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ABSTRACT
User convenience and strong security are often at odds, and
most security applications need to find some sort of balance
between these two (often opposing) goals. The Resource
Public Key Infrastructure (RPKI) [Lepinski and Kent 2012],
a security infrastructure built on top of interdomain routing,
is not immune to this issue. The RPKI uses the maxLength
attribute to reduce the amount of information that must be
explicitly recorded in its cryptographic objects. MaxLength
also allows operators to easily reconfigure their networks
without modifying their RPKI objects. Our network mea-
surements, however, suggest that the maxLength attribute
strikes the wrong balance between security and user con-
venience. We therefore believe that operators should stop
using maxLength. We give operational recommendations
and develop software that allow operators to reap many of
the benefits of maxLength without its significant security
costs.

1. INTRODUCTION
Efforts to secure interdomain routing with the Border

Gateway Protocol (BGP) have been ongoing for decades.
To date, however, the RPKI [Lepinski and Kent 2012] is the
only approach that has seen widespread deployment [NIST
2016]. The IETF is diligently working towards standard-
izing BGPsec [Lepinski 2012], a more robust security en-
hancement that should be deployed on top of the RPKI.
BGPsec calls for a wholesale replacement of the BGP pro-
tocol and heavyweight online cryptography, while providing
meagre benefits in partial deployment [Lychev et al. 2013].
Thus, it seems likely that it will take years before BGPsec
deployment becomes a reality.

We therefore consider a setting where the RPKI is de-
ployed, but BGPsec is not. Even in this setting, network
operators can reap valuable security benefits [Lychev et al.
2013, Goldberg 2014] by dropping routes that the RPKI
deems invalid. By doing this, operators can prevent some
of the most devastating attacks on BGP: prefix hijacks and
subprefix hijacks.

However, RPKI objects have an attribute called maxLength.
We argue that when maxLength is misconfigured, it obvi-
ates most of the RPKI’s security benefits. Specifically, an
RPKI object with a misconfigured maxLength is vulnera-
ble to a forged-origin subprefix hijack, which is as devas-
tating as the traditional subprefix hijack that the RPKI is
designed to prevent. These misconfigurations are common:
our network measurements confirm that the vast majority
of RPKI objects that use maxLength in the wild are vul-

nerable to this attack. We argue that the RPKI RFCs are
not sufficiently consistent on the limitations of maxLength.
We also show how most of the benefits attained through
maxLength can be achieved without exposing users to at-
tacks, and present open-source software that achieves this
goal. We conclude with operational recommendations for
the use of maxLength.

2. HOW THE RPKI SECURES BGP
We use a running example to review how the RPKI secures

routing. Section 3 reviews maxLength.

ROAs. The RPKI uses Route Origin Authorizations
(ROAs) to create a trusted mapping from an IP prefix to
a set of autonomous systems (ASes) that are authorized to
originate (i.e., claim to be the destination for) this prefix.
Each ROA contains a set S of IP prefixes, and the identify-
ing number of an AS authorized to originate all the IP pre-
fixes in S; the ROA is cryptographically signed by the party
that is authorized to allocate these IP prefixes. ROAs pro-
tect against some of the most devastating routing attacks;
namely, prefix and subprefix hijacks where a hijacking AS
originates (“hijacks”) routes for IP prefixes that it is not
authorized to originate.

For our running example, we use IP prefix 168.122.0.0/16
which contains all IPv4 addresses from 168.122.0.0 to
168.122.255.255. This IP prefix is allocated to Boston Uni-
versity (BU) which also has AS 111. Therefore, the RPKI
should contain a ROA with the IP prefix 168.122.0.0/16
mapped to AS 111. This ROA would be digitally signed
by a key that is certified by ARIN (the American Registry
for Internet Numbers), the registry that allocated this IP
prefix to BU.

Originating routes. AS 111 originates its prefix by
sending a BGP announcement to its neighboring ASes:

“168.122.0.0/16: AS 111”

Because this BGP announcement matches the correspond-
ing ROA, it will be considered valid. The neighboring ASes
could select this route, and propagate it to their neighbors.
For example, AS 3356 (Level3) is a neighbor of AS 111. Af-
ter validating the BGP announcement, AS 3356 selects the
route, and then announces its selection to its own neighbors
with the following BGP announcement (i.e., prepending its
own AS number):

“168.122.0.0/16: AS 3356, AS 111”

This process of neighboring ASes validating the route against
ROAs in the RPKI, selecting it, and then propagating it to
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their neighbors would continue until all ASes connected to
the origin (directly or indirectly) have learned a route to
168.122.0.0/16. Traffic destined to IP addresses in 168.122.0.0/16
would then flow to AS 111.

Subprefix hijacks. Now suppose there is a subprefix hi-
jack. The attacking AS m originates a BGP announcement
for a subprefix of the target prefix, for example:

“168.122.0.0/24: AS m”

In the absence of the RPKI, the hijacker would intercept
traffic for all addresses in 168.122.0.0/24—rather than flow-
ing to AS 111, all this traffic would flow to AS m instead.
This is because routers perform a longest-prefix match when
deciding where to forward IP packets. A packet with des-
tination IP 168.122.0.1 will flow to attacker AS m, rather
than to AS 111, because 168.122.0.0/24 is a longer matching
prefix than 168.122.0.0/16.

This attack is quite devastating, since the location of the
attacker or the path he announces is irrelevant. All that
matters is that the hijacker’s route for the subprefix prop-
agates out into the global Internet. Longest-prefix-match
routing ensures that the hijacked route is always preferred
over the legitimate route. This behavior has been exploited
in several high-profile incidents [Peterson 2013, McCullagh
2008].

ROAs should stop subprefix hijacks. How does
the ROA for IP prefix 168.122.0.0/16 and AS 111 stop the
subprefix hijack?

Any RPKI-validating router receiving the attacker’s BGP
announcement should notice that the announcement is in-
valid because (1) the ROA for 168.122.0.0/16 and AS 111
covers the attacker’s announcement (since 168.122.0.0/24
is a subprefix of 168.122.0.0/16), and (2) there is no ROA
matching the attacker’s announcement (i.e., ROA for AS
m and IP prefix 168.122.0.0/24). If routers ignore invalid
BGP announcements, the subprefix hijack will fail, and the
attacker fails to intercept traffic destined to BU at AS 111.

3. ENTER MAXLENGTH
We continue with our example to understand maxLength.

De-aggregation. In addition to originating the BGP
announcement for 168.122.0.0/16, AS 111 also originates an
additional BGP announcement for its subprefix:

“168.122.225.0/24: AS 111”

Announcing subprefixes of a larger prefix from the same AS
is known as de-aggregation, and sometimes used for traffic
engineering. By announcing the /24 prefix to some neigh-
bors and not others, AS 111 has some modicum of control
over the routes other ASes use to reach 168.122.225.0/24.1

However, de-aggregation tends to bloat the size of routing
tables across all routers on the Internet. As such, net-
work operators frown upon excessive de-aggregation, e.g.,
announcing all 28 of the /24s constituting a /16 [Smith et al.
2006].

Now suppose the RPKI only had the ROA (168.122.0.0/16,
AS 111), and AS 111 originated the BGP announcements

1Interestingly, routing security is sometimes also cited as a
reason for de-aggregation. By announcing a /24 route, AS
111 ensures that no hijacker can launch a subprefix hijack
against the route, since BGP routes for prefixes longer than
/24 are commonly discarded by routers [Smith et al. 2006].

“168.122.225.0/24: AS 111”

The above BGP announcement is invalid, since it has a cov-
ering ROA (the ROA for 168.122.0.0/16, AS 111) but no
matching ROA (i.e., a ROA for 168.122.225.0/24, AS 111).
Routers would therefore drop the route as invalid, stymying
AS 111’s attempts to de-aggregate its prefix.

Using maxLength to deal with de-aggregation. The
RPKI’s maxLength attribute provides one solution to this
problem. According to RFC 6482 [Lepinski et al. 2012]:
“When present, the maxLength specifies the maximum length
of the IP address prefix that the AS is authorized to adver-
tise.” Thus, suppose we modified the ROA by adding a
maxLength of 24. The resulting ROA would be

ROA:(168.122.0.0/16-24, AS 111)

where the notation “-24” means up to prefix-length 24. This
ROA authorizes AS 111 to originate any subprefix of 168.122.0.0/16,
up to length /24. For example, AS 111 could originate
168.122.225.0/24 as well as all of

168.122.0.0/17,
168.122.128.0/17,
168.122.0.0/18,
...
168.122.255.0/24

but not 168.122.0.0/25.
MaxLength thus gives AS 111 some additional flexibility;

even if AS 111 does not know how it plans to de-aggregate
its prefix 168.122.0.0/16 at the time it requested the ROA,
by adding a maxLength of /24 AS 111 is certain that any
de-aggregation it performs will not result in invalid routes.

Alternate solution: ROAs with sets of prefixes. Al-
ternatively, because ROAs support sets of prefixes, one could
just update the ROA to include both prefixes:

ROA:({168.122.0.0/16, 168.122.225.0/24}, AS 111)

Minimal ROAs. A ROA is minimal [Manderson et al.
2013, § 3.2] when it includes only those prefixes that the
AS announces in BGP, and no other prefixes. The ROA
above is minimal, because it includes exactly the two pre-
fixes announced by AS 111. Minimal ROAs come with less
flexibility, because the AS must know exactly what prefixes
it plans to announce at the time the ROA is issued.

4. FORGED-ORIGIN SUBPREFIX HIJACK
The convenience of maxLength comes with a serious down-

side. Specifically, when maxLength is used to issue ROAs
that are not minimal, these ROAs are subject to a forged-
origin subprefix hijack. This attack is as devastating as the
traditional subprefix hijack that ROAs are designed to pre-
vent.

A non-minimal ROA. Continuing with our example,
suppose that AS 111 originates the two BGP announce-
ments:

“168.122.0.0/16: AS 111”
“168.122.225.0/24: AS 111”

and that the RPKI had the ROA

ROA:(168.122.0.0/16-24, AS 111)
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with maxLength 24. This ROA is not minimal because it
authorizes routes that are not announced in BGP.

The attack. A hijacker can intercept 100% of the traffic
destined to any subprefix of 168.122.0.0/16 (up to length
/24) except for those addresses in 168.122.225.0/24. For
instance, to intercept all traffic for IP prefix 168.122.0.0/24,
the hijacker performs a forged-origin subprefix hijack [Gilad
et al. 2017, Bush 2014] by sending this BGP announcement:

“168.122.0.0/24: AS m, AS 111”

Why does it work? (1) The hijacker’s BGP announce-
ment falsely claims that m is a neighbor of AS 111. But
other ASes and routers have no way to know that this is
false, because the RPKI does not provide a means to vali-
date this claim (and BGPsec is not deployed in our setting).
(2) The hijacker’s BGP announcement is valid according
to the RPKI, since the non-minimal ROA authorizes BGP
routes for 168.122.0.0/24 with AS 111 as the origin AS. (3)
AS 111 never originates a route for 168.122.0.0/24. Cru-
cially, this means that the hijacker’s route is the only route
to 168.122.0.0/24. (4) Longest-prefix-match routing ensures
that the hijacker’s route to the subprefix 168.122.0.0/24 is
always preferred over the legitimate route 168.122.0.0/16.

It’s as bad as a subprefix hijack! Thus, if the hijacker’s
route propagates through the Internet, the hijacker will in-
tercept all traffic destined for IP addresses in 168.122.0.0/24.
Thus, the attack has exactly the same impact as a regular
subprefix hijack. And a regular subprefix hijack is more
damaging than a prefix hijack. Indeed, one might argue
that the whole point of the RPKI is to stop subprefix hi-
jacks [Lychev et al. 2013, Lepinski and Kent 2012].

What’s new here? An expert reader might wonder
about the difference between the forged-origin subprefix hi-
jack and the traditional forged-origin hijack [Lychev et al.
2013, Goldberg 2014]. In a traditional forged-origin hijack,
the hijacker also (1) falsely claims to be a neighbor of the le-
gitimate origin AS, and (2) announces a route that is valid
according to the RPKI. However, because it is tradition-
ally assumed that the RPKI only authorizes routes that
are announced in BGP, the hijacker’s route is for the exact
same prefix that is legitimately announced in BGP. Thus,
the forged-origin hijacker m would announce:

“168.122.0.0/16: AS m, AS 111”

Now, the hijacker’s route is not the only route to the hi-
jacked prefix. Rather than attracting all of the victim’s
traffic, the traffic must split between the hijacker’s route
and the legitimate route. This subtlety makes a huge differ-
ence in the effectiveness of the attack. [Lychev et al. 2013]
shows that, during a traditional forged-origin hijack, the ma-
jority of traffic (on average) is still forwarded on the legiti-
mate route. Meanwhile, when non-minimal ROAs authorize
routes that are not announced in BGP, a forged-origin sub-
prefix hijack on these routes causes all of the traffic to be
intercepted by the hijacker.

Who is vulnerable? Any prefix in a non-minimal
ROA is vulnerable. In particular, any prefix p in a ROA
with maxLength m longer than p is vulnerable, unless every
subprefix of p of length m is legitimately announced in BGP.

5. WHAT DO THE RFCS SAY?
RFC 7115 [Bush 2014] mentions minimal ROAs:

Figure 1: How routers get RPKI information.

One advantage of minimal ROA length is that this at-
tack does not work for sub-prefixes that are not covered
by overly long max length. For example, if, instead of
10.0.0.0/16-24, one issues 10.0.0.0/16 and 10.0.42.0/24,
an attack cannot succeed against 10.0.666.0/24. They
must attack the whole /16, which is more likely to be
noticed because of its size.

Note that “attacking the whole /16” is not only “more likely
to be noticed”, but also much less effective than a forged-
origin subprefix-hijack against 10.0.666.0/24. To see why,
return to our running example and suppose that BU had
the minimal ROA described at the end of Section 3. Then,
a forged-origin subprefix hijack on 168.122.0.0/24 (as de-
scribed in Section 4) would fail, since this minimal ROA
ensures that the hijacker’s route is invalid. Thus, the hi-
jacker m would need to “attack the whole /16”, using a
traditional forged-origin hijack announcement

“168.122.0.0/16: AS m, AS 111”

As remarked in Section 4, this causes traffic to split between
the hijacker m and the legitimate AS 111, with the majority
of ASes choosing to route by the legitimate path (see [Lychev
et al. 2013]). Unlike the forged-origin subprefix hijack, this
attack does not allow the hijacker to attract all of the traffic,
and is thus significantly less effective [Lychev et al. 2013].
RFC 7115 [Bush 2014] also offers this solid advice:

Operators should be conservative in use of max length
in ROAs. For example, if a prefix will have only a few
sub-prefixes announced, multiple ROAs for the specific
announcements should be used as opposed to one ROA
with a long max length.

but we note that “multiple ROAs” are not required since
ROAs support sets of IP prefixes.

RFC6907 similarly recommends issuing minimal ROAs [Man-
derson et al. 2013, § 3.2], but also suggests [Manderson
et al. 2013, § 3.8] using a non-minimal ROA (that is vulner-
able to a forged-origin subprefix hijacks) when ASes wish to
deaggregate prefixes per our description in § 3. Specifically,
RFC6907 describes the following situation:

An organization (Org A with ASN 64496) has been al-
located the prefix 10.1.0.0/16; it wishes to announce the
aggregate and any or all more specific prefixes up to and
including a maximum length of /20, but never any more
specific than a /20

RFC6907 goes on to recommend that Org A issues

ROA:(10.1.0.0/16-20, AS 64469)

with maxLength of 20. However, if AS 64496 does not an-
nounce all the /20 subprefixes of 10.1.0.0/16, it is vulnerable
to a forged-origin subprefix hijacks.
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6. BENEFITS OF MAXLENGTH?
We use network measurements to analyze the impact of

the maxLength attribute. We downloaded all ROAs from
the RPKI publication points and compared them against
the routing entries in the BGP tables of all Route Views
collectors [rou 2017]; we report results from the dataset of
ROAs and BGP advertisements on June 1, 2017.

Problem: Using maxLength almost always creates
vulnerabilities. First, we observe that only 4630 (about
12%) of the prefixes in ROAs have a maxLength longer than
the prefix length. The vast majority of these ROAs are not
minimal. Specifically, almost all of these prefixes (84%) are
vulnerable to forged-origin subprefix hijacks. To measure
this, we counted the number of prefixes p with maxLength
m longer than p where some subprefix of p up to length m is
not announced in BGP. Thus, we see that almost all users
‘taking advantage’ of the maxLength feature are unwittingly
opening themselves up to attacks.

Benefit? Fewer prefixes included in ROAs. One
might argue that a benefit of maxLength is that it reduces
the number of ROAs. We now argue otherwise.

In our dataset, 40K prefixes are authorized by ROAs.
What if (1) maxLength is eliminated and (2) only mini-
mal ROAs were used? Then, we find that 13K additional
prefixes would need to be added to ROAs. (To obtain this
number, we count the number of prefixes that are (a) an-
nounced in BGP, and (b) are also a covered by a prefix that
is authorized by a ROA in the RPKI.) We stress, however,
that we could deal with these 13K additional prefixes without
adding any additional ROAs (and associated cryptographic
material) to the RPKI: we just convert each original non-
minimal ROA to a minimal ROA that has the set of prefixes
announced in BGP.

Benefit? Reducing load on routers. One might argue
that maxLength reduces load on routers. We find that holds
in today’s scenario (where the RPKI is partially deployed),
but not if the RPKI is fully deployed.

Figure 1 shows how routers get information from the RPKI.
Each AS has a trusted local cache (typically a general-purpose
machine) that downloads the complete set of ROAs from all
default RPKI repositories. The local cache cryptograph-
ically validates the ROAs and creates a list of “Protocol
Data Units” (PDUs). Each PDU is essentially a tuple of
(IP prefix, maxLength, origin AS) [Mohapatra et al. 2013,
Bush and Austein 2013]. The local cache sends the PDU
list to the routers in its AS using the (RPKI-to-Router)
protocol [rpk 2017]. Finally, routers use the PDU list to de-
termine validity of BGP announcements [Bush and Austein
2013, Mohapatra et al. 2013, rpk 2017].

The PDU list could become longer if we replace all non-
minimal maxLength-using ROAs with minimal ROAs that
do not use maxLength. For instance, a single maxLength-
using PDU for prefix 87.254.32.0/19-21 (shown in Figure 1),
would be replaced with four non-maxLength-using PDUs
(i.e., one PDU for each subprefix of 87.254.32.0/19 up to
length /21, that is announced in BGP). This could impact
performance at routers.

The measurements described above indicate that today’s
routers would need to process 13K additional PDUs (a 33%
increase). Thus, in today’s scenario (where the RPKI is
partially deployed), we find that maxLength does reduce
the number of PDUs processed by routers. Yet, the number

of PDUs is not very high.
Does this finding hold if the RPKI was fully deployed? To

find out, we suppose that every IP prefix in our BGP dataset
was covered by a maximally-permissive ROA. A maximally-
permissive ROA authorizes each of its prefixes to the longest
possible maxLength: namely, every IPv4 prefix has maxLength
/32, while every IPv6 prefix has maxLength /128. (Maximally-
permissive ROAs are vulnerable to forged-origin subprefix
hijacks; we use them only to bound the maximum compres-
sion provided by maxLength.) Our BGP dataset has 777K
advertised (IP prefix, AS) pairs (IPv4 and IPv6 prefixes).
If all of these pairs were covered by maximally-permissive
ROAs, these ROAs would still need to include 729K pre-
fixes! Thus, in the full-deployment scenario, the maximum
compression provided by the maxLength (in terms of reduc-
ing the number of PDUs processed by routers) is just 6.2%.
This follows because most ASes do not send BGP announce-
ments for subprefixes of their prefixes.

In Section 7, we present software that we built to pre-
process the PDU list to reduce the number additional PDUs
without introducing vulnerabilities to forged-origin subpre-
fix hijacks. Our software achieves a compression rate of 6.1%
in the same full-deployment scenario, very close to the above
6.2% bound.

Problem: maxLength encourages misconfigurations.
We speculate that the misuse of maxLength also causes
many legitimate prefixes advertised through BGP, to ap-
pear invalid. Specifically, network operators often specify a
maxLength that is too restrictive (i.e., too short) in their
ROAs. Specifying a maxLength shorter than the prefix an-
nounced by an AS in BGP causes the legitimate advertise-
ment to appear as a subprefix hijack. Any AS that filters
packets based on ROAs in the RPKI would discard the le-
gitimate BGP advertisement as invalid, and thus could po-
tentially cause a disconnection between the two ASes.

Using over-restrictive maxlength is a common error in cur-
rent RPKI deployments. RPKI monitors and studies [NIST
2016, Iamartino et al. 2015] show that this is the cause for
almost 60% of invalid prefixes. This corresponds to about
6% of all prefixes that are announced in BGP and covered
by ROAs. Some of these many invalid BGP announcements
might result from actual BGP hijacking, but most are likely
due to errors.

Summary: maxLength provides few benefits. The
motivation behind the maxLength attribute is simple: To
reduce the number of prefixes specified in ROAs and thus
also the number of PDUs that a router uses to filter invalid
BGP announcements. However, we have just shown that
maxLength can only provide very limited benefits, and in
practice, it is often not used. Moreover, when maxLength
is used, network operators often set it to the wrong value:
either too restrictive, which may cause loss of legitimate
traffic, or too permissive, which allows for one-hop subpre-
fix hijacks. We conclude that the problems caused by the
maxLength field outweigh the benefits it can provide today
and in the future, when the RPKI be ubiquitously adopted.

7. COMPRESSING MINIMAL ROAS
Recall that a router validating routes against the RPKI

is given a list of PDUs, where each is a tuple of (IP pre-
fix, length, maxLength, origin AS) from a ROA [Mohapatra
et al. 2013, Bush and Austein 2013]. The list of PDUs is
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Figure 2: The IPv4 prefix trie for the minimal ROAs for AS
31283 without maxlength (left), and after compression with
compress roas (right). compress roas reduces the number
of output PDUs from four to two.

created by the trusted local cache, as shown in Figure 1.
Thus, to avoid pushing a longer list of PDUs to routers,
we now present software that runs on the local cache, and
transforms a list of PDUs that do not use the maxLength
attribute into a list of PDUs that do. Because it runs on the
local cache, our software requires no changes to routers and
conforms with today’s RPKI architecture. Our software is
publicly available [Sagga et al. 2017].

Build your own maxLength. Conceptually, our soft-
ware compresses a set of ROAs that do not use maxLength
to a set of ROAs that do use maxLength. Consider the fol-
lowing minimal ROA:

ROA: ({87.254.32.0/19, 87.254.32.0/20, 87.254.48.0/20,
87.254.32.0/21 }, AS 31283)

The above ROA does not use maxLength. Our software
would compress it to the maxLength-using ROA:

ROA: ({87.254.32.0/19-20, 87.254.32.0/21}, AS 31283)

This ‘compressed’ ROA is still minimal, because it covers
exactly the same set of prefixes as its uncompressed version.
Importantly, we do not compress the ROA to

ROA: (87.254.32.0/19-21, AS 31283)

since this is not a minimal ROA and is vulnerable to forged-
origin subprefix hijacks (on IP prefix 87.254.40.0/21).

7.1 Software architecture
Today’s RPKI Tools contain a utility program called scan roas

that the local cache uses to transform a set of ROAs that
have been downloaded from the RPKI and cryptographically
validated, into a list of PDUs, aka, (IP prefix, maxLength,
origin AS) tuples [rpk 2017]. Our utility is called compress roas

and acts as a drop-in alternative to scan roas. compress roas

first calls scan roas on a set of cryptographically-validated
ROAs, and obtains a list of valid (IP prefix, maxLength,
origin AS)-tuples. Then, we compress this set of tuples to
another set of tuples that do use the maxLength attribute.

We envision using compress roas in a future RPKI where
the maxLength attribute is not used, so that each of the (IP
prefix, maxLength, origin AS)-tuples output by scan roas

would just have maxLength equal to the length of the IP
prefix. However, compress roas can also reduce the number
of (IP prefix, maxLength, origin AS)-tuples generated by
today’s (maxLength-using) RPKI.

Deployment. Our software is easy to integrate into the
RPKI Relying Party Tools [rpk 2017]. We just execute the
following command on the local cache:
rpki-rtr cronjob --scan-roas compress-roas [roa-dir] [pdu-dir]

This sets up a cronjob that takes the cryptographically-
validated ROAs in [roa-dir] and converts them into a list
of (IP prefix, length, maxLength, origin AS)-tuples stored in
[pdu-dir] that will be communicated to routers using the
rpki-rtr protocol. The usual scan roas utility is replaced
with our compress roas utility (which keeps the same in-
terface).

Compression algorithm. Our algorithm takes in a
list of (IP prefix, maxLength, AS)-tuples and compresses it
using tries (i.e., prefix trees) as shown in Figure 2. For each
AS number in the list, we generate a trie for IPv4 and a trie
for IPv6. The key to each trie is the string $prefix where $
is a delimiter, and prefix is a binary representation of an IP
prefix and its length. For instance, the ROA containing the
IP prefix 8.0.0.0/8 for AS 3356 would be in AS 3365’s IPv4
trie under the key $00001000, while the IP prefix 8.0.0.0/9
for AS 3356 would be in AS 3365’s IPv4 trie under the key
$000010000. Each trie node corresponds to some (AS, prefix,
maxLength)-tuple in a valid ROA. The value of the trie node
is the maxlength specified in the tuple. If the tuple came
from a ROA that does not use the maxLength attribute
(as we envision for the future RPKI), then the trie node’s
maxlength value is identical to the prefix length.

For a trie node with key $k, we refer to the nodes $k||0
and $k||1 as its left and right direct children. A trie node
can therefore have at most two direct children.

To compress tuples, we iterate through the trie using a
depth-first search (DFS). Just before we backtrack out of
each trie node, we process it as follows:

if (node has both direct children):
minChildVal = min(lChild.value, rChild.value)
if (minChildVal > node.value):

# Adjust father’s maxlength to cover children
node.value = minChildVal

if (lChild.value <= node.value):
# left child now covered by father
delete trie[lChild]

if (rChild.value <= node.value):
# right child now covered by father
delete trie[rChild]

As the DFS backtracks through the trie we run the com-
pression function in Algorithm 1. Each trie node is assigned
a new value (i.e., a maxLength) if both its direct children
exist. The assigned maxLength of the node is the mini-
mum maxLength of its two children. The child is then
deleted if the child’s maxLength does not exceed the par-
ent’s maxLength. When the DFS completes, we get a set of
(IP prefix, maxLength, AS)-tuples that correspond to the
remaining trie nodes.

7.2 Performance
We evaluate our software both in today’s RPKI partial

deployment status, and in a future scenario where RPKI
is fully deployed. We use datasets that aggregates ROAs
and BGP advertisements on a weekly basis, from 4/13/2017
to 6/1/2017. Figure 3 presents results across all datasets.
Table 1 and the discussion below is for the 6/1/2017 dataset.
Our implementation’s website shows how to reproduce our
results [Sagga et al. 2017].

Today’s RPKI. Our dataset has 7499 ROAs, comprising
39,949 distinct tuples of (IP prefix, maxLength, AS). Each
tuple is inserted into one of the tries and compressed with
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(b) RPKI in full deployment

Figure 3: Number of PDUs processed by routers under different scenarios along a timeline. A solid line marks scenarios that
are safe against forge-origin subprefix hijacks. Scenarios with dashed lines are vulnerable.

procedure compress(node, trie):

if node has both direct children then
minChildVal←

min{node.lChild.value,node.rChild.value}
if minChildVal ¿ node.value then

// Adjust father’s maxlength to cover children
node.value← minChildVal

if node.lChild.value ≤ node.value then
// left child now covered by father
delete trie[node.lChild ]

if node.rChild.value ≤ node.value then
// right child now covered by father
delete trie[node.rChild ]

end
Algorithm 1: ROAs compression function. Called for ev-
ery node as we backtrack from iterating over trie using
DFS.

compress roas. The result is 33,615 tuples, for a compres-
sion of 15.90%. Thus, our software is beneficial even for
today’s (maxLength-using) RPKI.

Today’s RPKI, however, is vulnerable to forged-origin sub-
prefix hijacks. What if today’s RPKI was hardened against
these hijacks, by converting every existing ROA into a min-
imal ROA that does not use maxLength? To convert each
ROA in our RPKI dataset into a minimal ROA with no
maxLength, we (1) identify the IP prefixes that are made
valid by that ROA and are announced in our BGP dataset,
and (2) modify the ROA so that it contains only those IP
prefixes. We have the same number of ROAs, but now
(instead of the status quo 39,949 tuples) we have a total
of 52,745 (IP prefix, AS)-pairs. We use compress roas to
compress these 52,745 pairs to obtain 49,308 (IP prefix,
maxLength, origin AS)-tuples, for a compression of 6.5%.
Even with compress roas, we still have 23% more tuples
than the status quo; however, the status quo is vulnerable
to forged-origin subprefix hijacks, and the scenario we just
evaluated is not.

RPKI in full deployment. We consider a future full
deployment scenario where the RPKI is hardened against
forged-origin subprefix hijacks. That is, we assume every
IP prefix announced in our BGP dataset is validated by
a minimal ROA that does not use maxLength. Our BGP
dataset has 776,945 (IP prefix, AS) pairs. This is exactly
the number of (IP prefix, AS) pairs contained in ROAs if

scenario # PDUs secure?

Today 39,949 X
Today (compressed) 33,615 X
Today, minimal ROAs, no maxLength 52,745 X
Today, minimal ROAs, with maxLength (compressed) 49,308 X
Full deployment, minimal ROAs, no maxLength 776,945 X
Full deployment, minimal ROAs, with maxLength 730,008 X
Full deployment, lower bound # PDUs (max permissive ROAs) 729,371 X

Table 1: Number of PDUs that processed by routers in the
scenarios of Section 7 from the dataset of 6/1/2017.

the RPKI used only minimal ROAs and no maxLength.
Applying compress roas gives 730,008 (IP prefix, length,
maxLength)-tuples. This is very close to the lower bound of
729,371 tuples for the full-deployment scenario with maximally-
permissive ROAs (which is vulnerable forged-origin prefix
hijacks; see Section 6). Figure 3b shows that this result is
consistent across all our measurements.

Thus, if today’s RPKI eliminated maxLength and started
using minimal ROAs (to immune against forged-origin sub-
prefix hijacks), we would see some increase (23%) in the
number of PDUs that must be processed by routers. In a
future RPKI deployment, however, this increase becomes
insignificant; in fact, using minimal ROAs along with our
compress roas software gives us almost the optimal num-
ber of PDUs.

Computational overhead. We tested the compress roas

utility on an Intel i7-6700 machine. Compressing today’s
(partially-deployed) RPKI took 2.4 seconds and required
19MB of memory, while the full-deployment scenario took
36 seconds and 290MB memory. Performance could be im-
proved by parallelizing across tries.

8. CAREFUL WITH MAXLENGTH
Today, only about 12% of prefixes in the RPKI use the

maxLength attribute, but almost all of them are using it
wrong. Operators that use maxLength are almost always
vulnerable to forged-origin subprefix hijacks. These hijacks
are just as harmful as the traditional subprefix hijacks that
the RPKI is designed to prevent, thus obviating much of the
RPKI’s security benefits.

We therefore suggest that operators replace their maxLength-
using ROAs with ROAs that (1) do not use maxLength and
(2) are minimal, i.e., that explicitly enumerate the set of
IP prefixes that an AS actually originates in BGP. ROAs
already support sets of IP prefixes, so switching to minimal
ROAs would not change the number of ROAs or crypto-
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graphic computations required. This switch can easily be
accomplished without changing the RPKI standard, simply
by modifying the popular user interfaces used for ROA con-
figuration [RIPE 2016, ARIN 2017, LACNIC 2017, APNIC
2017, AfriNIC 2015] (i.e., by removing the option to man-
ually input maxLength). To limit impact on router perfor-
mance, our compress roas software can be used on RPKI lo-
cal caches. In sum, avoiding the maxLength attribute makes
the RPKI simpler, less error prone, and more secure.
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