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Abstract

Signal is a new security protocol and accompanying app that provides end-to-end encryption for
instant messaging. The core protocol has recently been adopted by WhatsApp, Facebook Messenger, and
Google Allo among many others; the first two of these have at least 1 billion active users. Signal includes
several uncommon security properties (such as “future secrecy” or “post-compromise security”), enabled
by a novel technique called ratcheting in which session keys are updated with every message sent. Despite
its importance and novelty, there has been little to no academic analysis of the Signal protocol.

We conduct the first security analysis of Signal’s Key Agreement and Double Ratchet as a multi-stage
key exchange protocol. We extract from the implementation a formal description of the abstract protocol,
and define a security model which can capture the “ratcheting” key update structure. We then prove
the security of Signal’s core in our model, demonstrating several standard security properties. We have
found no major flaws in the design, and hope that our presentation and results can serve as a starting
point for other analyses of this widely adopted protocol.

1. Introduction

Recent revelations about mass interception and surveillance of communications have made consumers more
privacy-aware. In response, scientists and developers have proposed techniques which can provide security for
end users even if they do not fully trust the service providers. For example, the popular messaging service
WhatsApp was unable to comply with Brazilian government demands for users’ plaintext messages [6] because
of its end-to-end encryption.

Early instant messaging systems did not provide much security. While some systems did encrypt traffic
between the user and the service provider, the service provider retained the ability to read the plaintext of users’
messages. Off-the-Record Messaging [7, 17] was one of the first security protocols for instant messaging: acting
as a plugin to a variety of instant messaging applications, users could authenticate each other using public keys
or a shared secret passphrase, and obtain end-to-end confidentiality and integrity. One novel feature of OTR
was its fine-grained key refreshing: along with each message round trip, users established a fresh ephemeral
Diffie–Hellman (DH) shared secret. Since it was not possible to work backward from a later state to an earlier
state and decrypt past messages, this technique became known as ratcheting; in particular, asymmetric ratcheting
since it involves asymmetric (public key) cryptography. Unfortunately, OTR saw relatively limited adoption.

Perhaps the first secure instant message protocol to achieve widespread adoption was Apple’s iMessage,
a proprietary protocol that provides end-to-end encryption. A notable characteristic of iMessage is that it
automatically manages the distribution of users’ long-term keys, and in particular (as of this writing) users have
no interface for verifying friends’ keys. iMessage, unfortunately, has a variety of flaws that seriously undermine
its security [24].

The Signal Protocol. While there has been a range of activity in end-to-end encryption for instant messaging
[19, 47], the most prominent recent development in this space has been the Signal messaging protocol, “a
ratcheting forward secrecy protocol that works in synchronous and asynchronous messaging environments”
[36, 37]. Signal’s goals include end-to-end encryption as well as advanced security properties such as perfect
forward secrecy and “future secrecy”.

The Signal protocol, and in particular its ratcheting construction, has a relatively complex history. TextSecure
[37] was a secure messaging app and the predecessor to Signal. It contained the first definition of Signal’s
“Double Ratchet”, which effectively combines ideas from OTR’s asymmetric ratchet and a symmetric ratchet
(which applies a symmetric key derivation function to create a new key, but does not incorporate fresh DH
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material). TextSecure’s combined ratchet was referred to as the “Axolotl Ratchet”, though the name Axolotl was
used by some to refer to the entire protocol. TextSecure was later merged with RedPhone, a secure telephony
app, and the result1 renamed to Signal, which is now the name of both an instant messaging app and the
cryptographic protocol. In the rest of this paper, we will be discussing the cryptographic protocol only.

The Signal cryptographic protocol has seen explosive uptake: it (or a variant) is now used by Google Allo [38],
WhatsApp [49], Facebook [20], as well as a host of variants in “secure messaging” apps, including Silent Circle
[40], Pond [34], and (via the OMEMO extension [46] to XMPP) Cryptocat v2 [28], Conversations [12], and the
next release of ChatSecure [2]. It has driven an unprecedented uptake of encryption in personal communications.

Security of Signal. One might expect this widespread uptake of the Signal protocol by large players to be
accompanied by an in-depth security analysis and examination of the design rationale, in order (i) to understand
and specify the security assurances which Signal is intended to provide, and (ii) to verify that it provides them.

Surprisingly, this is not yet the case. There currently is little documentation available on the current version
of the Signal protocol beyond high-level whitepapers, and no in-depth security analysis. This is in stark contrast
to the ongoing development of the next version of the Transport Layer Security protocol, TLS 1.3, which
explicitly involves academic analysis in its development [5, 14, 18, 27, 29, 35].

Frosch et al. [22, 23] performed a security analysis of TextSecure v3, showing that in their model the
computation of the long-term symmetric key which seeds the ratchet is a secure one-round key exchange
protocol, and that the key derivation function and authenticated encryption scheme used in TextSecure are
secure. However, it did not cover any of the security properties of the ratcheting mechanisms.

In addition, Frosch et al. identified an unknown key share (UKS) attack against TextSecure, because the
cryptographic material was not bound to the identities. Since UKS attacks can be subtle, we explain the attack
slightly differently, using the agent names from the explanation in [22, Section 4.2] to simplify comparison.
UKS attacks. In a UKS attack, the target of the attack is a session of an honest agent (e.g., Pe) that tries to
communicate with another honest agent (e.g., Pa). Furthermore, in a UKS attack, the adversary does not learn
the session key: instead, the point is the mismatching peer assumptions of the honest agents. In a good protocol,
if two honest agents end up sharing a key, each should be the intended peer of the other. In a UKS attack, this
assumption is violated. Depending on the UI and implementation details, this is a substantial authentication
failure. Concretely, receiving and successfully decrypting a message in a protocol vulnerable to UKS attacks
does not guarantee that the message was intended for the recipient. (For example, if Ed receives a message
“you’re fired” from his boss Alice, he cannot deduce that Alice intended to fire him.)
The UKS attack on TextSecure v3. In the UKS attack from [22, Figure 7], the adversary is Pb who aims to
attack Pe. When Pa tries to communicate with Pb as its peer, Pb lies about its public identity key and presents
Pe’s key as its own. Note that Pe is the target of the attack (not Pa, who is communicating with a dishonest
agent). The adversary subsequently reroutes Pa’s messages to Pe, who is the real target of the attack. Ultimately,
Pa and Pe compute the same keys. Pe assumes that the keys are shared with Pa, which is correct. However,
Pa thinks they are shared with Pb. Concretely, Pe may now falsely assume that when it receives messages
encrypted with such a key, then they are intended for Pe. In fact, Pa intended them for Pb. This constitutes a
UKS attack.
Preventing UKS attacks. The fix for UKS attacks is typically trivial for libraries with access to agent identities:
for example, including both agents’ identities in the key derivation function stops the attack. However, this
UKS attack is not prevented by the Signal core (i.e., the key agreement and Double Ratchet analysed here),
because derived keys still do not depend on the identities of the communication partners. The UKS attack can
also be prevented at the application level, for example by including the assumed peer identities (e.g., the peer’s
phone number) in initial message exchanges.

Providing a security analysis for the Signal protocol is challenging for several reasons. First, Signal employs a
novel and unstudied design, involving over ten different types of keys and a complex update process which
leads to various “chains” of related keys. It therefore does not directly fit into existing analysis models. Second,
some of its claimed properties have only recently been formalised [11]. Finally, as a more mundane obstacle,
the protocol is not substantially documented beyond its source code.

1.1. Contributions

We provide the first in-depth formal security analysis of the cryptographic core of the Signal messaging
protocol, which is used by more than a billion users.

To achieve this, we develop a multi-stage key exchange security model with adversarial queries and freshness
conditions that capture the security properties intended by Signal. Compared to previous multi-stage key exchange
models which involve a single sequence of stages within each session, our model considers a tree of stages to

1. TextSecure v1 was based on OTR; in v2 it migrated to the Axolotl Ratchet and in v3 made some changes to the cryptographic
primitives and the wire protocol. Signal is based on TextSecure v3.
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model the various “chains” in Signal. Our security model characterizes many detailed security properties of
Signal, thereby providing the first formal definition of Signal’s security goals. Among the interesting aspects
of our model are the subtle differences between security properties held by keys derived via symmetric and
asymmetric ratcheting.

We subsequently prove that the cryptographic core of Signal is secure in our model, providing the first
formal security guarantees for Signal. We give a proof sketch in Section 5 and the full proof in Section B.2.

In practice, Signal is more than just its key exchange protocol. In Section 6, we describe many other aspects
of Signal that are not covered by our analysis, which we believe are a rich opportunity for future research. We
hope our presentation of the protocol in Section 2 can serve as a starting point for understanding Signal’s core.

1.2. Additional Related Work

Symmetric ratcheting and DH updates (asymmetric ratcheting) are not the only way of updating state to
ensure forward secrecy—i.e., that compromise of current state cannot be used to decrypt past communications.
Forward-secure public key encryption [9] allows users to publish a short unchanging public key; messages are
encrypted with knowledge of a time period, and after receiving a message, a user can update their secret key to
prevent decryption of messages from earlier time periods.

Signal’s DH updates (asymmetric ratcheting), which it inherits from the design of OTR [7], have been
claimed to offer properties such as “future secrecy”. Future secrecy of protocols like Signal has been discussed
in depth by Cohn-Gordon, Cremers, and Garratt [11]. Their key observation is that Signal’s future secrecy is
(informally) specified with respect to a passive adversary, and therefore turns out to be implied by the formal
notion of forward secrecy. Instead, they observe that mechanisms such as asymmetric ratcheting can be used
to achieve a substantially stronger property against an active adversary. They formally define this property as
“post-compromise security”, and show how this substantially raises the bar for resourceful network attackers to
attack specific sessions. Furthermore, their analysis indicates that post-compromise security may hold of Signal
depending on subtle details related to device state reset and the handling of multiple devices.

Recently, Green and Miers [25] suggest using puncturable encryption to achieve fine-grained forward security
with unchanging public keys: instead of deleting or ratcheting the secret key, it is possible to modify it so that
it cannot be used to decrypt a certain message. While this is an interesting approach (especially for its relative
conceptual simplicity), we focus on Signal due to its widespread adoption.

1.3. Overview

In Section 2 we give a detailed presentation of the Signal protocol. We follow this by a high-level description
of its threat model in Section 3, and a formal security model in Section 4. In Section 5 we prove security
of Signal’s core in our model. As a first analysis of a complex protocol our model has some limitations and
simplifying assumptions, discussed in detail in Section 6. We conclude in Section 7.

2. The Core Signal Protocol

Basic setup. The Signal protocol aims to send encrypted messages from one party to another. It assumes each
party has a long-term public/private key pair, referred to as the identity key. However, since the parties might
be offline at any point in time, standard authenticated key-exchange (AKE) solutions cannot be directly applied.
In particular, conventional AKE wisdom says that to achieve perfect-forward secrecy with a DH exchange, the
recipient would have to provide an ephemeral key specific for the exchange, but he might be offline at the time
of sending.

Instead, Signal implements an asynchronous transmission protocol. This is effectively achieved by requiring
potential recipients to pre-send batches of ephemeral public keys, during registration or later. When the sender
later wants to send a message, she obtains keys for the recipient from an intermediate server (which only acts
as a buffer), and performs an AKE-like protocol using the long-term and ephemeral keys to compute a message
encryption key.

This basic setup is then extended by making the message keys dependent on all previously performed
exchanges between the parties, using a combination of “ratcheting” mechanisms to form “chains”. Additionally,
further random and secret values are introduced into the computations at various points, which influence the
future message keys computed by the communicating partners.

Motivation and Scope. The Signal protocol uses an intricate design whose rationale is currently not formally
documented, although there has been substantial informal discussion on mailing lists and blog posts. Our focus
is to study the existing protocol: we aim simply to report what Signal is, not why any of its design choices
were made.

Because of the lack of a formal specification (other than the open-source code) and the historical protocol
changes, it is challenging to pin down a precise definition of the intended usage and security properties of
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Signal. Our descriptions in this section were aided by some documentation but the ultimate authority is the
implementation2 [36].

2.1. Protocol Overview

A party using Signal first registers their long-term key, as well as medium-term keys and some cached
one-time keys with a key distribution server. Two parties communicate using Signal in long-lived exchanges
called sessions. A session begins when Alice requests Bob’s long-term, medium-term and one-time credentials
from a key distribution server (perhaps over an authentic channel), optionally verifies them out-of-band, and
uses them in a proprietary key exchange protocol sometimes called the Signal Key Exchange or “TripleDH”.

The key exchange outputs a master secret, which in turn is used to derive two symmetric keys: a “root key”
and a “sending chain key”. As messages are sent and received these keys are frequently updated by passing
them through a key derivation function (KDF), at the same time deriving output keys which are used elsewhere
in the protocol.

When Alice wishes to encrypt a message for Bob, she advances her sending chain by one step, deriving
a replacement sending chain key as well as a message encryption key. She can derive subsequent message
encryption keys by repeating this process, advancing the sending chain once per message in order to derive
a new key. Similarly, when she receives a message from Bob she advances her receiving chain in order to
generate a decryption key.

The root chain is advanced through a separate mechanism: when the session is initialised, Alice also
generates an ephemeral DH key known as her “ratchet key”. She attaches this to her messages, authenticated
but not encrypted. When Bob replies to a message, he will send his own “ratchet public key”. Upon receiving a
new ratchet public key from Bob, Alice advances the root chain twice: first with the DH shared secret obtained
using her old public key, and second with that using her new. The resulting two outputs of the chain initialise
the new receiving and sending chains respectively, and the resulting root chain key replaces the original root
chain key.

Figure 3 on page 8 shows an example sequence of stages that one party might go through, with the message
encryption keys derived in each stage. For the initiator (resp. responder), mksym-ir:x,y denotes the yth symmetric
key on the xth sending (resp. receiving) chain, and mksym-ri:x,y the yth symmetric key on the xth receiving
(resp. sending) chain. We use the notation ir and ri for sending and receiving keys from the initiator of the
session’s perspective: ir is from initiator of the session to responder, so corresponds to a sending key for the
initiator and receiving key for the responder, and vice versa for ri. The notation inherits its complexity from
the underlying protocol, but it does allow us to distinctly name each session key that is generated, and will
allow us to make note of the subtly different properties of different keys.

Thus, we can separate the Signal protocol into four phases:

Registration. (Section 2.3)
At installation time (and subsequently periodically), Alice registers her identity with a key distribution
server and uploads some cryptographic data.

Session setup. (Section 2.4)
Alice requests and receives some information about Bob (either from the central server or from Bob
himself), and uses it to setup a long-lived messaging session and establish initial symmetric encryption
keys.

Symmetric-ratchet communication. (Section 2.5)
Alice uses the current symmetric encryption keys of her messaging session for communication with Bob,
passing them through a hash function on every iteration. The message keys form a type of PRF chain: a
“symmetric ratchet”.

Asymmetric-ratchet updates. (Section 2.6)
Alice exchanges DH values with Bob, generating new shared secrets and using them to begin new chains
of message keys. The exchanged DH values give rise to a sequence of shared secrets, which are hashed
into the “root chain” to form the “asymmetric ratchet”.

Alice and Bob can run many simultaneous sessions between them, each admitting an arbitrary sequence of
stages consisting of symmetric and asymmetric ratcheting. We first explain notation and primitives below, and
then discuss each of the four phases in detail in subsequent sections. At the end, we summarize the memory
contents as used by Signal.

Table 1 is a glossary to the ten different classes of keys used in the Signal protocol, and Figure 1 shows the
key derivations. Figure 2 depicts the operations executed in all stages of the protocol in a pseudocode format.

2. The tagged releases of libsignal lag behind the current codebase. The commit hash of the state of the repository as of our reading is
listed in the bibliography. Note that there are separate implementations in C, JavaScript and Java; the latter is used by Android mobile apps
and is the one we have read most carefully.
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ipkA ikA A’s long-term identity key pair

prepkB prekB B’s medium-term (signed) prekey pair

eprepkB eprekB B’s ephemeral prekey pair

epkA ekA A’s ephemeral key pair

rchpkaA rchkaA A’s ath ratchet key pair
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cksym-ir:a,y
A yth key in A’s ath send chain

cksym-ri:a,y
A yth key in A’s ath receive chain

mksym-ir:a,y
A yth message key in A’s ath send chain

mksym-ri:a,y
A yth message key in A’s ath receive chain

rkaA A’s ath root key

TABLE 1: Keys used in the Signal protocol. Asymmetric key pairs show public and private components.

cki

HMACcki(0) HMACcki(1)

HKDF(x, “message”)

mkicki+1

x

(a) KDFm, the KDF for message chain updates. Note
that new chain keys are not computed using HKDF;
instead, they use only a HMAC.

HKDF(rki, dh, “ratchet”)

rki

dh

rki+1 cki+1
first

half
second half

(b) KDFr, the KDF for root chain updates. dh is the
DH value derived for this stage update, and the result
is a new root key as well an output chain key.

Figure 1: Key derivation functions for root and chain keys in Signal: keys flow along edges, and boxes apply their functions
to their input. The diagrams depict the two functions used to take a chain key, and output a successor chain key and an
exported key. In our analysis, we treat these functions as black boxes instead of making specific assumptions. Iterating
these functions produces Signal’s chains.

2.2. Notation and Primitives

Groups. Let g denote the generator of a group G of prime order q; we write the group multiplicatively. Signal
uses Curve25519 [3].

Sessions. We denote A’s ith session by πiA.

Stages. Within a session, Signal admits a tree of various different stages (Figure 3 on page 8), and we adopt a
unified notational convention to refer to any of them. All stages are described using a term in [square brackets];
the initial stage is always [0] and contains the key exchange. Subsequent stages occur locally at Alice and Bob,
but correspond in the sense of generating matching keys.

Alice and Bob assign different roles to the stages they complete: Alice may consider some stage s as
generating a sending key, while Bob considers his version of the same stage as generating a receiving key. To
avoid persistent case distinctions, we adopt a role-agnostic naming scheme, describing stages as “-ir” if they
are used for the initiator to send to the responder, and as “-ri” if they are used for the responder to send to the
initiator. This maintains the invariant that stages with the same name generate the same key(s).

There are two types of asymmetric update as part of the asymmetric ratchet; the first uses a received ratchet
key to begin a receiving chain, and the second generates a new ratchet key to begin a sending chain. At a given
party, we count the number of asymmetric updates in a variable x; thus, we can refer to the xth update of
the first type in a session as stage [asym-ri:x], and of the second type as [asym-ir:x]. Note that the xth “-ri”
stage precedes the xth “-ir” stage, because the first asymmetric stage is of type “-ri”.

There are two types of symmetric update, “-ri” and “-ir”, depending on whether the chain to which they
belong was created by a stage of type [asym-ri:x] or [asym-ir:x]. At a given party, we count the number of
symmetric updates in the xth symmetric chain in a variable y; thus, we can refer to the yth update in the xth

symmetric chain as stage [sym-ri:x,y] or [sym-ir:x,y]
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In Signal, for a fixed x all symmetric stages which a party uses to generate sending keys in chain x occur
before the asymmetric stage x+ 1, but symmetric receiving ratchets in chain x can occur at any time after the
parent node in the graph has been established. This accommodates out-of-order message receipt. For example,
the initiator performs all stages [sym-ir:x,1], [sym-ir:x,2], . . . before stage [asym-ir:x+ 1], but may delay
stages [sym-ri:x,y] as much as necessary.

Keys. Signal distinguishes between at least ten different classes of key, so again for ease of reading we adopt
a standardised notation. Keys are written in italics and end with the letter k. For asymmetric key pairs, the
corresponding public key ends with the letters pk, and is always computed by group exponentiation with base g
and the private key as the exponent: pk = gk . If the agent A who generates a key is unclear we mark them in
subscript (kA), but omit this where it is clear.

Every stage derives new keys. To identify these keys uniquely, we write the index of the stage deriving a
key k in superscript; thus, rk0

A would be the root key derived by A in stage [0], and mksym-ri:x,y the message
key derived in stage sym-ri:x,y. Not all stages derive all keys: for example, there is no rksym-ri:x,y , since root
keys are not affected by symmetric updates. See Table 1 for a list of keys.

The naming scheme for keys is also role-agnostic: in intended operation, keys will be equal iff they have
the same name. As with stages, agents have different intended uses for the same key: for example, the initiator
would use the key mksym-ir:x,y for encrypting messages to send, and the responder would use the same key for
decrypting received messages.

In our model, there are technically no stages [sym-ir:x,0] or [sym-ri:x,0], but there are keys with these
indexes, since the first entry in each sending and receiving chain is created by the asymmetric update starting
that chain (see Figure 3). We could equivalently think of Signal only deriving message keys in symmetric stages
and allowing y = 0, in which case asymmetric stages would not derive message keys. Our formulation simply
renumbers keys, so that every stage derives a message key.

Cryptographic functions. The key derivation functions are depicted in Figure 1, and use either HMAC-SHA256
or HKDF using SHA256 [30] as indicated.

AEAD denotes an authenticated encryption scheme with associated data. In Signal, this is an encrypt-then-
MAC scheme: encryption is AES256 in CBC mode with PKCS#5 padding, and the MAC is HMAC-SHA256.
This is the same combination originally used in TextSecure v3, which was shown by Frosch et al. [23] to have
standard authenticated encryption security properties. Since our focus is on the key exchange portion, we omit
details of the AEAD and treat it in a black-box fashion.

Sign is related to the Ed25519 signature scheme [4, 43]. Again, we treat it as a black-box signature.

2.3. Registration Phase—Figure 2(a)

Upon installation (and subsequently periodically), all agents generate a number of cryptographic keys and
register themselves with a key distribution server.

Specifically, each agent generates the following DH private keys:
(i) a long-term “identity” key ik

(ii) a medium-term “signed prekey” prek
(iii) multiple short-term “one-time prekeys” eprek
The public keys corresponding to these values are then uploaded to the server, together with a signature on
prek using ik.

2.4. Session Setup Phase—Figure 2(b)

In the session-setup phase, public keys are exchanged and used to initialise shared secrets in the session
memory. The underlying key exchange protocol is a one-round DH protocol called the Signal Key Exchange3,
comprising an exchange of various DH public keys, computation of various DH shared secrets as in Figure 4,
and then application of a key derivation function. While many possible variants of such protocols have been
explored in-depth in the literature (HMQV [31], Kudla-Paterson [32], NAXOS [33] among many others), the
session key derivation used here is new and not based on one of these standard protocols, though it draws some
inspiration from [32].

Recall that for asynchronicity Signal uses prekeys: initial protocol messages which are stored at an
intermediate server, allowing agents to establish a session with offline peers by retrieving one of their cached
messages (in the form of a DH ephemeral public key).

In addition to this ephemeral public key, agents also publish a “medium-term” key, which is shared between
multiple peers. This means that even if the one-time ephemeral keys stored at the server are exhausted, the

3. The key exchange protocol was sometimes referred to as TripleDH, from the three DH shared secrets always used in the KDF
(although in most configurations four shared secrets are used). The name QuadrupleDH has also been used for the variant which includes
the long-term/long-term DH value, not as might be expected the variant which includes the one-time prekey.
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(a) Bob’s registration phase (at install time), over an authentic channel (Section 2.3)

Client B Server S

ikB , prekB
$← Zq

multiple eprekB
$← Zq

ipkB , prepkB ,SignikB
(prepkB), multiple eprepkB

(b) Alice’s session (Initiator) setup with peer Bob (Responder), over an authentic channel (Section 2.4)

Client instance πiA, stage [0] Server S
B

ipkB , prepkB ,SignikB
(prepkB)[, eprepkB ]

Client instance πiB , stage [0]ekA
$← Zq

rchk0
A

$← Zq epkA, key identifier for prepkB , rchpk0
A[, eprepkB ]

(in practice attached to initial encrypted message)
confirm possession of prekB [, eprekB ]

ms← (prepkB)ikA‖(ipkB)ekA‖(prepkB)ekA ms← (ipkA)prekB‖(epkA)ikB‖(epkA)prekB

if eprepkB then ms← ms‖(eprepkB)ekA if eprepkB then ms← ms‖(epkA)eprekB

rk1, cksym-ir:0,0 ← KDFr(ms) rk1, cksym-ir:0,0 ← KDFr(ms)

cksym-ir:0,1,mksym-ir:0,0 ← KDFm(cksym-ir:0,0) cksym-ir:0,1,mksym-ir:0,0 ← KDFm(cksym-ir:0,0)

rchk0
B

$← Zq

(c) Symmetric-ratchet communication: Alice sends a message to Bob (Section 2.5)

Client instance πiA, stage [sym-ir:x,y] Client instance πiB , stage [sym-ir:x,y]

AEADmksym-ir:x,(y−1)(message,AD = rchpkxA, ipkA, ipkB , y)

cksym-ir:x,y+1,mksym-ir:x,y ← KDFm(cksym-ir:x,y) cksym-ir:x,y+1,mksym-ir:x,y ← KDFm(cksym-ir:x,y)

(d) Asymmetric-ratchet updates: Alice and Bob start new symmetric chains with new ratchet keys (Section 2.6)

Client πiA, stage [asym-ri:x] Client πiB , stage [asym-ri:x]

tmp, cksym-ri:x,0 ← KDFr(rkx, (rchpkx−1
A )rchkx−1

B )

cksym-ri:x,1,mksym-ri:x,0 ← KDFm(cksym-ri:x,0)
rchpkx−1

B

(in practice in the associated data of a later message encrypted with mksym-ri:x,0
B )

tmp, ckr:x,0 ← KDFr(rkx, (rchpkx−1
B )rchkx−1

A )

cksym-ri:x,1,mksym-ri:x,0 ← KDFm(cksym-ri:x,0)

rchkxA
$← Zq

Client πiA, stage [asym-ir:x] Client πiB , stage [asym-ir:x]

rkx+1, cksym-ir:x,0 ← KDFr(tmp, (rchpkx−1
B )rchkxA)

cksym-ir:x,1,mksym-ir:x,0 ← KDFm(cksym-ir:x,0)
rchpkxA

(in practice in the associated data of a later message encrypted with mksym-ir:x,0
A )

rkx+1, cksym-ir:x,0 ← KDFr(tmp, (rchpkxA)rchkx−1
B )

cksym-ir:x,1,mksym-ir:x,0 ← KDFm(ckr:x,0)

rchkxB
$← Zq

Figure 2: Signal protocol including preregistration of keys. Local actions are depicted in the left and right columns, and
messages flow between them. We show only one step of the symmetric and asymmetric ratchets; they can be iterated
arbitrarily. Variables storing keys are defined in Table 1, KDFr and KDFm in Figure 1, and session identifiers in Table 2.
Gray text indicates reordered actions in our model, as discussed in Section 5. Each stage derives message keys with the
same index as the stage number, and chaining/root keys with the index for the next stage; the latter is passed as state
from one stage to the next. State info st in asymmetric stages is defined as the root key used in the key derivation, and
for symmetric stages st is defined as the chain key used in key derivation. Symmetric stages always start at y = 1 and
increment. When an actor sends consecutive messages, the first message is a DH ratchet and then subsequent messages use
the symmetric ratchet. When an actor replies, they always DH ratchet first; they never carry on the symmetric ratchet.
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Session setup
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Symmetric sending
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ratchets

0 sym-ir:0,1 sym-ir:0,2 sym-ir:0,3not present

asym-ri:1
asym-ir:1 sym-ir:1,1sym-ri:1,1sym-ri:1,2

asym-ri:2
asym-ir:2 sym-ir:2,1 sym-ir:2,2sym-ri:2,1

asym-ri:3
asym-ir:3 sym-ir:3,1sym-ri:3,1sym-ri:3,2

Figure 3: An example tree of stages that one party might use in one session of Signal. The content of each node is the
stage name; recall that “ir” denotes stages deriving a key used to send from initiator to responder, and vice versa for “ri”.
In our notation, mks denotes the message key derived by stage s. For example, mksym-ir:x,y denotes the yth symmetric key
on the xth chain, used by the initiator to encrypt messages and by the responder to decrypt them. Each chain is derived by
ratcheting as in Figure 1 with a root or chain key. For the first symmetric ratchets in a session, the initiator of the session
only has a sending chain, while the responder only has a receiving chain.

initiator responder intended use

signed prekey prekA prekB medium-term, reused across sessions

identity key ikA ikB long-term, bound to identity

one-time (pre)key ekA eprekB unique to each session, never reused

Figure 4: Diffie–Hellman private keys used in the Signal Key Exchange KDF. An edge between two private keys (e.g., ikA
and prekB) indicates that their DH value (gikA·prekB ) is included in the final KDF computation. The dashed line is optional:
it is omitted from the session key derivation if eprekB is not sent. Note the asymmetry: when Alice initiates a session with
Bob, her signed prekey is not used at all. Our freshness conditions in Section 4.3 on page 13 will be partially based on this
graph.

session will go ahead using only a medium-term key. This form of key reuse is studied in [39] and will be
modelled in this paper. Thus, session setup in the Signal protocol consists of two steps: first, Alice obtains
ephemeral values from Bob (usually via a key distribution server); second, Alice treats the received values as
the first message of a Signal key exchange, and completes the exchange in order to derive a master secret.

2.4.1. Receiving ephemerals. The most common way for Alice to receive Bob’s session-specific data is for
her to query a semi-trusted server for pre-computed values (known as a PreKeyBundle).

When Alice requests Bob’s identity information, she receives his identity public key ipkB , his current signed
prekey prepkB , and a one-time prekey eprepkB if there are any available. Signed pre-keys are stored for the
medium term, and therefore shared between everyone sending messages to Bob; one-time keys are deleted by
the server upon transmission. Alice’s initial message contains identifiers for the prekeys so that Bob can learn
which were used.

2.4.2. Building a session. Once Alice has received the above values, she generates her own ephemeral key
ekA, and computes a session key by performing three or four group exponentiations as depicted in Figure 4.
She then concatenates the resulting shared secrets and passes them through a key derivation function (KDFr,
Figure 1b) to derive an initial root key rk0 and sending chain key cks:0,0. (No DH value is passed to KDFr for
this initial invocation.) For modelling purposes, we also have Alice generate her initial sending message key
mksym-ir:0,0 (which is this stage’s session key output) and the next sending chain key cksym-ri:0,0. Finally, she
generates a new ephemeral DH key rchk0 known as her ratchet key.

For Bob to complete4 the key exchange, he must receive Alice’s public ephemeral key epkA. In the Signal
protocol, Alice attaches this value to all messages that she sends (until she receives a message from Bob, since
from such a message she can conclude that Bob received epkA). To disentangle the stages of the model, we
have Alice send epkA in a separate message; thus, once the session-construction stage is complete, both Alice
and Bob have derived their root and chain keys.

When Bob receives epkA, he first checks that he currently knows the private keys corresponding to the
identity, signed pre-, and one-time pre-key which Alice used. If so, he performs the receiver algorithm for
the key exchange, deriving the same root key rk0 and chain key (which he records as ckr:0,0). For modelling

4. If the initial message from Alice is invalid, Bob will in fact not complete a session. This does not affect our analysis, which considers
only secrecy of session keys, but may become important if e.g. analysing deniability.
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purposes, we also have Bob generate his initial receiving message key mksym-ir:0,0 (which is this stage’s session
key output) and the next receiving chain key cksym-ir:0,0.

2.5. Symmetric-Ratchet Phase—Figure 2(c)

Two sequences of symmetric keys will be derived using a PRF chain, one for sending and one for receiving.
The symmetric chains—to the left and the right in Figure 3—may be advanced for one of two reasons: either
Alice wishes to send a new message, or she wishes to decrypt a message she has just received.

In the former case, Alice takes her current sending chain key cksym-ir:x,y and applies the message key
derivation function KDFm to derive two new keys: an updated sending chain key cksym-ir:x,(y+1) and a sending
message key mksym-ir:x,y . Alice uses the sending message key to encrypt her outgoing message, then deletes it
and the old sending chain key. This process can be repeated arbitrarily.

When Alice receives an encrypted message, she checks the accompanying ratchet public key to confirm
that she has not yet processed it, and if not she then performs an asymmetric ratchet update, described below.
Regardless, she then reads the metadata in the message header to determine the index of the message in the
receiving chain, and advances the receiving chain as many steps as is necessary to derive the required receiving
message key; by construction, Alice’s receiving message keys equal Bob’s sending keys. Unlike for the sending
case, Alice cannot delete receiving message keys immediately; she must wait to receive a message encrypted
under each one. (Otherwise, out-of-order messages would be undecryptable since their keys would have been
deleted.) The open source implementation of Signal has a hard-coded limit of 2000 messages or five asymmetric
updates, after which old keys are deleted even if they have not yet been used.

2.6. Asymmetric-Ratchet Phase—Figure 2(d)

The final top-level phase of Signal is the asymmetric-ratchet update. In this phase, Alice and Bob take
turns generating and sending new DH public keys and using them to derive new shared secrets. These are
accumulated in the asymmetric ratchet chain, from which new (symmetric) message chains are initialized.

When Alice receives a message from Bob, it may be accompanied by a new (previously unseen) ratchet
public key rchpkx−1

B . If so, this triggers Alice to enter her next asymmetric ratchet phase [asym-ir:x]. Note
that Alice already has stored a previously generated private ratchet key rchkx−1

A . Before decrypting the message,
Alice updates her asymmetric ratchet as per Figure 2. This consists of two steps. In the first step, denoted rchkxA,
deriving two DH shared secrets [asym-ri:x], she computes a first DH shared secret (between the received
ratchet public key and her old ratchet private key), and combines this with the root chain key to derive a new
receiving chain key and receiving message key. In the second step, denoted [asym-ir:x], she computes a second
DH shared secret (between the received ratchet public key and her new ratchet private key), and combines this
with the root chain key and the first DH shared secret to derive a new sending chain key and sending message
key, as well as the root chain key for the next asymmetric stage.

The message keys in the first and second steps have slightly different security properties, so they are recorded
in our model as belonging to distinct stages [asym-ri:x] and [asym-ir:x].

Alice then sends her new ratchet public key rchpkxA along with future messages to Bob, and the process
continues indefinitely.

Bob does the corresponding operations shown in Figure 2 to compute the same DH shared secrets and
the corresponding root, chain, and message keys. While symmetric updates can be triggered either by Alice
(the session initiator) or Bob (the session responder) and thus could be as in Figure 2(c) or its horizontal flip,
asymmetric updates can only be triggered by Alice (the session initiator) receiving a new (previously unseen)
ratchet key from Bob (the session responder) and not the other way around, so Figure 2(d) will never be
horizontally flipped.

2.7. Memory Contents

Signal is a stateful protocol, and a number of different values are available in Alice’s memory at any time.
Alice’s global state—shared between all of her sessions—contains four different collections of values: identity
keys (Alice’s own identity private key, and the identity public keys of all her peers), signed prekeys, ephemeral
keys, and a list of all sessions.

Furthermore, each session in the collection of sessions above contains the keys used by the protocol.
Specifically, a session always has its agent’s identity private key and its peer’s identity public key, a current
root and sending chain key, and a current ratchet key. In addition, it has some number of receiving chain and
message keys, corresponding to out-of-order messages not yet received from the peer.
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3. Threat Models

We will analyze Signal in the context of a fully adversarially-controlled network. The high-level properties
we aim to prove are secrecy and authentication of message keys. Authentication will be implicit (only the
intended party could compute the key) rather than explicit (proof that the intended party did compute the key).
Forward secrecy and “future” secrecy are not explicit goals; instead, derived session keys should remain secret
under a variety of compromise scenarios, including if a long-term secret has been compromised but a medium or
ephemeral secret has not (forward secrecy) or if state is compromised and then an uncompromised asymmetric
stage later occurs (“future” or post-compromise secrecy [11]). We assume out-of-band verification of identity
keys and medium-term keys, and do not consider side channel attacks on implementations.

The finer details of our threat model are ultimately encoded in the so-called freshness predicate, specified
in Section 4.3 on page 13, where we provide further information on our threat model design choices.

3.1. On our choice of Threat Model

At the time of writing, Signal does not have a defined threat model nor any formally-specified security
properties. As part of our analysis, we therefore had to decide which threat model to assume, based on the
informal claims made in some of the documentation. In particular, the README document accompanying the
source code [36] states that Signal “is a ratcheting forward secrecy protocol that works in synchronous and
asynchronous messaging environments”. A separate GitHub wiki page [42] provides some more goals (forward
and future secrecy5, metadata encryption and detection of message replay/reorder/deletion) but to the best of
our knowledge no mention of message integrity or authentication is made other than the use of AEAD cipher
modes.

We believe that the threat model we have chosen is realistic, although we discuss later some directions in
which it could be strengthened. Parallels can be drawn, for example, with the TLS 1.3 standard [45, Appendix
D], which discusses the following properties (where the network is fully adversarially-controlled, and where the
adversary may compromise the keys of some participants).

Correctness If Alice and Bob complete an exchange with each other then they should derive the same keys;
distinct exchanges should derive distinct keys.

Secrecy If Alice and Bob complete an exchange to generate a key k, nobody other than Alice and Bob should
be able to learn anything about k.

(Implicit) Authentication If Alice believes that she shares the key k with Bob, nobody other than Bob should
be able to learn anything about k. Note that this property is implied by secrecy.

Forward secrecy An attacker who compromises Alice’s long-term secret after a session is complete should
not be able to learn anything about the keys derived in that session.

Identity hiding A passive adversary should not learn the identity of partners to a session.

It is common in the authenticated key exchange literature to assume a trusted public key infrastructure (PKI),
though some models allow the adversary more control [8]. In Signal the PKI is combined with the network, in
the sense that the same server distributes identity and ephemeral keys. Thus, in some sense assuming a trusted
PKI also restricts the attacker’s control over particular sessions.

Some claims have been made about privacy and deniability [48] in Signal, but these are relatively abstract.
In general, signatures are used only for the signed pre-key in the initial handshake, meaning that full deniability
[16] is not possible but peer deniability Cremers and Feltz [13] (inability of an observer to prove that Alice
intended to communicate with Bob) may hold.

Additionally, one might consider a threat model that includes imperfect ephemeral random number generators.
Since no static-static DH shared secret is included in the KDF of Signal, an adversary who knows all ephemeral
values can compute all secrets. However, Signal continuously updates state with random numbers, so we capture
in our threat model the fact that it is possible to make some security guarantees, if some, but not all, random
numbers are compromised.

The trust assumptions on the registration channel are not defined; Signal specifies a mandatory method for
participants to verify each other’s identity keys through an out-of-band channel, but most implementations do
not require such verification to take place before messaging can occur. Without it, an untrusted key distribution
server can of course impersonate any agent.

Signal’s mechanisms suggest a lot of effort has been invested to protect against the loss of secrects used in
specific communications. If the corresponding threat model is an attacker gaining (temporary) access to the
device, it becomes crucial if certain previous secrets and decrypted messages can be accessed by the attacker or
not: generating new message keys is of no use if the old ones are still recoverable. This, in turn, depends on
whether deletion of messages and previous secrets has been effective. This is known to be a hard problem,
especially on flash-based storage media [44], which are commonly used on mobile phones.

5. Future secrecy is defined as “a leak of keys to a passive eavesdropper will be healed by introducing new DH ratchet keys” [42].
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4. Security Model

In this section we present a security model for multi-stage key exchange, which we then apply to model
Signal’s initial key exchange as well as its ratcheting scheme. Our model allows multiple parties to execute
multiple, concurrent sessions; each session has multiple stages. For Signal, the session represents a single chat
between two parties, and each stage represents a new application of the ratchet. Figure 2 depicts, roughly, a
single session. There are three types of stage in Signal: the initial key exchange, asymmetric ratcheting, and
symmetric ratcheting. In addition, ratcheting stages differ based on whether they are used for generating keys
for the initiator to send to the responder (denoted -ir) or vice versa (denoted -ri). For our purposes, every stage
generates a session key; depending on the stage, this will be either the sending or the receiving message key.

On the choice of model. We choose to study the security of Signal in the traditional key exchange notion of key
indistinguishability (albeit a multi-stage variant), as opposed to a monolithic secure channel notion such as
authenticated and confidential channel establishment (ACCE) [26]. It is often preferable to analyze the key
exchange portion independently, and then compose this with authenticated encryption to establish a secure
channel [10]; monolithic notions like ACCE are necessary for protocols which use the session key (or values
derived from it) in the channel establishment, thus preventing a clean separation for composition. While Signal
does use intermediate values between stages, the sending and receiving message keys mksym-ir:x,y,mksym-ri:x,y

are not used in subsequent key exchange operations, and thus the key indistinguishability security notion is
achievable. This means that unlike in [18, 21], we do not need to modify the protocol algorithm to ensure that
the result of testing a session remains consistent with future values.

Another subtlety compared to the multi-stage key exchange model of Fischlin and Günther is that QUIC
and TLS 1.3 demand a linear sequence of stages, whereas Signal has a tree of stages, as seen in Figure 3.

Model notation. We present our model as a pseudocode experiment where the primitive in question (the
multi-stage key exchange protocol) is modelled as a tuple of algorithms, and then an adversary interacts with the
experiment. This approach is commonly used in many other areas of cryptography, but less so in key exchange
papers. Compared with key exchange papers in which the security model and experiment is presented in textual
format, we argue that this approach makes it easier to see the precise nature of the experiment, and easier to
see subtleties in variations.

We adopt the following notational and typographic conventions. Monotype text denotes constants; serif text
denotes algorithms and variables associated with the actual protocol (variables are italicized); and sans-serif
text denotes algorithms, oracles, and variables associated with the experiment. Algorithms and Oracles start
with upper-case letters; variables start with lower-case letters. We use object-oriented notation to represent
collections of variables. In particular, we will use πiu to denote the collection of variables that party u uses in its
ith protocol execution (“session”). To denote the variable v in stage s of party u’s ith session, we write πiu.v[s];
note s is not (necessarily) a natural number. For Signal, s is [0] for the session setup stage; [sym-ir:x,y] or
[sym-ri:x,y] for symmetric sending or receiving stages; or [asym-ri:x] or [asym-ir:x] for the 1st and 2nd
portions of the xth asymmetric stage. (See also Figure 3 and Figure 2.)

DH protocols conventionally use both ephemeral keys (unique to a session) and long-term keys (in all
sessions of an agent). Signal’s prekeys do not fit cleanly into this separation, and in order to follow the
conventions of the field we refer to the reused DH keys as “medium-term keys”.

Generality of our model. Some aspects of our model are quite general, and others are very specific to Signal.
Our formulation of a multi-stage key exchange protocol as a tuple of algorithms, as well as the main experiment
and oracles in Figure 5, should be applicable to any multi-stage key exchange protocol that includes semi-static
(medium term) keys. However, our freshness definition is highly customized to Signal via the clean clauses in
Definitions 5, 6 and 8, since we aim to precisely characterize the security properties of Signal session keys.

The level of generality is an important decision when designing a security model for a protocol like Signal:
on one hand, a general model allows analysis of and comparison to other protocols; on the other, of necessity it
does not allow fine-grained statements about the specific protocol under consideration. Our model lies towards
the centre of this spectrum: we aim to keep the overall model structure relatively independent of Signal (though
of necessity we added support for the Signal medium-term keys), while the cleanness predicates described later
allow us to make fine-grained assertions which capture as much as possible.

Medium-term key authentication. Signal’s medium-term keys are signed by the same identity key used for
DH, breaking key separation. Although there has been some analysis of this form of key reuse [15, 41], it is
nontrivial to prove secure. We instead enforce authentication by fiat, allowing the adversary to select any of the
medium-term keys owned by an agent, but not to inject their own. In the game, this is implemented as an extra
argument when the adversary creates a new session.

4.1. Multi-Stage Key Exchange Protocol

Definition 1 (Multi-stage key exchange protocol). A multi-stage key exchange protocol Π is a tuple of algorithms,
along with a keyspace K and a security parameter λ indicating the number of bits of randomness each session
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requires. The algorithms are:
• KeyGen()

$7→ (ipk, ik): A probabilistic long-term key generation algorithm that outputs a long-term public
key / secret key pair (ipk, ik). In Signal, these are called “identity keys”.

• MedTermKeyGen(ik)
$7→ (prepk, prek): A probabilistic medium-term key generation algorithm that takes

as input a long-term secret key ik and outputs a medium-term public key / secret key pair (prepk, prek).
In Signal, these are called “signed prekeys”; in the key exchange literature, they are sometimes called
“semi-static keys”.
• Activate(ik, prek, role) → (π ′,m′): A probabilistic protocol activation algorithm that takes as input a

long-term secret key ik, a medium-term secret key prek, and a role role ∈ {init, resp}, and outputs a
state π ′ and (possibly empty) outgoing message m′.

• Run(ik, prek, π,m)→ (π ′,m′): A probabilistic protocol execution algorithm that takes as input a long-term
secret key ik, a medium-term secret key prek, a state π , and an incoming message m, and outputs an
updated state π ′ and (possibly empty) outgoing message m′.

Definition 2 (State). A state π is a collection of the following variables:
• π.role ∈ {init, resp}: the instance’s role
• π.peeripk: the peer’s long-term public key
• π.peerprepk: the peer’s medium-term public key
• π.status[s] ∈ {ε, active, accept, reject}: execution status for each stage s
• π.k[s] ∈ K: the session key output by stage s
• π.st[s]: any additional protocol state values that a previous stage gives as input to stage s (defined as part

of the protocol).
• π.sid[s]: the identifier of stage s of session π ; this is view the actor has of the session π in stage s, as

defined in Figure 2.
• π.type[s]: the type of freshness required for this stage to have security. For Signal, this is triple,
triple+DHE, asym-ir, asym-ri, sym-ir or sym-ri.

The state above models “real” variables that an implementation would actually keep track of and use in the
execution of the protocol. We will supplement this in the experiment with additional variables that are artificially
added for the experiment. These are administrative identifiers, used to formally reason about what is happening
in our security experiment, eg., to identity sessions and partners.

4.2. Key Indistinguishability Experiment

Having defined what a multi-stage key exchange protocol is, we can now define the experiment for key
indistinguishability.

As is typical in key exchange security models, the experiment establishes long-term keys and then allows
the adversary to interact with the system. The adversary can direct parties to start sessions with particular
medium-term keys, and can control the delivery of messages to parties (including modifying, dropping, delaying,
and inserting messages). The adversary can learn various long-term or per-session secret information from
parties via reveal queries, and at any point can choose a single stage of a single session to “test”. They are then
given either the real session key from this stage, or a random key from the same keyspace, and asked to decide
which was given. If they decide correctly, we say they win the experiment. This is formalized in the following
definition and corresponding experiment.

Definition 3 (Multi-stage key indistinguishability). Let Π be a key exchange protocol. Let nP, nM, nS, ns ∈ N.
Let A be a probabilistic algorithm that runs in time polynomial in the security parameter. Define

Advms-ind
Π,nP,nM,nS,ns(A) = Pr

[
Expms-ind

Π,nP,nM,nS,ns(A) = 1
]
− 1/2

where the security experiment Expms-ind
Π,nP,nM,nS,ns(A) is as defined in Figure 5. Note nS and ns are upper bounds

on the number of sessions per party and number of stages per session that can be established. We call an
adversary efficient if it runs in time polynomial in the security parameter.

Note that Expms-ind includes the following global variables:
• b: a challenge bit
• tested = (u, i, s) or ⊥: recording the inputs to the query Test(u, i, s) or ⊥ if no Test query has happened

Furthermore, Expms-ind extends the per-session state πiu with the following experiment variables:
• πiu.rand[s] ∈ {0, 1}λ: random coins for πiu’s sth stage
• πiu.peerid ∈ {1, . . . , nP}: the identifier of the alleged peer
• πiu.peerpreid ∈ {1, . . . , nM}: the index of the alleged peer’s medium-term key
• πiu.rev_session[s] ∈ {true, false}: whether RevSessKey(u, i, s) was called or not; default false
• πiu.rev_random[s] ∈ {true, false}: whether RevRand(u, i, s) was called or not; default false
• πiu.rev_state[s] ∈ {true, false}: whether RevState(u, i, s) was called or not; default false
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Expms-ind
Π,nP,nM,nS,ns

(A):

1: b
$← {0, 1}

2: tested← ⊥
3: // generate long-term and semi-static keys
4: for u = 1 to nP do
5: (ipku, iku)

$← KeyGen()
6: for preid = 1 to nM do
7: (prepkpreidu , prekpreidu )

$← MedTermKeyGen(iku)
8: pubinfo← (ipk1, . . . , ipknP , prepk1

1, . . . , prepknMnP )

9: b′
$← ASend,Rev∗,Test(pubinfo)

10: if (tested 6= ⊥) ∧ fresh(tested) ∧ b = b′ then
11: return 1 // the adversary wins
12: else
13: return 0 // the adversary loses

Send(u, i,m):

1: if πiu = ⊥ then
2: // start new session and record intended peer
3: parse m as (πiu.preid, role)

4: πiu. ~rand
$← {0, 1}nS×λ

5: (πiu,m
′) ← Activate(iku, prekπ

i
u.preid
u , role;πiu.rand[0])

6: return m′

7: else
8: s← πiu.stage
9: (πiu,m

′)← Run(iku, prekπ
i
u.preid
u , πiu,m;πiu.rand[s])

10: return m′

RevSessKey(u, i, s):

1: πiu.rev_session[s]← true
2: return πiu.k[s]

RevLongTermKey(u):
1: rev_ltku ← true
2: return iku

RevMedTermKey(u, preid):
1: rev_mtkpreidu ← true
2: return prekpreidu

RevRand(u, i, s):

1: πiu.rev_random[s]← true
2: return πiu.rand[s]

RevState(u, i, s):

1: πiu.rev_state[s]← true
2: return πiu.st[s]

Test(u, i, s):
1: // can only call Test once, and only on accepted stages
2: if (tested 6= ⊥) or (πiu.status[s] 6= accept) then
3: return ⊥
4: tested← (u, i, s)
5: // return real or random key depending on b
6: if b = 0 then
7: return πiu.k[s]
8: else
9: k′

$← K
10: return k′

Figure 5: Security experiment for adversary A against multi-stage key indistinguishability security of protocol Π.

We are working in the post-specified peer model, where the peer’s identity is learned by the actor during
the execution of the protocol, by virtue of learning the peer’s public key; and similarly for the peer’s semi-static
key. Certain aspects of the experiment require the administrative index of the corresponding key, and thus,
we assume that πiu.peerid is set to the corresponding index upon πiu.peeripk being set; and similarly for the
semi-static key index πiu.peerpreid upon πiu.peerprepk being set. (Recall that experiment-only variables are in
sans-serif.)

4.2.1. Session identifiers. We define the session identifiers sid[s] for each stage [s] of Signal in Table 2. It is
important to note that these session identifiers only exist in our model, not in the protocol specification itself.
We use them to we define restrictions on the adversary’s allowed behaviour in our model, so that we can make
precise security statements: we will generally restrict the adversary from making queries against any session
with the same session identifier as the Test session. If two sessions have equal session identifiers we say that
they are “matching”.

The precise components of the session identifiers are crucial to our definition of security: the more information
is included in the session identifier, the more specific the restriction on the adversary and hence the stronger
the security model. In particular, we do not include identities, because they are not included in Signal’s key
derivation or associated data of encrypted messages. This means that the unknown key share attack against
TextSecure [23] is not considered an attack in our model: Alice’s session with Eve will have the same session
identifier as Bob’s session with Alice.

4.3. Freshness

From a key exchange perspective, the novelty of Signal is the different security goals of different stages’
session keys. The subtle differences between those security goals are captured in the details of the threat model.
Previously, we provided the adversary with powerful queries with which it can break any protocol. We now
define the so-called freshness predicate fresh to constrain that power, effectively specifying the details of the
threat model.

Our goal of the fresh predicate is to describe the best security condition that might be provable for each of
Signal’s message keys based on the protocol’s design; here, “best” is with respect to the maximal combinations
of secrets learned by the adversary.

The main motivation for our fresh predicate for the initial stages comes from observing Figure 4 on page 8.
In the graph, the edges can be seen as the individual secrets established between initiator and responder, on
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name sid

sid[0]
(triple : ipki, ipkr, prepkr, epki) if type[0] = triple

(triple+DHE : ipki, ipkr, prepkr, epki, eprepkr) if type[0] = triple+DHE

sid[asym-ri:x]
sid[0] ‖ (asym-ri : rchpk0

i , rchpk0
r) if x = 1

sid[asym-ir:x− 1] ‖ (asym-ri : rchpkx−1
r ) if x > 1

sid[asym-ir:x] sid[asym-ri:x] ‖ (asym-ir : rchpkxi ) if x > 0

sid[sym-ri:x,y]
does not exist if x = 0

sid[asym-ri:x] ‖ (sym-ri : y) if x > 0

sid[sym-ir:x,y]
sid[0] ‖ (sym : y) if x = 0

sid[asym-ir:x] ‖ (sym-ir : y) if x > 0

TABLE 2: Definition of session identifiers sid[s] for an arbitrary stage s. Since our stages are named role-agnostically, the
definitions for initiator and responder stages coincide; we use i to refer to the identity of the initiator and r for that of the
responder. For example, if Alice believes she is responding to Bob, then ipki denotes Bob’s identity public key and ipkr
denotes Alice’s. The initial asymmetric stage sid contains two ratchet keys (instead of one) since they are not used in the
initial session key derivation and thus are not contained in sid[0]. We note that sid[sym-ir:x,y] for x = 0 does not exist
because the receiver never starts a symmetric chain immediately after the handshake, always first performing a DH ratchet.

which the secrecy of the session keys is based. If the adversary cannot learn the secret corresponding to one of
these edges, it cannot compute the session key. The adversary can learn the secret corresponding to an edge if
it can compromise one of the two endpoints. Thus, if an adversary can learn, e.g., the initiator A’s ikA and
ekA, it can derive the secrets corresponding to all edges. A similar observation can be made for the responder.
However, after keys are updated, the situation changes, since additional secrets are introduced, and the adversary
may no longer have enough information. Hence we define modified freshness conditions for subsequent stages,
thereby encoding Signal’s post-compromise security properties.

We define our freshness conditions to exactly exclude those cases for which we can directly observe that the
protocol design offers no protection. For example, the design does not include an edge between the long-term
keys of the parties (sometimes referred to as the static Diffie-Hellman key). This implies that if the long-term
keys are secret, but all generated randomness in the handshake is compromised, Signal offers no protection,
since all edges become compromised. Because our freshness conditions are based on fig. 4 and the subsequent
key updates, we do not consider this scenario an attack but rather a direct consequence of the design. In this
work we aim to prove that, working from the design choices made, Signal indeed achieves the best it can
(without introducing further elements in the key derivation function).

The freshness predicate fresh for our experiment works hand-in-hand with a variety of sub-predicates
(cleantriple, cleantriple+DHE, cleanasym-ir, cleanasym-ri, cleansym-ir and cleansym-ri) which are highly specialized
to Signal to capture the exact type of security achieved Signal’s different types of stages. We define cleanness
below.

Definition 4 (Freshness). Define the predicate fresh as follows:

fresh(u, i, s) = (πiu.status[s] = accept)

∧ ¬πiu.rev_session[s]

∧
(
∀ j : πiu.sid[s] = πjπiu.peerid

.sid[s] =⇒ ¬πjπiu.peerid.rev_session[s]
)

∧ cleanπiu.type[s](u, i, s)

Note that fresh and its sub-clauses has access to all variables in the experiment (global, user, session, and stage).

4.3.1. Session setup stage [0]. Intuitively, a triple-DH or triple-DH+DHE key exchange should be secure as
long as at least one of its DH shared secrets is secure; thus the clauses of cleantriple and cleantriple+DHE
correspond to those components. Note that cleantriple and cleantriple+DHE only need to be defined for the initial
key exchange, i.e., stage [0].

14



Definition 5 (cleantriple). Within the same context as Definition 4, define

cleantriple(u, i, [0]) = cleanLM(u, i)

∨ cleanEL(u, i, 0)

∨ cleanEM(u, i, 0)

Definition 6 (cleantriple+DHE). Within the same context as Definition 4, define

cleantriple+DHE(u, i, [0]) = cleantriple(u, i, [0])

∨ cleanEE(u, i, 0, 0)

For the sub-clauses cleanXY in the above two definitions, our convention is that initiator’s key is of type X
and the responder’s key of type Y, where the possible types are L, M, and E for long-term (ik), medium-term
(prek), and ephemeral (ek) keys respectively, as in Figure 4. This necessitates the two definitions below of
cleanLM/cleanEL/cleanEM for when the tested session is the initiator or responder.

These three definitions are straightforward for initiator sessions. For responder sessions, the difficult part is
that the ephemeral key is now the peer’s, not the actor’s: to ensure that it is not known by the adversary, we
have to ensure the peer session’s randomness has not been revealed (identifying the peer session using session
identifiers), and that key actually has to come from an honest peer (meaning the peer session must exist). The
following clause helps identify that precise situation:

cleanpeerE(u, i, s) =
(
∀ j : πiu.sid[s] = πjπiu.peerid

.sid[s] =⇒ ¬πjπiu.peerid.rev_random[s]
)

∧ ∃ j : πiu.sid[s] = πjπiu.peerid
.sid[s]

Thus prepared, we can define our various clean predicates. We remark here that this is a non-trivial restriction
on the adversary: if the medium-term key is corrupted then we do not permit an attack impersonating Alice to
Bob: since the only randomness in a TripleDH handshake is from the initiator (and there is no static-static DH
secret), such an attack will succeed.

cleanLM(u, i) =

{
¬rev_ltku ∧ ¬rev_mtk

πiu.peerpreid

πiu.peerid
πiu.role = init

¬rev_ltkπiu.peerid ∧ ¬rev_mtkπ
i
u.preid
u πiu.role = resp

cleanEL(u, i, [0]) =

{
¬πiu.rev_random[0] ∧ ¬rev_ltkπiu.peerid πiu.role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_ltku πiu.role = resp

cleanEM(u, i, [0]) =

{
¬πiu.rev_random[0] ∧ ¬rev_mtk

πiu.peerpreid

πiu.peerid
πiu.role = init

cleanpeerE(u, i, [0]) ∧ ¬rev_mtkπ
i
u.preid
u πiu.role = resp

cleanEE(u, i, s, s
′) =

{
¬πiu.rev_random[s] ∧ cleanpeerE(u, i, s

′) πiu.role = init

cleanpeerE(u, i, s) ∧ ¬πiu.rev_random[s′] πiu.role = resp

Since we reveal randomness instead of specific keys, this final predicate applies to both the ephemeral keys and
the ratchet keys, a fact which we shall use later when defining cleanness of asymmetric stages.

4.3.2. Asymmetric stages [asym-ir:x]/[asym-ri:x]. In Signal, keys are updated via either symmetric or
asymmetric ratcheting. Asymmetric ratcheting introduces new DH shared secrets into the state, whereas
symmetric ratcheting solely applies a KDF to existing state.

It will be helpful to have the following predicate:

Definition 7 (cleanstate). Within the same context as Definition 4, define

cleanstate(u, i, s, s
′) = ¬πiu.rev_state[s]

∧
(
∀ j : πiu.sid[s] = πjπiu.peerid

.sid[s′]

=⇒ ¬πjπiu.peerid.rev_state[s′]
)

For brevity, we will write cleanstate(u, i, s) as a shorthand for cleanstate(u, i, s, s).
The state reveal query reveals additional state information that a previous stage gives as input to stage s.

For Signal, we define this to mean for asymmetric stages, a state reveal query reveals the root key used in the
session key computation that was derived in the previous stage, and for symmetric stages, the state reveal query
reveals the chain key derived in the previous stage.

During asymmetric ratcheting, there are actually two substages, in which keys with slightly different
properties are derived. In the first substage, the parties apply a KDF to two pieces of keying material: the root
key derived at the end of the previous asymmetric stage, and a DH shared secret derived from both party’s
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previous ratcheting public keys. Keys from this substage are marked with sid[asym-ri:x]; they should be secure
if either of the two pieces is unrevealed, which is what type asym-ri captures. In the second substage, the
parties effectively apply a KDF to three pieces of keying material: the root key and DH shared secret from
the first substage, as well a DH shared secret derived from one party’s previous ratcheting public key and one
party’s new ratcheting public key. Keys from this substage are marked with sid[asym-ir:x] and should be
secure if at least one of the three pieces is unrevealed, which is what type asym-ir captures.

Definition 8 (cleanasym-ir, cleanasym-ri). Within the same context as Definition 4, let sir = [asym-ir:x],
sri = [asym-ri:x], s′ir = [asym-ir:x− 1] and s′ri = [asym-ri:x− 1]. Define

cleanasym-ri(u, i, sri) =

cleanEE(u, i, [0], [0]) ∨
(
cleanstate(u, i, sri) ∧ cleanπiu.type[0](u, i, [0])

)
x = 1

cleanEE(u, i, s
′
ri, s

′
ir) ∨

(
cleanstate(u, i, sri) ∧ cleanasym-ir(u, i, s

′
ir)
)

x > 1

cleanasym-ir(u, i, sir) =

cleanEE(u, i, sri, [0]) ∨
(
cleanstate(u, i, sir) ∧ cleanasym-ri(u, i, sri)

)
x = 1

cleanEE(u, i, sri, s
′
ir) ∨

(
cleanstate(u, i, sir) ∧ cleanasym-ri(u, i, sri)

)
x > 1

These clauses capture the “future secrecy” goal of Signal: if a device had been compromised at some prior
time (i.e., the party’s long-term key, past states, and past ephemeral keys are all compromised, and thus neither
the second disjuncts nor cleanEE(u, i, s′ir, s

′
ri) are satisfied), but the current ephemeral keys of both parties are

uncompromised and honest (cleanEE(u, i, sir, sri) is satisfied) then the stage is clean. Since our security property
requires that the adversary cannot learn keys derived from clean stages, this captures post-compromise security.

Note that cleanEE is used twice (because cleanness of ephemerals is defined as cleanness of the random
numbers): once to show that the randomness is clean when generating ephemerals for the initial key exchange,
and once to show that it is clean when generating the first ratchet key pair.

4.3.3. Symmetric stages [sym-ir:x,y], [sym-ri:x,y]. For stages with only symmetric ratcheting, new session
keys should be secure only if the state is unknown to the adversary: this demands that all previous states in this
symmetric chain are uncompromised, since later keys in the chain are computable from earlier states in the
chain. Thinking recursively, this means that the previous stage’s key derivation should have been secure, and
that the adversary has not revealed the state linking the previous stage with the current one.

While the symmetric sending and receiving chains derive independent keys and are triggered differently
during Signal protocol execution, their security properties are identical and captured by the following predicate;
the different forms of the predicate are due to needing to properly name the “preceding” stage.

Definition 9 (cleansym). Within the same context as Definition 4, there are different freshness conditions on the
symmetric part, depending on whether the symmetric stage is used for a message from initiator to responder or
vice versa. Moreover, the symmetric stages arising from the initial handshake (x = 0) and from subsequent
asymmetric stages (x > 0) are subtly different.

Specifically, for sym-ir we have three cases. Writing s = [sym-ir:x,y],

cleansym-ir(u, i, s) = cleanstate(u, i, s, s) ∧


cleanπiu.type[0](u, i, [0]) x = 0, y = 1

cleanasym-ir(u, i, [asym-ir:x]) x > 0, y = 1

cleansym-ir(u, i, [sym-ir:x,y − 1]) x ≥ 0, y > 1

For sym-ri we have two cases (since there is no stage of type sym-ri immediately following the initial
handshake). Writing s = [sym-ri:x,y],

cleansym-ri(u, i, s) = cleanstate(u, i, s, s) ∧

{
cleanasym-ri(u, i, [asym-ri:x]) x > 0, y = 1

cleansym-ri(u, i, [sym-ri:x,y − 1]) x > 0, y > 1

We may write cleansym to denote cleansym-ir or cleansym-ri where it is clear which one we mean.

5. Security Analysis

In this section we prove that Signal is a secure multi-stage key exchange protocol in the language of
Section 4, under standard assumptions on the cryptographic building blocks.

To formally prove security as in Section 4, we must write out each algorithm compromising the Signal
“protocol” in the sense of Definition 1. For the sake of brevity we shall refrain from writing full pseudocode for
all of them—Figure 2 contains most of the important algorithms—but we summarise the key points below.

We note as well a few minor reorganizations we make in Figure 2 compared to the actual implementation of
Signal. We consider Signal to generate the first message keys for each chain at the same time that it initialises
the chain, allowing us to consider these message keys as the session keys of the asymmetric stages. Similarly,
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we consider Bob to send his own one-time prekey eprepkB instead of relaying it via the server. We mark these
extra steps in gray in Figure 2.

KeyGen and MedTermKeyGen consist of uniform random sampling from the group.

Activate depends on the invoked role. Our prekey reorganization described above means that the roles of
initiator and responder are technically reversed: although intuitively Alice initiates a session in our presentation,
in fact Bob sends the first message, namely his prekeys (first right-to-left flow of Figure 2(b). Thus, the activation
algorithm for the responder (Bob) outputs a single one-time prekey and awaits a response. The activation
algorithm for the initiator (Alice) outputs nothing and awaits incoming prekeys.

Run is the core protocol algorithm. It admits various cases, which we briefly describe. If the incoming message
is the first, Run builds a session as described previously: for Alice, it operates as in the left side of Figure 2(b)
and outputs a message containing epkA; for Bob, it operates as in the right side of Figure 2(b) and outputs
nothing.

After that, there are two cases: Run is either invoked to process an incoming message, or to encrypt an
outgoing one. We distinguish between incoming ratchet public keys (causing asymmetric updates) and incoming
messages (causing symmetric updates).

(i) Outgoing message. Perform a symmetric sending update, modifying the current sending chain key and
using the resulting message key as the session key (left side of Figure 2(c)).

(ii) Incoming ratchet public key. If this ratchet public key has not been processed before, perform an asymmetric
update using it to derive new sending and receiving chain keys as in Figure 2(d). Advance both chains by
one step, and output the message keys as the session key for the two asymmetric sub-stages as indicated
in the figure.

(iii) Incoming message. Use the message metadata to determine which receiving chain should be used for
decryption, and which position the message takes in the chain. Advance that chain (according to the right
side of Figure 2(c)) as many stages as necessary (possibly zero), storing for future use any message keys
that were thus generated. Return as the session key the next receiving message key.

In the Signal protocol, old but unused receiving keys are stored at the peer for an implementation-dependent
length of time, trading off forward security for transparent handling of outdated messages. This of course
weakens the forward secrecy of the keys, though their other security properties remain the same. We choose
not to model this weakened forward secrecy guarantee, passing only the latest chaining key from stage to stage.

With these definitions, we can consider the advantage of an adversary in a multi-stage key exchange security
game against our model of the Signal protocol. With definitions in the appendix, our core theorem thus states:

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under the GDH assumption
and assuming all KDFs are random oracles. That is, if no efficient adversary can break the assumptions
with non-negligible probability, then no efficient adversary can win the multi-stage key indistinguishability
security experiment for Signal (and thereby distinguish any fresh message encryption key from random) with
non-negligible probability.

Proof (sketch). We give here a proof sketch. The full details can be found in the Appendix. The proof considers
of each stage type and sub-clause exhaustively, and is structured using the sequence-of-games technique.

Stage 0. We start by proving the security of the stage 0 key that is output by the triple key-exchange during
session setup. We show this via taking cases over the disjuncts in the cleantriple clause—over the different ways
the session could be clean—noting that one of cleanLM(u, i), cleanEL(u, i, 0), cleanEM(u, i, 0) must be upheld.

We bound each of these probabilities in turn by the advantage of reduction algorithms to the security
experiments of our primitives—to DH security using the GDH and ROM assumptions.

Asymmetric stages. Next we consider the security of a stage s key such that stage s has stage type asym-ir or
asym-ri. Again, we take cases over the different ways to satisfy the cleanness predicate, depending on the type
of the stage. Most cases are of the form cleanEE, and for these we obtain a probability bound by replacing the
DH ratchet keys and shared secrets with values from a GDH challenger.

The only case not of this form involves cleanstate, which describes a scenario where both recent ratchet
keys were compromised but the previous stage was still secure. Secrecy here is intuitive, and the bound follows
from an inductive argument: if an adversary could win in this manner, then, assuming GDH and ROM security,
there is an adversary which could win against the previous stage.

Symmetric stages. Finally, we consider the security of stage s keys of type sym. Here there is no disjunction in
the cleanness predicate and hence only one case to consider. We replace the keys used to initialise the current
sending chain with uniformly random values, since an adversary who could detect this could win against that
previous stage.

Conclusion. The theorem follows by summing probabilities.
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6. Limitations

As a first analysis of a complex protocol, we have chosen (some) simplicity over a full analysis of all of
Signal’s features. We hope that our presentation and model can serve as a starting point for future analyses.

We discuss here some of the features included in Signal which we have explicitly chosen not to model and
observe limitations of our results.

Protocol Components. Non-Signal library components. The open-source libraries contain various sections of
code which are not considered part of the Signal protocol. For example, the “header encryption” variant of the
Double Ratchet is used by Pond and included in the reference implementation, but not used by Signal itself.
Likewise, there is support for online key exchanges instead of via the prekey server. As these components are
not intended to be part of the Signal protocol, we do not analyse them.
Out-of-band key verification. To reduce the trust requirements on the prekey server, Signal supports a fingerprint
mechanism for verifying public keys through an out-of-band channel. We simply assume that long-term and
medium-term public key distribution is honest, and do not analyse the out-of-band verification channel.
Same key for Ed25519 signing and Curve25519 DH. Signal uses the same key ik for DH agreement and for
signing the medium-term prekeys6. [15, 41] prove security of a similar scheme under the Gap-DH assumption,
effectively showing that the signatures can be simulated using the hashing random oracle. We conjecture a
similar argument could apply here, but do not prove it; instead, we omit the signatures from consideration and
enforce authentication of the prekeys in the game. This enforced authentication means we do not capture the
class of attacks in which the adversary corrupts an identity key and then inserts a malicious signed pre-key.
Out-of-order decryption. If Bob wishes to decrypt out-of-order messages he must store their message keys until
they arrive; this obviously reduces their forward security. As discussed in Section 5 we do not consider this
storage.
Simultaneous session initiation. Signal has a mechanism to deal silently with the case that Alice and Bob
simultaneously initiate a session with each other. Roughly, when an agent detects that this has happened they
deterministically choose one party as the initiator (e.g. by sorting identity public keys and choosing the smaller),
and then complete the session as if the other party had not acted. This requires a certain amount of trial and
error: agents maintain multiple states for each peer, and attempt decryption of incoming messages in all of
them. We do not consider this mechanism.

Other Security Goals and Threats. Our model describes key indistinguishability of two-party multi-stage key
exchange protocols. There are a number of other security and functionality goals which Signal may address
but which we do not study here. These include group messaging properties7, message sharing across multiple
devices, voice and video call security, protocol efficiency (e.g. 0-round-trip modes), privacy, and deniability.
Implementation-specific threats. We make various assumptions on the components used by the protocol. In
particular, we do not consider specific implementations of primitives (e.g. the particular choice of curve), instead
assuming standard security properties. We also do not consider side-channel attacks.
Tightness of the security reduction. As pointed out in [1], a limitation of conventional game hopping proofs
for AKE protocols is that they do not provide tight reductions. The underlying reason is that the reductions
depend on guessing the specific party and session under attack. In the case of a widely deployed protocol with
huge amounts of sessions, such as Signal, this leads to an extremely non-tight reduction. While [1] develops
some new AKE protocols with tight reductions, their protocols are non-standard in their setup and assumptions.
In particular, there is currently no known technique for constructing a tight reduction that is applicable to the
Signal protocol.

Application Variants. Popular applications using Signal tend to change important details as they implement or
integrate the protocol, and thus merit security analyses in their own right. For example, WhatsApp implements
a re-transmission mechanism: if Bob appears to change his identity key, clients will resend messages encrypted
under the new value. Hence, an adversary with control over identity registration can disconnect Bob and replace
his key, and Alice will re-send the message to the adversary.

7. Conclusions and Future Work

In this work we provided the first formal security analysis of the cryptographic core of the Signal protocol.
While any first analysis for such a complex object will be necessarily incomplete, our analysis leads to several
observations.

6. This is done in practise by reinterpreting the Curve25519 point as an Ed25519 key, and computing an EdDSA signature.
7. The implementation of group messaging is not specified at the protocol layer. If it is implemented using multiple pairwise sessions, its

security may follow in a relatively straightforward fashion—however, there are many other possible security properties which might be
desired, such as transcript consistency.
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First, our analysis shows that the cryptographic core of Signal provides useful security properties. These
properties, while complex, are encoded in our security model, and which we prove that Signal satisfies under
standard cryptographic assumptions. Practically speaking, they imply secrecy and authentication of the message
keys which Signal derives, even under a variety of adversarial compromise scenarios such as forward security
(and thus “future secrecy”). If used correctly, Signal could achieve a form of post-compromise security, which
has substantial advantages over forward secrecy as described in [11].

Our analysis has also revealed many subtleties of Signal’s security properties. For example, we identified six
different security properties for message keys (triple, triple+DHE, asym-ir, asym-ri, sym-ir and sym-ri).

One can imagine strengthening the protocol further. For example, if the random number generator becomes
fully predictable, it may be possible to compromise communications with future peers. We have pointed out to
the developers that this can be solved at negligible cost by using constructions in the spirit of the NAXOS
protocol [33] or including a static-static DH shared secret in the key derivation.

We have described some of the limitations of our approach in Section 6. Furthermore, the complexity and
tendency to add “extra features” makes it hard to make statements about the protocol as it is used. Examples
include the ability to reset the state [11], encrypt headers, or support out-of-order decryption.

As with many real-world security protocols, there are no detailed security goals specified for the protocol,
so it is ultimately impossible to say if Signal achieves its goals. However, our analysis proves that several
standard security properties are satisfied by the protocol, and we have found no major flaws in its design, which
is very encouraging.
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Appendix A.
On Hardness Assumptions and the Random Oracle Model (ROM)

When performing a game-hopping security proof in an extended Canetti-Krawczyk-style model, after each
hop we must show that the resulting game is similar to the original. If certain values have been changed, the
queries whose results differ must be simulated in an indistinguishable manner.

In particular, the eCK family of models all contain a query RevSessKey which reveals the session key
derived by a targeted session. This models for example cryptanalysis of a large volume of encrypted traffic,
or the ability to read certain locations in memory. When replacing certain DH keys with random values, we
must ensure that the resulting game is similar to its original. For protocols using only ephemeral DH values gx
and gy to compute session keys from gxy , replacing gx and gy by random does not affect other sessions, and
thus other RevSessKey queries are not affected. However, for more complex protocols (such as NAXOS and
HMQV) in which the long-term keys are also included in the session key derivation, this game hop becomes
more complex. Specifically, when the long-term keys are modified, all RevSessKey queries are affected, and
their simulation is no longer trivial.

There is a proof obligation to show that the simulation of these queries does not allow an adversary to
distinguish the two games. One way to do this is by using Gap-DH in the random oracle model, assuming that
the KDF is a random oracle. In the simulation, whenever the adversary makes a query to the random oracle,
the challenger tests the relevant part of the argument using the DDH oracle to determine whether the adversary
has successfully derived the DH secret. If so, the simulation can terminate and the challenger uses this value in
the Gap-DH game. This is the approach we take.

There are known issues with the ROM. An alternative to Gap-DH is to take a PRF-ODH (pseudorandom
function with oracle DH) assumption, which effectively provides an oracle for session key computations, and
(roughly) asserts that it is hard to solve computational DH even with access to the oracle. The game hop then
takes the computational DH values from the PRF-ODH game, and answers RevSessKey queries by querying
the oracle. The probability jump over the game is thus bounded by the PRF-ODH advantage.

There is a further complication in the case of Signal. In most normal DH protocols, there is only one method
to compute a session key given a collection of secret inputs; such a method could be called a “combinator”. For
example, in NAXOS the combinator hashes one long-term key and uses that as a DH exponential. In Signal, on
the other hand, there are many different combinators, and the oracle we use must be sufficiently flexible to
simulate all of them. Thus, we have the following options:

(i) Define a PRF-ODH game parameterised by the combinator K used to assemble secrets into the arguments
to the KDF. For each different type of key in Signal, assume hardness of this game and use this assumption
to justify a game hop.

(ii) Assume that the KDF is a random oracle, and justify the game hop directly from the ROM and Gap-DH.

We choose the latter option, since we believe that the former hardness assumption is not necessarily justified.
However, we conjecture that a carefully-formulated PRF-ODH game could be proven hard in the ROM, and
therefore that one proof could effectively take either option depending on the reader’s opinions. We leave such
a game for future work.

Definitions of Hardness Assumptions

Our proof of security relies on standard cryptographic hardness assumptions related to DH key exchange. Let
G = 〈g〉 be a cyclic group of prime order q generated by g, let α, β, γ $← Zq , and let ODDH be an efficient black
box algorithm (oracle) that, on input (gα, gβ , gγ), outputs 1 if gγ = gαβ and 0 otherwise. For any algorithm D
let

εDDH(D) :=

∣∣∣∣∣Pr
[
D(G, q, g, gα, gβ , gαβ) = 1 : α, β

$← Zq
]

− Pr
[
D(G, q, g, gα, gβ , gγ) = 1 : α, β, γ

$← Zq
] ∣∣∣∣∣

εCDH(D) := Pr
[
D(G, q, g, gα, gβ) = gαβ : α, β

$← Zq
]

εGDH(D) := Pr
[
DODDH(G, q, g, gα, gβ) = gαβ : α, β

$← Zq
]

We make use of the following cryptographic hardness assumptions:

(i) Decisional Diffie-Hellman (DDH): it is hard to distinguish (gα, gβ , gαβ) from (gα, gβ , gγ), i.e., εDDH(D)
is negligible in log(q) for any efficient D.

(ii) Computational Diffie-Hellman (CDH): it is hard to compute the value gαβ from (gα, gβ), i.e., εCDH(D) is
negligible in log(q) for any efficient D.
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(iii) Gap Diffie-Hellman (GDH): it is hard to compute the value gαβ from (gα, gβ) even when given black box
access to a DDH oracle, i.e., εGDH(D) is negligible in log(q) for any efficient D.

We also make use of the random oracle model (ROM), instantiating all KDFs as black boxes which return a
uniformly-random output for any given input.

Appendix B.
Security Proof

The proof considers different cases corresponding to the possible behaviour of an adversary. We therefore
first describe the high level proof structure in Appendix B.1. We then recall the main theorem and provide the
actual proof in Appendix B.2.

B.1. Proof structure overview

Security in this sense means that no efficient adversary can break the multi-stage key-indistinguishability
game for the two-party protocol Signal, parametrised by freshness condition fresh, with non-negligible probability.
Suppose for contradiction that such an adversary A exists. Whatever the behaviour of the adversary, trivially
(by the definition of the security experiment in Figure 5) it can only succeed when the Tested session [s] is
fresh. By Definition 4, this means that the Test(u, i, s) query satisfies:

(i) πiu.status[s] = accept,
(ii) ¬πiu.rev_session[s],

(iii) for all j such that πiu.sid[s] = πjv.sid[s], ¬πjv.rev_session[s], and
(iv) cleanπiu.type[s](u, i, s)

where v denotes πiu.peerid, the identity of the intended peer to the Tested session, and cleanπiu.type[s](u, i, s) is
a cleanness clause as referenced in Definition 4 and subsequent definitions, further restricting the adversary’s
behaviour. In the following overview, we consider the case that the Tested session is the initiator; the responder
is analogous.

Overview of the Case Distinction

A high-level overview of the proof with its main game sequences and case distinctions is given in Figure 6.
Signal has many different types of stage, and we analyse each of them separately. Formally, start with a sequence
of generic game hops, after which we make a case distinction based on the stage type of the Tested session.
Each stage type has its own cleanness predicate, and we deal with them in subcases. For example, if the
adversary issues a query Test(u, i, [0]), then we are in the analysis of stage [0], and if the stage type is triple,
then we consider in turn the subcases where cleanLM(u, i), cleanEL(u, i, [0]), or cleanEM(u, i, [0]) are true.

For each subcase, we perform an additional game hop, relying on one of the security assumptions in the
statement of the theorem. The initial game will be ms-ind, and in the final games the session key will be
replaced by a uniformly random value. By summing up the advantages along the way, we can obtain an overall
bound on the success probability of the adversary. For ease of reading, we give the high-level structure of the
proof here.

We begin by considering the case that the Test(u, i, s) query was issued on the first stage (s = [0]). We
break this up into two separate cases:

(i) the initial key exchange had stage type triple (so 3 separate pairs of DH shared secrets were used to
compute the master secret ms), or

(ii) the initial key exchange had stage type triple+DHE (so 4 separate pairs of DH shared secrets were used
to compute the master secret ms).

Case 1: triple. In the first case, where Test(u, i, [0]) and πiu.type[0] = triple, we see by Definition 5 that
the following condition must be satisfied:

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0])

Case 2: triple+DHE. In the second case, where Test(u, i, [0]) and πiu.type[0] = triple+DHE, we see by
Definition 6 that there is an additional disjunct cleanEE(u, i, [0]), and we must have

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0]) ∨ cleanEE(u, i, [0])

We consider each of these cases in turn, and by a game-hopping argument replace the relevant keys by random
values, allowing us subsequently to replace the session keys with random values.
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G0 G1 G2 G3

C1: triple

C1.1: cleanLM G4

C1.2: cleanEL Like C1.1

C1.3: cleanEM Like C1.1

C2: triple+DHE

C2.1: cleanLM Same as C1.1

C2.2: cleanEM Same as C1.2

C2.3: cleanEL Same as C1.3

C2.4: cleanEE Like C1.1

C3: Asymmetric ratchet,
initial stages

C3.1: cleanEE Like C2.4

C3.2: not cleanEE G4′

C4: Asymmetric ratchet,
non-initial stages

C4.1: asym-ir
C4.1.1: clean prev. Like C3.2
C4.1.2: clean curr. Like C3.1

C4.2: asym-ri
C4.2.1: clean prev. Like C3.2
C4.2.2: clean curr. Like C3.1

C5: Symmetric ratchet

C5.1: i→ r

C5.1.1: x = 0, y = 1 Like C3.2
C5.1.2: x > 0, y = 1 Like C3.2
C5.1.3: x ≥ 0, y > 1 Like C3.2

C5.2: r → i Like C5.1

Figure 6: High-level overview of the proof structure. Games are identified by G0, G1, . . . , and main case distinctions by
C1, C2, . . . ; G0 denotes the multi-stage security experiment from Section 4.2. In the PDF version of this document, such
identifiers can be clicked to jump to the corresponding part of the proof.

Case 3: Asymmetric ratchet, initial stage. Next, we consider the security of the case that the Test(u, i, s)
query was issued on the initial responder-to-initiator asymmetric stage s = [asym-ri:1]. We partition this
into two cases corresponding to Definition 8: either the adversary has not issued queries that would break the
cleanness of the root key from the first stage s = [0]; or the adversary did not inject malicious DH shares in
either of the ephemeral shares used in the stage (which in particular, were generated in stage s = [0]). That is,
we consider the case that Test(u, i, s = [asym-ri:1]) where πiu.type[s] = asym-ri, and apply Definition 8 to
conclude that(

cleanπiu.type[0](u, i, [0]) ∧ cleanstate(u, i, [asym-ir:1])
)

∨ cleanEE(u, i, 0, 0)

In a similar fashion to the argument for the initial handshake, we replace certain DH values by values from a
GDH challenger, reducing indistinguishability of the session key of this stage to hardness of GDH.

Case 4: Asymmetric ratchet, non-initial stages. We continue, considering the security of the case that the
Test(u, i, s) query was issued in the xth asymmetric responder-to-initiator stage s = [asym-ri:x]. That is, we
consider the case that Test(u, i, s = [asym-ri:x]), where x ≥ 2 and πiu.type[s] = asym-ri. By Definition 8,
we conclude:(

cleanasym-ri(u, i, [asym-ri:x− 1]) ∧ cleanstate(u, i, [asym-ir:x])
)
∨ cleanEE(u, i, x− 1, x− 1)

and a similar argument holds.
We must also consider the case that the Test query was issued against an asymmetric stage of type asym-ir

i.e. a stage used to derive keys for the initiator to encrypt for the responder. The argument in this case is
analogous but the cleanness predicates are subtly different and again vary depending on whether the stage is the
first of its type. However, the core argument remains the same: we replace certain keys in the Tested session
with values from the GDH challenger, in such a way that distinguishing session keys from random would give
a GDH advantage.

Case 5: Symmetric ratchet. Finally, we consider symmetric stages. We partition into two cases:
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(i) the first symmetric stage y = 1, where security follows from the asymmetric stage before it (which could
be either the initial handshake or an asymmetric stage)

(ii) a later symmetric stage y > 1, where security follows from cleanness of the previous symmetric update
The challenger does not know in advance which adversary behaviour it is up against—only at the end of

the game will the challenger know which of the clean predicates were satisfied. That is, the adversary might
decide on the fly which session to Test and which clean predicate to satisfy. As such, no global reduction can
be given. This is not a problem: in our proof, we are ultimately just ruling out classes of attacks. If an attack
exists, it corresponds to some specific adversary, which is covered by one of our cases.

B.2. Proof of the main Theorem

Conventions. We remark on a few conventions which we adopt during the proof.
Many cases technically differ based on whether the actor of the Test session has the initiator or responder

role. For example, the first session key derived by the initiator is from a sending chain, while the first one
derived by the responder is from a receiving chain. Where the security arguments are identical except for
obvious symmetries, we just consider the case of the initiator and leave the responder as analogous.

Signal uses HMAC and HKDF within the KDF invocations. We assume that the KDF invocations themselves
(as defined in Figure 1) are random oracles, and thus need not make any assumptions on HMAC and HKDF
specifically.

By breaki we mean the probability that the adversary wins game Gi. We aim to show this is close to 1/2,
so that the advantage as defined in Definition 3 is negligible. To avoid overfilling our subscripts, we overload
where it is obvious which game is meant.

Theorem 1. The Signal protocol is a secure multi-stage key exchange protocol under the GDH assumption
and assuming all KDFs are random oracles. That is, if no efficient adversary can break the assumptions
with non-negligible probability, then no efficient adversary can win the multi-stage key indistinguishability
security experiment for Signal (and thereby distinguish any fresh message encryption key from random) with
non-negligible probability.

Proof. We begin by performing a series of game hops that affect all potential cases. After these, the game hops
diverge depending on which case we are considering.

Game Hops for all Cases

Game 0. This game equals the multi-stage security experiment described in Section 4.2. Thus:

Advms-ind
Signal,nP,nM,nS(A) = Pr(break0)

Game 1. In this game we ensure no collision of honestly generated DH public keys. Specifically, the challenger
C maintains a list L of all DH private values (for ik, prek, ek, eprek, rchk) honestly generated during the game.
If a DH private value appears twice, C aborts the simulation and the adversary automatically loses. For an
adversary’s execution during the game, let nP denote the total number of parties, nS the maximum number of
sessions, nM the number of medium-term keys per party, and ns the maximum number of stages. We note that
there are nP long-term keys in the game, nM medium-term keys generated for each of the nP parties for a total
of nMnP medium-term keys, and a maximum of ns ephemeral/ratchet keys per session for a total maximum of
nSns ephemeral/ratchet keys. This means a total maximum of nP + nPnM + nSns DH keys in the list, every pair
of which must not collide. Therefore we have the following bound:

Pr(break0) ≤
(
nP+nPnM+nSns

2

)
q

+ Pr(break1)

We know from this game onwards that each honest session uniquely generates DH private keys and thus that
each honestly generated DH public key is unique. In future game hops we will replace certain of these values
with ones sampled by a challenger; if these replacement values collide, we abort the game. This will appear in
e.g. game G4.

Game 2. In this game, the challenger guesses in advance the session πiu against which the Test(u, i, s) query
is issued: the challenger guesses a pair of indices (u∗, i∗) ∈ [1..nP] × [1..nS], and aborts (and the adversary
automatically loses) if the adversary issues a Test query Test(u, i, s) where (u, i) 6= (u∗, i∗). This will occur
with probability 1/nSnP, and hence:

Pr(break1) ≤ nSnP · Pr(break2)
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Game 3. In this game, the challenger guesses an index v∗ ∈ [nP] and aborts if there exists a session πjv that
matches πiu but v 6= v∗. Note that it might be the case that no such matching πjv exists, but this game ensures
that if such a πjv does exist, v is unique and known in advance by the challenger.

We must first show that there can exist at most one identity v with the same session identifier as πiu (note v
may have multiple sessions that match πiu as the responder does not contribute freshness in the Triple-DH case).
Alice’s session identifier for stage [0] contains both ipkv (the identity public key of the peer) and eprepku (their
own ephemeral public key). Later sids contain more ephemeral keys. In G1 we ensured that all DH values
were unique, and hence the claim holds.

It follows that the challenger’s guess is correct with probability 1/nP, and so:

Pr(break2) ≤ nP · Pr(break3)

In this game, we do not guess the partner session because the responder does not always contribute an
ephemeral key. Only in triple+DHE does this occur and indeed in this case we will do another game hop to
guess the partner session.

At this point, we need to partition our analysis for individual cases. Since this is G3, each different case
begins with a hop to some G4.

C1: Initial key exchange: type[0] = triple

First, we consider the security of Signal in the multi-stage key-indistinguishability game against an adversary
A that issues a Test(u, i, [0]) query with πiu.type[0] = triple. By construction, the only way for the adversary
to win (with non-negligible probability) is if cleantriple(u, i, [0]) is true. We partition these scenarios into
subcases. Note also that a RevState(u, i, [0]) or RevState(v, j, [0]) (where πjv is a session matching πiu if one
exists) query will reveal nothing to the adversary, as there exists no previous state. Moreover, after our game
hops, we will have replaced the Tested message key with a uniformly random value that is independent to all
other keys, so other issued RevState queries will only reveal independent root keys and chaining keys. As the
state will be independent from the Tested session key, it will not help the adversary distinguish the Test session
key from random. How to simulate reveal queries will be dealt with formally in the game hops.

We now begin to separate our analysis based on sub-clauses of the cleanness predicate. Let Etriple

be the event that an adversary A wins the ms-ind game by issuing a Test query Test(u, i, [0]), such that
πiu.type = triple, and let Etriple

cleanLM
(resp. Etriple

cleanEL
, Etriple

cleanEM
) be the sub-case in which additionally cleanLM(u, i)

(resp. cleanEL(u, i, [0]), cleanEM(u, i, [0])) is true. By definition of cleantriple,

Pr(Etriple) ≤ Pr
(
Etriple

cleanLM(u,i)

)
+ Pr

(
Etriple

cleanEL(u,i,0)

)
+ Pr

(
Etriple

cleanEM(u,i,0)

)
C1.1: Case type[0] = triple and cleanLM(u, i):

In this case Atriple issued a Test(u, i, [0]) query such that cleanLM(u, i) is upheld. For Test sessions where
πiu.role = init, this requires that Atriple has not issued RevLongTermKey(u) or RevMedTermKey(v, n) where
πiu.peerpreid = n. Since we do not consider the signatures over the medium-term prekeys in our model, we
may assume that πiu has received prepknv without modification.

Recall that an honest session derives a master secret ms = giku·preknv ‖geku·ikv‖geku·preknv , and then assigns
rk1 ‖ cksym-ir:0,0 ← HKDF(ms).

Game 4. In the previous game, all keys are generated as specified in the ms-ind game. In this game, the
challenger, acting as the adversary in a Gap-DH game, requests values from a Gap-DH challenger and substitutes
them in place of certain actual keys. We have two proof obligations:

(i) to bound the success probability of game G4, and
(ii) to bound the difference in probabilities between games G3 and G4.

We meet these by proving a stronger assertion: we will show that any adversary A which wins game G3 with
some probability p has a non-negligible success probability f(p) of winning G4. We will then give an upper
bound for f(p) in terms of the Gap-DH advantage εGDH, and thereby derive a bound on p.

Defining G4. The formal definition of game G4 follows. Our challenger B0, acting as an adversary in a Gap-DH
game, begins by requesting a challenge DH pair (gα, gβ). Via G2 and G3, B0 knows the identities u and v
involved in the Tested session; additionally, it guesses the index n ∈ [1..nM] of the signed prekey of the peer
(preknv ) that the Test session will use in the execution of the protocol. B0 then replaces ipku with gα and prepknv
with gβ when they are generated. This is the only difference between the two games.

Because certain keys have been replaced with public keys whose corresponding private values are unknown
to B0, we must define the actions that should be taken when these private values would normally be used in a
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computation. Cleanness implies that ¬rev_ltku ∧¬rev_mtknv , so B0 will not need to answer any Reveal queries
from A on these values. However, since B0 has replaced the long-term identity key and a medium-term public
key of two parties, if A decides to direct parties u or v to execute the protocol in a non-Tested session, then
B0 may need to perform concrete computations with the private keys. There are three distinct types of sessions
in which B0 may lack the private keys needed to compute the master secret ms:

(i) a non-Tested session between user u and user v using preknv ;
(ii) a session between user u and a user other than v; or

(iii) a session between a user other than u and user v using preknv .

In each of these types of sessions, B0 will pick random keys rk1, cksym-ir:0,0 rather them deriving than via
HKDF(ms). B0 maintains a list of all sessions in which random keys have been substituted: the list contains
the random session keys as well as the public keys that should have been used to compute each component of
the master secret.
B0 must also ensure that session key values used are consistent with any queries that A makes to the

random oracle HKDF. We are concerned about queries of the form gx1‖gx2‖gx3 . Before answering any such
query, B0 goes through each session in the above list: for each entry in the list, it uses its DDH oracle to check
if the public keys used to compute each component of the master secret match the corresponding component of
this random oracle query. If all components match, then B0 uses the session keys from the list as the random
oracle response; otherwise, B0 samples a new random value as the random oracle response.

(While the explanation above starts from B0 picking random session keys when simulating a session and
then ensuring random oracle queries are answered consistently, B0 must also do the reverse: when simulating a
session, before picking random keys B0 analogously use its DDH oracle to check if this matches a previous
random oracle query, to ensure correct simulation.)

If it happens that the public keys used to compute a particular component of the master secret are the DH
challenge values gα and gβ , and that DDH oracle indicates that these match the corresponding element of
the random oracle query, then A has found the solution to the GDH problem for us, and B0 can immediately
terminate the simulation and return this answer to its GDH challenger.

Bounding the difference between the games. We must show that an adversary which wins game G3 also
wins game G4 with non-negligible probability. Fortunately, by construction every change made between the two
games takes the form of replacing one random value sampled from a distribution with another value sampled
from the same distribution. Specifically, two classes of value are changed:

(i) identity and medium-term keys are replaced with values from the GDH challenger; and
(ii) certain session keys are replaced with random values.

For the first class of values, we know that the GDH challenger samples its DH keys uniformly at random from
the chosen group, and thus G4’s DH keys are uniform. In G3, the DH private keys are still selected uniformly,
but the change in G1 means that G1 and G3 abort if any DH keys are repeated. Thus, the distribution of DH
keys seen by the adversary in G3 is slightly different than those seen in G4: fortunately this difference is
negligible.

For the second class of values, we defined B0 to sample a value uniformly at random from the domain of
the random oracle, and used the DDH oracle to maintain consistency. Thus the distributions of session keys in
G3 and G4 are identical.

Bounding the winning probability of game G4. Suppose A is an adversary which wins game G3 with
probability p, and consider the execution of A in game G4. We will show that a correct response to the Test
query in G3 would imply that B0 submits a correct response to the GDH challenger in G4, with nontrivial
probability.

First, the game began by guessing the index of the medium-term key, which will be correct with probability
1/nM. Assuming this is correct, the session key of the Test session in G4 will depend on gαβ , among other
values. Consider an adversary which wins game G3. Since the KDF is assumed to be a random oracle, we can
conclude that there are three possible ways for A to win:

(i) Guessing or collision attack. There is a collision in the random oracle, or the adversary guesses the session
key of the Test session.

(ii) Key replication attack. A issues a RevSessKey query on a session deriving the same session key as the
Tested session.

(iii) Forging attack. A queries the random oracle with the master secret of the Test session.

We deal with these in order.
Guessing or collision attack: The first is relatively easy: the probability of a random oracle collision is easily

shown negligible (only polynomially-many queries can be made but there are exponentially many possible
values), as is the probability of guessing the session key.
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Key replication attack: Assuming no random oracle collisions, a key replication attack has negligible
probability of success. Recall that the session identifier for an initial session contains all the values used to
derive the session key, since the session identifier defined as the concatenation of both agents’ identity public
keys with the responder’s medium-term prekey and the initiator’s ephemeral public key. Thus, the only way
two sessions with distinct sids can have the same session key is if they use distinct DH values gx, gy and
gw, gz that result in gxy = gwz . Since the exponents in the Test session are sampled uniformly at random, the
probability of this event is negligible, and thus a RevSessKey query on a non-Test-matching session reveals an
unrelated random value with overwhelming probability.

Forging attack: Finally, we show that, if A conducts a successful forging attack, then with non-negligible
probability B0 submits the correct response to the GDH challenge. If B0 guessed the index of the medium-term
key correctly, then a successful forging attack would require the adversary to query the HKDF random oracle
with a value x containing the GDH challenge response gαβ , since this value is input to the key derivation of the
Test session. If such a query is made then B0 will submit gαβ to the GDH challenger, and this is the correct
solution to the GDH challenge.

C1.2: Case type[0] = triple and cleanEL(u, i, 0)

In this case the adversary Atriple has issued a Test query Test(u, i, [0]) such that cleanEL(u, i, [0]) is upheld.
For Test sessions such that πiu.role = init, this means that Atriple has not issued RevRand(u, i, [0]) and
RevLongTermKey(v) where v = πiu.peeripk. For Test sessions such that πiu.role = resp, this means that
Atriple has not issued RevLongTermKey(u) and a RevRand(v, j, [0]) such that πjv.sid[0] matches the Test
session πiu.sid[0].

The argument for this case is almost identical to that of the previous case. The GDH challenge values
gα, gβ are inserted into the simulation in place of the ephemeral key of the initiator and the long-term key of
the responder.

C1.3: Case type[0] = triple and cleanEM (u, i, [0])

In this case, the adversary Atriple has issued a Test query Test(u, i, [0]) such that cleanEM(u, i, [0]) is upheld.
For Test sessions such that πiu.role = init, this means that Atriple has not issued a RevRand(u, i, 0) and
RevMedTermKey(v, πiu.peerpreid). For Test sessions such that πiu.role = resp, this means that Atriple has not
issued a RevRand(v, j, [0]) such that πjv.sid[0] matches the Test session πiu.sid[0] and RevMedTermKey(u, πiu.prepk).

Again, this is analogous to before. The Gap-DH challenge values gα, gβ are inserted into the simulation in
place of the ephemeral key of the initiator and the particular medium-term key of the responder used in the
Test session.

C2: Initial key exchange: type[0] = triple+DHE

Recall that the initial key exchange can also have type triple+DHE, in which case cleanness requires that

cleanLM(u, i) ∨ cleanEL(u, i, [0]) ∨ cleanEM(u, i, [0]) ∨ cleanEE(u, i, [0])

We now consider the case that the adversary has issued a Test query Test(u, i, [0]) where the stage πiu.type[0] =
triple+DHE. We note that the cases are the same as previously, with the additional case cleanEE(u, i, [0]). As
before, we define

• Etriple+DHE
cleanLM

to be the event that an adversary wins the multi-stage key-indistinguishability game where A
has issued a Test query Test(u, i, [0]) and cleanLM(u, i) is upheld,

• Etriple+DHE
cleanEM

where A has issued a Test query Test(u, i, [0]) and cleanEM(u, i, [0]) is upheld,
• Etriple+DHE

cleanEL
where A has issued a Test query Test(u, i, [0]) and cleanEL(u, i, [0]) is upheld, and

• E
triple+DHE
cleanEE

where A has issued a Test query Test(u, i, [0]) and cleanEE(u, i, [0], [0]) is upheld.

We will bound the adversary’s success probability as follows.

Pr(Etriple+DHE) ≤ Pr(Etriple+DHE
cleanLM(u,i)

) + Pr(Etriple+DHE
cleanEL(u,i,[0])) + Pr(Etriple+DHE

cleanEM(u,i,[0])) + Pr(Etriple+DHE
cleanEE(u,i,[0],[0]))

The bounds for the previous summands are proved to be negligible under our cryptographic assumptions exactly
as above, yielding the inequalities as desired. As before, the crucial proof step in each case is the Gap-DH
assumption. However, for this case it will also make a game hop like Game 3, where we additionally know
Bob’s unique matching session in advance. We can do this now because Bob has freshness in the handshake.
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C2.4: Case type[0] = triple+DHE and cleanEE

The final ephemeral-ephemeral case Etriple+DHE
cleanEE

is analogous to previous cases except that in Game G4

(Etriple+DHE
cleanEE

), we need to replace the ephemeral values of both the initiator and the responder. (Since the
simulator in G4 will never reuse ephemeral values in different session, the simulation in this case is simpler
and will not need to use its DDH oracle to maintain consistency.)

C3: Asymmetric ratcheting, initial stage

We have now proved security of the initial key exchange, optionally including the ephemeral-ephemeral
DH computation. We next move on to the asymmetric-ratcheting stages, in which Bob and Alice take turns
generating new DH ephemerals and updating their root keys. The first asymmetric-ratcheting stage differs
slightly from its successors since it immediately follows the initial handshake, and we deal with it here now.
Recall it is of type asym-ri, since it is performed when Bob wishes to send a message to Alice.

We consider an adversary A that issues a Test(u, i, s = [asym-ri:1]) query, where stage s must have
type = asym-ri. Note that the initial asymmetric stage is always of type asym-ri (messages from Alice to
Bob before this stage are sent using the symmetric chain derived from the initial handshake), and thus in this
section we do not need to consider initial stages of type asym-ir. We define

• Easym-ri to be the event that an adversary A wins the multi-stage key-indistinguishability game by issuing
a Test(u, i, s = [asym-ri:1]) query,

• Easym-ri
cleanEE(u,i,[0]) to be the sub-event of Easym-ri satisfying cleanEE(u, i, [0], [0]), and

• E
asym-ri
cleanπiu.type[0](u,i,[0]) to be the sub-event of Easym-ri satisfying

cleanπiu.type[0](u, i, [0]) ∧ cleanstate(u, i, [asym-ri:1]).

It follows from our definition of freshness that

Pr(Easym-ri) ≤ Pr(Easym-ri
cleanEE(u,i,[0])) + Pr(Easym-ri

cleanπiu.type[0](u,i,[0])) (1)

and we consider these two cases in turn, beginning with the case that cleanEE(u, i, [0], [0]) is upheld.

C3.1: Case s = [asym-ri:1], type[s] = asym-ri and E
asym-ri
cleanEE

This case is dealt with in an identical way to case 2.4, with the only substantial difference being that the
GDH challenge values are substituted into the ratchet keys grchku[0] and grchkv[0] . Since we have a randomness-reveal
query instead of queries for specific keys, the predicate cleanEE covers secrecy both of the handshake ephemerals
and of the initial ratchet keys, which are generated at the same time.

C3.2: Case s = [asym-ri:1], type[s] = asym-ri and E
asym-ri
cleanπiu.type[0](u,i,[0])

In this case, cleanness comes from the initial key exchange (i.e., from one of its three or four disjuncts),
and the fact that the adversary has not revealed the state linking the initial key exchange to this stage. The
initial key exchange derives rk1: we perform one game hop to replace that value with a uniformly random
value; the game hop is indistinguishable assuming the security of rk1, which follows from Cases 1 and 2. Game
4′ is indicated below.

Game 4′. In this game we replace the root key rk1 derived in stage [0] by both the Test session and any
matching peers with a uniformly random value.

An adversary which can distinguish G4′ from its predecessor G3 can distinguish the root key from a
random value. The root key was derived in the initial triple (or triple+DHE) handshake by applying KDFr
to the master secret ms. In Case 1 (or Case 2), we argued that all values derived from ms using HKDF were
indistinguishable from random. Thus, an adversary that wins here contradicts the security of Case 1 (or Case 2).

After replacing the root key rk1, it is straightforward to see that it is impossible for the adversary to
differentiate keys derived in this stage—chaining keys cksym-ri:x,0 and cksym-ri:x,1, messaging key mksym-ri:x,0,
and intermediate value tmp from random: these are derived by applying KDFr to rk1 and then KDFm to that
result. Since both KDFs are modelled as random oracles, and the input to KDFr is an independent uniformly
random value, the adversary has no advantage is distinguishing this stage’s session key from random.
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C4: Asymmetric ratcheting, non-initial stages

At this point we move on to arbitrary subsequent asymmetric stages. We assume that the initial handshake
was of type triple, but the case of triple+DHE is analogous. The intuition for this part of the proof is
essentially induction and post-compromise security:
• root keys provide security because they come from previous stages which are secure; or
• shared secrets derived from pairs of ephemeral keys provide security even if the root key at the time is

compromised.

We first make a case distinction on the direction (asym-ir vs. asym-ri), and then deal with these cases in turn.

C4.1: Asymmetric ratcheting, s = [asym-ir:x], x ≥ 1, type[s] = asym-ir

Definition 8 requires that one of the following conditions must be satisfied if cleanasym-ir(u, i, [asym-ir:x])
is to hold.
• event Easym-ir

clean-prev: cleanasym-ri(u, i, [asym-ri:x− 1]) ∧ cleanstate(u, i, [asym-ir:x])

• event Easym-ir
clean-cur: cleanEE(u, i, x− 1, x− 1)

C4.1.1: Case s = [asym-ir:x], x ≥ 1, type[s] = asym-ir and E
asym-ir
clean-prev

This case follows inductively like Case 3.2. This stage’s message key (as well as the next root and chaining
key) is derived by applying KDFr to tmp, which was derived during stage [asym-ri:x], and then KDFm to
the result. By an argument similar to Case 3.2, we can replace tmp with a random key. Treating the KDF as a
random oracle, this stage’s message key, as well as the next root key rkx+1 and the symmetric chaining keys
cksym-ir:x,0 and cksym-ir:x,1, are then indistinguishable from random.

C4.1.2: Case s = [asym-ir:x], x ≥ 1, type[s] = asym-ir and E
asym-ir
clean-cur

This case is analogous to Case 3.1, with key indistinguishability following from secrecy of the DH shared
secret derived from ratchet keys. We first replace the ratchet public keys with challenge values from the Gap-DH
game, noting that cleanEE implies the existence of a unique session at Bob with the same sid as that of Alice’s
session. As before, an adversary which could distinguish this game from its predecessor allows us to answer
the Gap-DH challenge, violating that assumption. Indistinguishability of this stage’s message key, as well as
the the next root and chaining keys enumerated in Case 4.4.1, then follows from applying the (random oracle)
KDF to the (now independent) DH shared secret.

C4.2: Asymmetric ratcheting, s = [asym-ri:x], x > 1, type[s] = asym-ri

Now we come to the case of non-initial asymmetric stages of type asym-ri. The proof here is nearly
the same as in Case 4.1, except there is an extra KDF application: session keys derived by these stages are
computed by first applying a KDF to derive an intermediate value tmp, and second applying another KDF to
derive from tmp a session key.

Similarly, we partition our analysis into the following cases.
• event Easym-ri

clean-prev: cleanasym-ir(u, i, [asym-ir:x])

• event Easym-ri
clean-cur: cleanEE(u, i, x, x− 1)

C4.2.1: Case s = [asym-ri:x], x > 1, type[s] = asym-ri and E
asym-ri
clean-prev

Once again the inductive argument here is analogous to Case 3.2: secrecy follows from the root key, and
so we begin by replacing the root key with a random value. Detecting this change would violate the security
properties of the previous stage, but after it the session key is easily proven indistinguishable from random.
This stage’s message key mksym-ri:x,0 as well as symmetric chaining keys cksym-ri:x,0 and cksym-ri:x,1 and
intermediate value tmp, are all also then indistinguishable from random.

C4.2.2: Case s = [asym-ri:x], x > 1, type[s] = asym-ri and E
asym-ri
clean-cur

For this case, we proceed similarly to Case 3.1. The DH shared secret can be shown indistinguishable
under the Gap-DH assumption by replacing the ratchet public keys rchkxu, rchkx−1

v of the Test session and its
matching peer with values from a GDH challenger. Indistinguishability of the stage’s message key, symmetric
chaining keys, and intermediate value tmp (as enumerated in case 4.2.1) all follow in turn from applying a
(random oracle) KDF to (now independent) secret values.
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C5: Symmetric ratcheting: type[s] ∈ {sym-ir, sym-ri}

We finally arrive at the case of Signal in the multistage key-indistinguishability game against an adversary
A that issues a Test(u, i, [sym-ir:x,y]) or Test(u, i, [sym-ri:x,y]) query against some some symmetric stage.

C5.1: Symmetric ratcheting, s = [sym-ir:x,y], type[s] = sym-ir

We partition into the three different freshness conditions for the case [sym-ir:x,y]. We then cover the case
of [sym-ri:x,y] similarly. The intuition is that for the first stage, the symmetric keys are derived from an
asymmetric update and their secrecy follows from the previous cases. For subsequent stages, we have security
due to the recursive nature of the freshness condition: we can replace the chain key used to derive the message
key with randomness; if the simulation did not work, then the adversary could attack the previous stage, which
is a contradiction to security of previous cases because the previous stage is fresh. In all symmetric stages, no
new ephemeral keying material is introduced, so security depends solely on the chaining state not being leaked
(which is guaranteed for these cases by cleanstate).

(Recall that the case y = 0 is performed as part of the message key derivation in the previous asymmetric
update, so that the first symmetric stage derives key number 1.)

C5.1.1: Case s = [sym-ir:x,y], x = 0, y = 1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to cksym-ir:0,1, which was derived during the
initial triple or triple+DHE handshake. By case 3.2, cksym-ir:0,1 is indistinguishable from random. Like
the argument in case 3.2, treating KDFm as a random oracle, this stage’s messaging key, as well as the next
chaining key cksym-ir:0,2, are thus indistinguishable from random.

C5.1.2: Case s = [sym-ir:x,y], x > 0, y = 1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to cksym-ir:x,1, which was derived during
asymmetric-second-stage [asym-ir:x]. By case 4.1, cksym-ir:x,1 is indistinguishable from random. Like the
argument in case 3.2, treating KDFm as a random oracle, this stage’s messaging key, as well as the next
chaining key cksym-ir:x,2, are thus indistinguishable from random.

C5.1.3: Case s = [sym-ir:x,y], x ≥ 0, y.1, type[s] = sym-ir

This stage’s messaging key is derived by applying a KDFm to cksym-ir:x,y , which was derived during sym-
metric stage [sym-ir:x]y − 1. By case 5.1.1, 5.1.2, or induction on case 5.1.3, cksym-ir:x,y−1 is indistinguishable
from random. Like the argument in case 3.2, treating KDFm as a random oracle, this stage’s messaging key, as
well as the next chaining key cksym-ir:x,y+1, are thus indistinguishable from random.

C5.1: Symmetric ratcheting, s = [sym-ri:x,y], type[s] = sym-ri

These cases are analogous to case 5.1, by symmetry: cleanness is defined in the same recursive manner for
both sym-ir and sym-ri stages, except that the base cases differ. The initial game hops are thus analogous
to those in the asym-ir and asym-ri respectively, and the subsequent inductive argument is analogous to
C5.1.3.

Appendix C.
Version History

V1.0 (2016-10-27) Original release.
V1.1 (2016-10-31) Minor updates.

• Clarified description of UKS attack in related work.
• Remarked that in the implementation, one-time keys can be updated after registration.
• Added reference to XEddsa signature specification and full/peer deniability.
• Removed references to header encryption and online key exchange, which are not part of Signal proper.
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