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Abstract. Very recently, the Atomic AES architecture that provides dual functionality of the AES encryp-
tion and decryption module was proposed. It was surprisingly compact and occupied only around 2645
GE of silicon area and took 226 cycles for both the encryption and decryption operations. In this work
we further optimize the above architecture to provide the dual encryption/decryption functionality in only
2263 GE and latency of 246/326 cycles for the encryption and decryption operations respectively. We take
advantage of clock gating techniques to achieve Shiftrow and Inverse Shiftrow operations in 3 cycles instead
of 1. This helps us replace many of the scan flip-flops in the design with ordinary flip-flops. Furthermore we
take advantage of the fact that the Inverse Mixcolumn matrix in AES is the cube of the forward Mixcolumn
matrix. Thus by executing the forward Mixcolumn operation three times over the state, one can achieve
the functionality of Inverse Mixcolumn. This saves some more gate area as one is no longer required to
have a combined implementation of the Forward and Inverse Mixcolumn circuit.
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1 Introduction

The Atomic-AES architecture for combined implementation of the AES Encryption/Decryption circuit was pro-
posed very recently [2]. The circuit builds on the encryption only circuit proposed by Moradi et al. [26] at
Eurocrypt 2011, and adds subtle tweaks to the circuit to enable combined functionality of encryption and de-
cryption. The Atomic-AES architecture occupies around 2645 GE of area when synthesized with the standard cell
library of STM 90nm CMOS logic process and takes 226 cycles for both encryption and decryption operations.

In this work, we propose Atomic-AES v2.0 architecture that at 2263 GE, occupies around 400 GE less using
the same standard cell library. The architecture has encryption/decryption latency of 246/326 cycles. Each
encryption round is computed in 23 cycles, each decryption round takes 31 cycles. The area savings comes from
principally two avenues:

1. The Shiftrow/Inverse Shiftrow operations are performed over three cycles rather than 1. This helps the
designer replace a lot of the scan flip-flops in the design with ordinary flip-flops, which on average saves 1
GE of area per bit of storage.

2. Additionally the Inverse Mixcolumn matrix used in AES is the cube of the the forward Mixcolumn matrix.
This implies that executing the Mixcolumn operation 3 times over the state achieves the functionality of
Inverse Mixcolumn. Thus the designer no longer needs a combined implementation of the Forward and
Inverse Mixcolumn Circuit.

1.1 Organization

The paper is organized in the following manner. Section 2 gives a brief background and description of the
architecture presented in [2]. Section 3, describes some of the modifications in Atomic-AES v2.0. Section 4
tabulates all implementation results and compares it with previous architectures present in literature. Section
5 concludes the paper.

2 Background and Preliminaries

In Figure 1, a pictorial description of the architecture in [2] is given. As can be seen the basic elements of storage
are the 16 byte sized registers made of scan flip-flops in the state and key path respectively, used to store the
intermediate states and roundkeys. Each round function is calculated in 21 cycles.
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Fig. 1: The 8-bit serial architecture in [2]

2.1 Encryption Flow

We will label the 21 cycles per round by the integers 0 to 20. The encryption process starts with the addition
of the whitening key and the S-box computation of the first round function. In order to do so the finite sate
machine (FSM) generating the round signals is initialized to cycle number 5. So in cycles numbered 5 to 20 (i.e.
the very first 16 cycles) the following transformations take place:

Cycles 5 to 20: The 8 bit chunks of plaintext and key are respectively filtered out of the main state and key
multiplexers respectively. They are xored, and the resultant signal fed to the S-box. The output of the S-box
is fed to the bottom most multiplexer in the state path (marked by SBIN ), from where it is shifted serially
forward in the next round. Effectively, after the cycle 20 is completed, the state registers would store the
value S(PT ⊕ K), where S(·) denotes the bytewise application of the AES S-box function. In the same
period the 8 bit chunk of the Key is input to key register marked “33”, from where it is serially forwarded
in the next round, much like in the state register. Therefore, at the end of cycle 20, the Key registers hold
the value of the initial whitening key.

After this the cycle counter is automatically reset to 0, and each 21 cycle round function is executed 10 times,
thus accounting for a total latency of 16 + 21∗10 = 226. During this period the order of operations is as follows:

Shiftrow → Mixcolumn → Add roundkey + S-box of next round

To clarify, let us see the cyclewise description of the data movement:

Cycle 0: This cycle is reserved for the Shiftrow operation. Since each 8-bit register in the state and key paths
are constructed using scan flip-flops, they have two input data ports which they filter depending on a select
signal. As can be seen in Figure 1, the state registers are connected to facilitate the Shiftrow operation
during cycle 0. The key register is “frozen” in this cycle and so no data movement takes place. 4

Cycles 1 to 4: The Mixcolumn operation is performed during these 4 cycles. The Mixcolumn circuit used in
this architecture is a {0, 1}32 → {0, 1}32 logic block, and so data from leftmost column (registers marked
00,10,20,30) of the state is fed as input to the Mixcolumn circuit. In the subsequent cycle the Mixcolumn

4
One way to achieve this is to use a gated clock which does not present a leading edge during the shiftrow period.



output is driven into the rightmost column (registers marked 03,13,23,33). This operation carried out over
4 cycles computes the Mixcolumn over the entire state. Note that this operation is bypassed in the 10th
encryption round as the Mixcolumn function is omitted in the final round.

During this period, the non-linear function of the Keyschedule operation is computed in the Key regis-
ters. Recall that the non linear operation in the AES Keyschedule is given as

F (K3) = S(K3 ≪ 8)⊕RCONi,

where K3 denotes the third column of the current roundkey, ≪ denotes the left rotate operation and
RCONi is the ith round constant (note that the round constant is added to the most significant byte of
S(K3 ≪ 8)). (K3 ≪ 8) is a 32 bit value and so S(K3 ≪ 8) implies the S-box function applied to each of
the 4 bytes of the input. In order to implement the rotation operation, the data is taken from the output of
the key register marked “13” and fed to the S-box. Although the architecture uses only one S-box, in cycles
1 to 4, the state path operations do not use the S-box circuit and so the key path S-box operations can be
done in this period. The S-box output is xored to the output of the register “00” and the round constant
and, in the next cycle is driven into the register marked “30”. Note that since there is “vertical” movement
of data in the key registers in this period, at the end of cycle 4, the four columns of the key register store
the values K0 ⊕ F (K3),K1,K2,K3 respectively, where Ki denotes the ith column of the current roundkey.

Cycles 5 to 20: The bytes of state and roundkey are respectively taken out of the registers marked “00” of
both the state and key paths and xored together and fed to the S-box. The output of the S-box is again
driven into the bottom most state register “33” and serially shifted forward in the subsequent rounds. This
sequence of operations is exactly similar as the ones performed in the very first 16 cycles, with the only
exception that an intermediate state and roundkey chunks are xored instead of the raw plaintext and key.

The operations in the Key register are a little more interesting during this period. Note that in order
to perform roundkey addition during these cycles, the data emanating from key register “00” be equal to
the current roundkey. However we have seen that at the end of cycle 4 the columns of the key registers hold
the value K0 ⊕ F (K3),K1,K2,K3. Note that if K0,K1,K2,K3 and L0, L1, L2, L3 denote the 4 columns of
the current and next roundkey then we have

L0 = K0 ⊕ F (K3), L1 = K1 ⊕ L0, L2 = K2 ⊕ L1, L3 = K3 ⊕ L2.

Thus at the end of cycle 4, only the 0th column holds the correct next roundkey L0. The problem is solved
by having an extra xor gate taking inputs from the registers “00” and “01” and output feeding into “00”.
Since the movement of data is switched to “horizontal”, this helps to perform on the fly addition as the
key chunks are driven out of the “00” register. The addition is however not executed at cycles 8,12,16,20 by
zeroing the SELXOR signal because as previously noted, the 0th column already has the required roundkey.
Also after the roundkey addition, each 8-bit key is circularly shifted back into the key registers through
register “33” in order to facilitate the operations in the next round function.

The ith round in this architecture computes the Substitution layer for the (i + 1)th AES encryption round.
This being so, in the tenth and final encryption round the only operations that need be performed are Shiftrows
and the final roundkey addition. Thus in the tenth round, the Mixcolumn operation is bypassed in cycles 1-4
and the output ciphertext is available just after the roundkey addition from cycles 5 through 20.

2.2 Decryption Flow

On the state side the connections between the byte sized scan registers are configured so as to support Shiftrow,
Inverse Shiftrow and Serial loading and unloading of bytes. The following sequence of operations is used for
Decryption:

Inverse Mixcolumn → Inverse Shiftrow → Inverse S-box + Add roundkey

The decryption starts with the addition of the whitening key. The finite sate machine (FSM) generating the
round signals is again initialized to cycle number 5. So in cycles numbered 5 to 20 (i.e. the very first 16 cycles)
the following transformations take place:



Cycles 5 to 20: The 8 bit chunks of ciphertext and key are respectively filtered out of the main state and key
multiplexers respectively They are xored, and the resultant signal fed to the state registers. Note that in
the corresponding encryption stage, we additionally calculated the S-box of the first round. Hence in order
to accommodate both encryption and decryption we need a multiplexer after the S-box circuit as shown
in Figure 1. The Key bytes are input to key register “33”, from where it is serially forwarded in the next
round. However the SELED signal is set to 1 at rounds 8, 12, 16, 20 due to which at beginning of the next
phase, the Key four register columns hold the value L0,K1,K2,K3 respectively.

After this the cycle counter is automatically reset to 0, and each 21 cycle round function is executed 10 times.
Since the data flow in the key registers have already explained in the previous subsection, we concentrate on
the state register.

Cycles 0 to 4: Cycles 0-3 perform the Inverse Mixcolumn operation on the state columns, in exactly the same
way forward Mixcolumn is executed in the encryption stage in cycles 1 to 4. However only in the very first
round the Inverse Mixcolumn operation is bypassed, as required in AES decryption. Cycle 4 is reserved for
the Inverse Shiftrow operation.

In the Keyschedule, the key register is frozen in cycle 0. Thereafter in cycles 1 to 4, F (K3) is computed in
the same manner as described in the encryption cycles and added to L0 in the first column. And as a result
at the beginning of cycle 5, the key columns contain K0 = L0 ⊕ F (K3),K1,K2,K3 which is the complete
next roundkey. Since the complete roundkey is already available, the SELXOR signal controlling the xor
gate in the topmost row is zeroed as the roundkeys are serially driven out for the add roundkey operation.
Thus all the functionalities of Inverse Keyschedule are completely accommodated using this architecture.
Furthermore the complete decryption roundkey is available from cycles 5 through 20, which is incidentally
the period during which we perform the add roundkey operation.

Cycles 5 to 20: The bytes of state are taken out from register “00” and input into the combined forward and
reverse S-box circuit to compute the Inverse S-box operation. The output of the S-box is then xored with
the current roundkey byte from the key register “00” and circulated serially back into the state registers via
the register marked “33”. Note that the order of S-box and Add roundkey in the decryption phase is exactly
the opposite as the encryption phase. As a result we employ two 8-bit xor gates, one before and one after
the S-box circuit, for key addition in the encryption and decryption stages respectively. The xor gate inputs
are controlled by and gates as shown in Figure 1, in order to bypass the addition operation as required.

In the tenth and final round, the decrypted plaintext is made available from cycles 5 through 20 after the add
roundkey operation.

3 Atomic-AES v2.0: Architecture and Dataflow

We will now present a full description of the proposed architecture for Atomic-AES v2.0 which provides dual
functionalities for encryption and decryption. A diagram for the proposed architecture is presented in Figure 2.

3.1 Main changes

There are 2 main changes due to which which it was possible to reduce the area. they are listed as follows:

1. Replacing scan flip-flops with ordinary flip-flops: One of the reasons why scan flip-flops were used
for implementing both the state and key registers was that these storage units needed to support multiple
modes of operation, in which each byte sized register needed to accept data from multiple sources. The state
registers need to support serially loading and unloading data as well as the Shiftrow and Inverse Shiftrow
operations. The key registers support 2 types of data movement: horizontal and vertical. the horizontal
is meant for serial loading/unloading data, while the vertical is used to efficiently compute the nonlinear
function F used in the Keyschedule.

To begin the optimization let us start with the Keyschedule. The vertical movement of data used to compute
the F function is required only in the outermost columns of the key registers, i.e. columns 0 and 3. It is
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Fig. 2: The AES 8 bit Encryption/Decryption architecture for Atomic-AES v2.0



actually not required in the two middle columns 1 and 2. It is therefore possible to implement the middle-
most columns with ordinary rather than scan flip-flops. Of course this requires that the data movement in
the middle columns be frozen when the function F is being calculated. This can be easily achieved using
clock gating techniques.

In the state registers, we argue that that scan flip-flops are required to implement only the byte registers
“13”, “23” and “33”. These are the byte registers in the final column of rows 1, 2, 3 respectively. Scan flip-
flops are not required for “03” because the zeroth row does not require data movement during the Shiftrow
or Inverse Shiftrow operations. For either the Shiftrow or Inverse Shiftrow operations, there is a maximum
movement of three columns to the left for any row. Indeed, except the zeroth row which does not require
data movement, any row which has a movement of x columns towards the left for Shiftrow would undergo
a movement of 4 − x columns towards the left for Inverse Shiftrows. Thus if the designer is prepared to
allow 3 clock cycles for the Shiftrow/Inverse Shiftrow operation then both operations can be achieved by
single directional data movement towards the left. This is precisely why, the remaining byte registers can be
implemented with ordinary flip-flops. However, the designer has to take help of clock gating to freeze data
movement in certain rows during the row-wise shifting operation. This has been tabulated in Table 1. As
we will see shortly, during the Encryption flow, the Shiftrow is executed in cycles labelled 0, 1, 2 and during
Decryption the Inverse Shiftrow operation is executed in cycles 12, 13, 14. Figure 2, gives a complete picture
of the architecture. Registers implemented using scan flip-flops are labeled in grey. Except for 3 registers in
the state and 8 in the key, all can be implemented using ordinary flip-flops. Since ordinary flip-flops occupy
approximately 1 GE less than scan flip-flops, this saves us around 25× 8 = 200 GE. In addition, we do not
need to use 2 extra 8-bit multiplexers used in the state registers in [2]. So the total savings is around 230
GE minus some additional logic used to implement the clock gating signals.

Shiftrow Cycles Inverse Shiftrow Cycles

# Row 0 1 2 12 13 14

1 0 F F F F F F

2 1 F F O O O O

3 2 F O O F O O

4 3 O O O F F O

Table 1: Data flow in the rows of state registers during Shiftrow/Inverse Shiftrow. (F: Frozen, O: Operational)

2. Replacing combined Mixcolumn with forward Mixcolumn: In [2], the designers had implemented a
combined Mixcolumn/Inverse Mixcolumn circuit which took 166 xor gates and a 32 bit multiplexer. Since the
circuit operated on a column every clock cycle, a total of 4 cycles were required to compute the Mixcolumn
over the entire state. In this work, we take advantage of the fact that the Inverse Mixcolumn matrix used
in AES is the cube of the Forward Mixcolumn matrix, i.e.


14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


3

This directly implies that is the designer runs the forward Mixcolumn operation 3 times over the state i.e.
for 3 × 4 = 12 cycles, he would functionally achieve the Inverse Mixcolumn operation. This in turn means
that a forward Mixcolumn circuit which occupies 108 xor gates is sufficient for both purposes. This saves
us area equal to 58 xor gates and one 32 bit multiplexer, which amounts to around 130-140 GE.

3.2 Encryption Flow

The encryption flow is almost the same as the one used in [2] and which has been described in brief in the
previous section and it maintains exactly the same order of operations. There are subtle differences however.
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Since Shiftrow is executed over 3 cycles rather than 1, one encryption round is carried out over 23 cycles rather
than 21. The circuit uses a maximum length 5 bit LFSR to generate control signals, which has a period of 31
cycles which we label as 0 to 30. In the beginning the control system is initialized to cycle 15.

Cycles 15 to 30: As before the initial S(PT ⊕K) operation is performed and the result is stored serially in
the state registers and the key bytes are stored serially in the the key registers.

Thereafter the counter is reset to 0, and the 10 encryption rounds are executed one after the other. Each round
consists of the following ordered sequence of operations:

Cycles 0 to 2: The state registers execute Shiftrow, and the Key registers are frozen.

Cycles 3 to 6: The state registers execute Mixcolumn, and the outermost columns of the Key register compute
the function F as explained in the previous section. During encryption, the control system transitions from
cycle 6 to cycle 15, so that cycles 7 to 14 do not occur.

Cycles 15 to 30: Exactly as in the previous section, the bytes are driven serially out of “00” from both the
state and key side, the add roundkey and substitution layer of the next round are performed and the resultant
signal, and the key bytes are driven serially back into the state/key registers respectively.

The encryption function thus takes 23× 10 + 16 = 246 cycles to complete.

3.3 Decryption Flow

The decryption flow is also almost the same as the one used in [2] and exactly the same order of operations
is maintained. The main differences are that Inverse Mixcolumn is executed over 12 cycles and and Inverse
Shiftrow over 3 cycles. Thus one decryption round takes 31 cycles to complete. As before, in the beginning the
control system is initialized to cycle 15.



Cycles 15 to 30: As before the initial whitening key addition i.e. CT ⊕ K operation is performed and the
result is stored serially in the state registers and the key bytes are stored serially in the the key registers.
As explained in the previous section, the SELED signal is set to 1 in cycles 18, 22, 26, 30 to enable efficient
backward generation of the roundkeys.

Thereafter the counter is reset to 0, and the 10 decryption rounds are executed one after the other. Each round
consists of the following ordered sequence of operations:

Cycles 0 to 14: The state registers execute Inverse Mixcolumn during 0 to 11, and Inverse Shiftrow during
12 to 14. The key registers are frozen during 0 to 2 and again from 7 to 14. In the 4 cycles in between, (i.e.
during 3 to 6) the non-linear function F is computed exactly as explained in the previous section.

Cycles 15 to 30: Again, the bytes are driven serially out of “00” from both the state and key side, the inverse
S-box is applied on the state bytes after which the add roundkey is performed and the resultant signal, and
the key bytes are driven serially back into the state/key registers respectively. The SELED signal is again
set to 1 in cycles 18, 22, 26, 30 to enable efficient backward generation of the next roundkey.

The decryption function thus takes 31 × 10 + 16 = 326 cycles to complete. The flow has also been explained
diagrammatically in Fig 3.

3.4 Control System

All control signals are generated using a maximal length 31 cycle LFSR. Some additional logic is used to sense
the clock cycle 6 in the encryption cycle and transition to cycle 15.

4 Performance Evaluation

In order to perform a fair performance evaluation, we implemented the circuit using VHDL. Thereafter the
following design flow was adhered to for all the circuits: a functional verification at the RTL level was first
done using Mentor Graphics Modelsim software. The designs were synthesized using the standard cell library
of the 90nm and 65nm logic process of STM (CORE90GPHVT v 2.1.a and CORE65LPLVT v 5.1) with the
Synopsys Design Compiler, with the compiler being specifically instructed to optimize the circuit for area. A
timing simulation was done on the synthesized netlist to confirm the correctness of the design, by comparing
the output of the timing simulation with known test vectors. The switching activity of each gate of the circuit
was collected while running post-synthesis simulation. The average power was obtained using Synopsys Power
Compiler, using the back annotated switching activity. The results are tabulated in Table 2.

We outline some of the essential lightweight metrics of the known implementations of encryption/decryption
architectures of AES and compare it with our own. Energy consumption was listed rather than power as it
is a measure of the total electrical work done during one encryption/decryption. Since the circuits in Table 2
are implemented using different CMOS logic processes, there are most likely to be wide variations in energy
consumption and maximum throughput. For example the throughput of [24] is quite high as it is implemented
using the standard cell library of the 22nm CMOS logic process which is faster than the other logic processes

# Architecture Type Library Area Latency Energy TPmax

(GE) (cycles) (nJ) (Mbps)

1 8-bit Serial [26] E UMC 180nm 2400 226 8.4 -

2 Grain of Sand [17] ED Philips 350nm 3400 1032/1165 46.4/52.4 9.9/8.8

3 8-bit Serial [24] ED 22nm 4037 336/216 3.9/2.5 432/671

4 32-bit Serial [27] ED 110nm 5400 54/54 - 311

5 Atomic-AES [2] ED STM 90nm 2645 226/226 3.3 94.4
STM 65nm 2976 2.2 57.8

6 Atomic-AES v2.0 ED STM 90nm 2263 246/326 3.2/4.3 88.4/66.7
STM 65nm 2678 1.9/2.5 54.4/41.1

Table 2: Performance Comparison of Atomic-AES with previous architectures in literature (Figures separated
by ‘/’ indicate corresponding figures for encryption/decryption, E: Encryption only, ED: ENC/DEC)
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listed in the table. The throughput of [27] is also high as it is a 32-bit serial circuit and thus has considerably
lower latency.

In Figure 4, we present a componentwise breakdown of the circuit size. We use clock gating to generate the
clock for the Key registers, since the data movement has to be frozen for one cycle. Apart from the multiplexers
included in the implementation of the combined Forward and Inverse S-box, Mixcolumn and Round Constants,
a quick glance at Figure 2, tells us that we need

1. Four 8-bit multiplexers around the state register, one 32-bit multiplexer to bypass the Mixcolumn circuit,
one 8-bit multiplexer after the S-box, and two 8-bit multiplexers to filter the raw key/plaintext (ciphertext)
and the roundkey/state byte respectively.

2. Apart from this six 8-bit xors around the key registers and two 8-bit xors during state-key addition.
3. One input of seven out of the eight xor gates is controlled by an and gate.

This adds up to around 415 GE for the multiplexers, xor, and gates in the circuit. The LSFR based control
system, the round constants and the logic for clock-gating take around 183 GE. Adding up, this leads to 2263
GE for the entire circuit.

5 Conclusion

In this work, we present a compact architecture for AES that performs the dual function of encryption and
decryption. the circuit can be synthesized using 2263 GE area using the standard cell library of the STM 90nm
CMOS logic process. This is an improvement over the work in [2] which occupied 2645 GE using the same
standard cell library.

Acknowledgement: The authors would like to sincerely thank Thomas Peyrin and Meicheng Liu for valuable
discussions leading up to this work.
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