
Breaking the Sub-Exponential Barrier in Obfustopia ∗

Sanjam Garg† Omkant Pandey‡ Akshayaram Srinivasan§ Mark Zhandry¶

Abstract

Indistinguishability obfuscation (iO) has emerged as a surprisingly powerful notion. Almost
all known cryptographic primitives can be constructed from general purpose iO and other min-
imalistic assumptions such as one-way functions. The primary challenge in this direction of
research is to develop novel techniques for using iO since iO by itself offers virtually no protec-
tion to secret information in the underlying programs. When dealing with complex situations,
often these techniques have to consider an exponential number of hybrids (usually one per input)
in the security proof. This results in a sub-exponential loss in the security reduction. Unfor-
tunately, this scenario is becoming more and more common and appears to be a fundamental
barrier to current techniques.

In this work, we explore the possibility of getting around this sub-exponential loss barrier in
constructions based on iO as well as the weaker notion of functional encryption (FE). Towards
this goal, we achieve the following results:

1. We construct trapdoor one-way permutations from polynomially-hard iO (and standard
one-way permutations). This improves upon the recent result of Bitansky, Paneth, and
Wichs (TCC 2016) which requires iO of sub-exponential strength.

2. We present a different construction of trapdoor one-way permutations based on standard,
polynomially-secure, public-key functional encryption. This qualitatively improves upon
our first result since FE is a weaker primitive than iO — it can be based on polynomially-
hard assumptions on multi-linear maps whereas iO inherently seems to requires assump-
tions of sub-exponential strength.

3. We present a construction of universal samplers also based only on polynomially-secure
public-key FE . Universal samplers, introduced in the work of Hofheinz, Jager, Khurana,
Sahai, Waters and Zhandry (EPRINT 2014), is an appealing notion which allows a single
trusted setup for any protocol. As an application of this result, we construct a non-
interactive multiparty key exchange (NIKE) protocol for an unbounded number of users
without a trusted setup. Prior to this work, such constructions were only known from
indistinguishability obfuscation.

In obtaining our results, we build upon and significantly extend the techniques of Garg,
Pandey, and Srinivasan (EPRINT 2015) introduced in the context of reducing PPAD-hardness
to polynomially-secure iO and FE .

∗Research supported in part from DARPA Safeware Award W911NF15C0210, AFOSR Award FA9550- 15-1-0274,
and NSF CRII Award 1464397. The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S. Government.
†University of California, Berkeley, sanjamg@berkeley.edu
‡Drexel University, omkant@drexel.edu
§University of California, Berkeley, akshayaram@berkeley.edu
¶MIT, mzhandry@gmail.com

1

1 Introduction

Indistinguishability obfuscation (iO) [BGI+12, GGH+13b] has emerged as a powerful cryptographic
primitive in the past few years. It has proven sufficient to construct almost all cryptographic
primitives, many of them for the first time, [SW14, HSW14, BZ14, PPS15, CLP15, HW15, BLR+15,
AS16, BPW16]. Recently, iO also proved instrumental in proving the hardness of complexity class
PPAD [BPR15].

The primary challenge in this direction of research stems from the fact that iO by itself is “too
weak” to work with. The standard security of iO may not even hide any secrets present in the
underlying programs. Therefore, the crucial part of most iO-based constructions lies in developing
novel techniques for using iO to obfuscate “programs with secrets.”

There are only a limited set of techniques for working with iO. When dealing with complex
situations, these techniques often run into what we call the sub-exponential barrier. More specifi-
cally, the security proof of a typical iO-based construction often ends up considering an exponential
number of hybrid experiments in order to make just one change in the underlying obfuscation. The
goal is usually to eliminate all “troublesome” inputs, one at a time, that may be affected by the
change. Such inputs are usually exponentially many, resulting in a sub-exponential loss in the
security reduction. Unfortunately, this situation arises frequently and too many works suffer from
the sub-exponential loss.

The problem becomes even worse when instead of iO, one wants to rely on weaker primitives
such as functional encryption (FE). Although FE implies iO, this reduction too incurs a sub-
exponential loss [AJ15, BV15]. Therefore, one typically seeks a direct construction from FE .
Note that FE can be based on polynomial-hardness assumptions on multilinear maps whereas
iO inherently seems to require assumptions of sub-exponential strength (or exponentially many
assumptions of polynomial strength).

Recently, Garg, Pandey, and Srinivasan [GPS15] took upon the issue of sub-exponential loss in
iO-based constructions in the context of PPAD hardness. They developed techniques to eliminate
the sub-exponential loss in the work of Bitansky, Paneth, and Rosen [BPR15] and reduced the
hardness of PPAD to the hardness of standard, polynomially-secure iO (and injective one-way
functions). Garg et al. also presented a new reduction which bases the hardness of PPAD to
standard polynomially-secure functional encryption. Together with the result of [GGHZ16], this
essentially reduces the hardness of PPAD to simple polynomially-hard assumptions on multi-linear
maps [GGH13a].

This work. Our goal is to develop techniques to break the sub-exponential barrier in crypto-
graphic constructions based on iO and FE . Towards this goal, we build upon and significantly
extend the techniques in [GPS15].

We start with the construction of trapdoor permutations of Bitanksy, Paneth, and Wichs
[BPW16] based on sub-exponentially secure iO. We improve their work by constructing trap-
door permutations based only on polynomially-secure iO (and one-way permutations). We further
extend our results and obtain a construction based on standard, polynomial hard, functional en-
cryption (instead of iO). Together with the result of [GGHZ16], this gives us trapdoor permutations
based on polynomial-hard assumptions on multi-linear maps.

We then consider the case of universal samplers. The notion of universal samplers was put
forward by Hofheinz, Jager, Khurana, Sahai, Waters, and Zhandry [HJK+14]. It allows for a single

2

trusted setup which can be used to sample common parameters for any protocol. More specifically,
a universal sampler is an algorithm that takes as input the description of a sampling procedure
(e.g., the sampling procedure for the common parameters of some protocol π) and outputs a sample
from that procedure (to be used as the parameters for π). The algorithm is deterministic, so that
anyone running the protocol on a given sampling procedure gets the same parameters. Yet the
generated parameters should be “as good as” a freshly generated set of parameters. Therefore, the
only set of common parameters needed for all protocols is just a single universal sampler. When
a group of users wish to engage in a protocol involving a trusted setup, they can each feed the
setup procedure of that protocol into the universal sampler, and use the output as the common
parameters. Universal samplers is a very appealing notion. Hofheinz et al. construct universal
samplers from iO. They also show how to use them to construct multi-party non-interactive key-
exchange (NIKE) and broadcast encryption.

We consider the task of constructing universal samplers from the weaker notion of only polynomially-
secure functional encryption. As noted earlier, we cannot use the generic reduction of [AJ15, BV15]
between FE and iO since it incurs sub-exponential loss. Intuitively, a fresh approach that is not
powerful enough to imply iO is essential to obtaining a polynomial-time reduction for this task.
This is because iO inherently seems to require assumptions of sub-exponential strength.

We present a new construction of universal samplers directly from FE . We also consider the
task of constructing multiparty NIKE for an unbounded number of users based on FE . As detailed
later, this turns out to be slightly non-trivial even given the work of Hofheinz et al. This is because
the definitions presented in [HJK+14] are not completely suitable to deal with an unbounded
number of users. To support unbounded number of users, we strengthen the work of [HJK+14] and
introduce a new security notion for universal samplers called interactive simulation. We present a
construction of universal samplers based on FE that achieves this notion and gives us multiparty
NIKE for unbounded number of users.

An overview of our approach. In the following sections, we present a detailed overview of
our approach. We start by describing our construction of trapdoor permutations from poly-hard
indistinguishability obfuscator and then discuss the technical challenges that arise in constructing
it from poly-hard public-key FE . We then review the notion of universal samplers [HJK+14] and
discuss the construction of multiparty NIKE for unbounded number of users. Finally, we describe
our construction of universal samplers from functional encryption. Parts of the text in sections 1.1
and 1.2 are taken verbatim from [GPS15].

1.1 Trapdoor Permutations from iO

Recall that a trapdoor permutation is a tuple of efficiently computable algorithms (F, I,Samp). F
describes a permutation over some domain D and I (having access to a trapdoor) is the inversion
algorithm i.e given a point x in the domain gives the pre-image of x under F . Samp is the sampler
algorithm that samples a “random” point from the domain. The (standard) one-wayness property
of the trapdoor permutation [GR13] requires that: given F (x) where x is a random point output
by Samp, no polynomial time algorithm can find x with non-negligible probability.

BPW idea. Recently Bitansky, Paneth and Wichs [BPW16] gave a construction of trapdoor
permutations from indistinguishability obfuscation and one-way functions. We will now recall
the main ideas behind their construction. The domain of the trapdoor permutation is a tuple

3

(x,PRFS(x)) where x is a κ-bit binary string and PRFS(·) is a pseudorandom function with key S.
The domain can be thought of as consisting of two components: an index and a “signature” on the
index. Intuitively, the permutation can be thought of as a cycle where the point (x,PRFS(x)) is
connected to (x+ 1,PRFS(x+ 1)) and (1κ,PRFS(1κ)) is connected to (0κ,PRFS(0κ)).

The public key is an obfuscation of a circuit that on input (x, σ) checks the validity of σ and
outputs the next point in the domain if σ is valid. On an invalid point, it outputs a special symbol
⊥. The trapdoor is the PRF key S. Bitansky, Paneth and Wichs showed that if the underlying
indistinguishability obfuscator is sub-exponentially secure then the it is hard to invert the image
of a randomly sampled point from the domain. A high level overview of the proof strategy is to
first “puncture” the public key at a random point u such that it outputs the special symbol ⊥ on
input (u,PRFS(u)) instead of (u + 1,PRFS(u + 1)). The public key is then iteratively punctured
at points u+ 1, u+ 2 and so on until i− 1 where (i,PRFS(i)) is the inversion challenge. The main
observation that completes the proof is that once the public key is punctured at i−1, no adversary
can invert the challenge with non-zero probability. This approach requires sub-exponentially secure
indistinguishability obfuacator because it is restricted to puncturing the public key one point at a
time in the exponentially large interval [u+ 1, i− 1].

GPS idea. Garg, Pandey and Srinivasan [GPS15] described a method to get rid of sub-exponential
loss in the security reduction in basing hardness of the complexity class PPAD on indistinguisha-
bility obfuscation. We adapt their strategy to construct trapdoor permutation from polynomially
hard indistinguishability obfuscation.

The main idea is to consider a domain that allows us to iteratively puncture the public key
at a larger interval instead of a single point. The domain now includes κ signatures on the pre-
fixes of the index x instead of a single signature. More formally, every point in the domain is a
tuple (x,PRFS1(x[1]),PRFS2(x[2]), · · · ,PRFSκ(x[κ])) where x is a κ-bit string, S1, · · · , Sκ are inde-
pendently chosen PRF keys and x[i] denotes the i-bit prefix of x. The public key is an obfuscation
of a circuit that on input (x, σ1, · · · , σκ) checks the validity of σi for all i ∈ [κ] and outputs the
next point (x+ 1, ·, · · · , ·) if all the signatures are valid. The trapdoor is given by S1, · · · , Sκ. The
sampler is similar to Bitansky et al. construction: it is an obfuscation of a circuit that takes some
randomness r, expands it using a pseudorandom generator and signs on all prefixes of the result.

To prove one-wayness of the construction, we start by puncturing the public key of the per-
mutation at a random point u as before and iteratively expand the punctured interval so that it
includes i− 1 . The crucial fact that enables a polynomial reduction is: if u has k trailing ones in
its bit-representation, then it is possible to puncture the public key on the interval [u + 1, u + 2k]
in a “single-stroke”. This is based on the observations that:

1. The κ − k bit prefix of u + 1 is identical to the κ − k-bit prefix of all points in the interval
[u+ 1, u+ 2k].

2. The signature on κ − k bit prefix of u + 1 is only needed to check for the validity of nodes
belonging to the interval [u+ 1, u+ 2k] and need not be explicitly computed. This allows us
to perform this check in an “encrypted” form which further enables us to puncture the public
key in the interval [u+ 1, u+ 2k].

We then repeat this process by considering u + 2k as the next point and puncture the intervals
until we reach i − 1. The number of intervals that need to be punctured until we reach i − 1 is
polynomially bounded. Metaphorically, the idea of having multiple signatures can be thought of

4

as “multiple-chains” coming out of every node that connects points at distances 1,2,4 and so on.
The number of chains would be equal to one more than the number of trailing 1s in the binary
representation of the node. Puncturing an interval is equivalent to cutting a chain of appropriate
length.

We now discuss a few technicalities that arise while formalizing the above idea. In the above
exposition, we have ignored the fact that an adversary attempting to invert a trapdoor challenge
has access to the sampler. Our sampler has the trapdoor (S1, · · · , Sκ) hardwired in its description
which could potentially help the adversary in inverting the challenge. Hence, these keys have to be
“punctured” using the punctured-programming approach of [SW14] carefully to enable puncturing
the public key in the interval [u + 1, u + 2k]. Another technical issue is that, the random point
u at which the public key is initially punctured should not be “too-far” away from the challenge
i. Otherwise, the sampler’s image would fall in the range [u, i − 1] and we would not be able
to puncture the public key on this interval as before. Bitansky, Paneth and Wichs [BPW16]
overcame this difficulty by sampling u from a small-but-still-large-enough interval such that the
sampler’s image does not fall in the interval [u, i−1] with overwhelming probability and we rely on
polynomially hard pseudorandom generator. Yet another issue is that, while iteratively puncturing
the public key we cannot always cut chains of the longest length as in [GPS15] because it could very
well be the case that we overshoot i − 1. To tackle this, we begin by cutting chains of increasing
lengths and at some point we start cutting chains of smaller and smaller lengths until we reach
i− 1. The number of chains that must be cut is still polynomial in the security parameter.

1.2 Trapdoor Permutations from FE

Garg, Pandey and Srinivasan in [GPS15] showed that it is possible to base hardness of PPAD relying
on the security of polynomially hard public key functional encryption. We adapt their techniques
to construct trapdoor permutation from public key functional encryption.

The domain of the permutation is exactly same as in the previous case i.e it consists of tuples
of the form (x,PRFS1(x[1]),PRFS1(x[2]), · · · ,PRFS1(x[κ])). The circuit implementing the public key
must be able to check the validity of the input signatures and output the signatures on the next
point in the domain if the signatures are valid. We give out an “obfuscation” of such a circuit
where the obfuscation is emulated using public key functional encryption based techniques from
[BV15].

We now give a high level overview of our public key construction. The public key consists of κ+1
function keys. The first κ function keys implement a bit-extension function i.e on input y outputs
a functional encryption of y‖0 and y‖1. These keys are used to compute a functional encryption
of the first component of a domain point i.e x. The last function key implements a function that
outputs encryptions of signatures on the next point (x+ 1) using the signatures of x as the secret
key. Intuitively, an evaluator can obtain the valid signatures on the next point x + 1 if and only
if he has valid signatures on x. In order to enable the last function key to compute signatures on
the current point (x) as well as next point (x + 1), the bit extension functions compute a set of
carefully constructed prefix-punctured PRF keys [GPS15] that are passed to the next level.

We note that our construction of public key of the permutation is almost identical 1 to the Garg
et al.’s [GPS15] construction of successor circuit and we refer the reader to [GPS15] for a detailed

1For readers familiar with the work of Garg et al., the only differences being that instead of outputting the special
symbol SOLVED on a valid input (1κ, ·, · · · , ·) we output the node (0κ, ·, · · · , ·) and in how we are puncturing the
permutation function at a random point.

5

exposition of the construction. We now move on to our construction of the sampler.

Challenge in Sampler Construction. Recall that the sampler in the previous construction first
expands the randomness using a length doubling pseudorandom generator PRG and then signs on
all prefixes of the result. We first observe that we cannot directly extend the techniques introduced
by Garg et al. in [GPS15] to construct the sampler from functional encryption. This is because the
techniques crucially depend on passing down an appropriate set of prefix punctured keys that are
punctured along the prefixes of the point (that we want to sign) to the lower levels. For the case
of the sampler, we need to pass down the set of prefix punctured keys that are punctured along
the prefixes of PRG(r). But the problem is we cannot compute PRG(r) until we parse r in the
encryption tree and thus incurring a sub-exponential loss in the security reduction!

In order to over come this challenge, we modify our sampler construction so that instead of
signing on PRG(r) it now signs on r‖Kr where K is a fresh prefix puncturable key and Kr denotes
K prefix punctured at r. The “obfuscated” sampler consists of κ/2 + 1 function keys similar to
the construction of public key where the first κ/2 implement the bit extension functions that are
used to obtain an functional encryption of r. The bit extension functions pass down a set of prefix
puncturings of the keys S1, · · · , Sκ that are punctured on the prefixes of r. These keys would be
used for computing the signatures on the prefixes in the last level. Additionally, it passes down
prefix puncturing (punctured along the prefixes of r) of a new PRF key K that maps κ/2 bits to
κ/2 bits. The last function key (numbered κ/2+1) implements a function that takes in r, the set of
keys S1, · · · , Sκ that are prefix-punctured at r and the new PRF key K that is also prefix punctured
at r and outputs (r‖Kr,PRFS1((r‖Kr)[1]),PRFS2((r‖Kr)[2]), · · · ,PRFSκ((r‖Kr)[κ])). Observe that
the final function can compute this output given r and the set of prefix punctured keys. This
sampler “conforms” well with the prefix puncturing techniques of Garg et al. [GPS15] and has
the required sparseness of images guarantee that is required to prove one-wayness. But the issue
with this construction is that it is unclear on how to show that the sampler samples pseudorandom
points.

To fix this issue, we interpret the randomness r that is given as input to the sampler as a public
key and output the encryptions of the signatures on prefixes of r‖PRFK(r) using r as the public
key. That is to sample a point in the domain, we generate a public key pk, secret key pair sk
and run the sampler on the public key to obtain the encryptions under pk of the signatures on the
prefixes of pk‖Kpk which are then decrypted using the secret key sk. Using the prefix puncturing
technique of Garg et al. [GPS15] and relying on the semantic security of public key encryption we
are able to show the pseudorandomness of samples 2.

Remark 1 Our construction of TDP from FE is weaker in comparison to our construction from iO
(and the construction of Bitansky et al. in [BPW16]) since given K the output of the sampler is not
pseudorandom. Thus, our construction of TDP can only be used in applications where the system
parameters are generated by honest parties. For example, our TDP cannot be used to guarantee
receiver privacy in the Oblivious Transfer (OT) protocol of Even et al. in [EGL85].

2Additionally, we need the public key encryption scheme to have random public keys in order to prove that the
output of the sampler is a pseudorandom string.

6

1.3 Universal Samplers from FE

Recall that universal sampler is an algorithm that takes as input the description of a sampling pro-
cedure (say, the sampling procedure for the common parameters of some protocol) and outputs a
sample from that procedure (a set of parameters for that protocol). The algorithm is deterministic,
so that anyone running the protocol on a given sampling procedure gets the same sampled param-
eters. Yet the generated parameters should be “as good as” a freshly generated set of parameters.

Unfortunately, defining a satisfactory notion of “as good as” above is non-trivial. Hofheinz et
al. give two definitions: a static definition which only remains secure for a bounded number of
generated parameters, as well as an adaptive definition that is inherently tied to the random oracle
model, but allows for an unbounded number of generated parameters. They show how to use the
stronger definitions to realize primitives such as adaptively secure multiparty non-interactive key
exchange (NIKE) and broadcast encryption.

In this work, we focus on the standard model, and here we review the static standard-model
security definition for universal samplers. Fix some bound k on the number of generated parameters.
Intuitively, the k-time static security definition says that up to k freshly generated parameters
s1, . . . , sk for sampling algorithms C1, . . . , Ck can be embedded into the universal sampler without
detection. Thus, if the sampler is used on any of the sampling algorithms Ci, the generated
output will be the fresh sample si. Formally, there is a simulator Sim that takes as input up
to k sampler/sample pairs (Ci, si), and outputs a simulated universal sampler Sampler, such that
Sampler(Ci) = si. As long as the si are fresh samples from Ci, the simulated universal sampler will
be indistinguishable from a honestly generated sampler.

Application: Multiparty NIKE. From the static definition above, it is straightforward to
obtain a statically secure multiparty NIKE protocol analogous to the adaptive protocol of Hofheinz
et al. [HJK+14]. Each party simply publishes a public key pki for a public key encryption scheme,
and keeps the corresponding secret key ski hidden. Then to generate the shared group key, all
parties run Sampler on the sampler Cpk1,...,pkn . Here, Cpk1,...,pkn is the randomized procedure that
generates a random string K, and encrypts K under each of the public keys pk1, . . . , pkn, resulting
in n ciphertexts c1, . . . , cn which it outputs. Then party i decrypts ci using ski. The result is that
all parties in the protocol learn K.

Meanwhile, an eavesdropper who does not know any of the secret keys will only have the public
keys, the sampler, and thus the ciphertexts ci outputted by the sampler. The proof that the
eavesdropper will not learn K is as follows. First, we consider a hybrid experiment where K is
generated uniformly at random, and the universal sampler is simulated on sampler Cpk1,...,pkn , and
sample s = (c1, . . . , cn), where ci are fresh encryptions of K under each of the public keys pki. 1-time
static security of the universal sampler implies that this hybrid is indistinguishable to the adversary
from the real world. Next, we change each of the ci to encrypt 0. Here, indistinguishability follows
from the security of the public key encryption scheme. In this final hybrid, the view of the adversary
is independent of the shared secret key K, and security follows.

Unbounded multiparty NIKE. One limitation of the protocol above is that the number of
users must be a priori bounded. There are several reasons for this, the most notable being that
in order to simulate, the universal sampler must be as large as the sample s = (c1, . . . , cn), which
grows with n. Thus, once the universal sampler is published, the number of users is capped.

7

In order to get around this issue, we change the sampling procedure Cpk1,...,pkn fed into the
universal sampler. Instead, we feed in circuits of the form Dpk,pk′ , which generate a new secret and
public key sk′′, pk′′, encrypt sk′′ under both pk and pk′, and output both encryptions as well as the
new public key pk′′. A group of users with public keys pk1, . . . , pkn then generates the shared key
in an iterative fashion as follows. Run the universal sampler on Dpk1,pk2 , obtaining a new public
key pk′3, as well as encryptions of the corresponding secret key sk′3 under both pk1, pk2. Notice
that users 1 and 2 can both recover sk′3 using their secret keys. Then run the universal sampler
on Dpk3,pk

′
3
, obtaining a new public key pk′4 and encryptions of the corresponding secret key sk′4.

Notice that user 3 can recover sk′4 by decrypting the appropriate ciphertext using sk3, and users
1 and 2 can recover sk′4 by decrypting the other ciphertext using sk′3. Continue in this way until
public key pk′n+1 is generated, and all users 1 through n recover the corresponding secret key sk′n+1.
Set sk′n+1 to be the shared secret key.

For security, since an eavesdropper does no know any of the secret keys and the ciphertexts
are “as good as” fresh ciphertexts, he should not be able to decrypt any of the ciphertexts in the
procedure above. However, turning this intuition into a security proof using the static notion of
security is problematic. The straightforward approach requires constructing a simulated Sampler
where the outputs on each of the circuits Dpki,pk

′
i

are fresh samples. Then, each of the ciphertexts
in the samples are replaced with encryptions of 0 (instead of the correct secret decryption key).
However, as there are n such circuits, a standard incompressibility argument shows that Sampler
must grow linearly in n. Thus again, once the universal sampler is published, the number of users
is capped.

Simulating at fewer points. To get around this issue, devise a sequence of hybrids where in
each hybrid, we only need replace log n outputs of the sampler with fresh samples. The core idea
is the following. Say that a circuit Dpki,pk

′
i

has been “treated” if the public key pk′i+1 outputted by
the universal sampler is freshly sampled and the corresponding ciphertexts are changed to encrypt
0 (instead of the secret key sk′i+1) . We observe that to switch circuit Dpki,pk

′
i

from untreated
to treated, circuit Dpki−1,pk

′
i−1

needs to currently be treated so that the view of the adversary is

independent of the secret key sk′i. However the status of all the other circuits is irrelevant. Moreover,
once we have treated Dpki,pk

′
i
, we can potentially “untreat” Dpki−1,pk

′
i−1

and reset its ciphertexts
to the correct values, assuming Dpki−2,pk

′
i−2

is currently treated. Our goal is to start from none of
the circuits being treated, and arrive at a hybrid where Dpkn,pk

′
n

is treated, which implies that the
view of the adversary is independent of the shared secret skn+1.

This gives rise to an interesting algorithmic problem. The goal is to get a pebble at position
n, where the only valid moves are (1) placing or removing a pebble at position 1, or (2) placing or
removing a pebble at position i provided there is currently a pebble at position i− 1. We desire to
get a pebble at position n while minimizing the number of pebbles used at any time. The trivial
solution is to place a pebble at 1, then 2, and so on, requiring n pebbles. We show a pebbling
scheme that gets a pebble to position n using only O(log n) pebbles by removing certain pebbles as
we go. The pebbling scheme is exactly same as the one used in [Ben89] in the context of reversible
computation. Moreover, the pebbling scheme is efficient, in the sense that the number of moves is
polynomial in n.

Using our pebbling algorithm, we derive a sequence of hybrids corresponding to each move in
the algorithm. Thus we show that the number of circuits that need simulating can be taken to be
O(log n).

8

A new universal sampler definition. Unfortunately, we run into a problem when trying to
base security on the basic static sampler definition of Hofheinz et al. [HJK+14]. The issue stems
from the fact that the simulator in the static definition requires knowing all of the circuits Dpki,pk

′
i

up

front. However, in our pebbling approach, some of the pk′i (and thus the Dpki,pk
′
i
) are determined by

the sampler Sampler - namely, all the pk′i for which Dpki−1,pk
′
i−1

is “untreated”. Thus we encounter
a circularity where we need to know Sampler to compute the circuit Dpki,pk

′
i
, but we need Dpki,pk

′
i

in order to simulate the Sampler.
To get around this issue, we devise a new security notion for universal samplers that allows

for interactive simulation. That is, before the simulator outputs Sampler, we are allowed to query
it on various inputs, learning what the output of the sampler will be on that input (called as the
read query). Moreover, we are allowed to feed circuit/sample pairs C, s (called as write query)
interactively, potentially after seeing some of the sample outputs, and the simulator will guarantee
that the simulated Sampler will output s on C. For security, we require that for a statically
chosen query index i∗ and a circuit C∗ the simulator’s outputs in the following two cases are
computationally indistinguishable:

1. i∗th query is a read query on C∗.

2. i∗th query is a write query on C∗, s∗ where s∗ is fresh random sample from C∗.

This new definition allows us to avoid the circularity above and complete the security proof for
our NIKE protocol.

Construction. Before we describe our construction from FE , we first describe a construction
from iO that satisfies the above definition of interactive simulation. The universal sampler is an
obfuscation of a circuit that has a puncturable PRF key K hardwired in its description and on input
C outputs C(; PRFK(C)) i.e it uses the PRF key to generate the random coins. This is precisely the
same construction as given by Hofheinz et al. [HJK+14] for the static security case. To prove that
this construction satisfies the stronger definition of interactive simulation we construct a simulator
that works as follows. It first samples a fresh PRF key K ′ and answers the read queries using it.
At the end of the simulation, it outputs an obfuscation of a circuit that has the PRF key K ′ as well
as (Ci, si) for every write query made by the adversary hardwired in its description. When run on
input C where C is one of the write queries, it outputs the corresponding s. On other inputs, it
outputs C(; PRFK′(C)).

The security is shown via a hybrid argument. The initial hybrid corresponds to the output of
the simulator when the challenge query (made at index i∗) is a write query on (Ci∗ , si∗) where si∗

is a fresh random sample from Ci∗ . We first change the obfuscated circuit to have the PRF key K ′

punctured at Ci∗ . This is possible since the circuit does not use K ′ to compute the output on Ci∗ .
Relying on the security of puncturable PRF we change si∗ from Ci∗(; r) where r is random string to
Ci∗(; PRFK′(Ci∗)). We then unpuncture the key K ′ and finally remove Ci∗ , si∗ from the hardwired
list.

We adapt the above construction from iO to the FE setting using techniques from [BV15,
GPS15]. Recall that the “obfuscated” universal sampler consists of `+ 1 (` is the maximum size of
the input circuit) function keys (where each function key computes a bit extension function) along
with an initial ciphertext cφ that encrypts the empty string φ and a prefix puncturable PRF key K.
These bit extension functions form a natural binary tree structure and “parsing” an input circuit

9

C corresponds to traveling along the path from the root to the leaf labeled C. Each node x along
the path from the root to C contains the key K prefix punctured at x. The prefix punctured PRF
key appearing at the leaf C is precisely equal to the PRF value at C and we use this to generate a
“pseudorandom” sample from C.

We are now ready to describe the construction of our simulator. As in the iO case the simulator
samples a random PRF key K ′ and uses it to answer the read queries made by the adversary. Recall
that for every write query (Ci, si) the adversary makes, the simulator must ensure that the sampler
on Ci outputs si. This is accomplished by “puncturing” the underlying binary tree along path Ci.
That is, the simulator “forces” the function keys at every level to output a pre-computed value
instead of the bit-extension if the input to the function matches with a prefix of Ci. At the final
level, if the input matches Ci then the function outputs si. This is enabled by triggering a hidden
“trapdoor” thread in the function keys using techniques illustrated in [ABSV15, GPS15]. The
set of precomputed values is first encrypted under a symmetric key sk and are hardwired in the
description of bit-extension function in each level. The symmetric key sk is encrypted in the initial
ciphertext cφ along with the empty string and the PRF key. The trapdoor thread (that is triggered
only along the write query paths) uses this secret key sk to decrypt the hardcoded ciphertext and
outputs the appropriate pre-computed value. To complete the security proof, we want to prove
that we can indistinguishably “puncture” the binary tree along a new path C∗i and output s∗i which
is a fresh random sample from C∗i at the leaf. Recall that in the construction of Garg et al. in
[GPS15] a single secret key sk is used to for computing the encryptions of pre-computed values
along multiple paths. But having a single secret key does not allow us to puncture along a new
path C∗i as this secret key already appears in the initial ciphertext cφ. Hence we cannot rely on
the semantic security of symmetric key encryption to augument the pre-computed values to include
values along the path C∗i . In order to get around this issue, we use multiple secret keys: one for
each write query 3 which enables use to puncture along a new path C∗i .

2 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to be negligible if for all
polynomials poly(·), µ(κ) < 1

poly(κ) for large enough κ. For a probabilistic algorithm A, we denote

by A(x; r) the output of A on input x with the content of the random tape being r. We will omit
r when it is implicit from the context. We denote y ← A(x) as the process of sampling y from the

output distribution of A(x) with a uniform random tape. For a finite set S, we denote x
$← S as the

process of sampling x uniformly from the set S. We model non-uniform adversaries A = {Aκ} as
circuits such that for all κ, Aκ is of size p(κ) where p(·) is a polynomial. We will drop the subscript
κ from the adversary’s description when it is clear from the context. We will also assume that
all algorithms are given the unary representation of security parameter 1κ as input and will not
mention this explicitly when it is clear from the context. We will use PPT to denote Probabilistic
Polynomial Time algorithm. We denote [κ] to be the set {1, · · · , k}. We will use negl(·) to denote
an unspecified negligible function and poly(·) to denote an unspecified polynomial.

A binary string x ∈ {0, 1}κ is represented as x1 · · ·xκ. x1 is the most significant (or the highest
order bit) and xκ is the least significant (or the lowest order bit). The i-bit prefix x1 · · ·xi of the

3In the security definition, the number of write queries that an adversary could make is apriori bounded. On the
otherhand, the adversary could make an unbounded number of read queries. Thus, we can fix the number of secret
keys to be sampled at the time of setup.

10

binary string x is denoted by x[i]. We use x‖y to denote concatenation of binary strings x and y.
We say that a binary string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such
that x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective Pseudo Random
Generator PRG.

Definition 2 An injective pseudo random generator PRG is a deterministic polynomial time algo-
rithm with the following properties:

• Expansion: There exists a polynomial `(·) (called as the expansion factor) such that for all
κ and x ∈ {0, 1}κ, |PRG(x)| = `(κ).

• Pseudorandomness: For all κ and for all poly sized adversaries A ,

|Pr[A(PRG(Uκ)) = 1]− Pr[A(U`(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.

• Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x 6= x′, PRG(x) 6= PRG(x′).

We in fact need an additional property from an injective PRG. Let us consider PRG where the
expansion factor (or the output length) is given by 2 · `(·). Let us denote the first `(·) bits of the
output of the PRG by the function PRG0 and the next `(·) bits of the output of the PRG by PRG1.

Definition 3 A pseudorandom generator PRG is said to be left half injective if for every κ and for
all x, x′ ∈ {0, 1}κ such that x 6= x′, PRG0(x) 6= PRG0(x′).

Note that left half injective PRG is also an injective PRG. We note that the standard construction
of pseudorandom generator for arbitrary polynomial stretch from one-way permutations is left half
injective. For completeness, we state the construction:

Lemma 4 Assuming the existence of one-way permutations, there exists a pseudorandom generator
that is left half injective.

Proof Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore predicate B : {0, 1}κ →
{0, 1} [GL89]. Let G be an algorithm defined as follows: On input x ∈ {0, 1}κ, G(x) = fn(x)‖B(x)‖
B(f(x)) · · ·B(fn−1(x)) where n = 2`(κ) − κ. Clearly, |G(x)| = 2`(κ). The pseudorandomness
property of G(·) follows from the security of hardcore bit. The left half injectivity property follows
from the observation that fn is a permutation.

Puncturable pseudorandom Function. We recall the notion of puncturable pseudorandom
function from [SW14]. The construction of pseudorandom function given in [GGM86] satisfies the
following definition [BW13, KPTZ13, BGI14].

Definition 5 A puncturable pseudorandom function PRF is a tuple of PPT algorithms
(KeyGenPRF ,PRF,Punc) with the following properties:

11

• Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ), PRFS : {0, 1}poly(κ) →
{0, 1}κ is polynomial time computable.

• Functionality is preserved under puncturing: For all κ, for all y ∈ {0, 1}κ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).

• pseudorandomness at punctured points: For all κ, for all y ∈ {0, 1}κ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform distribution over
{0, 1}κ.

Indistinguishability Obfuscator. We now define Indistinguishability obfuscator from [BGI+12,
GGH+13b].

Definition 6 A PPT algorithm iO is an indistinguishability obfuscator for a family of circuits
{Cκ}κ that satisfies the following properties:

• Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.

• Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and for all poly sized
adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with selective indistin-
guishability based security [BSW11, O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec)
with the message space {0, 1}∗ having the following syntax:

• FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ and outputs a
public key PK and a master secret key MSK.

• FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of m
under the public key PK.

• FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a function f (given as
a circuit) as input and outputs the function key FSKf .

• FE.Dec(FSKf , C): Takes as input the function key FSKf and the ciphertext C and outputs a
string y.

12

Definition 7 (Correctness) The functional encryption scheme FE is correct if for all κ and for
all messages m ∈ {0, 1}∗,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

 = 1

Definition 8 (Selective Security) For all κ and for all poly sized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two messages m0, m1 such that
|m0| = |m1| to the challenger.

• The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the challenge ciphertext
C ← FE.EncPK(mb). It then sends (PK,C) to A.

• Function Queries: A submits function queries f to the challenger. The challenger responds
with FSKf ← FE.KeyGen(MSK, f).

• If A makes a query f to functional key generation oracle such that f(m0) 6= f(m1), output
of the experiment is ⊥. Otherwise, the output is b′ which is the output of A.

Remark 9 We say that the functional encryption scheme FE is single-key, selectively se-
cure if the adversary A in Expt1κ,b,A is allowed to query the functional key generation oracle
FE.KeyGen(MSK, ·) on a single function f .

Definition 10 (Compactness, [AJS15, BV15, AJ15]) The functional encryption scheme FE
is said to be compact if for all κ ∈ N and for all m ∈ {0, 1}∗ the running time of the encryption
algorithm FE.Enc is poly(κ, |m|).

Bitansky et al. in [BV15] and Ananth et al. in [AJS15] show a generic transformation from any
collusion-resistant FE for general circuits where the ciphertext size is independent of the number
of collusions (but may depend arbitrarily on the circuit parameters) to a compact FE for general
circuits. The property that the ciphertext size does not depend on the number of collusion is
referred as collusion-succinctness.

Lemma 11 ([BV15, AJS15]) Assuming the existence of selectively secure collusion-resistant func-
tional encryption with collusion-succinct ciphertexts, there exists a selectively secure compact func-
tional encryption scheme.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a tuple of algo-
rithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

• SK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a symmetric key SK.

13

• SK.EncSK(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the symmetric key SK.

• SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[SK.DecSK(C) =
m] = 1 where SK ← SK.KeyGen(1κ) and C ← SK.EncSK(m).

Definition 12 For all κ and for all polysized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two messages m0 and m1 such
that |m0| = |m1| for all i ∈ [n].

• The challenger samples SK ← SK.KeyGen(1κ) and generates the challenge ciphertext C where
C ← SK.EncSK(mb). It then sends C to A.

• Output is b′ which is the output of A.

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of algorithms (PK.KeyGen,
PK.Enc,PK.Dec) with the following syntax:

• PK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a public key, secret key pair (pk, sk).

• PK.Encpk(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the public key pk.

• PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[PK.Decsk(C) =
m] = 1 where (pk, sk)← PK.KeyGen(1κ) and C ← PK.Encpk(m).

Definition 13 For all κ and for all polysized adversaries A and for all messages m0,m1 ∈ {0, 1}∗
such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1]− Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(κ)

where (pk, sk)← PK.KeyGen(1κ).

We require an additional property of the public key which is described below. We assume that
|pk| = κ where (pk, sk)← PK.KeyGen(1κ).

Definition 14 A PKE is said to have random public keys if, {pk}κ ' {Uκ}κ where (pk, sk) ←
PK.KeyGen(1κ) and Uκ is the uniform distribution over {0, 1}κ.

The public key encryption due to El-Gamal [Gam85] based on DDH assumption satisfies the
above property. We note that the public key encryption system from Learning with Errors assump-
tion (LWE) due to Regev [Reg09] (having public keys that are computationally indistinguishable
from random elements) is sufficient for our purposes.

14

Prefix Puncturable pseudorandom Functions. We now define the notion of prefix punc-
turable pseudorandom function PPRF which is satisfied by the construction of the pseudorandom
function in [GGM86].

Definition 15 A prefix puncturable pseudorandom function PPRF is a tuple of PPT algorithms
(KeyGenPPRF ,PrefixPunc) satisfying the following properties:

• Functionality is preserved under repeated puncturing: For all κ, for all y ∈ ∪poly(κ)
k=0 {0, 1}k

and for all x ∈ {0, 1}poly(κ) such that there exists a z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF .

• Pseudorandomness at punctured prefix: For all κ, for all x ∈ {0, 1}poly(κ), and for all
poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1]− Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1− xi))}i∈[poly(κ)].

Notation. For brevity of notation, we will be denoting PrefixPunc(S, y) by Sy. For a key Si
(indexed by i), we will use Si,y to denote PrefixPunc(Si, y).

3 TDP from IO in poly loss

We now give the definition of Trapdoor permutation with pseudorandom sampling which is a
weakened notion than the traditional uniform sampling. This definition is equivalent to the one
given in [BPW16].

Definition 16 ([GR13, BPW16]) An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}

over the domain DPK associated with associated (probabilistic) (KeyGen,SampGen) algorithms is a
(standard) trapdoor permutation if it satisifies:

1. Trapdoor Invertibility: For any (PK,SK)← KeyGen(1κ), TDPPK is a permutation over
DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable given the trapdoor SK.

2. Pseudorandom Sampling: For any polysized distinguisher A,

∣∣Pr
[
ExpA,0,PRS = 1

]
− Pr

[
ExpA,1,PRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,PRS is described in Figure 1.

3. One-wayness: For all poly sized adversaries A,

Pr

A(PK,Samp, TDPPK(x)) = x :
(PK,SK)← KeyGen(1κ)
Samp← SampGen(SK)
x← Samp(1κ)

 ≤ negl(κ)

15

(a) r1, r2
$← {0, 1}poly(κ)

(b) (PK,SK)← KeyGen(1κ; r1).

(c) Samp← SampGen(SK; r2)

(d) if(b = 0), x
$← DPK .

(e) else, x← Samp(1κ).

(f) Output A(r1, r2, x)

Figure 1: ExpA,b,PRS

3.1 Construction of Trapdoor Permutations

In this section, we give a construction of Trapdoor Permutations and prove the one-wayness assum-
ing the existence polynomially hard iO, puncturable pseudorandom function PRF and injective
PRG (used only in the proof).

Theorem 17 Assuming the existence of one-way permutations and indistinguishablity obfuscation
against polytime adversaries there exists a trapdoor permutation.

We first give an informal description of our construction. The domain of our trapdoor permuta-
tion consists of tuples of the form (x, σ1, · · · , σκ) where x ∈ {0, 1}κ and σi = PRFSi(x[i]). That is,
σi is a PRF computation (using key Si) on the i-bit prefix of x. The permutation function F takes
as input (x, σ1, · · · , σκ−1), checks if the input is in the domain and if yes outputs (x+1, σ′1, · · · , σ′κ)
where x + 1 is computed modulo 2κ and σ′i satisfies the above PRF relation for all i ∈ [κ]. The
sampler Samp takes as input a random seed r (of length κ/2) as input, expands it using a length
doubling PRG and computes the PRF on the prefixes of the output of the PRG.

The formal description of our construction of Trapdoor Permutation appears in Figure 2.

Proof of Theorem 17 It is easy to observe that the function computed by FS1,··· ,Sκ is a per-
mutation over the points in the domain and the pseudorandomness property of the sampler fol-
lows from security of pseudorandom generator PRG (even when given the random coins used by
KeyGen and SampGen). We now prove the one-wayness of the above construction in the pres-
ence of the public key and the sampler. A high level overview of our proof is to indistinguish-
ably change the public key to one that outputs ⊥ on inputs of the form (i − 1, ·, · · · , ·) where
(i,PRFS1(i[1]), · · · ,PRFSκ(i[κ])) is the inversion challenge. Clearly, the advantage of the adversary
in inverting the challenge (i,PRFS1(i[1]), · · · ,PRFSκ(i[κ])) in the final hybrid is 0.

Circuit F ∗ We denote by F ∗S1,··· ,Sκ,α,β the circuit which works exactly as FS1,··· ,Sκ on all inputs
except on those inputs (s, ·, · · · , ·) where α ≤ s ≤ β, it outputs ⊥. This notation would be used in
our hybrids.

Our Hybrids. We now describe our hybrids.

16

• KeyGen(1κ):

1. Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed for a PRF mapping
i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.

2. The public key is given by iO(FS1,··· ,Sκ) where FS1,··· ,Sκ is described in Figure 3 and
the secret key is given by S1, · · · , Sκ.

• TDPPK : Run the obfuscated circuit iO(FS1,··· ,Sκ) on the given input (x, σ1, · · · , σκ).

• TDP−1
SK : The Inverter IS1,··· ,Sκ is described in Figure 3.

• SampGen(SK): The sampler is given by iO(XS1,··· ,Sκ) where XS1,··· ,Sκ is described in
Figure 3.

• Samp: Run the circuit iO(XS1,··· ,Sκ) on the given randomness r.

Figure 2: Construction of Trapdoor Permutation

• Hyb0: Original experiment where the adversary is given a random challenge ((i, σ1, · · ·σκ),

iO(XS1,··· ,Sκ), iO(FS1,··· ,Sκ)) where r
$← {0, 1}κ/2 and i = PRG(r).

• Hyb1: Instead of setting i = PRG(r), we sample i
$← {0, 1}κ. The indistinguishability follows

from the pseudorandomness property of PRG.

• Hyb2: In this hybrid we change the public key of the permutation. The public key of the

permutation is generated as iO(F 1
S1,··· ,Sκ,i,v) instead of iO(FS1,··· ,Sκ) where v

$← [2κ/2]. The

function F 1
S1,··· ,Sκ,i,v (padded to length p(κ)) is similar to that of FS1,··· ,Sκ except that on

inputs (x, ·, · · · , ·) such that i− 2
κ
4 ≤ x ≤ i− 1 and PRG(i− x) = v, it outputs ⊥.

Since v is chosen randomly from [2κ/2] it is not in the image of the PRG with overwhelming
probability (actually with probability 1− 1

2
κ
4

). Hence, the two function have the same input-

output behavior with overwhelming probability. The computational indistinguishability of
Hyb1 and Hyb2 follows from the security of indistinguishability obfuscation.

• Hyb3: In this hybrid, we change how v is computed. Instead of sampling v uniformly at

random from [2κ/2], we generate v as PRG(u0) where u0
$← [2κ/4]. The public key of the

permutation would now correspond to iO(FS1,··· ,Sκ,i,PRG(u0)).

The computational indistinguishability of Hyb2 and Hyb3 follows from the pseudorandomness
property of the PRG.

Notation. We denote α0 := i− u0 from now on.

• Hyb4: In this hybrid we replace the public key for computing the permutation with iO(F ∗S1,··· ,Sκ,α0,α0
).

17

FS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. For all j ∈ [κ], check if σj = PRFSj (i[j]).

2. If any of the above checks fail, output ⊥.

3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i+ 1)[j]) where i+ 1 is computed modulo 2κ.

4. Output (i+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

XS1,··· ,Sκ

Input: r ∈ {0, 1}κ/2
Constants: S1, · · · , Sκ

1. Compute i = PRG(r).

2. For every j ∈ [κ], compute σj = PRFSj (i[j]).

3. Output (i, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial that would be
specified later.

IS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. Check whether for all j ∈ [κ], σj = PRFSj (i[j]).

2. If any of the checks fail, output ⊥.

3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i− 1)[j]) where i− 1 is computed modulo 2κ.

4. Output (i− 1, σ′1, σ
′
2, · · · , σ′κ).

Figure 3: Public Key, Sampler and the Inverter for the Trapdoor permutations

18

Observe that FS1,··· ,Sκ,i,PRG(u0) and F ∗S1,··· ,Sκ,α0,α0
(padded to length p(κ)) compute the exact

same function due to the injectivity of the PRG. Hence, the computational indistinguishability
of Hyb3 and Hyb4 follows from the security of indistinguishability obfuscation.

• Hyb5,j : In this hybrid, we replace the public key of our permutation with iO(F ∗S1,··· ,Sκ,α0,αj
)

for j ∈ {0, · · · , δ(α0) + µ(αδ(α0))} where δ(·) and µ(·) are defined below.

Defining αj values. For any string α ∈ {0, 1}κ, let f(α) denote the index of the lowest
order bit of α that is 0 (with the index of the highest order bit being 1). More formally, f(α)

is the smallest j such that u = α[j]||1κ−j . For example, if α =

3︷︸︸︷
100 11 then f(α) = 3. Let

`(β, γ) denotes the smallest j ∈ [κ] such that β[j−1] = γ[j−1] and βj 6= γj if β 6= γ and is
a special symbol ζ otherwise. That is, it denotes the first index at which β and δ differ if
β 6= δ and is equal to the special symbol ζ otherwise. Let δ(α) denote the number of 0s in
the positions [`(α, i− 1) + 1, κ] in the binary representation of α if `(α, i− 1) 6= ζ and is equal
to 0 otherwise. Let ρ(α) = `(α + 1, i − 1) if `(α + 1, i − 1) 6= ζ and equal to κ otherwise.
Let µ(α) denote one more than the number of ones in the positions [`(α, i− 1) + 1, κ] in the
binary representation of i− 1 if `(α, i− 1) 6= ζ and is equal to 0 otherwise.

Starting with a value α0 ∈ {0, 1}κ we define for j ∈ [0, δ(α0) + µ(αδ(α0))− 1],

αj+1 =

{
αj + 2κ−f(αj) if j + 1 ≤ δ(α0)

αj + 2κ−ρ(αj) otherwise

Note that by this definition αδ(α0) = (i− 1)[`(α0,i−1)−1]‖(α0)i‖1κ−`(α0,i−1) and αδ(α0)+µ(αδ(α0))
=

i− 1. Illustrations of αjs are given in Figure 4,5.

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

α0 α1 α2 α3 i− 1

Figure 4: Illustration of the steps starting with α0 = 0010 and i− 1 = 1001.

Indistinguishability Argument: Observe that Hyb5,0 is distributed identically to Hyb4

and Hyb5,δ(α0)+µ(αδ(α0))
is a hybrid where the public key of the permutation outputs ⊥ on

every input (s, ·, · · · , ·) where α0 ≤ s ≤ i− 1. We now prove that Hyb5,j is indistinguishable
to Hyb5,j+1 for all 0 ≤ j ≤ δ(α0) + µ(αδ(α0)) − 1. We prove this through a sequence of
hybrids. we let νj as the shorthand for f(uj) for j < δ(α0) and equal to ρ(uj) for j ≥ δ(α0).
Let tj = αj [νj]

+ 1.

– Hyb5,j,1 : Let S′νj ← Punc(Sνj , tj) and σ? = PRFSνj (tj). In this hybrid we replace

the public key of the trapdoor permutation with iO(F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

). The func-

19

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

i− 1 α0 α1 α2α3

Figure 5: Illustration of the steps starting with α0 = 1100 and i− 1 = 0001.

tion F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

(padded to length p(κ)) is identical to F ∗S1,··· ,Sνj ,··· ,Sκ,α0,αj
ex-

cept that it has the punctured key S′νj and uses σ? to perform the computations using
PRFSνj (tj). Since σ? = PRFSνj (tj), the two circuits compute the same functionality
and hence the indistingusiahbility of Hyb5,j and Hyb5,j,1 follows from the security of
indistinguishability obfuscation.

Observation. The value σ? is used only to check for the validity of the σνj in the
interval [αj + 1, αj+1]. Note that if the input is in the interval [αj + 1, αj+1 − 1], then
the next node on the path also has the νthj associated signature to be same as σ?. So in

that case, if the input is valid then the circuit F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

outputs the input

σνj in place of σ?.

– Hyb5,j,2: In this hybrid we replace the sampler iO(XS1,··· ,Sκ) with iO(X2
S1,··· ,S′νj ,··· ,Sκ

).

X2
S1,··· ,S′νj ,··· ,Sκ

(padded to length q(κ)) is identical to XS1,··· ,Sκ except that if required

to evaluate PRFSνj on tj , it outputs ⊥. We now argue that X2
S1,··· ,S′νj ,··· ,Sκ

and XS1,··· ,Sκ

compute the same functionality with overwhelming probability. Observe thatX2
S1,··· ,S′νj ,··· ,Sκ

is required to compute PRFSνj (tj) if and only if PRG(r) ∈ [αj + 1, αj+1]. We note that

every x ∈ [αj + 1, αj+1] is of the form i − u0 + c where c is at most u0. In particular,
c is independent of i and hence x is uniformly distributed in the interval {0, 1}κ since
i is randomly distributed in the interval {0, 1}κ. Hence, with overwhelming probability
(equal to 1 − 1

2κ/2
), x is not in the image of PRG. By an union bound, no point in

[αj + 1, αj+1] is in the image of the PRG except with probability 1
2κ/4

(since the size of

the interval is at most 2κ/4). Hence, the two circuits X2
S1,··· ,S′νj ,··· ,Sκ

and XS1,··· ,Sκ com-

pute the same functionality with overwhelming probability and the indistinguishability
of Hyb5,j,1 and Hyb5,j,2 follows from security of iO.

– Hyb5,j,3: In this hybrid we change how σ? that is hardwired in the public key

iO(F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

) is generated. In particular, we choose σ?
$← {0, 1}κ instead of

20

setting σ? = PRFSνj (tj). The indistinguishability of Hyb5,j,2 and Hyb5,j,3 follows from
the pseudorandomness at punctured point property of PRF.

– Hyb5,j,4 : In this hybrid we replace the public key of the permutation with
iO(F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,PRG(σ?)). The circuit F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,PRG(σ?) (padded to length

p(κ)) is exactly similar to that of F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

except that on input (x, σ1, · · · , σκ)

such that x ∈ [αj+1, αj+1], it checks the validity of σνj by checking PRG(σνj) = PRG(σ?)
instead of checking σνj = σ?. Note that F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,PRG(σ?) requires the value of

σ? only for checking the validity of the input. Both the circuits compute the exact same
functionality since the PRG is injective. Hence, the indistinguishability of Hyb5,j,3 and
Hyb5,j,4 follows from the security of iO.

– Hyb5,j,5 : In this hybrid the public key of the permutation corresponds to
iO(F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,τ?
) where we set τ? to be a string chosen uniformly at random from

{0, 1}2κ instead of setting τ? = PRG(σ?). The indistinguishability of hybrid Hyb5,j,4 and
Hyb5,j,5 follows from the pseudorandomness property of PRG.

– Hyb5,j,6 : In this hybrid the public key of the permutation corresponds to
iO(F ∗S1,··· ,S′νj ,···Sκ,α0,αj+1

). Observe that F ∗S1,··· ,S′νj ,···Sκ,α0,αj+1
(padded to length p(κ))

and F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,τ?

compute the same functionality with overwhelming probability

since τ? is chosen at random it is not in the image of the PRG with overwhelming proba-
bility. Hence, for no value of σνj (with overwhelming probability) the test PRG(σνj) = τ∗

passes. Hence, the indistinguishability of Hyb5,j,5 and Hyb5,j,6 follows from the security
of iO.

– Hyb5,j,7 : In this hybrid the public key of the permutation corresponds to
iO(F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1

). That is, it contains the unpunctured key Sνj instead of the

punctured key S′νj . Note that both F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1
(padded to length p(κ)) and

F ∗S1,··· ,S′νj ,···Sκ,α0,αj+1
do not require the evaluation of PRFSνj on tj and hence the indis-

tinguishability of hybrids Hyb5,j,6 and Hyb5,j,7 follows from security of iO.

– Hyb5,j,8: In this hybrid, we replace the sampler with iO(XS1,··· ,Sκ) instead of
iO(X2

S1,··· ,S′νj ,··· ,Sκ
). The indistinguishability of hybrids Hyb5,j,7 and Hyb5,j,8 follows the

exact same argument as indistinguishability between Hyb5,j,1 and Hyb5,j,2.

Setting the parameters. Note that δ(α0) ≤ κ−1 and µ(αδ(α0)) ≤ κ and hence δα0 +µ(αδ(α0)) ≤
2κ − 1. p(·) is the maximum size of the circuit computing the public key that appears in the
construction and in the proof and q(·) is the maximum size of the circuit computing the sampler
that appears in the construction and in the proof.

4 Trapdoor Permutation from FE

We start by defining a weaker (with respect to pseudorandom sampling) notion of trapdoor per-
mutation.

21

1. (PK,SK)← KeyGen(1κ).

2. Samp← SampGen(SK)

3. if(b = 0), x
$← DPK .

4. else, x← Samp(1κ).

5. Output A(PK,Samp, x)

Figure 6: ExpA,b,PRS

Definition 18 An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}

over the domain DPK with associated (probabilistic) (KeyGen,SampGen) algorithms is a (standard)
trapdoor permutation if it satisifies:

• Trapdoor Invertibility: For any (PK,SK)← KeyGen(1κ), TDPPK is a permutation over
DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable given the trapdoor SK.

• Pseudorandom Sampling: For any (PK,SK)← KeyGen(1κ) and Samp← SampGen(SK),
Samp(·) samples pseudo random points in the domain DPK . Formally, for any polysized
distinguisher A,

∣∣Pr
[
ExpA,0,PRS = 1

]
− Pr

[
ExpA,1,PRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,PRS is described in Figure 6.

• One-wayness: For all poly sized adversaries A,

Pr

A(PK,Samp, TDPPK(x)) = x :
(PK,SK)← KeyGen(1κ)
Samp← SampGen(SK)
x← Samp(1κ)

 ≤ negl(κ)

Remark 19 The requirement of Pseudorandom sampling considered in Bitanksy et al.’s work
[BPW16] is stronger than the one considered here in sense that they require the pseudorandomness
property to hold even when given the random coins used by KeyGen and the SampGen algorithms.
We do not achieve the stronger notion in this work. In particular, given the random coins used in
SampGen the sampler’s output is no longer pseudorandom. Therefore, our trapdoor permutations
can be only used in applications where an honest party runs the KeyGen and SampGen algorithm. It
cannot be used for example to achieve receiver privacy in EGL Oblivious Transfer protocol [EGL85].

In this section, we show a construction of trapdoor permutation satisfying the above definition
from polynomially hard public key functional encryption, prefix puncturable pseudorandom func-
tion, injective PRGs with left half injectivity property, strong randomness extractor and public key
encryption with random public keys.

22

Theorem 20 Assuming the existence of one-way permutations, public key functional encryption
satisfying selective-indistinguishability security against polytime adversaries and public key encryp-
tion with (pseudo) random public keys, there exists a trapdoor permutation.

We now recall the special key structure [GPS15] which would be used in our construction of
trapdoor permutation.

Notation. We treat 1i + 1 as 0i and φ+ 1 as φ.

Special Key Structure.

Ux =
⋃
i∈[2κ]

Uix Uix =

{
{Si,x[i]} if |x| > i

{Si,x} otherwise

Vx =
⋃
i∈[2κ]

Vix Vix =

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i
∅ otherwise

Wx =
⋃
i∈[2κ]

Wi
x Wi

x =

{
{PRG0(Si,x[i])} if |x| ≥ i
∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Uφ =
⋃
i∈[2κ]

Uiφ Uiφ = {Si}

Vφ =
⋃
i∈[2κ]

Viφ Viφ = {Si}

Wφ =
⋃
i∈[2κ]

Wi
φ Wi

φ = ∅

Jumping ahead, the set of keys in Ux would be used by the sampler to generate the set of
associated signatures on the sampled point. The set Wx (called as the vestigial set in [GPS15]) is
used to check the validity of input i.e checking whether the input belongs to the domain. The set
Vx is used to generate the associated signatures on the “next” point as defined by the permutation.

Properties of Special Key Structure.

Lemma 21 (Computability Lemma,[GPS15]) There exists an explicit efficient procedure that
given Ux,Vx,Wx computes Ux‖0,Vx‖0,Wx‖0 and Ux‖1,Vx‖1,Wx‖1.

Proof We start by noting that it suffices to show that for each i, given Uix,V
i
x,W

i
x one can

compute Uix‖0,V
i
x‖0,W

i
x‖0 and Uix‖1,V

i
x‖1,W

i
x‖1. We argue this next. Observe that two cases arise

either |x| < i or |x| ≥ i. We deal with the two cases:

23

- |x| < i: Note that in this case, Uix = {Si,x} and this can be used for computing Si,x‖0
and Si,x‖1

4. Similarly, Vix is {Si,x, Si,(x+1)‖0i−|x|} when |x| < i and these values can be
used to compute (by appropriate prefix puncturing) Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and
Si,((x‖1)+1)‖0i−|x|−1 = Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| . Observe by case by case inspection

that these values are sufficient for computing Uix‖0,V
i
x‖0,W

i
x‖0 and Uix‖1,V

i
x‖1,W

i
x‖1 in all

cases.

- |x| ≥ i: Observe that U ix = {Si,x[i]} and U ix‖0 = U ix‖1 = {Si,x[i]} = U ix. Also, note that

according to the constraints placed on x by the definition, if Vix = ∅ then both Vix‖0 and

Vix‖1 must be ∅ as well. On the other hand if V i
x 6= ∅ then Vix‖0 is still ∅ while Vix‖1 = Vix.

Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 22 (Derivability Lemma,[GPS15]) For every i ∈ [κ], x ∈ {0, 1}i we have that, Si,x+1

can be derived from keys in Viy if and only if y is a prefix of x‖1κ−i or (x+ 1)‖1κ−i.

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 7: Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to derive S2,10.

Proof We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ, by definition of V-sets we have
that Viy = Viy[i] or Viy = ∅. Hence it suffices to prove the above lemma for y ∈ {0, 1}≤i.

We first prove that if y is a prefix of x or (x+ 1) then we can derive Si,x+1 from V i
y . Two cases

arise:

- Observe that if y is a prefix of x then we must have that either y is a prefix of x+1 or x+1 =
(y + 1)‖0i−|y|. Next note that by definition of V-sets we have that Viy = {Si,y, Si,(y+1)‖0i−|y|},
and one of these values can be used to compute Si,x+1.

- On the other hand if y is a prefix of x + 1 then again by definition of V-sets we have that
Viy = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used to compute Si,x+1.

Next we show that no other y ∈ {0, 1}≤i allows for such a derivation. Note that by definition
of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}. We will argue that neither Si,y nor Si,(y+1)‖0i−|y|
can be used to derive Si,x+1.

4Observe that since |x| < i, Si,x‖b for b ∈ {0, 1} is well-defined.

24

- We are given that y is not a prefix of x+ 1. This implies that Si,y cannot be used to derive
Si,x+1.

- Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute Si,x+1. For this, it suffices

to argue that x + 1 6= (y + 1)‖0i−|y|. If x + 1 = (y + 1)‖0i−|y| then y must be prefix of x.
However, we are given that this is not the case. This proves our claim.

This concludes the proof.

Our Construction. At a very high level, TDPPK algorithm checks whether the input is valid
(i.e belongs to the domain) by checking if each of the associated signatures are valid. It performs
this check in an “encrypted” form by checking if the left halves of the PRG evaluations on the input
signatures are equal to the corresponding contents in the vestigial set. Once the input passes this
test, the algorithm outputs the signatures on the next point in the domain. It performs this task
by setting the associated signatures to be equal to the ones from the input if the corresponding
prefixes are shared between the input and the next domain point. For those prefixes that change, it
outputs the correct associated signatures from the V-set. The formal description our construction
appears in Figure 8.

Setting rand(·) We set rand(κ) = 4κ+ r(κ) where r(κ) is the maximum number of random bits
needed to generate encryptions under γ1, · · · , γκ as well as encryptions under the public keys pk.

Proof of Theorem 20 : We show that construction given in Figure 8 satisfies the three properties
given in Definition 18.

Trapdoor Invertibility. Observe that the domain of the TDP consists of strings of the form
(x, σ1, · · · , σ2κ) where for all i ∈ [2κ], σi = Si,x[i] . We first show that given (x, σ1, · · · , σ2κ) the public

key correctly computes (x+ 1, σ′1, · · · , σ′2κ) where x+ 1 is computed modulo 22κ and σ′i = Si,(x+1)[i]

for all i ∈ [2κ].

We first observe that since v
$← {0, 1}κ/4, with probability 1− 1

2κ/8
it is not in the image of the

PRG and hence Step 1 of G1
v,Λ1,w

is not triggered. Since mode is set to 0 in c1
φ, alternate behavior

(the “Hidden” mode) of G1
v,Λ1,w

and F 1
i,PK1

i+1,Π1
is not triggered during the honest execution of the

permutation function.
Given that the above cases do not arise we have that ψi = PRG0(Si,x[i]) for every i ∈ [2κ].

This follows from the correctness of Functional Encryption scheme. Recall that in Step 3 the
permutation function checks if PRG0(σi) = ψi. Now from the left half injectivity property of the
PRG we have that these checks pass if and only if σi = Si,x[i] . Hence, if public key does not output
⊥ then the input (x, σ1, · · · , σ2κ) must be valid i.e belonging to the domain. Additionally, notice
that for every i such that x[i] 6= (x+ 1)[i], V

i
x contains Si,(x+1)[i]

. This follows since for such an

i, x = x[i]‖12κ−i and by definition V i
x contains Si,x[i]+1 = Si,(x+1)[i]

due to the special structure of

x. It follows from the correctness of SK.Dec, the public key of the trapdoor permutation correctly
obtains Si,(x+1)[i]

for every i such that x[i] 6= (x+ 1)[i]. For the rest of the indexes, the associated

signature is obtained directly from the input. Hence, the permutation function correctly computes
the full set of associated signatures on x+ 1. Since on input (x, σ1, · · · , σ2κ) the function outputs

25

- KeyGen(1κ):

1. Sample {Si}i∈[2κ], K
1
φ from KeyGenPPRF (1κ). Here Si is a key that works for i bit

inputs, namely PPRFSi : {0, 1}i → {0, 1}κ for all i ∈ [2κ]. Similarly, K1
φ works on

inputs of length rand(κ) where rand(·) is a polynomial that would be specified later.
Initialize Viφ := Si, Vφ =

⋃
i∈[2κ] Viφ and Wφ = ∅.

2. Let Extw : {0, 1}2κ → {0, 1}κ/8 be a (κ/4, negl(κ)) 5 strong randomness extractor

with seed w ∈ {0, 1}q(κ). Sample a seed w
$← {0, 1}q(κ) for the extractor Ext.

3. Sample (PK1
i ,MSK1

i)← FE.Setup(1κ) for all i ∈ [2κ+ 1].

4. Sample sk1 ← SK.KeyGen(1κ) and let Π1 ← SK.Encsk1(π1) and Λ1 ← SK.Encsk1(λ1)
where π1 = 0`1(κ) and λ1 = 0`

′
1(κ). Here `1(·) and `′1(·) are appropriate length

functions specified later.

5. Sample v
$← {0, 1}κ/4.

6. For each i ∈ [2κ] generate FSK1
i ← FE.KeyGen(MSK1

i , F
1
i,PK1

i+1,Π1
) and FSK1

2κ+1 ←
FE.KeyGen(MSK1

2κ+1, G
1
v,Λ1,w

), where F 1
i,PK1

i+1,Π1
and G1

v,Λ1,w
are circuits described

in Figure 9.

7. Let c1
φ = FE.EncPK1(φ,Vφ,Wφ,K

1
φ, 0

κ, 0).

8. The Public Key PK is given by ({FSK1
i }i∈[2κ+1], c

1
φ) and the secret key SK is given

by (S1, · · · , S2κ).

- TDPPK : The evaluation algorithm takes as input (x, σ1, . . . , σ2κ) and outputs (x +
1, σ′1, . . . , σ

′
2κ) if the associated signatures σ1, · · · , σ2κ are valid. It proceeds as follows:

1. For i ∈ [2κ] compute c1
x[i−1]‖0

, c1
x[i−1]‖1

:= FE.Dec(FSK1
i , c

1
x[i−1]

).

2. Obtain dx = ((ψ1, . . . , ψ2κ), (βj , . . . , β2κ)) as output of FE.Dec(FSK1
2κ+1, c

1
x). Here

j = f(x). Recall from Section 3.1 that f(x) is the smallest j such that x = x[j]‖12κ−j .

3. Output ⊥ if PRG0(σi) 6= ψi for any i ∈ [2κ].

4. For each i ∈ [j − 1] set σ′i = σi.

5. For each i ∈ {j, . . . , 2κ} set γi = PRG1(σi) and σ′i as SK.Decγj ,··· ,γ2κ(βi), decrypting
βi encrypted under γj , . . . γ2κ.

6. Output (x+ 1, σ′1, · · · , σ′2κ).

Figure 8: Construction of TDP from FE

26

• TDP−1
SK : The inversion algorithm on input (x, σ1, · · · , σ2κ) checks for all i ∈ [2κ] if

σi = Si,x[i] and if so it outputs (x − 1, σ′1, · · · , σ′2κ) where x − 1 is computed modulo 22κ

and for all i ∈ [2κ] σ′i = Si,(x−1)[i]
.

• SampGen(SK) :

1. Choose K2
φ and K from KeyGenPPRF (1κ). K2

φ works on inputs of length rand(κ)
where rand(·) is a polynomial that would be specified later and K works on inputs
of length κ. Initialize Uiφ := Si and Uφ =

⋃
i∈[2κ] Uiφ.

2. Choose (PK2
i ,MSK2

i) for all i ∈ [κ].

3. Sample sk2 ← SK.KeyGen(1κ) and set Π2 ← SK.Encsk2(π2) and Λ2 ← SK.Encsk2(λ2)
where π2 = 0`2(κ) and λ2 = 0`

′
2(κ). Here `2(·) and `′2(·) are appropriate length

functions specified later.

4. For each i ∈ [κ], generate FSK2
i ← FE.KeyGen(MSK2

i , F
2
i,PK2

i+1,Π2
) and FSK2

κ+1 ←
FE.KeyGen(MSK2

κ+1, G
2
Λ2

) where F 2
i,PK2

i+1,Π2
, G2

Λ2
are described in Figure 10.

5. Let c2
φ ← FE.EncPK2

1
(φ,Uφ,K,K

2
φ, 0

κ, 0).

6. The sampler circuit has {FSK2
i }i∈[κ] and c2

φ hardwired in its description and works
as described below.

- Samp: The sampler takes pk where (pk, sk)← PK.KeyGen(1κ). It proceeds as follows:

1. For i ∈ [κ], compute c2
pk[i−1]‖0

, c2
pk[i−1]‖1

:= FE.Dec(FSK2
i , c

2
pk[i−1]

).

2. Obtain hpk = (pk, ρ, ρ1, · · · , ρ2κ) as output of FE.Dec(FSK2
κ+1, c

2
pk).

3. Compute Kpk := PK.Decsk(ρ) and σi := PK.Decsk(ρi) for all i ∈ [2κ]

4. Output (pk‖Kpk, σ1, · · · , σ2κ).

Figure 8: Construction of TDP from FE

27

F 1
i,PK1

i+1,Π1

Hardcoded Values: i, PK1
i+1,Π1.

Input: (x ∈ {0, 1}i−1, Vx,Wx, K1
x, sk1, mode)

1. If (mode = 0) then output FE.EncPK1
i+1

(x‖0,Vx‖0,Wx‖0,K
1
x‖0, sk,mode;K ′1x‖0) and

FE.EncPK1
i+1

(x‖1,Vx‖1,Wx‖1,K
1
x‖1, sk,mode;K ′1x‖1), where for b ∈ {0, 1}, K1

x‖b =

PrefixPunc(K1
x, b‖0) and K1′

x‖b = PrefixPunc(K1
x, b‖1) and (Vx‖0,Wx‖0), (Vx‖1,Wx‖1) are

computed using the efficient procedure from the Computability Lemma (Lemma 21).

2. Else recover (x||0, c1
x‖0) and (x‖1, c1

x‖1) from SK.Decsk1(Π1) and output c1
x‖0 and c1

x‖1.

G1
v,Λ1,w

Hardcoded Values: v, Λ1, w
Input: x ∈ {0, 1}2κ,Vx,Wx,K

1
x, sk1,mode

1. If (PRG(Extw(x)) = v) then output ⊥.

2. If mode = 0, (Below j = f(x). Recall from Section 3.1 that f(x) is the smallest j such
that x = x[j]‖12κ−j .)

(a) For each i ∈ [2κ], set ψi = PRG0(Si,x[i]) (obtained from Wi
x for i ≤ j and from Vix

for i > j).

(b) For each i ∈ {j, . . . , 2κ} set γi = PRG1(Si,x[i]) and βi = SK.Encγj ,··· ,γ2κ(Si,x[i]+1),

encrypting Si,x[i]+1 under γj , . . . γ2κ. (Using randomness obtained by expanding K1
x

sufficiently.). Si,x[i] and Si,(x+1)[i]
are obtained from V i

x for all i ∈ [j, 2κ].

(c) Output ((ψ1, . . . , ψ2κ), (βj , . . . , β2κ))

3. Else recover (x, dx) from SK.Decsk1(Λ1) and output dx.

Figure 9: Circuits for simulating Public Key.

(x + 1, σ′1, · · · , σ′2κ) where x + 1 is computed modulo 22κ we observe that the public key indeed
computes a permutation on the domain.

The correctness of the trapdoor inversion follows directly from the definition of the domain.
Similarly, since mode is set to 0 in c2

φ, the “hidden” mode in F 2
i,PK2

i+1,Π2
and G2

Λ2
is not triggered

during an honest execution of the sampler. It follows from the correctness of functional encryption
scheme that hpk = (pk, ρ, ρ1, · · · , ρ2κ) where ρ = PK.Encpk(Kpk) and ρi = PK.Encpk(Si,(pk‖Kpk)

[i]
)

for all i ∈ [2κ]. Hence, from the correctness of decryption of public key encryption, the output of

28

F 2
i,PK2

i+1,Π2

Hardcoded Values: i, PK2
i+1,Π2.

Input: (x ∈ {0, 1}i−1, Ux, Kx, K2
x, sk2, mode)

1. If (mode = 0) then output FE.EncPK2
i+1

(x‖0,Ux‖0,Kx‖0,K
2
x‖0, sk,mode;K ′2x‖0) and

FE.EncPK2
i+1

(x‖1,Ux‖1,Kx‖1,K
2
x‖1, sk,mode;K ′2x‖1), where for b ∈ {0, 1}, K2

x‖b =

PrefixPunc(K2
x, b‖0) and K ′2x‖b = PrefixPunc(K2

x, b‖1) and Ux‖0 and Ux‖1 are computed as
described in Computability Lemma (Lemma 21).

2. Else recover (x||0, c2
x‖0) and (x‖1, c2

x‖1) from SK.Decsk2(Π2) and output c2
x‖0 and c2

x‖1.

G2
Λ2

Hardcoded Values: Λ2

Input: pk ∈ {0, 1}κ,Upk,Kpk,K
2
pk, sk2,mode

1. If mode = 0,

(a) For all i ∈ [2κ], compute σi := Si,(pk‖Kpk)
[i]

from Upk.

(b) Compute ρ ← PK.Encpk(Kpk) and ρi ← PK.Encpk(σi) for all i ∈ [2κ] (Using ran-
domness obtained by expanding K2

pk sufficiently).

(c) Output (pk, ρ, ρ1, · · · , ρ2κ).

2. Else recover (pk, hpk) from SK.Decsk2(Λ2) and output hpk.

Figure 10: Circuits for simulating Sampler

the sampler is a set of correct associated signatures on the prefixes of pk‖Kpk.

Pseudorandom sampling: The pseudorandomness of the samples follows as a direct conse-
quence of the following lemma.

Lemma 23 (pk‖Kpk) where (pk, sk) ← PK.KeyGen(1κ) and (pk‖Kpk, ·, · · · , ·) ← Samp(pk) is
pseudorandom given ({FSK2

i }i∈[κ+1], c
2
φ) 6 and ({FSK1

i }i∈[2κ+1], c
1
φ) (which is equal to the public

key).

Proof We will show this through a hybrid argument.

• Hyb0 : In this hybrid the adversary is given access to
(
pk‖Kpk, ({FSK2

i }i∈[κ+1], c
2
φ), ({FSK1

i }i∈[2κ+1], c
1
φ)
)

.

6Note that ({FSK2
i }i∈[κ+1], c

2
φ) defines the sampler.

29

New π?2, λ
?
2: We now change the plain text encrypted in Π2,Λ2 used in generating the

sampler Samp as follows. Note that in Hyb0, π?2 was set to 0`2(κ) and λ?2 was set to 0`
′
2(κ).

Let P2 denote the set of all prefixes including the empty prefix of pk. Observe that |P2| = κ+1.
For every string x ∈ {0, 1}≤κ, let c2

x, hx denote the output of Step 1,2 of the sampler when
run with input x (Note that hx is defined only for x ∈ {0, 1}κ). For every string x ∈ P2, let y
denote the string which is same as x except that the last bit of x is flipped. We define a new
set Q2 which is the set of all such y if y 6∈ P2. Note that |P2 ∪Q2| ≤ 2κ+ 2. We define:

π?2 = ||x∈P2∪Q2 (x, c2
x)

λ?2 = (pk, hpk)

We set `2(κ) and `′2(κ) to be the maximum size of π?2 and λ?2 respectively.

• Hyb1 : In this hybrid we change Π2,Λ2 to Π?
2,Λ

?
2 that encrypt π?2 and λ?2 (which are of

length `2(κ) and `′2(κ)) respectively instead of 0`2(κ) and 0`
′
2(κ). Notice that the knowledge

of secret key sk2 is not needed to simulate either Hyb0 or Hyb1 and hence the computational
indistinguishability of Hyb0 and Hyb1 follows from the semantic security of symmetric key
encryption (under the symmetric key sk2).

• Hyb2 : In this hybrid, we change how c2
x is generated for every x ∈ P2. Note that for x ∈ Q2 we

do not change the ciphertext. In Hyb1, c2
x := FE.EncPK2

|x|+1
(x,Ux,Kx,K

2
x, 0

κ, 0;K ′2x). In this

hybrid, we change c2
x := FE.EncPK2

|x|+1
(x, 02κ, 0κ, 0κ, sk2, 1; r2

x) where r2
x is uniformly chosen

random string. Observe that in Hyb2, the “hidden” mode in F 2
i,PK2

|i+1|,Π
?
2

and G2
Λ?2

is triggered

along the path from the root to the leaf labeled pk.

We are going to accomplish this change by a couple of intermediate hybrids. Before de-
scribing the intermediate hybrids, let us introduce an ordering of elements in P2. For any
two elements x, y ∈ P2, x < y if x is a prefix of y 7. Observe that by this ordering φ is
the smallest element in P2. Let Hyb1,y denote an hybrid where for all x < y, c2

x is set to
FE.EncPK|x|+1

(x, 02κ, 0κ, 0κ, sk, 1; r2
x). We first show that Hyb1 is computationally indistin-

guishable to Hyb1,φ and then show that for adjacent unequal x, x′ ∈ P2 such that x < x′,
Hyb1,x is computationally indistinguishable to Hyb1,x′ . Note that this is sufficient to show
that Hyb2 is computationally indistinguishable to Hyb1

8.

– Hyb1,φ : In this hybrid, we change c2
φ to FE.EncPK2

1
(φ, 02κ, 0κ, 0κ, sk2, 1). Computa-

tional indistinguishability of Hyb1 and Hyb1,φ follows from the single key, selective
security of functional encryption scheme. Notice that both (φ, 02κ, 0κ, 0κ, sk2, 1) and
(φ,Uφ,K,K

2
φ, 0

κ, 0) trigger the same output in F 2
1,PK2,Π?2

. This is because of the val-

ues encrypted in Π?
2, (φ, 02κ, 0κ, 0κ, sk2, 1) produces the exact same output as that of

(φ,Uφ,K,K
2
φ, 0

κ, 0). Further, the choice of the two messages does not depend on the

knowledge of PK2
1 .

7Note that by this ordering y < y.
8The loss in the reduction is only linear since |P2| = κ+ 1

30

– Hyb1,x,1 : In this hybrid we change c2
x′ (encrypted in Π?

2) to FE.EncPK2
|x′|+1

(x′,Ux′ ,Kx′ ,

K2
x′ , 0

κ, 0; r2
x′) where r2

x′ is chosen uniformly and independently at random. Note that
for every prefix y of x′ (that is not equal to x′), y < x′ and hence K2

y is set to 0κ in c2
y.

This observation along with the pseudorandomness at prefix punctured point property
of the PPRF shows that Hyb1,x is computationally indistinguishable to Hyb1,x,1.

– Hyb1,x,2: In this hybrid we change c2
x′ (encrypted in Π?

2) to FE.EncPK2
|x′|+1

(x′, 02κ, 0κ, 0κ,

sk2, 1; r2
x′). Computational indistinguishability of Hyb1,x,1 and Hyb1,x,2 follows from sin-

gle key, selective security of functional encryption. Note that F 2
|x′|+1,PK2

|x′|+2
,Π?2

(or G2
Λ?2

)

has the same output for both (x′, 02κ, 0κ, 0κ, sk, 1) and (x′,Ux′ ,Kx′ ,K
2
x′ , 0

κ, 0) because
of the values encrypted in Π?

2 (or Λ?2). Further, the choice of the two messages does not
depend on the knowledge of PK2

|x′|+1.

Observe that Hyb1,x,2 is identically distributed to Hyb1,x′

Note that in Hyb2 on input pk, the G2
Λ∗2

uses hpk encrypted in Λ?2 to generate the output.

Note that hpk is given by (pk, ρ, ρ1, · · · , ρ2κ) where ρ is an encryption of Kpk and ρi is an
encryption of Si,(pk‖Kpk)

[i]
under pk. Note that the encryptions are generated by expanding

K2
pk sufficiently.

• Hyb3 : In this hybrid, we are going to generate the encryptions ρ, {ρi}i∈[2κ] in hpk (encrypted
in Λ?2) using true random strings instead of using stings generated by expanding K2

pk. Note

that in Hyb2, K2
z where z is a prefix of pk does not appear anywhere (They are all set to 0κ

in c2
z). Hence, any string derived from K2

pk can be changed to truly random strings by relying
on the pseudorandomness under prefix puncturing property of PPRF.

• Hyb4 : In this hybrid, we are going to change ρ, {ρi}i∈2[κ] in hpk (encrypted in Λ?2) to encryp-
tions of 0κ. Observe that pk is sampled using the PK.KeyGen algorithm. Also, knowledge of
the secret key sk associated with pk is not needed to simulate Hyb3 or Hyb4

9. Thus, we can
make this change by relying on the semantic security of public key encryption.

• Hyb5 : In this hybrid, we are going to change Kpk in the challenge given to the adversary to a
random string z. Observe that in Hyb4, Ky where y is a prefix of pk does not appear anywhere
(They are all set to 0κ in c2

y.) and Sj,(pk‖Kpk)
[j]

for j > κ is also set to 0κ in hpk. Thus, Ky

where y is a prefix of pk and Kpk are not needed to simulate the sampler in Hyb4 and Hyb5.
Hence, indistinguishability between Hyb4 and Hyb5 follows from the pseudorandomness under
prefix puncturing property of PPRF.

• Hyb6 to Hyb10: We essentially reverse the modifications we had done to the function keys and
the initial ciphertext used in the computation of the sampler.

Note that in Hyb10, an adversary is given (pk‖z), the public key ({FSK1
i }i∈[2κ+1], c

1
φ) and the

sampler ({FSK2
i }i∈[κ+1], c

2
φ). It follows from the random public key property of the public key

encryption pk is randomly distributed and z is randomly distributed. Also, we know that pk, z do
not occur anywhere (in an information theoretic sense) in the modified function keys and the initial
ciphertext used in the sampler computation. Hence, pk‖z is randomly distributed.

9Note that knowledge of pk is needed to generate the two sequence of messages.

31

i[κ]

i

i[3κ/4]

•

•

Figure 11: Condition for Aborting

One-Wayness: We now show that the trapdoor permutation is hard to invert given the public
key and the sampler.

• Hyb0 : This hybrid is same as the inversion experiment where the adversary is given ((pk‖Kpk)+
1, σ1, · · · , σ2κ) where (pk, sk)← PK.KeyGen(1κ) and the sampler is run with random input as
pk to obtain (pk‖Kpk, ·, · · · , ·) and then we compute TDPPK on this. For brevity of notation
we will denote (pk‖Kpk) + 1 as i.

• Hyb1 : We modify the function keys and the initial ciphertext used in the computation of
the sampler such that it is distributed identically to Hyb5 in the proof of Lemma 23. Hyb0

and Hyb1 are computationally indistinguishable as a direct consequence of Lemma 23. Let i
denote the challenge to the adversary pk‖z as per the proof of Lemma 23.

Let i1 · · · i2κ denote the binary representation of i. If iκ+1 · · · i7κ/4 is equal to 03κ/4, we abort.
Figure 11 illustrates the condition for aborting. Notice that since z = iκ+1 · · · i2κ is randomly
distributed the probability that we abort is at most 1

23κ/4
which is negligible. Hence, we

subsequently assume that we have not aborted 10. Observe that if we have not aborted then
as per the proof of Lemma 23, in the final hybrid, the description of the sampler (the function
keys and the initial ciphertext) cannot be used to derive (in an information theoretic sense)
Sj,z[j] where z[κ] = i[κ] and j ≥ κ (They are all set to 0κ).

• Hyb2 : In this hybrid, we change how the value v that is hardwired in Gv,Λ1,w is generated.
Let us introduce a lexicographic ordering of the binary strings of length 3κ/4. Let i? be the
string just before i[3κ/4] by this ordering. We set v := PRG(Extw(i?‖u0)) where u0 ∈ {0, 1}κ/4.
The indistinguishability of Hyb1 and Hyb2 can be observed from the following argument:

10We introduce abort in our analysis to simplify the proof. We note that it is possible to prove the one-wayness
property with a tighter security reduction without using abort.

32

– Hyb1,1 : In this hybrid, instead of choosing v uniformly at random from [2κ/4], we set

v := PRG(v′) where v′
$← {0, 1}κ/8. The indistinguishability of Hyb1 and Hyb1,1 follows

from the pseudorandomness property of PRG.

– Hyb1,2 : In this hybrid, we set v := PRG(Extw(i?‖u0)) where u0
$← {0, 1}κ/4. Note that

i?‖u0 has min entropy κ/4 (because u0 is chosen uniformly at random from {0, 1}κ/4) and
hence the statistical closeness of Hyb1,1 and Hyb1,2 follows from the extractor guarantee.
Note that Hyb1,2 is identically distributed to Hyb2.

Note that in this hybrid the public key outputs ⊥ on all inputs of the form (i− u0, ·, · · · , ·).
For brevity of notation we denote α0 := i− u0.

In the subsequent hybrids, we are going to puncture the public key of the permutation such
that it outputs ⊥ on all inputs in the range [α0, i− 1]. Once we have done that no adversary
has non-zero advantage in inverting the permutation at (i, ·, · · · , ·). Observe that since we
have not aborted, for all z ∈ [α0, i − 1] the sampler does not contain Sj,z[j] for all j ≥ κ 11.
This observation will be crucial in allowing us to puncture the public key.

Recalling notation for αj. We denote α0 := i−u0. Recall from Section 3.1, for any string
α ∈ {0, 1}2κ, let f(α) denote the index of the lowest order bit of α that is 0 (with the index of
the highest order bit being 1). More formally, f(α) is the smallest j such that α = α[j]||12κ−j .

For example, if α =

3︷︸︸︷
100 111 then f(α) = 3. Recall `(β, γ) denotes the smallest j ∈ [2κ]

such that β[j−1] = γ[j−1] and βj 6= γj if β 6= γ and is a special symbol ζ otherwise. Recall
ρ(αk) = `(αk + 1, i − 1) if `(αk + 1, i − 1) 6= ζ and equal to 2κ otherwise. Let δ(α) denote
the number of 0s in the positions [`(α, i − 1) + 1, 2κ] in the binary representation of α if
`(α, i − 1) 6= ζ and is equal to 0 otherwise. Let µ(α) denote one more than the number of
ones in the positions [`(α, i− 1) + 1, 2κ] in the binary representation of i− 1 if `(α, i− 1) 6= ζ
and is equal to 0 otherwise.

Starting with a value α0 ∈ {0, 1}2κ we define for j ∈ [0, δ(α0) + µ(αδ(α0))− 1],

αj+1 =

{
αj + 22κ−f(αj) if j + 1 ≤ δ(α0)

αj + 22κ−ρ(αj) otherwise

Note that by this definition αδ(α0)+µ(αδ(α0))
= i− 1. Also, δ(α0) + µ(αδ(α0)) ≤ 4κ− 1.

New π1, λ1 values. As in Section 3.1 we process the hybrids according to αj values. For any
x ∈ {0, 1}≤2κ, let c1

x denote the ciphertext and dx the clear output in execution of Steps 1 and 2
of TDPPK in Hyb2 on input x. We let P1 be the set of all prefixes of α0, α1, . . . αδ(α0)+µ(αδ(α0))

including the empty string φ. Note that |P1| ≤ 4κ(2κ + 1). Additionally we define Q1 as
follows. For every x ∈ P1, let y be the value with the last bit of x flipped. We add y to Q1 if
y 6∈ P1. We set:

π?1 = ||x∈P1∪Q1 (x, c1
x)

11In fact it does not contain Sj,z[j] such that z[j] = i[j] for all j ≥ κ. Since we have not aborted, for every
y ∈ [α0, i− 1], we have y[κ] = i[κ]

33

λ?1 = ||x∈P1∩{0,1}2κ (x, dx)

We set `1(κ) and `′1(κ) to be the polynomials that describe an upper bound on the lengths
of π?1 and λ?1 over all choices of α0 ∈ {0, 1}2κ.

• Hyb3 : In this hybrid we change how the hardcoded values Π1 and Λ1 are generated. Unlike
hybrids Hyb1 and Hyb2 where these values were generated as encryptions of 0`1(κ) and 0`

′
1(κ),

in this hybrid we generate them as encryptions π?1 and λ?1 describe above, respectively. Let
us denote the new hardcoded values to be Π?

1 and Λ?1.

Notice that knowledge of secret key sk2 is not needed in simulating the function keys and
the initial ciphertext used in the function computation. Also, the length of the underlying
messages is same in Hyb2 and Hyb3. Thus, computational indistinguishability between Hyb2

and Hyb3 follows from the semantic security of the symmetric key encryption scheme (under
sk1).

• Hyb4: In this hybrid, for x ∈ P1 we change the the c1
x values embedded in π?1. Recall that in

hybrid Hyb2 for each x, c1
x is generated as FE.EncPK1

|x|+1
(x,Vx,Wx,K

1
x, 0

κ, 0;K ′1x). We change

the c1
x to be now generated as FE.EncPK1

|x|+1
(x, 02κ, 02κ, 0κ, sk, 1;ωx) using fresh randomness

ωx.12

Computational indistinguishability between Hyb3 and Hyb4 follows by a sequence of sub-
hybrids. We define an ordering on elements of P1 as follows. For x, y ∈ P we say that x < y
if either |x| < |y|, or |x| = |y| and x < y 13. Next we define the hybrid Hyb3,y to be a
modification of Hyb3 where for all x ∈ P such that x ≤ y we have that c1

x is generated as
FE.EncPK1

|x|+1
(x, 02κ, 02κ, 0κ, sk, 1;ωx) using fresh randomness ωx.

We first argue that Hyb3 is computationally indistinguishable to Hyb3,φ and then argue that
Hyb3,x′ and Hyb3,x are indistinguishable for any two adjacent values x′ and x in P such that
x′ < x. This is sufficient to show that Hyb3 and Hyb4 are indistinguishable with a polynomial
loss in the security reduction. We argue this via a three step hybrid argument.

1. Hyb3,φ : In this hybrid, we change c1
φ to FE.EncPK1

1
(φ, 02κ, 02κ, 0κ, sk, 1). Notice that

both (φ, 02κ, 02κ, 0κ, sk, 1) and (φ,Vφ,Wφ,K
1
φ, 0

κ, 0) give the same output on F 1
1,PK1

2 ,Π
?
2

because of the value encrypted in Π?
2. Further more the choice of two messages does

not depend on the value of PK1
1 . Hence, computational indistinguishability of Hyb3 and

Hyb3,1 follows from the single key selective security of Functional encryption with public
key PK1

1 .

2. Hyb3,x,1: In this hybrid we change c1
x to FE.EncPK1

|x|+1
(x,Vx,Wx,K

1
x, 0

κ, 0;ωx) using

fresh randomness ωx.

Note that for all prefixes x′′ of x we have that x′′ < x. Therefore for all such x′′

we have that cx′′ = FE.EncPK1
|x′′|+1

(x′′, 02κ, 02κ, 0κ, sk, 1;ωx′′). This fact along with the

pseudorandom at punctured point property implies computational indistinguishability
from the previous hybrid, namely Hyb3,x.

12Note that we do not change ciphertexts corresponding to x ∈ Q.
13Note that φ is the smallest value in P by this ordering.

34

3. Hyb3,x,2: In this hybrid we change c1
x to FE.EncPK1

|x|+1
(x, 02κ, 02κ, 0κ, sk, 1;ωx) using

fresh randomness ωx.

The computational indistinguishability of this hybrid from Hyb3,x,2 relies on the selective
security of the functional encryption scheme with public-key PK1

|x|+1. Note that we can
invoke security of functional encryption as the change in the messages being encrypted
does not change the output of the decryption using key FSK|x|+1. Also, the choice of the
two messages does not depend on the value of PK1

|x|+1.

• Hyb5,j+1: In hybrid Hyb5,j+1 for j ∈ {0, . . . , δ(α0)+µ(αδ(α0))−1}, we make two changes with
respect to Hyb5,j . We define Hyb5,0 to be same as Hyb4. Just like in Section 3.1 we let νj as
the shorthand for f(αj) for j < δ(α0) and equal to ρ(αj) for j ≥ δ(α0). Let tj = αj [νj]

+ 1.

– We change the set W
νj
tj

to be a uniformly random string z ← {0, 1}2κ rather than
containing the value PRG0(Sνj ,tj). Note that this change needs to be made at two

places. Namely we set W
νj
tj

= {z} in c1
z where z is a sibling path of αj+1 and from there

on this value will be percolated to all its descendents as well. Additionally we set ψνj
included in dαj+1 to be z.

– We now generate encryptions βνj , . . . , βκ included in dαj+1 with encryption of 0κ.

Note that as a consequence of this change the public key now starts to output⊥ additionally on
all inputs in {αj+1, . . . , αj+1}. This is because for every input σνj we have that z 6= PRG0(σνj)
with overwhelming probability. Since in hybrid Hyb5,j the successor was already outputting ⊥
on inputs {α0, . . . , αj} we have that the successor outputs ⊥ on all inputs in {α0, . . . , αj+1}.
Now we argue computational indistinguishability between Hyb5,j and Hyb5,j+1.

– Hyb5,j,1: In this hybrid instead we replace the key Sνj ,tj with a random string S′ ←
{0, 1}κ. Now S′ (instead of Sνj ,tj) is used in W

νj
tj

, in generating γνj used in dαj+1 and in
ψνj in dαj+1 .

Computational indistinguishability follows from the pseudorandomness at prefix punc-
tured point property of PPRF. This argument relies on that facts that the punctured
keys in the sampler cannot be used to derive Sνj ,tj and that no V set that hasn’t been
removed can be used to obtain Sνj ,tj . More formally,

- Recall a prior observation that the sampler cannot be used to derive (in an infor-
mation theoretic sense) Sj,z[j] for all z ∈ [α0, i− 1] and for all j ≥ κ. In particular,

since νj > κ (this is because α0 and i − 1 are at distance at most 2κ/4+1 and thus
|αj+1 − αj | ≤ 2κ/4 + 1) we can infer that the sampler does not contain Sνj ,tj .

- V
νj
y values have been removed whenever y is a prefix of αj or αj+1. Note that it

follows from the Derivability Lemma (Lemma 22) that these were the only V-sets
that could be used to derive Sνj ,tj .

- Additionally σνj = Sνj ,tj is encrypted in βνj and this value is included in dαj . But
this has already been replaced with an encryption of 0κ except dα0 which is set to
⊥.

– Hyb5,j,2: In this hybrid instead we replace the βνj , . . . , βκ in dαj+1 to be generated using
fresh randomness.

35

Observe that K1
y where y is a prefix of αj+1 does not occur anywhere in the simulation

of Hyb5,j,2 and in Hyb5,j,1. Thus, computational indistinguishability follows from the
pseudorandomness at prefix punctured point property.

– Hyb5,j,3: In this hybrid, we change PRG0(S′) and PRG1(S′) to be random strings z, z′.

Change of PRG0(S′) to z implies that the set W
νj
tj

is {z} and ψνj in dαj+1 is also set to

z. Similarly γνj will be z′.

Indistinguishability between Hyb5,j,2 and Hyb5,j,3 follows from the pseudorandomness
property of the PRG as the plaintext value S′ is not needed anywhere in the simulation
of Hyb5,j,2 or in Hyb5,j,3.

– Hyb5,j,4: In this hybrid we set encryption of all βνj , . . . , βκ in dαj+1 with encryption of
0κ. By semantic security we have this hybrid is computationally indistinguishable from
the previous. Here we rely on the fact that one of the keys γνj has been replaced with
random.

Note that hybrid Hyb5,j,4 is same as hybrid Hyb5,j+1.

Concluding the proof. Observe that the hybrid Hyb5,0 is defined to be identical to hybrid
Hyb4 and Hyb5,δ(α0)+µ(αδ(α0))

is such that the public key outputs ⊥ on all inputs of the form

(i − 1, ·, . . . , ·). Consequently, no adversary can invert the challenge (i, σ1, · · · , σ2κ) in this final
hybrid with probability better than 0.

5 Universal Samplers

Intuitively, a universal sampler, defined by Hofheinz et al. [HJK+14] is a box that takes as input the
description of a sampling procedure, and outputs a fresh-looking sample according to the sampling
procedure. The difficulty is that we want the box to be public code, and that every user, when they
run the sampler on a particular procedure, gets the same result. Moreover, we want the sample to
appear as if it were a fresh random sample.

5.1 Definition

A Universal Sampler consists of an algorithm Setup that takes as input a security parameter κ and
a size bound ` (encoded in unary), and an output size t. It outputs a program Sampler. Sampler
takes as input a circuit of size at most ` with output length t, and outputs an t-bit string.

Intuitively, Sampler(C) will be a pseudorandom sample from C: Sampler(C) = C(r) for some
r pseudorandomly chosen based on C. We will actually not formalize a standalone correctness
requirement, but instead correctness will follow from our security notion.

For security, we ask that the sample outputted by Sampler(C) actually looks like a fresh random
sample from C. Unfortunately, formalizing this requirement is tricky. Hofheinz et al. [HJK+14]
defined two notions: the first is a “static” and “bounded” security notion, while the second stronger
notion is “adaptive” and “unbounded”. The latter definition requires random oracles, so it is
unfortunately uninstantiable in the standard model. We will provide a third definition which
strikes some middle ground between the two, and is still instantiable in the standard model.

Definition 24 A Universal Sampler given by Setup is n-time statically secure with interactive
simulation if there exists an efficient randomized simulator Sim such that the following hold.

36

• Sim takes as input κ, `, t, and ultimately will output a simulated sampler Sampler. However,
before doing so, Sim provides the following interface for additional input:

– Read queries: here the user submits an input circuit C of size at most ` with output
length t. Sim will respond with a sample s that will ultimately be the output of the
simulated sampler on C. Sim supports an unbounded number of Read queries.

– Set queries: here the user submits in input circuit C of size at most ` with output length
t, as well as a sample s. Sim will record C, s, and set the output of the simulated sampler
on C to be s. Sim supports up to n Set queries. We require that there is no overlap
between circuits C in Read and Set queries, and that all Set queries are for distinct
circuits.

– Finish query: here, the user submits nothing, and Sim closes its interfaces, terminates,
and outputs a sampler Sampler.

Sim must be capable of taking the queries above in any order.

• Correctness. Sampler is consistent with any queries made. That is, if a Read query was
made on C and the response was s, then Sampler(C) = s. Similarly, if a Set query was made
on C, s, then Sampler(C) = s.

• Indistinguishability from honest generation. The advantage of any polynomial-time
algorithm A is negligible in the following experiment:

– The challenger flips a random bit b. If b = 0, the challenger runs Sampler← Setup(1κ, 1`, 1t).
If b = 1, the challenger initiates Sim(1κ, 1`, 1t).

– A is allowed to make Read queries on arbitrary circuits C of size at most ` with output
length t. If b = 0, the challenger runs s ← Sampler(C) and responds with s. If b = 1,
the challenger forwards C to Sim as a Read query, and when Sim responds with s, the
challenger forwards s to A.

– Finally, A sends a Finish query. If b = 0, the challenger then sends Sampler to A. If
b = 1, the challenger sends a Finish query to Sim, gets Sampler from Sim, and forwards
Sampler to A.

– A then tries to guess b. The advantage of A is the advantage A has in guessing b.

• Pseudorandomness of samples. The advantage of any polynomial-time algorithm B is
negligible in the following experiment:

– The challenger flips a random bit b. It then initiates Sim(1κ, 1`, 1t).

– B first makes a Challenge query on circuit C∗ of size at most ` and output length t,
as well as an integer i∗.

– B is allowed to make arbitrary Read and Set queries, as long as the number of Set
queries is at most n − 1, and the queries are all on distinct circuits that are different
from C∗. The Read and Set queries can occur in any order; the only restriction is that
the Challenge query comes before all Read and Set queries.

– After i∗ − 1 Read and Set queries, the challenger does the following:

37

∗ If b = 0, the challenger makes a Read query to Sim, and forwards the response s∗

to B.

∗ If b = 1, the challenger computes a fresh random sample s∗ ← C∗(r), and makes a
Set query to Sim on C∗, s∗. Then it gives s∗ to B.

Thus the i∗th query made to Sim is on circuit C∗, and the only difference between b = 0
and b = 1 is whether the output of the simulated sampler will be a pseudorandom sample
or a fresh random sample from C∗.

– B is allows to continue making arbitrary Read and Set queries, as long as the number of
Set queries is at most n− 1 and the queries are all on distinct circuits that are different
from C∗.

– Finally B makes a Finish query, at which point the challenger makes a Finish query
to Sim. It obtained a simulated sampler Sampler, which it then gives to B.

– B then tries to guess b. The advantage of B is the advantage B has in guessing b.

5.2 Approach Using Obufscation

Using obfuscation, obtaining a universal sampler meeting the above definition is straightforward.
Setup chooses a random seed S for a puncturable PRF PRF . Then it obfuscations the program
P (C) = C(PRFS(C)).

The simulator Sim works as follows. Upon initialization, it chooses a random seen S. To
answer a Read query on C, it simply outputs C(PRFS(C)). Upon receiving a Write query
on C, s, it just records the pair C, s. Finally, upon receiving the Finish query, it obfuscates
the program P(C1,s1),...,(Cn,sn) where (Ci, si) are the Write queries received, and P(C1,s1),...,(Cn,sn)

is the program that outputs si on input Ci for Write queries (Ci, si), and otherwise outputs
P (C) = C(PRFS(C)).

Correctness of simulation is trivial, as is the indistinguishability from honest generation. Pseu-
dorandomness of samples follows from a straightforward application of the punctured programming
technique. It is proved through the following sequence of hybrids:

• Hybrid 0. This is the b = 0 case in the pseudorandomness game. The Challenge query is
answered by making a Read query to Sim, which responds with s∗ = C∗(PRFS(C∗)). The
final program produced by Sim is P(C1,s1),...,(Cn,sn) where n ≤ k− 1 and (Ci, si) correspond to
the write queries made by the adversary.

• Hybrid 1. In this hybrid, we puncture S at C∗, and hardcore s∗ into the program as the
output on C∗. We did not change the functionality of the program, so indistinguishability
from Hybrid 0 follows from iO.

• Hybrid 2. Now we replace PRFS(C∗) with a truly random r∗ in the generation of s∗. That
is s∗ = C∗(r∗). Indistinguishability from Hybrid 1 follows from punctured PRF security.

• Hybrid 3. Now we un-puncture S, but keep s∗ as the hardcoded output of the program on
input C∗. This does not change the functionality of the program, so indistinguishability from
Hybrid 2 follows from iO.

Notice that the program is now identical to P(C∗,s∗),(C1,s1),...,(Cn,Sn). Therefore, this exactly
simulates the case b = 1. Thus the b = 0 and b = 1 cases are indistinguishability, and security
therefore follows.

38

- Sampled Ingredients:

1. Sample S and Kφ from KeyGenPPRF (1κ). Here S is a key that works for ` bit inputs
and produces a r bit outputs, namely PPRFS : {0, 1}` → {0, 1}r where ` and r are
polynomial functions of κ. Similarly, Kφ work on inputs of length rand(κ) where
rand(·) is a polynomial that would be specified later.

2. Sample (PKi,MSKi)← FE.Setup(1κ) for all i ∈ [`+ 1].

3. Sample sk1, · · · , skn ← SK.KeyGen(1κ) and let Πj
i ← SK.Encsk(π

j
i) where πji = 0len(κ)

for i ∈ [` + 1] and j ∈ [n]. Here len(·) is an appropriate length function that would
be specified later. Let Πi = {Πj

i}j∈[n].

- Functional encryption ciphertext and keys to simulate obfuscation of Public
Key:

1. For each i ∈ [`] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and FSK`+1 ←
FE.KeyGen(MSK`+1, GΠ`+1

), where Fi,PKi+1,Πi and GΠ`+1
are circuits described in

Figure 13.

2. Let Z := {Zi}i∈[n] where for every i ∈ [n], Zi = (0`, 0κ)

3. Let cφ = FE.EncPK1(φ, S,Kφ, Z, 0).

- Sampler: The sampler takes as input a description of a circuit C and outputs C(SC).
It proceeds as follows:

1. For i ∈ [`] compute cC[i−1]‖0, cC[i−1]‖1 := FE.Dec(FSKi, cC[i−1]
).

2. Obtain dC as output of FE.Dec(FSK`+1, cC).

3. Output dC .

Figure 12: Setup

6 Construction from FE

In this section, we will construct Universal Samplers that satisfies Definition 24 from polynomially
hard Functional Encryption and Prefix Puncturable pseudorandom functions.

Theorem 25 Assuming the existence of one-way functions and selective secure single key public
key functional encryption there exists an Universal Sampler scheme satisfying Definition 24.

Our Construction. The formal description our construction appears in Figure 12.

Setting rand(·). We set rand(κ) = 2κ where κ is the security parameter.

Security We will now show a construction of a simulator that satisfies Definition 24.

39

Fi,PKi+1,Π

Hardcoded Values: i, PKi+1,Πi.
Input: (C ∈ {0, 1}i−1, SC , KC , Z, mode)

1. If (mode = 0) then output FE.EncPKi+1(C‖0, Sx‖0,KC‖0, sk,mode;K ′C‖0) and
FE.EncPKi+1(C‖1, SC‖1,KC‖1, sk,mode;K ′C‖1), where for b ∈ {0, 1}, KC‖b =
PrefixPunc(KC , b‖0) and K ′C‖b = PrefixPunc(KC , b‖1) and SC‖b := PrefixPunc(SC , b).

2. Else recover (lexicographically the first Zj) such that Zj = (Cj , skj) where Cj [i−1] = C.

Compute cC‖0, cC‖1 ← SK.Decskj (Π
j
i) and output (cC‖0, cC‖1).

GΠ`+1

Hardcoded Values: Π`+1

Input: C ∈ {0, 1}`, SC ,KC , sk,mode

1. If mode = 0, output C(SC).

2. Else recover (lexicographically the first Zj) such that Zj = (Cj , skj) where Cj = C.

Compute dC ← SK.Decskj (Π
j
i) and output dC .

Figure 13: Circuits for simulating Public Key.

The correctness of the simulator follows from our description of Fi,PKi+1,Πi and GΠ`+1
as well

as πji for j ≤ q and i ∈ [`+ 1]. In particular, setting πji as described in Figure 14 ensures that for
every (Ci, si) that the adversary queries for the Set query the sampler outputs si.

Indistinguishability from honest generation is easy to observe.
We now show the pseudorandomness of samples. We show this through a standard hybrid

argument.

• Hyb0: This is the b = 0 case in the pseudorandomness game. The Challenge query is
answered by making a Read query to Sim, which responds with s∗ = C∗(S1

C∗). The simulator
adds C∗ to the list LC and adds s∗ to the list Ls.

• Hyb1 : In this hybrid, we are going to “puncture” the sampler circuit along the path C∗.
We are going to accomplish this through the following sub-hybrids. Let us assume that the
adversary has made q ≤ n− 1 Set queries

– Hyb0,0 : In this hybrid, we are going to change how πq+1
i is generated for i ∈ [` + 1].

For every prefix, x of C? of length at most ` − 1, let ex denote the output of Step 1 of
the sampler. For every string x that is a prefix of C∗, let y denote the string which is

40

- Sampled Ingredients:

1. Sample S1 and K1
φ from KeyGenPPRF (1κ). Here S1 is a key that works for ` bit

inputs and produces a r bit outputs, namely PPRFS1 : {0, 1}` → {0, 1}r where `
and r are polynomial functions of κ. Similarly, K1

φ work on inputs of length rand(κ)
where rand(·).

2. Sample (PK1
i ,MSK1

i)← FE.Setup(1κ) for all i ∈ [`+ 1].

3. Sample sk1, · · · , skn ← SK.KeyGen(1κ).

- Read Queries: For every Read query on C that the adversary makes, simulator answers
with C(S1

C).

- Set Queries: For every Set query (Ci, si), the simulator adds Ci to a list LC and adds
si to a list Ls.

- Setting πji values. Let q denote the number of set queries made by the adversary.
By definition, q ≤ n. Let Ci be the ith set query made by the adversary. We set
Zi = (Ci, ski) for all i ∈ [q] and set Zi = (0`, 0κ) for all q + 1 ≤ i ≤ n and denote
Z ′ = {Zi}i∈[n]. For every prefix x (including the empty prefix) of length at most `− 1 of
Ci, let cx ← FE.EncPK|x|+1

(x, 0κ, 0κ, Z ′, 1; rx) where rx denotes uniformly chosen random
string. For every string x that is a prefix of Ci, let y denote the string which is same as x
except that the last bit of x is flipped. For every y ∈ {0, 1}≤`−1, ey denotes the output of
Step 1 of the sampler. We set πi|x| = (x, cx), (y, ey) and Πi

|x| = SK.Encski((x, cx), (y, ey)).

We set πi`+1 = (Ci, si). For other unset values, we let πji = 0len(κ).

- Functional encryption ciphertext and keys to simulate obfuscation of Public
Key:

1. For each i ∈ [`] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and FSK`+1 ←
FE.KeyGen(MSK`+1, GΠ`+1

), where Fi,PKi+1,Πi and GΠ`+1
are circuits described in

Figure 13.

2. Let cφ = FE.EncPK1(φ, 0κ, 0κ, Z ′, 1).

- Sampler: The sampler takes as input a description of a circuit C and outputs C(SC).
It works exactly as described in Figure 12.

Figure 14: Description of the simulator

41

same as x except that the last bit of x is flipped. Similarly, ey denotes the output of

Step 1 of the sampler on input y. We set πq+1
|x| = (x, ex), (y, ey) and πq+1

(`+1) = (C∗, s∗)
14. Computational indistinguishability of Hyb0 from Hyb0,0 follows from the semantic
security of symmetric key encryption.

– Hyb0,1 : In this hybrid, we change the encryptions output along the path C∗. We denote
x < x′ if |x| < |x′|. Let Zq+1 = (C∗, skq+1). Let Z ′′ be equal to Z ′ except that it
has Zq+1 in the q + 1th location. For every prefix of x (including the empty prefix)
of C∗, let Hyb0,x denote that for all x′ < x, cx′ = FE.EncPK|x′|+1

(x′, 0κ, 0κ, Z ′′, 1; rx′)
where rx′ is chosen uniformly at random. Note that in the previous hybrid, cx′ =
FE.EncPK|x′|+1

(x′, S1
x′ ,K

1
x′ , Z

′, 0;K ′1x′)
15. We now show that Hyb0,x is computationally

indistinguishable from Hyb0,x′ where x < x′ and they are adjacent according to the
ordering defined.

∗ Hyb0,x,1 : In this hybrid, we are going to change K ′1x′ to uniformly chosen random

value rx′ at πj|x′| for all j ∈ [q+ 1] such that πj|x′| contains x′. This change is possible
from the pseudorandomness at punctured point property of PPRF. In particular,
K1
z for all z < x′ has already been set to 0κ.

∗ Hyb0,x,2 : In this hybrid, we are going to change cx′ = FE.EncPK|x′|+1
(x′, 0κ, 0κ, Z ′′, 1; rx′)

at πj|x′| for all j ∈ [q+ 1] such that πj|x′| contains x′. This change is possible from the
selective security of functional encryption. Observe that FSK|x′|+1 decrypts both
the ciphertexts to the same value. Note that Hyb0,x,2 is identical to Hyb0,x′

– Hyb2 : In this hybrid, we are going to change πq+1
`+1 to C∗, C∗(r∗) where r∗ is chosen

uniformly at random. This change is possible from the pseudorandomness at prefix
punctured property of PPRF as Sx for all prefixes x of C∗ has already been set to 0κ.
Observe that Hyb2 is identically distributed to the case where the challenge query is a
Set query of an uniform sample.

Setting the parameters. We set len(κ) to be the maximum size of πji for all i ∈ [`+ 1] and for
all j ∈ [n] used in the construction of the simulator and in security proof.

7 Multiparty Non-interactive Key Exchange

In this section, we build multiparty non-interactive key exchange for an unbounded number of
users. Moreover, in constrast to the original multilinear map protocols [GGH13a], our protocol has
no trusted setup.

7.1 Definition

A multiparty key exchange protocol consists of:

• Publish(κ) takes as input the security parameter and outputs a user secret sv and public value
pv. pv is posted to the bulletin board.

14We pad πq+1
|x| and πq+1

(`+1) with some dummy symbols until their length is len(κ)
15It might be the case that cx′ is already of the required form. This happens when C∗ shares the same prefix x′

with another Set query. In that case, we don’t make any changes.

42

• KeyGen({pvj}j∈S , svi, i) takes as input the public values of a set S of users, plus one of the
user’s secrets svi. It outputs a group key k ∈ K.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈S , svi, i) = KeyGen({pvj}j∈S , svi′ , i
′)

for all (svj , pvj)← Publish(κ) and i, i′ ∈ S. For security, we have the following:

Definition 26 A non-interactive multiparty key exchange protocol is statically secure if the follow-
ing distributions are indistinguishable for any polynomial-sized set S:

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ S, k ← KeyGen({pvj}j∈S , s1, 1) and

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ G, k ← K

Notice that our syntax does not allow a trusted setup, as the original constructions based
on multilinear maps [BS02, GGH13a, CLT13] require. Boneh and Zhandry [BZ14] give the first
multiparty key exchange protocol without trusted setup, based on obfuscation. A construction of
obfuscation from a finite set of assumptions with polynomial security appears implausible due to an
argument of [GGSW13]. Notice as well that our syntax does not allow the key generation to depend
on the number of users who wish to share a group key. To date, prior key exchange protocols
satisfying this property relied on strong knowledge variants of obfuscation [ABG+13]. Recently
Khurana, Rao and Sahai in [KRS15] constructed a key exchange protocol supporting unbounded
number of users based on indistinguishability obfuscation and a tool called as somewhere statistically
binding hash functions [HW15]. Here, we get an unbounded protocol based on functiona encryption
only, and which does not require complexity leveraging.

7.2 Construction

Our construction will use the universal samplers built in Section 5, as well as any public key
encryption scheme.

• Publish(κ). Run (sk, pk) ← PK.KeyGen(κ). Also run the universal sampler setup algorithm
Sampler ← Setup(κ, `, t) where output size ` and circuit size bound t will be decided later.
Output pv = (pk, Sampler) as the public value and keep sv = sk as the secret value.

• KeyGen({(pkj , Samplerj)}j∈S , ski, i). Interpret S as the set [1, n] for n = |S|, choosing some
canonical ordering for the users in S (say, the lexicographic order of their public values).
Define Sampler = Sampler1.

Define Cpk,pk′ for two public keys pk, pk′ to be the circuit that samples a random (sk′′, pk′′)←
PK.KeyGen(κ), then encrypts sk′′ under both pk and pk′, obtaining encryptions c and c′

respectively, and then outputs (pk′′, c, c′).

Let Dpk,pk′ be a similar circuit that samples a uniformly random string sk′′ in the key space
of PKE , encrypts sk′′ to get c, c′ as before, and outputs (0, c, c′) where 0 is a string of zeros
with the same length as a public key for PKE . Let ` the the length of (pk′′, c, c′) and let t be
the size of Cpk,pk′ (which we will assume is at least as large as Dpk,pk′).

43

Next, define pk′2 = pk1, and recursively define (pk′j+1, cj , c
′
j) = Sampler(Cpkj ,pk

′
j
) for j =

2, . . . , n−1. Define sk′j+1 to be the secret key corresponding to pk′j+1, which is also the secret
key encrypted in cj , c

′
j . Finally, define (0, cn, c

′
n) = Sampler(Dpkn,pk

′
n
), and define sk′n+1 to be

the secret key encrypted in cn, c
′
n.

First, it is straightforward that given {pkj}j∈[n] and Sampler, it is possible to compute
pk′j , cj , c

′
j for all k ∈ [2, n]. Thus anyone, including an eavesdropper, can compute these

values.

Next, we claim that if additionally given secret keys skj or sk′j , it is possible to compute
sk′j+1. Indeed, sk′j+1 can be computed by decrypting cj (using skj) or decrypting c′j (using
sk′j). By iterating, it is possible to compute sk′k for every k > j. This in particular implies
that all users in [n] can compute skn+1.

Security. We now argue that any eavesdropper cannot learn any information about sk. Our
theorem is the following:

Theorem 27 If PKE is a secure public key encryption scheme and Setup is a m-time statically
secure universal sampler with interactive simulation, the the construction above is a statically secure
NIKE for up to 2m users. In particular, by setting m = κ, the scheme is secure for an unbounded
number of users.

We prove this theorem by introducing a collection of hybrids. For a subset T ⊆ [3, n+ 1] of size
at most m, define the hybrid HybridT as follows. (skj , pkj) for j ∈ [n] are generated randomly
from PK.KeyGen. Similarly, (sk′i, pk′i) for i ∈ T are generated randomly from PK.KeyGen. For
each j > 1, a random Samplerj is generated from Setup. Define (sk′2, pk′2) = (sk1, pk1). Finally,
Sampler = Sampler1 is simulated using Sim as follows.

For j = 3, . . . , n, do the following:

• If j /∈ T, j ≤ n, make a Read query on Cpkj−1,pk
′
j−1

, obtaining pk′j , cj−1, c
′
j−1.

• If j = n+ 1 /∈ T , make a Read query on Dpkn,pk
′
n
, obtaining cn, c

′
n.

• If j ∈ T, j ≤ n, let cj−1 = PK.Enc(pkj−1, 0) and c′j−1 = PK.Enc(pk′j−1, 0). Then make a Set
query on Cpkj−1,pk

′
j−1
, (pk′j , cj−1, c

′
j−1).

• If j = n+ 1 ∈ T , let cn = PK.Enc(pkn, 0) and c′n = PK.Enc(pk′j−1, 0). Then make a Set query
on Dpkn,pk

′
n
, (0, cn, c

′
n).

Then make a Finish query, and output the resulting Sampler as Sampler1. In short, we simulate
Sampler so that the ciphertexts cj−1, c

′
j−1 for all j ∈ T encrypt 0 instead of the secret key sk′j .

First, we observe that if T = ∅, then there are no Set queries at all, and thus Sampler is
indistinguishable from a correctly generated sampler. Next, we note that if n+ 1 ∈ T , then sk′n+1

is information-theoretically independent of the adversary’s view. Thus, in this case, security holds.
Our goal then is to move from T = ∅ to some T that contains n + 1. We first make the following
claim:

Claim 28 Let T ⊂ [3, n + 1] be a set of size at most m, let i∗ ∈ T such that either i∗ − 1 ∈ T or
i∗ = 3, and let T ′ = T \ {i∗}. Then HybridT ′ and HybridT are indistinguishable.

44

Proof First, we describe an intermediate hybrid which is identical to HybridT,i∗ , except that in
the Set query on j = i∗, we now generate ci∗−1 = PK.Enc(pki∗−1, ski∗) and c′i∗−1 = PK.Enc(pk′i∗−1, ski∗).
Notice that simulating HybridT and HybridT,i∗ do not rely on the knowledge of ski∗−1 or sk′i∗−1.
Therefore, the ciphertexts ci∗−1, c

′
i∗−1 are secure. Thus HybridT and HybridT,i∗ are indistin-

guishable by the security of PKE .
Now we show that HybridT,i∗ and HybridT ′ are indistinguishable. Notice that, for i∗ ≤ n

in HybridT,i∗ , (pki∗ , ci∗−1, c
′
i∗−1) is a fresh sample from Cpki∗−1,pk

′
i∗−1

. The analagous statement

holds for i∗ = n + 1. Thus the only difference between the two hybrids is that this sample is
pseudorandom in HybridT ′ , and freshly random in HybridT,i∗ . Moreover, we know the sampler
circuit Cpki∗−1,pk

′
i∗−1

before initiating the simulator. Thus, by the pseudorandomness of samples

property of the simulator, these two hybrids are actually indistinguishable.

Now it remains to show that there is a sequence of hybrids for sets T0, . . . , Tt such that T0 = ∅,
n + 1 ∈ Tt, |Tr| ≤ m for all r ∈ [0, t], and finally Tr and Tr+1 only differ on a single point jr, and
j− 1 ∈ (Tr ∩Tr+1)∪{2}. We also require that t is polynomial in n. Once this algorithmic problem
is solved, we have a complete security proof. In the following, we abstract out this algorithmic
problem, and show how to solve it.

7.3 An Algorithmic Problem

We now describe the pebbling strategy of Bennet in [Ben89].
Consider the positive integer line 1, 2, Suppose we are given k pebbles. At the start, all

k pebbles are in our hand. We make a sequence of moves where we place a pebble on the line or
remove a pebble back into our hand, subject to the following restrictions:

• The total number of pebbles on the line can never exceed k.

• In any move, we can only place or remove a pebble at integer i > 1 if there is currently a
pebble at integer i − 1. This restriction does not apply to i = 1: we can always place or
remove a pebble at position 1, as long as we do not exceed k pebbles.

Our goal is to place a pebble at the highest possible integer, and get there using as few moves
as possible.

Theorem 29 For any integer n < 2k, it is possible to make O(nlog2 3) ≈ O(n1.585) moves and get
a pebble at position n. For any n ≥ 2k, it is impossible to get a pebble at position n.

Proof First we observe to get a pebble placed at n, for each i ∈ [1, n− 1] there must have been
at some point a pebble placed at location i.

Next, we observe that it suffices to show we can get a pebble at position n = 2k − 1 for every
k using O(3k) = O(nlog2 3) steps. Indeed, for more general n, we run the protocol for n′ = 2k − 1
where k = dlog2(n− 1)e, but stop the first time we get a pebble at position n. Since n′/n ≤ 3, the
running time is at most O(nlog2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern, and we describe the
steps recursively.

We assume an algorithm Ak−1 using k − 1 pebbled that can get a pebble at position 2k−1 − 1.
The steps are as follows:

45

• Run Ak−1. There is now a pebble at position 2k−1 − 1 on the line.

• Place the remaining pebble at position 2k−1, which is allowed since there is a pebble at
position 2k−1 − 1.

• Run Ak−1 in reverse, recovering all of the k − 1 pebbles used by A. The result is that there
is a single pebble on the line at position 2k−1.

• Now associate the portion of the number line starting at 2k−1 + 1 with a new number line.
That is, associate 2k−1 + a on the original number line with a on the new number line. To
distinguish the old from the new number line, we will denote position a on the new number
line as â, so that 2k−1 + a = â. We now have k − 1 pebbles, and on this new number line,
all of the same rules apply. In particular, we can always add or remove a pebble from the
first position 1̂ = 2k−1 + 1 since we have left a pebble at 2k−1. Therefore, we can run Ak+1

once more on the new number line starting at 1̂. The end result is a pebble at position
̂2k−1 − 1 = 2k−1 + (2k−1 − 1) = 2k − 1.

It remains to analyze the running time. The algorithm makes 3 recursive calls to Ak−1, so by
induction the overall running time is O(3k), as desired.

We now explain why the n obtained is optimal. It suffices to show that it is not possible to get
a pebble at position 2k. We do not know if the running time obtained by our algorithm is optimal,
though we believe it asyptotically optimal for n = 2k−1.

We make the following stronger claim, which in particular shows that n = 2k−1 is impossible.
In any configuration reachable starting from an empty number line given k pebbles, the jth pebble
must be no higher than position 2k−j(2j − 1). In particular the kth pebble must be at position
20(2k − 1) = 2k − 1 or lower.

Suppose for some k, j, it was possible to have the jth pebble at position 2k−j(2j − 1) + r for
some r > 0. Clearly, for k = 0, this is impossible (since there can never be a pebble anywhere).
Therefore, there is a minimal k for which this is possible, and let j be the smallest j for this k that
contradicts the claim. By the minimality of j, as long as there are any pebbles at positions greater
than 2k−(j−1)(2j−1−1) = 2k−j(2j−1)−2k−j , there must be j−1 pebbles at or below this position.
In particular, if there is a pebble at position r, there can never be more than k − j pebbles in the
interval I = [2k−j(2j − 1) − 2k−j + 1, 2k−j(2j − 1) + r − 1]. Let A be the algorithm that gets the
jth pebble to position 2k−j(2j − 1) + r. We now claim that we can derive from A an algorithm B
that uses k − j < k pebbles and gets a pebble at position 2k−j + r − 1 ≥ 2k−j , which violates the
minimality of k.

We now describe B. B simulates A in reverse, with the following modification. First, A is
simulated on the shifted number line starting at position −(2k−j(2j − 1)− 2k−j). B will only place
pebbles in the interval [1, 2k−j + r − 1], which corresponds to the interval I from A’s perspective.
For all other pebbles used by A, B will place a “virtual” at that location. Second, B will stop the
first time A removes the (virtual) pebble at position 2k−j(2j − 1) + r, which corresponds to B’s
position 2j−k + r. Since A is removing a pebble at this location, there must be a pebble at position
2k−j + r − 1, which will be a real pebble. Thus B gets a real pebble to 2k−j + r − 1. The entire
reverse excecution of A has a pebble at position 2k−j(2j − 1) + r (from A’s perspective), so by the
above observation there are at most k − j pebbles in the interval I. Thus B only ever uses k − j
pebbles. Lastly, B follows all the rules of the game since A does. Thus B uses k − j < k pebbles
to get a pebble at position at or higher than 2k−j , which violates the minimality of k.

46

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report
2013/689, 2013. http://eprint.iacr.org/2013/689.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 657–677, 2015.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, pages 308–326, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generi-
cally: Indistinguishability obfuscation from non-compact functional encryption. IACR
Cryptology ePrint Archive, 2015:730, 2015.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 125–153, 2016.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-
put., 18(4):766–776, 1989.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Public-Key Cryptography - PKC 2014 - 17th International Confer-
ence on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In FOCS, 2015.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos.
TCC, 2016.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Cryptology ePrint Archive, Report 2002/080, 2002. http://eprint.iacr.org/2002/
080.

47

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings, pages 253–273, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In FOCS, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part II, pages 280–300, 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 287–307,
Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17, Athens, Greece, May 26–30, 2013. Springer, Hei-
delberg, Germany.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE
Computer Society Press.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption from multilinear maps. In TCC, 2016.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

48

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 467–476, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989.

[GPS15] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. On the exact crypto-
graphic hardness of finding a nash equilibrium. IACR Cryptology ePrint Archive,
2015:1078, 2015.

[GR13] Oded Goldreich and Ron D. Rothblum. Enhancements of trapdoor permutations. J.
Cryptology, 26(3):484–512, 2013.

[HJK+14] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. Cryptology ePrint
Archive, Report 2014/507, 2014. http://eprint.iacr.org/2014/507.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and Elis-
abeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 201–220,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172,
Rehovot, Israel, January 11–13, 2015. ACM.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS’13, Berlin, Germany, Novem-
ber 4-8, 2013, pages 669–684, 2013.

[KRS15] Dakshita Khurana, Vanishree Rao, and Amit Sahai. Multi-party key exchange for
unbounded parties from indistinguishability obfuscation. In Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - Decem-
ber 3, 2015, Proceedings, Part I, pages 52–75, 2015.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
638–667, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

49

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

50

