that it behaves as its specification requires, except with probability ε (whose value
we will determine later). More precisely let Badi denote the event that in the ith round of its
life (during testing or the real execution) D behaves wrongly (for example: it starts to produce
wrong results, or it terminates). Assume that the Badi’s are independent, and Pr(Badi) = ε.

The probability that this malicious actions are not detected during testing is equal to
Pr(¬Bad1 ∧ · · · ∧ ¬Badt0), where t0 ≤ t is the number of rounds of test. This, clearly, is at
at least equal to (1− ε)t. Similarly the probability that a Bad event happened during one of the
n rounds of execution is equal to 1−(1−ε)n. Hence the probability p that D passed the tests and
failed during the execution is at least equal to (1−ε)t ·(1−(1−ε)n). Now suppose that the adver-
sary sets ε := 1−(t/(n+t))1/n. Then p is at least (t/(n+t))t/n ·n/(n+t) = (1+n/t)−t/n ·n/(n+t),
which is at least equal to n/(e · (n + t)), where e is the base of the natural logarithm (this is
because (1 + n/t)−t/n ≥ e−1).

This in particular means that if t is small then with very good probability (at least n/(e ·
(n+ t))) the adversary’s device behaves correctly during the testing, and incorrectly during the
real-life execution. This shows that in reality we will usually need to have t � n if we want to
get high assurance that the device will not fail during the execution. Also, since this probability
is inversely proportional to the number t of tests, thus, intuitively, to obtain error probability
smaller than O(n−c) (for some c) we need to have at least c devices D in the system.

This last statement is of course informal, since in order to formalize it, we would need to
restrict the power of the master circuit (in principle every computation can be done in a perfectly
secure way if it is performed by the trusted master). For this purpose, we next state some simple
observations regarding the necessary complexity of the master circuit. First, note that the above
observations imply that, in order to get any security beyond the “n/(e · (n+ t))” barrier, none
of the Di gadgets can be “directly connected to the output”, i.e., the master circuit M cannot
just forward the outputs from Di as its own output (without performing any computation on
this value). This is because the adversary can make such “unprocessed” output to be wrong
with probability n/(e · (n+ t)). It justifies why we always need some kind of “output processing”
(which, in our case, will be handled by a majority gate).

A similar fact can be shown about the input processing, i.e., we can prove that in most of
the cases no M can pass its input directly to one of the Di gadgets. Observe, that the above
fact certainly cannot hold for all functionalities Γ . For illustration, suppose that Γ ignores its
input (e.g., it is a pseudorandom generator whose output depends only in the initial state and
does not depend on the inputs). Then it can be implemented by (M⇔ D1, . . . ,D`) such that M
sends its inputs directly to the some “dummy” Di’s that do not perform any actions. To be more
formal, let us say that a circuit Γ is simple if it contains no gates (i.e. it has only wires). We
say that a circuit Γ can be simplified if for every initial state m there exists a sequence {Γi}i=1

of simple circuits which, for every sequence {xi}i of inputs Γ with initial state m and rounds
inputs {xi}i, produces the same output as {Γi}i=1 on inputs {xi}i (where in round i we apply
Γi to xi). Intuitively, a circuit, cannot be simplified if it performs some non-trivial operations
on its input.

We now show that every such a circuit Γ cannot be simulated by a circuit Γ ′ = (M ⇔
D1, . . . ,D`), where M is simple (and in particular, every circuit with simple M can be broken
with probability close to 1 for n that does not depend on t). We consider circuits Γ that do
not have any randomness gates, but our argument can be generalized also to the case of circuits
with random gates.

Lemma 1. Consider a trojan protection scheme Π = (TR, T). Suppose it produces as output
only circuits (M, {Γi}i) such that M is simple. Let Γ be a circuit that cannot be simplified, and
suppose `(k) is the number of sub-circuits Γi that Π produces on input (Γ, 1k). Then the scheme
Π is not (t, n, ε)-trojan robust for any t, k, n = (`(k) + 1) · k, and ε < 1− (`(k) · t+ 1) · |F|−k.



Proof (sketch). Let (M, {Γi}i) ← (TR1(1
k, Γ ). Since M has to be simple, thus it just provides

inputs and takes outputs from the Γi’s in a deterministic manner. Hence, every M induces a
directed graph G in which the vertices are: the Γi’s, the input variables xi and the output
variables yi. Moreover: (a) there is an edge in G from Γi to Γj if M passes some value from Γi
to Γj , (b) there is an edge from xi to Γi if M passes xi to Γi, and (c) there is an edge from Γi
to yi if M produces some value from Γi as its output yi.

It is easy to see that there needs to exist a path in G from some xi to some yi′ . This is because
otherwise the output produced by M would not depend on its input, which would contradict the
assumption that Γ cannot be simplified. Let π = xi → Γi1 → · · · → Γiq → yi′ be a shortest such
path. Since this path does not contain cycles, thus q ≤ `(k) (where `(k) is the number of Γi’s).

We now construct the adversary A as follows. On input (1k, (M, {Γi}i)) it first samples
w = (w1, . . . , wk)← Fk. Then it implements each Dij to behave exactly as Γij with the following
exception:

If in the consecutive k rounds you received the values w1, . . . , wk
from the previous entry on path π (i.e., xi if j = 1 and Γij−1 oth-
erwise), then in the next k rounds also send w1, . . . , wk to the next
entry on path π (i.e., Γij+1 if j < ` and yi′ otherwise).

We first show that for any tester T the probability that TD1(.),...,D`(.)(1k, (M, {Γi}i)) = false is at
most `(k) · t · |F|−k. This is because w was chosen uniformly at random from the set of size |F|k,
and it is unknown to the tester, and hence the probability that during testing any of the Dij ’s
will receive w as input (in k subsequent rounds) is at most t · |F|−k. Since there are q ≤ `(k)
“modified” Dij ’s thus, by the union-bound, the probability that this happens for some Dij is at
most `(k) · t · |F|−k.

Now, while interacting with the circuit A choses in the first k rounds the inputs w1, . . . , wk
as the input xi. This makes Di1 send w1, . . . , wk to Di2 (in rounds k+ 1, . . . , 2k). In turn, in the
next k rounds Di2 sends w1, . . . , wk to Di3 , and so on. At the end (in rounds q ·k+1, . . . , (q+1)·k)
the circuit Diq outputs (as yi′) the values w1, . . . , wk. Since they were chosen independently at
random, thus the probability that this is a correct output is equal to |F|−k. Note that this is
detected in round (q + 1) · k ≤ (`(k) + 1) · k the latest.

Combining these observations we finally get that the probability that the adversary looses
the ROB game is at most `(k) ·t · |F|−k+ |F|−k = (`(k) ·t+1) · |F|−k. This concludes the proof. ut

Summarizing, the above statements highlight that the complexity of both the testing phase
and the master circuits in the following constructions (measured in number of tests and gates)
is essentially necessary.

4 Trojan resilient circuits

To simplify our analyses, we first consider the case when Γ is deterministic and does not update
its initial state. This means that once the state has been initialized to m it is never changed by
the computation of Γ . AES implementations are an example of such circuits. In Section 4.5 we
then discuss how to extend our results to circuits that update their state (e.g., stream cipher)
and are probabilistic.

4.1 Our basic construction

The compiler TR takes as input a description of a (binary/arithmetic) circuit Γ and outputs λ
sub-circuits Γi := (Γ 0

i , Γ
1
i , Γ

2
i ) for i ∈ [λ] and the master circuit M. Each sub-circuit consist of

three mini-circuits so that ` = 3λ. While the λ sub-circuits operate independently from each
other (i.e., there is no communication between them), the mini-circuits of each sub-circuit are
connected through M.



Fig. 2. Transformed circuit (global view).

The processing of an input x ∈ Fα with an initial secret input m resulting in an output
y ∈ Fβ proceeds in three phases: (i) the input pre-processing phase, (ii) the computation phase
and (iii) the output post-processing phase. The bulk of the computation is carried out in phase
(ii), while phase (i) and (iii) are carried out by the master M. Since the implementation of M has
to be trustworthy, we will minimize the work of M. In particular, we require that the number of
gates (but not the number of wires) used by M is independent of the number of gates used by
Γ ; instead, it will depend only on Γ ’s input size α and output size β. The overall structure of
the specification of the transformed circuit Γ ′ is given in Figure 2.

In the pre-processing phase on input x the master circuit M produces λ additive 2-out-of-2
secret sharings of x. More formally, it proceeds as follows:

1. Repeat the following for i ∈ [λ]:

(a) Sample ri ← Fα using α rand gates.
(b) Compute si = x− ri.

2. Output {(ri, si)}i.

Note that such a pre-processing does not imply that the master cricuit needs to generate trusted
randomness. As discussed in Section 6.1, we can use an efficient construction of trojan-secure
PRG for this purpose.

In the computation phase, each triplet of sub-circuits Γi := (Γ 0
i , Γ

1
i , Γ

2
i ) implements computa-

tion of the circuit Γ using a passively secure 3-party protocol. While in principle any construction
of a passively secure 3-party protocol will work, we chose to present a particular protocol which
is well-suited for our application and allows efficient hardware implementations.7 In our con-
struction the λ sub-circuits Γi carry out exactly the same computation, where Γi uses the public
input tuple (ri, si). Since the computation of each sub-circuit is identical, to ease notation, in
the following we omit to explicitly mention the index i. The triplet (Γ 0, Γ 1, Γ 2) evaluates the
circuit Γ gate-by-gate. That is, each gate in Γ is processed by the sub-circuit (Γ0, Γ1, Γ2) running

7 In principle, for our application a passively secure 2-party protocol (e.g., [14], Chapter I, Section 4) would
suffice. However, the security would need to rely on computational assumptions for the OT protocols, which
would result in a less efficient scheme. In the following, the OT protocol is therefore performed by a third
party, which samples an “OT-tuple”, i.e., correlated randomness that is later used by the two other parties to
perform secure computation.



a secure 3-party protocol emulating the operation of the gate in Γ . In the computation phase,
the role of the master M is restricted to forward commands between mini-circuits. In particular,
to initiate the computation of (Γ 0, Γ 1, Γ 2) the master M sends the following command to Γ i:

1. (in, r) to Γ 1 and (in, s) to Γ 2, respectively.

2. (in,∅) to Γ 0. Notice that this means that Γ 0 is independent of the inputs of the computation.

On receiving the in command, the mini-circuits (Γ 0, Γ 1, Γ 2) will then run one of the protocols
shown in Figure 3 depending on the type of gates in Γ . The basic invariant is that (Γ 0, Γ 1, Γ 2)
guarantee that for a gate g in Γ that outputs c, we have that at the end of the protocol
Γ 1 produces c1 while Γ 2 computes c2 such that (c1, c2) represents a random sharing of c. In
other words: each value on a wire in Γ is shared between Γ 1 and Γ 2. The mini-circuit Γ 0

is involved only for computing the field multiplication by providing correlated randomness.
To generate randomness, Γ 0 will use an implementation of a secure pseudorandom generator
prg : Fs → Fκ.8 To this, end it holds an initial state w ∈ Fs in its internal memory gates and
computes (w,y) = prg(w). Here, w is the internal state of the PRG and y is the output. For our
concrete construction, we require κ := s+ 4. Notice that for security it does not matter how prg
is implemented. Hence we misuse notation and let prg denote the circuit computing the PRG.
Finally notice that to simplify the description all operations described in Figure 3 have fan-out
1. An extension to larger fan-out is trivially possible by just fanning out this single output.

Finally, in the output post-processing phase, we have that for each i ∈ [λ] the sub-circuit
Γ 1
i sends (out, ci) and Γ 2

i sends (out,di) to M. Here, (ci,di) are λ independent sharings of the
output y of Γ .

On receiving the out commands M proceeds as follows:

1. For each i ∈ [λ] compute yi = ci + di.

2. Output MAJ(y1, . . . ,yλ), where MAJ returns the most common value that occurs as an
input; if two or more inputs are most common, then it outputs the first one of them. Notice
that MAJ can easily be implemented using only standard arithmetic gates.

We additionally need to describe how to handle the initial secret state m. The initialization
function Init produces for each sub-circuit i ∈ [λ], a secret sharing of m as oi ← Fs and
pi = m − oi, and stores oi in the internal memory cells of Γ 1

i and pi in the internal memory
cells of Γ 2

i , respectively. Notice that this implies that in total we require 2λs memory cells in
the transformed specification (compared to s in the original circuit Γ ). Of course, the memory
cells may be updated by the circuits (Γ 1

i , Γ
2
i ) during the runs of the circuit. In the following

description, we will often neglect mentioning the initial state explicitly as essentially it can be
treated in the security analysis as part of the public inputs (this makes the adversary only
stronger).

4.2 Correctness

Correctness of our construction follows by observing that the output of a transformed operation
satisfies the invariant that it is a sharing of the corresponding value on the wire in Γ . The
only non-trivial operation is the transformation �̂ of the field multiplication, which requires
interaction between the mini-circuits. Hence, it results in connecting wires between the different
Γ j . We show that the transformation for the multiplication gate achieves correctness.

Lemma 2. For any a, b ∈ F2 we have c1 ⊕ c2 = (a1 ⊕ a2)� (b1 ⊕ b2), where (c1, c2) = a�̂b is
the output of the transformed multiplication operation.

8 Notice that common implementations of PRGs do not output random field elements, however, it is easy to do
such a mapping in practice and we believe that the most common application of our techniques are binary
circuits anyway, in which case we may just use AES in counter mode.



Evaluating the gates g of Γ by (Γ 0, Γ 1, Γ 2)

1. Transformation for field addition, i.e., a⊕̂b = c: Γ 1 holds the shares (a1, b1) that either were received from
M via an in command, or resulted as an output from a previous gate. Similarly, Γ 2 holds (a2, b2). Given these
inputs Γ 1 computes c1 = a1 ⊕ b1 and Γ2 computes c2 = a2 ⊕ b2.

2. Transformation for multiplication, i.e., a�̂b = c: This involves the mini-circuits (Γ 0, Γ 1, Γ 2) and the driver
circuit to forward commands between the circuits Γ i. To keep the description simple, we will not explicitly
describe the computation carried of by M as it only forwards commands. Initially, Γ 1 holds (a1, b1) and Γ 2

has (a2, b2). They proceed as follows:
(a) Run jointly (u, v)← MultShares(a1, b2) and (u′, v′)← MultShares(b1, a2) (see description below).
(b) Mini-circuit Γ 1: Compute c1 = a1 � b1 ⊕ u⊕ u′ and output c1.
(c) Mini-circuit Γ 2: Compute c2 = a2 � b2 ⊕ v ⊕ v′ and output c2.

Sub-circuit (u, v)← MultShares(x, y)

Initially, Γ 1 holds x and Γ 2 holds y. At the end Γ 1 holds u and Γ 2 has v such that v = x � y ⊕ u and u ∈ F
defined below.

1. Mini-circuit Γ 0[w]: Γ 0 has memory cells to store the internal state of the PRG w. Notice that Γ 0 uses the
contents of its memory cells w and computes (w, (u1, u2, u3, u4)) = prg(w), where the output w represents the
secret output. It then computes u = u3⊕u4	u1�u2 and sends ((send, 1), (u, u2, u3)) and ((send, 2), (u1, u4))
to M.

2. Mini-circuit Γ 2: on receiving ((send, 2), (u1, u4)) from M, compute z = y ⊕ u1 and send ((send, 1), z) to M.
3. Mini-circuit Γ 1: on receiving ((send, 1), (u, u2, u3, z)) from M, compute e = (z�x)⊕u3 and f = x⊕u2. Send

((send, 2), (e, f)) to M.
4. Mini-circuit Γ 2: on receiving ((send, 2), (e, f)) from M, compute v = u4 ⊕ e	 f � u1.

Fig. 3. The computation of the gates by the sub-circuits (Γ0, Γ1, Γ2). All operations are field operations in the
underlying field F. The MultShares circuit is used as sub-circuit in the field multiplication operation, where the
latter is also shown in Figure 7 explaining the communication in further detail.



Proof. We first show correctness of MultShares. To this end, for any a, b ∈ F let (u, v) ←
MultShares(a, b). We have:

v = u4 ⊕ e	 fu1 = u4 ⊕ ca⊕ u3 	 au1 	 u2u1
= u4 ⊕ ab⊕ u1a⊕ u3 	 au1 	 u2u1 = ab⊕ u

Using the above we get:

c1 = a1 � b1 ⊕ u⊕ u′

c2 = a2 � b2 ⊕ a1b2 ⊕ u⊕ a2b1 ⊕ u′

This yields c1 ⊕ c2 = (a1 ⊕ a2)� (b1 ⊕ b2) as required.

To complete the correctness analysis, observe that each of the sub-circuits Γi produces a sharing
of an output yi. When M receives the out command it will re-combine the two shares to recover
yi and compute MAJ(y1, . . . ,yλ). Due to the correctness of the computation phase all of them
will be identical, and MAJ(y1, . . . ,yλ) outputs the correct result y ← Γ (x). It is straightforward
to extend the correctness analysis to circuits that have secret inputs/outputs.9

4.3 Testing circuits

Besides the circuit transformation that outputs a protected specification that supposedly is
implemented by the malicious manufacturer, the trojan protection scheme also defines a tester
T. The description of T is public, and uses a probabilistic approach to defeat the malicious
manufacturer A. Consider the (potential) malicious implementation {Di}i ← A(1k, (M, {Γi}i))
output by A. Following Figure 2, our construction consists of λ sub-devices, each of them made
of three mini-devices (D0

i ,D
1
i ,D

2
i ) which supposedly implement the mini-circuits Γ ji . As the

sub-devices Di operate independently, we can test them independently.
Let Di = (D0

i ,D
1
i ,D

2
i ) be one of the sub-devices. Denote the joint view of the mini-devices

Dji by View(Di(r, s)) when run as part of Di on public inputs (r, s) after the initialization with
m. Notice that in this view we have all tuples of the form (cmd, val) exchanged between the
mini-devices Dij and the master circuit M. As the outputs of Di are also sent as a command, the
view also contains the output shares (ci,di). Similarly, we denote by View(Γi(r, s)) the view of
the mini-circuits Γ ji when run on public inputs (r, s).

At a high-level, T repeats the following process for each i ∈ [λ]. First, it chooses a random
value ti ← [t], where ti denotes the number of test runs. In each of the ti runs the public/secret
inputs are chosen uniformly at random and we execute once Di produced by A and once the
specification Γi (in both cases using the same inputs). If the views differ in one of the runs we
return false and the tester T aborts. The formal description of the tester T is given in Figure 4.

The tester TD1(.),...,Dλ(.)(1k, λ)

Set the initial state Init({Di}i,0)
For i ∈ [λ] repeat the following:

Sample ti ← [t] and repeat for ti times:
Sample random sharing of public input r, s← Fα
If View(Di(r, s)) 6= View(Γi(r, s)) return false

Return true.

Fig. 4. The tester T for verifying whether the devices follow the specification given by Γ ′.

9 We can just view the secret inputs/outputs as an additional public input/output of the circuit.



4.4 Main theorem and security proof

The basic idea for the security of our construction is as follows. Recall that in the testing phase
each of the sub-devices Di was tested for a random number of times ti ∈ [t]. Consider a mental
experiment where instead of running the sub-devices for ti times, we execute them for ti + n
times, i.e., we view the real runs of Di also as test runs. Informally, the malicious manufacturer
A wins in the mental experiment if the sub-devices Di succeed in the test runs, but he makes a
large fraction of Di fail in the following n real runs. We show that the probability that A wins
in the mental experiment decreases exponentially with the number of sub-devices.

What remains to show is that for the devices Di the real environment, where A can choose
the inputs, looks (computationally) indistinguishable from the test runs. In particular, we need
to avoid that the adversary can choose the inputs xi in order to signal to the devices that
they are now used outside of the test environment.10 The basic idea to prevent such signaling
is to let the mini-devices Dji run a passively secure 3-party computation protocol on shares of
the input. This guarantees that none of the mini-devices actually knows the inputs on which it
computes, and can start to behave differently from the test environment. The rest of this section
is structured as follows. In Section 4.4 we prove that the specification of our construction satisfies
the property that real runs and test runs are indistinguishable. In Section 4.4 we use this fact
to prove robustness.

The transformed specification Before we move to the device-level, we prove a property
about the transformed specification Γi := (Γ 0

i , Γ
1
i , Γ

2
i ). Recall that each Γi is independent from

the other sub-circuits and specifies exactly the same functionality. Hence, we concentrate in the
following on a single sub-circuit and omit to explicitly mention the parameter i. Let Γ denote
one of the sub-circuits and Γ j are the corresponding mini-circuits.

In Figure 5 we define two distributions: The distribution RealjΓ (1k, q, {xi}i∈[q],m) consid-
ers the view of Γ j on public inputs xi and with secret initial input m. On the other hand
Randomj

Γ (1k, q) describes the view of Γ j in q runs of Γ with random inputs. We prove in the
next lemma that both distributions are computationally close.

Lemma 3. Let q ∈ N denote the number of executions. For any j ∈ [3], any set of public inputs
{xi}i∈[q], and any initial secret input m ∈ Fk, we have:

RealjΓ (1k, q, {xi}i∈[q],m) ≈c Randomj
Γ (1k, q).

The experiment RealjΓ (1k, q, {xi}i∈[q],m):
Initialize circuit Γ by Init(Γ,m)
Output

(
View(Γ j(Share(x1))), . . . ,View(Γ j(Share(xq)))

)
The experiment Randomj

Γ (1k, q):
Initialize circuit Γ by Init(Γ,0)
Sample z1, . . . , zq ← Fα uniformly at random
Output

(
View(Γ j(Share(z1))), . . . ,View(Γ j(Share(zq)))

)
Fig. 5. Views produced by a continuous real and test execution of the specification Γ j by the mini-circuits of our
construction.

Proof. The q runs of Γ can be viewed as an execution of a larger circuit Γ̂ , where each run
represents one part of Γ̂ . Γ̂ will have q public inputs (x1, . . . ,xq) and produces q public outputs

10 Consider the input trigger attack where the adversary chooses a 128-bit random value at production time on
which the device is starting to deviate when received as input.



(y1, . . . ,yq). Wlog. in the following we will restrict our analysis to a single execution of the
circuit Γ with input x and output y. Γ is composed of the transformed gates from Figure 3,
where only the multiplication operation is non-trivial due to the communication between the
mini-circuits. We consider the view of each Γ j separately and discuss also how to handle the
composition of multiple transformed multiplications.

For the mini-circuit Γ 0 the view in both experiments Real and Random is identical. The
reason is that (i) Γ 0 does not take any inputs and no state, and (ii) it is never the target of a
send command, i.e., the communication between Γ 0 and Γ 1 resp. Γ 2 is unidirectional. Hence, the
view can be simulated just by the local values of Γ 0, which also makes composition of multiple
transformed multiplications easy: in fact, the entire view can be simulated deterministically by
the initial secret input w of Γ 0 used as the initial state of prg. It remains to discuss the views
of Γ 1 resp. Γ 2.

To argue about the views of Γ 1 and Γ 2 we first move to a hybrid world, where Γ 0 instead
of producing (u1, u2, u3, u4) with a PRG, replaces them by values ũi chosen uniformly and
independently from F. Since the output of prg is computationally indistinguishable from uniform,
the view of Γ 1 (resp. Γ 2) in the hybrid world is computationally indistinguishable from the
execution of �̂ (otherwise Γ 1 together with A forms a distinguisher against prg).

We now show that in this hybrid world the view of Γ 1 (resp. Γ 2) is independent of the shared
inputs/state even considering an arbitrary number of transformed multiplications. We consider
first a single transformed multiplication and then argue about composition. For j ∈ {1, 2}
denote by Viewj�̂((a, b)|c) the view of Γ j in the execution of the transformed multiplication �̂
on inputs (a, b) conditioned on the output being c. The following technical claim shows that
Viewj�̂((a, b)|c) can be perfectly simulated (in the hybrid world) by Simj using as inputs just

(ai, bi, ci). Since Simj uses only one share of the sharing the distribution produced in the hybrid
world by Real and Random are identical.

Claim. For any a, b ∈ F denote by c = ab. Let a← Share(a), b← Share(b) and c← Share(c). For
j ∈ {1, 2} there exists a simulator Simj such that in the hybrid world we have: Viewj�̂((a, b)|c) ≡
Simj(aj , bj , cj).

Proof. We consider the two simulators separately.

– Simulator Sim1(a1, b1, c1): The simulator needs to produce the local computation and the
values produced by the MultShares algorithm. The simulation of the local values works as
follows. Choose u uniformly and independently from F and compute u′ = c1−a1b1−u. Next,
we show how to simulate the values produced by (u, v)← MultShares(a1, b2). The simulation
of (u′, v′)← MultShares(b1, a2) is analog.

In the hybrid world, the view of Γ 1 from (u, v)← MultShares(a1, b2) consists of:

(a1, ũ2, ũ3, u := ũ3 + ũ4 − ũ1ũ2, b2 + ũ1) (1)

where ũi are chosen uniformly at random. The view in (1) is simulated as follows: sample all
values uniformly at random except for setting the first component of the vector to a1 (which
was given to Sim1 as input) and the fourth component to u (which was fixed previously by
Sim1). It is easy to verify that the above simulation produces a distribution that is identical
to View1

�̂((a, b)|c).

– Simulator Sim2(a2, b2, c2): The simulator first samples v uniformly at random and computes
v′ = c2 − a2b2 + v. It then needs to produce the view of Γ 2 produced in the two runs of
MultShares. Again we only consider (u, v)← MultShares(a1, b2).
In the hybrid world, the view of Γ 2 from (u, v)← MultShares(a1, b2) consists of:

(b2, ũ1, ũ4, (b2 + ũ1)a1 + ũ3, a1 + ũ2). (2)



The simulator Sim2(a2, b2, c2) produces the view in (2) as follows: to sample the first com-
ponent it uses its input b2. The components 2, 4 and 5 are chosen uniformly at random
from F. Let us call them (w2, w4, w5). The remaining component ũ4 is finally computed as
v − w4 + w5w2.
Notice that both in the hybrid world and in the simulator ũ4 is chosen uniformly at random
due to the random choice of v. The remaining values are chosen by the simulator according
to the right distribution since all values are “blinded” by a uniform value.

This concludes the proof of the claim.

It remains to argue that composition of several multiplication gadgets can be simulated. To this
end, first observe that the output of �̂ is a random sharing of c = ab even given a and b. Second,
Simj(aj , bj , cj) only makes use of a single share of the sharing a resp. b. Hence, we can replace in
a hybrid argument the sharings of the inputs of each �̂ operation, and then use the appropriate
simulator to produce the right view. The full details on the hybrids are omitted due to space
restrictions.

Since the views of Γ j can be simulated by just using a single share of the input sharings xi
the statement of the lemma follows. This concludes the proof of the lemma.

Trojan robustness of our construction The theorem below shows the robustness of our con-
struction. In particular, it states that trojan robustness increases exponential with the number
of devices.

Theorem 1. Let t, n, `, k ∈ N>0 with n < t and k being the computational security parameter.

Π = (TR,T) is (t, n, ε)-trojan robust for ε :=
(
n
t

)λ/2
+ negl(k).

Before giving the proof, we briefly discuss the parameters given by the theorem statement. The
factor negl(k) can be ignored since it comes from the security of the PRG. The dominating factor

for realistic values of t, n, ` := 3λ is the value
(
n
t

)λ/2
. Let us give an example for the level of

robustness we can achieve. Suppose we have λ = 10 sub-circuits, which results into 30 mini-
devices that need to be produced by the manufacturer. Suppose we test each of the sub-devices
for max t = 109 runs (which is realistic for simple hardware devices), and want to use them
for n = 105 executions later. The theorem guarantees that except with probability 10−20 the
resulting computation is correct.

Proof. To prove the theorem, we consider a series of hybrid games ROBiΠ(A, pub, Γ,m) shown in
Figure 6 (here pub is a shorthand for (`, n, t, k)). In the fourth (last) hybrid ROB4

Π(A, pub, Γ,m)
we bound the probability of outputting 1 (i.e., the adversary wins). In the following we will often
omit the parameters input to the hybrid games.

ROB1
Π(A, pub, Γ,m): The only difference between the robustness game from Definition 1 and
ROB1

Π is that in the later we replaced the sub-devices Di by the corresponding specification
Γ̃i. By Assumption 1 game ROB1

Π is identical to the real game ROBΠ , i.e.,

Pr[ROBΠ(pub) = 1] = Pr[ROB1
Π(pub) = 1].

ROB2
Π(A, pub, Γ,m): In ROB2

Π we change the condition when the game outputs 1. In particular,
in ROB1

Π the game outputs 1 when for the first time yi 6= zi. On the other hand ROB2
Π

outputs 1 when the views of the sub-circuits Γi and Γ̃i differ for more than λ/2 sub-circuits.
Due to the majority in the master M the output 1 in ROB1

Π only happens when at least
λ/2 of Γ̃i sub-circuits produce an output that differs from the output of Γi. Since the output
is part of the view of Γi resp. Γ̃i, we get that Pr[ROB2

Π(pub) = 1] ≥ Pr[ROB1
Π(pub) = 1].

Notice that once one of the sub-circuits Γ̃i deviated we consider it bad for all further runs.
This only increases Pr[ROB2

Π(pub) = 1].



Game ROB1
Π(A, pub, Γ,m):

(M, {Γi}i)← TR(1k, Γ )

{Di}i ← A(1k, (M, {Γi}i))
Set the initial state with Init({Γ̃i}i,m)

For i ∈ [λ] repeat the following:
Sample ti ← [t] and repeat for ti times:

Sample random sharing of input r, s← Fα

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) return 0

x1 ← A(1k)
For i = 1 to n repeat:

zi ← (M⇔ Γ̃1, . . . , Γ̃λ)(xi)

yi ← Γ [m](xi)
If yi 6= zi then return 1

xi+1 ← A(1k,yi)
Return 0.

Game ROB2
Π(A, pub, Γ,m):

(M, {Γi}i)← TR(1k, Γ )

{Di}i ← A(1k, (M, {Γi}i))
Set the initial state Init({Γ̃i}i,m)
For i ∈ [λ] repeat the following:

Sample ti ← [t] and repeat for ti times:
Sample random sharing of input r, s← Fα

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) return 0

x1 ← A(1k)
For i = 1 to n repeat:

Set Λ = {} and repeat for j ∈ [λ]:

(r, s)← Share(xi)

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) then add j to Λ

Run yi ← Γ [m](xi) and xi+1 ← A(1k,yi)

If |Λ| ≥ λ/2 return 1; otherwise return 0

Game ROB3
Π(A, pub, Γ,m):

(M, {Γi}i)← TR(1k, Γ )

{Di}i ← A(1k, (M, {Γi}i))
Set the initial state Init({Γ̃i}i,0)

For i ∈ [λ] repeat the following:
Sample ti ← [t] and repeat for ti times:

Sample random sharing of input r, s← Fα

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) return 0
For i = 1 to n repeat:

Sample ui ← Fα , set Λ = {} and repeat for j ∈ [λ]:

(r, s)← Share(ui)

If View(Γ̃j(r, s)) 6= View(Γj(r, s)) then add j to Λ

If |Λ| ≥ λ/2 return 1; otherwise return 0

Game ROB4
Π(A, pub, Γ,m):

(M, {Γi}i)← TR(1k, Γ )

{Di}i ← A(1k, (M, {Γi}i))
Set the initial state Init({Γ̃i}i,0)
For i ∈ [λ] repeat the following:

Sample ti ← [t] and repeat for ti times:
Sample random sharing of input r, s← Fα

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) return 0
Set Λ = {}
Repeat for n times:

Sample random sharing of input r, s← Fα

If View(Γ̃i(r, s)) 6= View(Γi(r, s)) then add i to Λ
If |Λ| ≥ λ/2 return 1; otherwise return 0

Fig. 6. The robustness hybrid games. Γ̃i corresponds to the specification of Di according to Assumption 1. The
text marked in boxes is what changes between the different games.



ROB3
Π(A, pub, Γ,m): In ROB3

Π we replace the initial state m by 0 and the adversarial chosen
inputs xi by random inputs ui. During a run in either ROB2

Π or ROB3
Π a sub-circuit Γ̃i has

essentially two possibilities: either it follows the specification of Γi, in which case the views
of Γ̃i and Γi will be identical; or it deviates from the specification in which case the view
will change. Since in the latter case we count Γ̃i as bad, it suffices to consider the case of
identical views only.11

To conclude that the probability of outputting 1 in ROB3
Π differs by at most a negl(k) factor

compared to ROB2
Π , we show that replacing the inputs does not affect the behavior of Γ̃i

until the point where the views differ for the first time. Hence, it suffices to show that
the views of the mini-circuits in Γi are independent of the inputs. This allows us to use
Lemma 3, where RealjΓ (1k, q, {xi}i∈[q],m) corresponds to ROB2

Π , while Randomj
Γ (1k, q) is

the distribution of ROB3
Π . Hence, we obtain that there exists a negligible function negl(.)

such that for sufficiently large k we have:

|Pr[ROB3
Π(pub) = 1]− Pr[ROB2

Π(pub) = 1]| ≤ negl(k).

ROB4
Π(A, pub, Γ,m): ROB4

Π and ROB3
Π only differ in the ordering of the execution and the fact

that in ROB4
Π we run the sub-circuits Γi (resp. Γ̃i) on different inputs during the n real runs.

Notice however that the sub-circuits operate independently and hence the distributions are
exactly the same. We have: Pr[ROB3

Π(pub) = 1] = Pr[ROB2
Π(pub) = 1]. It remains to bound

the probability Pr[ROB4
Π(pub) = 1]. To this end, we can use Lemma 4, which gives us:

Pr[ROB4
Π(pub) = 1] ≤

(n
t

)λ/2
.

By putting together the above games we obtain:

Pr[ROBΠ(pub) = 1] ≤
(n
t

)λ/2
+ negl(k).

To conclude the proof, we need the following simple lemma.

Lemma 4. In Game ROB4
Π(A, pub, Γ,m) we have:

Pr[|Λ| ≥ λ/2] ≤
(n
t

)λ/2
. (3)

Proof. We start by arguing about the probability that we add an index i into Λ, i.e., Pr[i ∈ Λ].
We add i to Λ when the following two conditions happen:

1. For the first ti runs of Γi resp. Γ̃i we have:

View(Γi(r, s)) = View(Γ̃i(r, s)).

2. For some of the n following runs we have:

View(Γi(r, s)) 6= View(Γ̃i(r, s)).

Note that Pr[i ∈ Λ] is taken over the random choice of ti, the random choice of (r, s) and the
internal randomness used by Γ̃i.

12. Fix the worst case choices of the internal randomness used
by Γ̃i, and the worst case choices of (r, s). This means that the malicious manufacturer A can
make Γ̃i deviate from Γi in one particular run by his particular choice of the inputs, which only
makes the adversary stronger. By fixing the inputs the probability is only taken over the random

11 Notice that when the views change, we anyway count Γ̃i as bad and it does not matter whether from this point
onwards its behavior is influenced by the inputs.

12 Recall that Γi was assumed to be deterministic, but the adversary may decide to use internal randomness in
Γ̃i



choice of ti. Denote by νi ∈ [n + ti] the first time when View(Γi(r, s)) 6= View(Γ̃i(r, s)). With
the above discussion we can bound the probability that a particular i is in Λ as:

Pr[i ∈ Λ] ≤ Pr[νi ∈ [ti + 1, ti + n]] ≤ n

t
.

It remains to bound Eq.(3). Since all ti are chosen uniformly at random and independently, we
get for the probability that we add at least λ/2 indexes to Λ:

Pr[|Λ| ≥ λ/2] ≤
(n
t

)λ/2
This concludes the proof.

4.5 Stateful and randomized circuits

So far we only discussed how to handle original circuits Γ that are stateless (i.e., write their
internal state only once) and are deterministic (i.e., have no rand gates). We now briefly discuss
how to extend our results to probabilistic and stateful circuits. To handle the rand gates we
do a simple transformation before using our compiler TR. Namely, we replace each rand gate
by the output of a deterministic PRG. Clearly, this reduces probabilistic computation to the
deterministic case we already discussed in the previous sections. However, if the original circuit
Γ was stateless, then after replacing the rand gates in Γ by the PRG, the new circuit Γ ′ may
become stateful. Hence, to complete our construction we need to discuss how to handle stateful
primitives (e.g., like a PRG or a stream cipher).

The problem with the stateful primitives is that in the testing phase we test the different
sub-devices a different number of times, which makes the devices end up (after the testing) in
different states. When then after the testing phase in the real-execution we execute all sub-
devices jointly (driven by the master) and take the majority of their outputs, then the majority
will fail to provide the correct result (since all the sub-devices are in a different state). A first
idea to deal with this issue is to reset the state of the sub-devices after the testing. However,
such reseting can be noticed by the malicious sub-devices.13

To overcome this problem, we augment Γ with a special circuit that carries out input-
triggered re-initialization. For instance, consider a Boolean circuit Γ that originally takes inputs
from {0, 1}α. We add an additional bit to the input which signals re-initialization, i.e., the inputs
of the augmented Γ are now from {0, 1}α+1, where if the first bit is 1, then the following α bits
are used to reset the state. Otherwise, if the first bit is 0, then the it is a normal execution of Γ
without updating the initial state. Such augmented circuitry can easily be implemented using
our simple operations from above. For instance, using the simple example above, we compute
for re-initialization: m = (1 − b) �m ⊕ b � x, where b is the first bit of the input, m is the
initial state and x are remaining α bits of the input. Clearly, if b = 0 the state is not touched,
while if b = 1 we rewrite the state with the input. In order to achieve security, we then compile
Γ added with the augmented circuitry described above using our compiler TR. Notice that this
means not that we also share the triggering bit b as otherwise the sub-devices can notice that
they are re-initialized.

Of course, the above approach has one drawback. It gives the adversary in the real-execution
the possibility to overwrite the state with a fresh adversarial chosen state. If m is a key then
this is an undesirable feature. However, this can be easily fixed by telling the master M to set
the first bit permanently to 0 after re-initialization.

13 For instance, the devices may just monitor their internal state in some extra memory and hence can notice if
the state was changed outside of their normal execution pattern.



5 Discussions

In this section, we discuss the relevance of our circuit model, the implementation cost of our
transformed circuits and testing phase, and the concrete attacks covered by our threat model.
Due to place constraints, we focus on general observations and arguments in favor of the practi-
cality of our proposals and leave the concrete investigation of meaningful case studies as a scope
for further research.

5.1 Instantiation of the circuit model

In practice, the circuit specification of Section 2.1 can be simply instantiated with existing
Hardware Description Languages (HDLs) such as VHDL or Verilog, and its communication
commands with standard communication interfaces. In fact, the only fundamental requirement
for this circuit specification is that it allows describing and testing the functional correctness of
the devices implementing them.

Besides, since for our previous construction, we essentially convert the original circuit Γ
into a couple of passively secure 3-party implementations of this circuit, we use an abstract
representation based on addition and multiplication gates, which allow us to describe a generic
compiler. Yet, this is not a strict requirement and any specialized compiler that would lead to
a more efficient 3-party implementation of a given circuit Γ (as long as it can be specified in a
hardware description language) is in fact eligible.

5.2 Cost of the transformed circuits

Concretely, our circuit transformation essentially requires to design λ sub-circuits, each of them
corresponding to a 3-party implementation of the functionality to protect. For linear function-
alities (in the binary/arithmetic field we consider) this implies overheads that are linear in the
total number of devices `. So as usual in multiparty computation, the most significant overheads
come from the non-linear operations. In order to estimate these overheads, an implementation
of the MultShares circuit of Figure 3 is sketched in Figure 7, where we can see that such an
operation can be carried out in 6 “abstract cycles” (denoted from C0 to C6 on the figure) with
a PRG and 10 arithmetic operations.

Therefore, in terms of timing/latency the best that we can hope is a cycle count that is
proportional to the logic depth of the functionality to protect, which would happen if we compute
all the multiplications in parallel. Considering that all the communications have to commute
through the master circuit, and that each send, in,out command can be performed in c cycles,
the latency of each multiplicative level will be multiplied by a maximum factor 6c (since not all
the abstract cycles require communications).

In terms of circuit size, each sub-circuit will require a (constant) multiplicative overhead
(≈ ×10) due to the arithmetic operations of MultShares, and a (constant) additive overhead
due to the PRG. The impact of the latter naturally depends on the implementation size of
this PRG compared to the one of the functionality to protect. Taking the (expensive) case
where we compute several multiplications in parallel, we could for example require to generate
128 pseudorandom bits per cycle with an AES-based PRG, which remains achievable, e.g., in
low-cost FPGA devices.

Quite naturally, there may be additional overheads due to representation issues. For example,
standard block ciphers are generally implemented thanks to table lookups, which are not included
in our circuit model. In this respect, we first note that such overheads can be mitigated by
taking advantage of cryptographic primitives designed for masking, multiparty computation or
fully homomorphic encryption (which aim to minimize the multiplicative complexity and depth
of the circuits) [17, 4]. Besides, even for a standard cipher such as the AES, the broad literature



Fig. 7. MultShares with threee mini-circuits.

Fig. 8. Implementation with 3D circuits.

on masking suggests that 3-party implementations similar to ours are achievable in mainstream
embedded devices (see, e.g. [24, 16] for software and hardware evaluations).

Eventually, we show in the next section that much more efficient specialized solutions can
be obtained for certain important cryptographic functionalities.

5.3 Testing of the transformed circuits

As clear from the previous section, the security of our trojan-resilient circuits depends on the
possibility to test sub- and mini-circuits, including all their communications. In general, this
can be implemented by connecting various circuits to a master via standard communication
interfaces. However, we note that more compact solutions also exist, by taking advantage of
the 3D technologies of which the usefulness for trojan-resilient circuits was already put forward
in [19]. As illustrated in Figure 8, we can then easily embed the sub-circuits as the different
tiers of a 3D hardware. Besides, note that (as suggested in the right part of Figure 2), one
can speed up the communication between the mini-circuits by allowing them to communicate
directly, given that the tester can monitor these communications with “wires” that would be
used only during the testing phase, and of which the monitoring would not be noticed by the
mini-circuits, i.e., under a “no hidden communications” assumption. This could be achieved by
equiping the tester with specialized hardware capacities (e.g., an oscilloscope).

5.4 Attacks & limitations

We conclude this section by listing the attacks covered by our threat model and its limitations.
Compared to [29], we prevent any digital input-triggered hardware trojan (e.g., single-shot

cheat codes and sequence cheat codes). In this respect, we additionally cover the risk of “infection
attacks”, where one activated sub-circuit starts to communicate with others sub-circuits, which
is achieved by limiting the communication between them.

Next, we prevent internally-triggered trojans (e.g., time bombs) in a more general manner
than [29]. Namely, this previous work was limited to preventing volatile time bombs with power



resets. We also prevent non-volatile ones (e.g., a counter that would store the number of execu-
tions of the circuit independent of its powering) thanks to our testing phase. We believe this is
an important improvement for emerging technologies such as FRAM-based devices [15].

We also cover all the attacks considered in [19] and, as previously mentioned, are able to
efficiently bound the success rate of these attack to exponentially small probabilities.

By contrast, as mentioned in Section 2.2, we cannot prevent physical trojan attacks since
our testing phase is looking for functional incorrectness. Yet, we note that exploiting physical
side-channels such as the power consumption or electromagnetic radiation of a chip usually
requires physical proximity (which may be excluded by other means). As for side-channels that
are exploitable remotely, such as timing attacks [11], they could be prevented by functional
testing (e.g., in order to ensure constant-time executions). In general, the extension of our tools
towards physical hardware trojans is an important scope for further research.

Eventually, we mention one more type of attack which, to the best of our knowledge, has not
been mentioned in the literature so far and is not covered by our tools, namely “battery attacks”.
In this case, the infected chip would go on performing harmful operations (e.g., the increaing of a
counter) independent of whether the chip is performing any computation. Interestingly, existing
(e.g., lithium) battery and energy harvesting technologies are currently based on quite different
design techniques than digital ASICs [12, 26]. So it may be a reasonable hardware assumption
to ask such trojans to be detected by chip inspection (via microscopy or other means), which
we leave as another interesting challenge for hardware research.

6 Efficient functionalities

In this section, we briefly discuss how to use testing amplification to get better efficiency for
certain cryptographic primitives. We achieve the better efficiency by (a) focusing on specific
functionalities and (b) by only showing a weaker security property. In particular, in contrast
to trojan robustness from Definition 1, which aims at correctness, we will focus on a security
property that is tailored to the particular functionality we want to protect. Notice that typically
the constructions presented in this section do not achieve correctness and do not protect against
the denial-of-service attacks mentioned in the introduction. That is, a hardware trojan can
always disable the functionality completely.

6.1 Trojan secure PRGs

We first describe how to construct a PRG that is trojan secure, where “trojan security” is a
weaker security guarantee than trojan robustness from Definition 1. Nevertheless, we argue that
for certain cryptographic primitives and certain applications trojan security is a sufficiently
strong security property. In contrast to trojan robustness which requires essentially that the
malicious devices output correct results (i.e., the same result as the honest specification), trojan
security of a PRG only guarantees that the malicious implementation of the PRG still outputs
pseudorandomness.

Constructing a trojan secure PRG is very simple. Just let the malicious manufacturer produce
` device D1, . . . ,D`, where each Di supposedly implements a cryptographically strong PRG with
binary output {0, 1}β.14 Each of the Di’s is initialized with a random and independent initial
secret seed Ki. The master M then runs the devices Di and just XORs the outputs of Di on
each invocation. Observe that since all keys Ki were sampled uniformly and independently and
we XOR the outputs of Di, we get that the output of the composed device is pseudorandom as
long as one device Di outputs pseudorandomness.

Let us now argue about the security of the above construction. Testing the above implemen-
tation is easy: we just use the same random testing approach as for our circuit compiler. That

14 It also may be a elements in a field, but we only consider the most simple case here.



is, each of the sub-devices Di is tested independently for ti times. Next, we can use a similar
analysis as in Theorem 1 to show that if the Di’s pass the testing phase, then with probability
1− (n/t)` at least one device outputs the correct result for all n real executions. By the above
observation, this suffices to show that with probability at least 1 − (n/t)` the device outputs
pseudorandomness.15

De-randomization of our circuit compiler. In our circuit compiler, the master M is
randomized since it needs to secret-share the inputs of the device (which requires randomness).
We can use the above construction of the trojan secure PRG to de-randomize M. To this end
we let the malicious manufacturer produce ` additional devices, where each computes a PRG.
Whenever M needs uniform randomness, we replace it by the output of the above construction of
a trojan secure PRG. Notice that this further simplifies the assumptions that we put on M, since
now the master M does not need to run a trusted component for random number generation. In
this approach the complexity of M is reduced to a small number of additions and multiplications.

6.2 Other cryptographic primitives

We conclude our paper with a short discussion on other cryptographic primitives that can benefit
from the technique of testing amplification (i.e., having many independent devices that are tested
independently and the combined using a master). For efficiency, we concentrate on the “trojan
security” (see Sect. 6.1 above) and because of the space reasons, we only discuss how to construct
an efficient trojan secure Message Authentication Code (MAC).

Recall that a message authentication code is a symmetric cryptographic primitive that can
be used to guarantee the authenticity of messages. One way to protect a MAC against trojan
attacks is to use our generic compiler from Section 4. We now describe a more efficient way
achieving trojan security for MACs. Let us start by describing the security property we are
aiming at. Let D be a device that supposedly implements a secure MAC with key K, i.e., it
outputs tags with respect to the key K. Informally, trojan security guarantees that valid tags
can only be produced by running the device D. Notice that this in particular implies that an
adversary interacting with the supposedly malicious D in the n real executions does not learn
anything about the internal secret key K. More concretely, to specify the trojan security of a
MAC, we consider the following two phases (of course, prior to these two phases we execute a
testing phase of the sub-devices):

1. In the learning phase, A interacts with the potentially malicious implementation D. That is,
A can ask for MACs of messages of his choice and sees the output of the MAC. Notice that
this can be done for at most n times (similar as in the robustness definition).

2. In the challenge phase the adversary has to provide a forgery for the key K and a fresh
message X.

In order to construct an efficient trojan secure MAC, we proceed as follows. Let F : {0, 1}k ×
{0, 1}α → {0, 1}β be a secure pseudorandom function (for instance, instantiated with an AES).
We let the malicious manufacturer produce ` sub-devices D1, . . . ,D` where each supposedly im-
plements the PRF F . The sub-devices Di are then combined by the master M in the following way.
On an input message X ∈ {0, 1}α the master produces an `-out-of-` secret sharing (X1, . . . , X`)
of X. Each share Xi is given to the sub-device Di as input, which computes Yi = F (Ki, Xi).
The value Yi is given back to the master M who computes Y =

⊕
i Yi and outputs the tag

((X1, . . . X`), Y ). Notice that we can de-randomize the master M by using our PRG construc-
tion from Section 6.1. Verification of the tag produced by the above construction is simple.
Essentially, since (X1, . . . X`) are part of the tag the verifier can use (K1, . . . ,K`) to verify the
correctness of the MAC. The above construction has the shortcoming that it increases the length

15 Observe that we obtain better parameters than for the strong property of trojan robustness since we only
require that one sub-device behaves honestly. This allows us to save a factor of 1/2 in the exponent.



of the tag by ` times the message length. We leave it as an interesting open question to improve
the tag length.

The basic intuition why the above construction is trojan secure is as follows. First, observe
that the sub-devices Di operate independently from each other (they all use independent keys
and no communication is needed between the Di’s for computing F ). Second, they are run
on shares of the inputs X, so the adversary cannot initiate malicious behavior by signaling it
through the inputs. The random testing guarantees that with probability 1− (n/t)` at least one
device Di outputs the correct result for all n real executions. Since we are XORing the outputs
of all sub-devices Di, we are guaranteed that as long as at least one device Di operates honestly,
it “blinds” the outputs of all other devices, and hence hides the output of potential malicious
devices (that try to reveal their internal keys).

In general it can be observed that, informally speaking, in order to construct efficient trojan
robust cryptographic primitives using our technique of testing amplification, we need algorithms
that are both input homomorphic and key homomorphic (essentially this is what the use of the
MPC enables). We leave it as an interesting question for future work to find such cryptographic
schemes.
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