
MaxLength Considered Harmful to the RPKI

Yossi Gilad Omar Sagga Sharon Goldberg
yossigi@bu.edu osagga@bu.edu goldbe@cs.bu.edu

Boston University

ABSTRACT
User convenience and strong security are often at odds, and
most security applications need to find some sort of balance
between these two (often opposing) goals. The Resource
Public Key Infrastructure (RPKI) [8], a security infrastruc-
ture built on top of interdomain routing, is not exempt
from this issue. The RPKI uses the maxLength attribute
to reduce the amount of information that must be explic-
itly recorded in its cryptographic objects. MaxLength also
allows operators to easily reconfigure their networks with-
out modifying their RPKI objects. However, we argue that
the maxLength attribute strikes the wrong balance between
security and user convenience. In particular, we argue that
maxLength is commonly configured in a manner that ei-
ther obviates the security benefits provided by the RPKI or
causes legitimate routes to appear invalid, without providing
performance improvements. Therefore, we argue that the
maxLength attribute should be eliminated from the RPKI.

1. ROUTING WITH BGP & THE RPKI
The RPKI is designed to secure interdomain routing with

the Border Gateway Protocol (BGP). It has recently been
standardized [8] and is slowly being rolled out by the Re-
gional Internet Registries (RIRs) and individual network
operators [13]. In this section, we use a running example
to review how the RPKI protects routing from prefix and
subprefix hijacks. We then review the RPKI’s maxLength
attribute in Section 2.

ROAs. The RPKI uses Route Origin Authorizations
(ROAs) to create a trusted mapping from an IP prefix to
a set of autonomous systems (ASes) that are authorized to
originate (i.e., claim to be the destination for) this prefix.
Each ROA contains a set S of IP prefixes, and an AS au-
thorized originate all the IP prefixes in S; the ROA is cryp-
tographically signed by the party that is authorized to al-
locate these IP prefixes. ROAs protect against some of the
most devastating routing attacks; namely, prefix and sub-
prefix hijacks where an AS originates (“hijacks”) routes for
IP prefixes that it is not authorized to originate, causing the
traffic intended for those prefixes to be intercepted by the
hijacker’s network.

For our running example, we use IP prefix 168.122.0.0/16
which contains all IPv4 addresses from 168.122.0.0 to
168.122.255.255. This IP prefix is allocated to Boston Uni-
versity (BU) which also has AS 111. Therefore, the RPKI
should contain a ROA with the IP prefix 168.122.0.0/16
mapped to AS 111. This ROA would be digitally signed
by a key that is certified by ARIN (the American Registry

for Internet Numbers), the registry that allocated this IP
prefix to BU.

Originating routes. AS 111 would originate its prefix
by sending this BGP announcement to its neighboring ASes:

“168.122.0.0/16: AS 111”

Because this BGP announcement matches the correspond-
ing ROA, it will be considered valid. The neighboring ASes
would then select this route, and propagate it on to their
neighbors. For example, AS 3356 (Level3) is a neighbor of
AS 111. After validating the BGP announcement, AS 3356
selects the route, and then announces its selection to its own
neighbors with the BGP announcement

“168.122.0.0/16: AS 111, AS 3356”

This process of neighboring ASes validating the route against
ROAs in the RPKI, selecting it, and then propagating it to
their neighbors would continue until all ASes connected to
the origin (directly or indirectly) have learned a route to
168.122.0.0/16. Traffic destined to IP addresses in 168.122.0.0/16
would then flow to AS 111.

Subprefix hijacks. Now suppose there is a subprefix hi-
jack. The attacking AS m originates a BGP announcement
for a subprefix of the target prefix, for example:

“168.122.0.0/24: AS m”

In the absence of the RPKI, the hijacker would intercept
traffic for all addresses in 168.122.0.0/24—rather than flow-
ing to AS 111, all this traffic would flow to AS m instead.
This is because routers perform a longest-prefix match when
deciding where to forward IP packets. A packet with des-
tination IP 168.122.0.1 will flow to attacker AS m, rather
than to AS 111, because 168.122.0.0/24 is a longer matching
prefix than 168.122.0.0/16.

This attack is quite devastating, since the location of the
attacker or the path he announces is irrelevant. All that
matters is that the hijacker’s route for the subprefix prop-
agates out into the global Internet. Longest-prefix-match
routing ensures that the hijacked route is always preferred
over the legitimate route. Several high-profile subprefix-
hijacking incidents have exploited this behavior [14,15].

ROAs should stop subprefix hijacks. How does
the ROA for IP prefix 168.122.0.0/16 and AS 111 stop the
subprefix hijack?

Any RPKI-validating router receiving the attacker’s BGP
announcement should notice that the announcement is in-
valid because (1) the ROA for 168.122.0.0/16 and AS 111

covers the attacker’s announcement (since 168.122.0.0/24
is a subprefix of 168.122.0.0/16), and (2) there is no ROA
matching the attacker’s announcement (i.e., ROA for AS
m and IP prefix 168.122.0.0/24). If routers ignore invalid
BGP announcements, the subprefix hijack will fail, and the
attacker fails to intercept traffic destined to BU at AS 111.

2. ENTER MAXLENGTH
We continue with our example to understand maxLength.

De-aggregation. In addition to originating the BGP
announcement for 168.122.0.0/16, AS 111 also originates an
additional BGP announcement for its subprefix, specifically:

“168.122.225.0/24: AS 111”

Announcing subprefixes of a larger prefix from the same AS
is known as de-aggregation, and sometimes used for traffic
engineering. By announcing the /24 prefix to some neigh-
bors and not others, AS 111 has some modicum of control
over the routes other ASes use to reach 168.122.225.0/24.

(Interestingly, routing-security is sometimes also cited as
a reason for de-aggregation. By announcing a /24 route, AS
111 ensures that no hijacker can launch a subprefix hijack
against the route, since BGP routes for prefixes longer than
/24 are commonly discarded by routers [17].)

However, de-aggregation tends to bloat the size of routing
tables across all routers on the Internet. As such, network
operators often frown upon excessive de-aggregation, e.g.,
announcing all 28 of the /24s constituting a /16 [17].

Now suppose the RPKI only had the ROA (168.122.0.0/16,
AS 111), and AS 111 originated the BGP announcements

“168.122.225.0/24: AS 111”

The above BGP announcement is invalid, since it has a cov-
ering ROA (the ROA for 168.122.0.0/16, AS 111) but no
matching ROA (i.e., a ROA for 168.122.225.0/24, AS 111).
Routers would therefore drop the route as invalid, stymying
AS 111’s attempts to de-aggregate its prefix.

Using maxLength to deal with de-aggregation. The
RPKI’s maxLength attribute provides one solution to this
problem. According to RFC 6482 [9]: “When present, the
maxLength specifies the maximum length of the IP address
prefix that the AS is authorized to advertise.”

Thus, suppose we modified the ROA by adding a maxLength
of 24. The resulting ROA would be

ROA:(168.122.0.0/16-24, AS 111)

where the notation “-24” means up to prefix-length 24. This
ROA authorizes AS 111 to originate any subprefix of 168.122.0.0/16,
up to length /24. For example, AS 111 could originate
168.122.225.0/24 as well as all of

168.122.0.0/17,
168.122.128.0/17,
168.122.0.0/18,
...
168.122.255.0/24

but not 168.122.0.0/25.
MaxLength thus gives AS 111 some additional flexibility;

even if AS 111 does not know how it plans to de-aggregate
its prefix 168.122.0.0/16 at the time it requested the ROA,

by adding a maxLength of /24 AS 111 is certain that any
de-aggregation it performs will not result in invalid routes.

The alternate solution: minimal ROAs. The other
way around this problem is to update the ROA to include
both prefixes. Since ROAs can support sets of IP prefixes,
the ROA becomes

ROA:({168.122.0.0/16, 168.122.225.0/24}, AS 111)

This ROA is minimal because it includes exactly those two
prefixes that are actually announced by AS 111. A ROA is
minimal when it includes only those prefixes that the AS an-
nounces in BGP, and no other prefixes. RFC 6907 [11, Sec
3.2] recommends the use of minimal ROAs in some situa-
tions. If AS 111 wanted to issue a minimal ROA, AS 111
would need to know exactly how it plans to de-aggregate its
prefixes at the time the ROA was issued.

3. FORGED ORIGIN SUBPREFIX HIJACK
The convenience of maxLength comes with a serious downside—

namely, it has the potential to completely eliminate the se-
curity provided by the ROA.

The attack. To understand why, we return to our
example. Suppose the RPKI had the ROA

ROA:(168.122.0.0/16-24, AS 111)

with maxLength 24, and that AS 111 originates the following
two BGP announcements:

“168.122.0.0/16: AS 111”
“168.122.225.0/24: AS 111”

We now point out that a hijacker can intercept 100% of the
traffic destined to any subprefix of 168.122.0.0/16 (up to
length /24) except for those addresses in 168.122.225.0/24.
For instance, to intercept all traffic for IP prefix 168.122.0.0/24,
the hijacker just needs to send this BGP announcement:

“168.122.0.0/24: AS 111, AS m”

This is a forged-origin subprefix hijack [3, 6]. Why does it
work?

1. The hijacker’s BGP announcement falsely claims that
m is a neighbor of AS 111. But the RPKI does not
provide a means to validate this claim, so other ASes
and routers have no way to know that this is false.

2. The hijacker’s BGP announcement is valid according
the RPKI, since the ROA (168.122.0.0/16-24, AS 111)
authorizes BGP routes for 168.122.0.0/24 where AS
111 is the first hop (i.e., origin AS).

3. AS 111 does not actually originate a route for 168.122.0.0/24.
This means that the hijacker’s route is the only route
to 168.122.0.0/24.

4. Longest-prefix-match routing ensures that the hijacker’s
route to the subprefix 168.122.0.0/24 is always pre-
ferred over the legitimate route 168.122.0.0/16.

Thus, if the hijacker’s route propagates through the Internet,
the hijacker will intercept all traffic destined for IP addresses
in 168.122.0.0/24.

Impact. This forged-origin subprefix hijack has exactly
the same impact as a regular subprefix hijack. Any ROA

with maxLength m longer than the prefix p is vulnerable
to a forged-origin subprefix hijack, unless every subprefix
of p of length m is legitimately announced in BGP. This is
unfortunate, since one might argue that the whole point of
the RPKI is to stop subprefix hijacks [8, 10].

4. WHAT DO THE RFCS SAY?
RFC 7115 [3] mentions the forged-origin subprefix hijack:

One advantage of minimal ROA length is that
the forged origin attack does not work for sub-
prefixes that are not covered by overly long max
length. For example, if, instead of 10.0.0.0/16-
24, one issues 10.0.0.0/16 and 10.0.42.0/24, a
forged origin attack cannot succeed against 10.0.666.0/24.
They must attack the whole /16, which is more
likely to be noticed because of its size.

We agree with this view. We also point out that “attacking
the whole /16” is not only “more likely to be noticed”, but
also much less effective. We return to our running example
to explain why.

Suppose BU had issued the minimal ROA

ROA:({168.122.0.0/16, 168.122.225.0/24}, AS 111)

Then, the forged origin subprefix hijack we described above
would fail, since this minimal ROA ensures that the hi-
jacker’s route for 168.122.0.0/24 is invalid. Thus, to use the
forged-origin trick, the hijacker m would need to “attack the
whole /16”, by sending the BGP announcement

“168.122.0.0/16: AS 111, AS m”

Why is this different from the forged-origin subprefix hijack
described above? The difference is that here, AS 111 actu-
ally does originate a BGP announcement for 168.122.0.0/16.
Therefore, other ASes have two ways they can reach
168.122.0.0/16: either the announcement from the hijacker
m or from the legitimate origin AS 111.

In [10], this attack was called the one-hop hijack, and it
was found to have significantly less impact than a subprefix
hijack. This is because the hijacker m can no longer exploit
longest-prefix-match routing to intercept all of the traffic to
hijacked prefix. Instead, the attacker is forced to advertise
a longer and much less-appealing route to the prefix. As
a result, the traffic splits between the hijacker m and the
legitimate AS 111, where most ASes choose to route by the
legitimate path (see [10]).

RFC 7115 [3] goes on to offer the following solid advice:

Operators should be conservative in use of max
length in ROAs. For example, if a prefix will
have only a few sub-prefixes announced, multiple
ROAs for the specific announcements should be
used as opposed to one ROA with a long max
length.

But we also should note, that “multiple ROAs” are not ac-
tually needed here, since ROAs support sets of IP prefixes.

RFC6907 similarly recommends issuing minimal ROAs [11,
Sec. 3.2], but also seems to contradict itself by suggesting
that a non-minimal ROA be used in the following situation:

An organization (Org A with ASN 64496) has
been allocated the prefix 10.1.0.0/16; it wishes

to announce the aggregate and any or all more
specific prefixes up to and including a maximum
length of /20, but never any more specific than
a /20

RFC6907 goes on to recommend that Org A issues

ROA:(10.1.0.0/16-20, AS 64469)

with maxLength of 20. However, if AS 64496 does not
announce all subprefixes of 10.1.0.0/16, it is vulnerable to
forged-origin subprefix hijack.

5. BENEFITS OF MAXLENGTH?
In this section we quantify the benefits and problems rooted

in the maxLength attribute. We argue that maxLength can
provide only meager benefits. We also argue that the prob-
lems associated with maxLength are significant.

Our analysis is based on network measurements. Specifi-
cally, we downloaded all ROAs from the RPKI publication
points and compared them against the routing entries in the
BGP tables of all Route Views collectors [2]; our datasets
aggregate ROAs and BGP advertisements from September
10-13, 2016.

Using maxLength almost always creates vulnerabil-
ities. First, we observe that only 4129 (about 16.5%) of
the prefixes in ROAs authorize a maxLength longer than the
prefix length.1 However, almost all of these prefixes (89%)
are vulnerable to a forged-origin-subprefix hijack. To mea-
sure this phenomenon, we counted how many prefixes p with
maxLength m longer than p do not have BGP announce-
ments for every subprefix of p up to length m. Thus, we see
that almost all users ‘taking advantage’ of the maxLength
feature are unwittingly opening themselves up to forged-
origin subprefix hijacks.

Benefit? Fewer prefixes included in ROAs. One
might argue that an important benefit of the maxLength
attribute is that it reduces the number of IP prefixes that
need to be authorized by ROAs. We now argue that this is
not a significant benefit.

To do this, we measure the number of additional prefixes
that would need to be included in ROAs if (1) maxLength
is eliminated and (2) only minimal ROAs were used (see
Section 2). Specifically, we count the number of prefixes
that are (a) announced in BGP and (b) are also a subprefix
of a prefix that is authorized by a ROA in the RPKI.

We find 13K such prefixes. (Note that a total of 41K
prefixes that are announced in BGP are covered by ROAs.)
Minimal ROAs would need to cover exactly these 13K ad-
ditional prefixes. We stress, however, that a single ROA
supports authorizing a single AS to announce a set of pre-
fixes. Thus, we could deal with these 13K additional prefixes
without adding any additional ROAs (and associated cryp-
tographic overhead) to the RPKI. Instead, we just convert
each individual maxLength-using ROA to a minimal ROA
(that does not use maxLength) which includes more prefixes
to cover exactly those prefixes announced through BGP (see
Section 2). Minimal ROAs also come with security benefits,
since they prevent forged-origin subprefix hijacks.

Benefit? Reducing load on routers. One might
instead argue that maxLength reduces the load on routers.

1Length refers to the length of an IP prefix, e.g.,
87.254.32.0/19 has length 19.

Figure 1: How routers obtain information from the RPKI.

Figure 1 shows how routers obtain information from the
RPKI. Typically, each AS will have a trusted local cache
(typically a general-purpose machine) that downloads the
complete set of ROAs from all publicly-available RPKI repos-
itories. The local cache then cryptographically validates
these ROAs and creates a list of “Protocol Data Units”
(PDUs). Each PDU is essentially a tuple of (IP prefix,
maxLength, origin AS) [4, 12]. The local cache then sends
these PDU lists to routers in its AS via the rpki-rtr proto-
col [1]. Finally, routers use the list of PDUs to determine if
a given BGP announcement is valid [1, 4, 12].

The list of PDUs could become longer if the RPKI used
minimal ROAs without the maxLength attribute. For in-
stance, instead of having a single maxLength-using PDU for
87.254.32.0/19-20, the list would instead have three non-
maxLength-using PDUs for 87.254.32.0/19, 87.254.32.0/20,
87.254.48.0/20. This could have a performance impact on
routers. Our measurements above indicate that if (1) maxLength
was eliminated from the RPKI and (2) minimal ROAs were
used instead, today’s routers would need to process 13K ad-
ditional PDUs (about 42% more records).

It seems that maxLength does reduce the number of PDUs
that must be processed by routers. But how does this would
scale if RPKI was ubiquitously adopted? We now obtain
a lower bound on the compression (in terms of reducing
the number of PDUs processed by routers) provided by the
maxLength attribute. To do this, we suppose that every
IP prefix currently announced in BGP was covered by a
maximally-permissive ROA. A maximally-permissive ROA
authorizes each of its prefixes to its longest possible maxLength:
namely, every IPv4 prefix has maxLength /32, while every
IPv6 prefix has maxLength /128.2

Our BGP dataset has 683K advertised (IP prefixes, AS)
pairs. If all of these IP prefixes were covered by maximally
permissive ROAs, we were surprised to find that we still
need these ROAs to include 641K prefixes! Thus, the max-
imum compression provided by the maxLength (in terms
of reducing the number of PDUs processed by routers) is
just 6.2%. Thus, even if we completely ignore the risk of
forged-origin subprefix hijacks, the compression achieved by
the maxLength in a full-deployment scenario is fairly small.
This follows because most ASes do not send BGP announce-
ments for subprefixes of their prefixes, and therefore can-
not benefit from the compression provided by the RPKI’s
maxLength attribute.

2Maximally-permissive ROAs are terrible at preventing
forged-origin subprefix hijacks (Section 3). A maximally-
permissive ROA is almost always vulnerable to forged-origin
subprefix hijacks, since we rarely see BGP announcements
for IPv4 prefixes longer than /24, and IPv6 prefixes longer
than /48. We consider maximally-permissive ROAs only
because they obtain the maximum achievable compression
from the maxLength attribute.

In Section 6, we present software that we built to pre-
process the PDU list to reduce the number additional PDUs
without introducing forged-origin subprefix hijacks. Our
software achieves a compression rate of 6.1% in the same full-
deployment scenario, without using maxLength and without
allowing for forged-origin subprefix hijacks.

Problem: maxLength encourages misconfigurations.
We speculate that the misuse of maxLength also causes
many legitimate prefixes advertised through BGP, to ap-
pear invalid. Specifically, network operators often specify a
maxLength that is too restrictive (i.e., too short) in their
ROAs. Specifying a maxLength shorter than the prefix an-
nounced by an AS in BGP causes the legitimate advertise-
ment to appear as a subprefix hijack. Any AS that filters
packets based on ROAs in the RPKI would discard the le-
gitimate BGP advertisement as invalid, and thus could po-
tentially cause a disconnection between the two ASes.

Using over-restrictive maxlength is a common error in cur-
rent RPKI deployments. RPKI monitors and studies [7, 13]
show that this is the cause for almost 60% of invalid pre-
fixes. This corresponds to about 6% of all prefixes that are
announced in BGP and covered by ROAs. Some of these
many invalid BGP announcements might result from actual
BGP hijacking, but most are likely due to errors.

Summary: maxLength provides few benefits. The
motivation behind the maxLength attribute is simple: To
reduce the number of prefixes specified in ROAs and thus
also the number of PDUs that a router uses to filter invalid
BGP announcements. However, we have just shown that
maxLength can only provide very limited benefits, and in
practice, it is often not used. Moreover, when maxLength
is used, network operators often set it to the wrong value:
either too restrictive, which may cause loss of legitimate traf-
fic, or too permissive, which allows for forged-origin subpre-
fix hijacks. We conclude that the problems caused by the
maxLength field outweigh the benefits it can provide today
and in the future, when the RPKI be ubiquitously adopted.

6. COMPRESSING MINIMAL ROAS
We now present a software application for improving the

RPKI in absence of maxLength. Our software may also be
deployed with today’s RPKI. Our source code is public, it
is available here [16].

Build your own maxLength. Recall that a router val-
idating routes against the RPKI is given a list of PDUs,
where each is a tuple of (IP prefix, length, maxLength, origin
AS) [4,12]. The list of PDUs is used to determine if a given
BGP announcement is valid [1, 4, 12]. Thus, if we use min-
imal ROAs that do not use the maxLength attribute, then
this list of PDUs could become longer, potentially harming
performance.

Importantly, routers obtain this list of PDUs from a trusted
local cache, as shown in Figure 1. Thus, to avoid pushing
a longer list of PDUs to routers, we can instead have the
local cache transform a list of PDUs that do not use the
maxLength attribute, into a list of PDUs that do. We built
software to do this. Our software runs on the local cache,
thus avoiding any changes to BGP routers and conforming
with RPKI’s deployment architecture.

‘Compressing’ minimal ROAs. Conceptually, our soft-
ware compresses a set of minimal ROAs that do not use
maxLength to a set of minimal ROAs that do use maxLength.

As an example, consider the following minimal ROA which
does not use maxLength:

ROA: ({87.254.32.0/19, 87.254.32.0/20, 87.254.48.0/20,
87.254.32.0/21 }, AS 31283)

Our software would compress it to a minimal ROA that does
use maxLength:

ROA: ({87.254.32.0/19-20, 87.254.32.0/21 }, AS
31283)

Notice that this ‘compressed’ ROA is minimal, i.e., contains
exactly the same set of prefixes as its uncompressed version.
Importantly, we do not compress the ROA to

ROA: (87.254.32.0/19-21, AS 31283)

since this is not a minimal ROA. Indeed, this ROA is vul-
nerable to a forged-origin subprefix hijack since it validates
prefixes that are not part of the original minimal ROA (e.g.,
87.254.40.0/21); see Section 3.

6.1 Software architecture
Today’s RPKI Tools contain a utility program called scan roas

that the local cache uses to transform a set of ROAs that
have been downloaded from the RPKI and cryptographically
validated, into a list of PDUs, aka, (IP prefix, maxLength,
origin AS) tuples [1]. Our utility is called compress roas

and acts as a drop-in alternative to scan roas. compress roas

first calls scan roas on a set of cryptographically-validated
ROAs, and obtains a list of valid (IP prefix, maxLength,
origin AS)-tuples. Then, we compress this set of tuples to
another set of tuples that do use the maxLength attribute.

We envision using compress roas in a future RPKI where
the maxLength attribute is not used, so that each of the (IP
prefix, maxLength, origin AS)-tuples output by scan roas

would just have maxLength equal to length of the IP prefix.
This, however, is not a requirement for compress roas. In
fact, as we show below, compress roas can reduce the num-
ber of (IP prefix, maxLength, origin AS)-tuples generated
by today’s RPKI.

Deployment. Our software is easy to integrate into the
RPKI Relying Party Tools [1]. We just execute the following
command on the local cache:
rpki-rtr cronjob --scan-roas compress-roas [roa-dir] [pdu-dir]

This sets up a cronjob that takes the cryptographically-
validated ROAs in [roa-dir] and converts them into a list
of (IP prefix, length, maxLength, origin AS)-tuples stored in
[pdu-dir] that will be communicated to routers using the
rpki-rtr protocol. The usual scan roas utility is replaced
with our compress roas utility (which keeps the same in-
terface).

Compression algorithm. Our algorithm takes in a
list of (IP prefix, maxLength, AS)-tuples and compresses it
using tries (i.e., prefix trees). For each AS number in the
list, we generate a trie for IPv4 and a trie for IPv6. The
key to each trie is the string $prefix where $ is a delimiter,
and prefix is a binary representation of an IP prefix and
its length. For instance, the ROA containing the IP prefix
8.0.0.0/8 for AS 3356 would be in AS 3365’s IPv4 trie under
the key $00001000, while the IP prefix 8.0.0.0/9 for AS 3356
would be in AS 3365’s IPv4 trie under the key $000010000.

As shown in Figure 2, each node in a trie corresponds
to some (AS, prefix, maxLength)-tuple that exists in a valid

Figure 2: The IPv4 prefix trie for the minimal ROAs for AS
31283 without maxlength (left) and after compression with
compress roas (right). compress roas reduces the number
of output PDUs from four to two.

ROA. The value of the trie node corresponds to the maxlength
specified the tuple. If the tuple came from a ROA that
does not use the maxLength attribute (as we envision for all
ROAs in the future RPKI) then this trie node has maxlength
value identical to the length of the prefix.

For a node with key $k, we refer to the nodes $k||0 and
$k||1 as its left and right direct children. A node can there-
fore have at most two direct children.

To compress tuples, we iterate through the trie using a
depth-first search (DFS). Just before we backtrack out of
each trie node, we process it as follows:

if (node has both direct children):

minChildVal = min(lChild.value, rChild.value)

if (minChildVal > node.value):

Adjust father’s maxlength to cover children

node.value = minChildVal

if (lChild.value <= node.value):

left child now covered by father

delete trie[lChild]

if (rChild.value <= node.value):

right child now covered by father

delete trie[rChild]

Thus, as the DFS backtracks through the trie, each trie
node is assigned a new value (i.e., a maxlength) if both its
direct children exist. The assigned maxlength of the node
is determined from the maxlength of its children. The child
is then deleted if the child’s maxlength does not exceed the
parent’s maxlength. Once the DFS completes, we output a
set of (IP prefix, maxlength, AS)-tuples that correspond to
the remaining trie nodes.

6.2 Performance
We evaluate our software in several ways, both in today’s

RPKI partial deployment status, and in a future scenario
where RPKI is fully deployed. Table 1 summarizes our re-
sults and compares with our findings on the current RPKI
from Section 5. Our implementation’s website instructs how
to reproduce our results [16].

Today’s RPKI. First, we consider its impact on today’s
RPKI. In our RPKI dataset, there are 6K ROAs that com-
prise 28,828 distinct tuples of (IP prefix, maxlength, AS).
Each tuple is inserted into one of the tries and compressed
with compress roas. The result was 27,125 tuples, for a
compression rate of 5.90%. Thus, our software provides
some benefits even on today’s (maxLength-using) RPKI.

Today’s RPKI, however, is vulnerable to forged-origin sub-
prefix hijacks. What if today’s RPKI was hardened against
these hijacks, by converting every existing ROA into a min-
imal ROA that does not use maxLength? To convert each
ROA in our RPKI dataset into a minimal ROA with no
maxLength, we identify the IP prefixes that are made valid

scenario # tuples secure?

Today 28,828 X
Today (compressed) 27,125 X
Today, minimal ROAs, no maxLength 41,517 X
Today, minimal ROAs, with maxLenth (compressed) 38,839 X
Full deployment, minimal ROAs, no maxLength 683,671 X
Full deployment, minimal ROAs, with maxLenth 641,915 X
Full deployment, maximally-permissive ROAs 641,464 X

Table 1: Number of PDUs that processed by routers in the
scenarios of Section 6. The third column has X if scenario
is robust to forged-origin subprefix hijack and X otherwise.

by that ROA and are announced in our BGP dataset. We
then modify the ROA so that it contains only those IP pre-
fixes. We still have the same number of ROAs, but now
(instead of the status quo 28,828 tuples) we have a to-
tal of 41,517 (IP prefix, AS)-pairs. We use compress roas

to compress these 41,517 pairs to obtain 38,839 (IP pre-
fix, maxLength, origin AS)-tuples, for a compression rate of
6.45%.

While this represents 35% more tuples than the status
quo, the status quo (with non-minimal ROAs) is vulnerable
to forged-origin subprefix hijacks, and the scenario we have
just evaluated is not.

RPKI in full deployment. We consider a future full-
deployment RPKI scenario, where every IP prefix announced
in our BGP dataset is validated by a ROA. As discussed in
Section 5, our BGP dataset has 683,671 (IP prefixes, AS)
pairs. This corresponds exactly to the number of (IP prefix,
AS) pairs that would be contained in ROAs if the RPKI
used only minimal ROAs and no maxLength.

Compressing these with compress roas results in 641,915
(IP prefix, length, maxLength)-tuples that are minimal, i.e.,
are not vulnerable to a forged-origin subprefix hijacks. This
is close to the 641,464 lower-bound of (prefix, maxLength,
AS)-tuples needed to validate all BGP announcements, when
prefixes are covered by maximally-permissive ROAs (see Seciton 5)
and vulnerable to forged-origin subprefix hijacks.

Thus, if today’s RPKI eliminated maxLength and started
using minimal ROAs, we would see some increase (35%) in
the number of tuples that must be processed by routers. In
a future RPKI deployment, however, this increase becomes
insignificant; in fact, using minimal ROAs along with our
compress roas software gives us almost the optimal number
of PDUs. Thus provides more evidence in favor of removing
the maxLength from the RPKI.

Computational overhead. We tested the compress roas

utility on an Intel i7-6700 machine. Compressing today’s
(partially-deployed) RPKI took 1.2 seconds and required
29MB of memory, while compressing the full-deployment
scenario took 21 seconds and 280MB memory. Performance
could also be improved by parallelizing across tries.

7. ELIMINATE MAXLENGTH
We see little value in continuing to support the maxLength

attribute in ROAs. While only about 16% of prefixes in
ROAs use the maxLength attribute, almost all of them are
using it wrong. In fact, by using maxLength, many oper-
ators are unwittingly vulnerable to forged-origin subprefix
hijacks that obviate the RPKI’s security guarantees.

We therefore suggest eliminating the maxLength attribute.
Instead, maxLength-using ROAs should be replaced with
minimal ROAs that explicitly enumerate the set of IP pre-
fixes that an AS is authorized to originate.

We presented our compress roas software to limit the im-

pact of this change on router performance. Also, today’s
ROAs already support having sets of IP prefixes. So, switch-
ing to minimal ROAs will not increase the number of crypto-
graphic computations that must be performed for the RPKI.

To sum up, system complexity is a key challenge for the
RPKI, especially because it can lead to security vulnerabil-
ities (Section 3) and errors in deployment [5, 18]. Thus, by
getting rid of the maxLength attribute, we can make the
RPKI simpler, less error prone, and more secure.

Acknowledgements
We thank earlier collaborators on RPKI research for useful
discussions: Avichai Cohen, Danny Cooper, Ethan Heilman,
Amir Herzberg, Michael Schapira, Leonid Reyzin. This re-
search was supported, in part, by NSF awards 1414119,
1350733 1012910, and a gift from Cisco.

8. REFERENCES
[1] RPKI Relying Party Tools.

https://github.com/dragonresearch/rpki.net.

[2] University of Oregon Route Views Project.
http://www.routeviews.org/.

[3] R. Bush. Origin Validation Operation Based on the
Resource Public Key Infrastructure (RPKI). RFC 7115
(Best Current Practice), Jan. 2014.

[4] R. Bush and R. Austein. The Resource Public Key
Infrastructure (RPKI) to Router Protocol. RFC 6810
(Proposed Standard), Jan. 2013.

[5] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and
S. Goldberg. On the Risk of Misbehaving RPKI
Authorities. HotNets XII, 2013.

[6] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and
H. Shulman. Are We There Yet? On RPKI’s Deployment
and Security. In NDSS, 2017. To appear, available online.

[7] D. Iamartino, C. Pelsser, and R. Bush. Measuring BGP
Route Origin Registration and Validation. In PAM, LNCS,
pages 28–40, 2015.

[8] M. Lepinski and S. Kent. An Infrastructure to Support
Secure Internet Routing. RFC 6480 (Informational), Feb.
2012.

[9] M. Lepinski, S. Kent, and D. Kong. A Profile for Route
Origin Authorizations (ROAs). RFC 6482 (Proposed
Standard), Feb. 2012.

[10] R. Lychev, S. Goldberg, and M. Schapira. BGP Security in
Partial Deployment: Is the Juice worth the Squeeze? In
SIGCOMM, pages 171–182. ACM, 2013.

[11] T. Manderson, K. Sriram, and R. White. Use Cases and
Interpretations of Resource Public Key Infrastructure
(RPKI) Objects for Issuers and Relying Parties. RFC 6907
(Informational), Mar. 2013.

[12] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and
R. Austein. BGP Prefix Origin Validation. RFC 6811
(Proposed Standard), Jan. 2013.

[13] NIST. RPKI Monitor.
http://rpki-monitor.antd.nist.gov/, 2016.

[14] A. Peterson. Researchers say U.S. Internet traffic was
re-routed through Belarus. That’s a problem. Washington
Post, November 20 2013.

[15] Rensys Blog. Pakistan hijacks YouTube.
http://www.renesys.com/blog/2008/02/pakistan_
hijacks_youtube_1.shtml.

[16] O. Sagga, Y. Gilad, and S. Goldberg. compress roas. online
at https://github.com/yossigi/compress_roas.

[17] P. Smith, R. Evans, and M. Hughes. RIPE Routing
Working Group Recommendations on Route Aggregation.
RIPE, 2006.
https://www.ripe.net/publications/docs/ripe-399.

[18] M. Wählisch, O. Maennel, and T. C. Schmidt. Towards
Detecting BGP Route Hijacking using the RPKI. In
SIGCOMM, pages 103–104, 2012.

https://github.com/dragonresearch/rpki.net
http://www.routeviews.org/
http://rpki-monitor.antd.nist.gov/
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
https://github.com/yossigi/compress_roas
https://www.ripe.net/publications/docs/ripe-399

	Routing with BGP & the RPKI
	Enter maxLength
	Forged origin subprefix hijack
	What do the RFCs say?
	Benefits of maxLength?
	Compressing Minimal ROAs
	Software architecture
	Performance

	Eliminate maxlength
	References

