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Abstract

For encryption schemes, key dependent message (KDM) security requires that ciphertexts
preserve secrecy even when the encrypt messages may depend on the secret keys. While
KDM security has been extensively studied for public-key encryption (PKE), it receives
much less attention in the setting of identity-based encryption (IBE). In this work, we focus
on the KDM security for IBE. Our results are threefold.

• We propose an exquisite structure-preserving PKE-to-IBE transformation via indis-
tinguishability obfuscation and puncturable PRF. This transformation establishes a
connection between PKE and IBE in general. In particular, it provides a liberal inter-
face for transferring the KDM security results (either positive or negative) from PKE
to IBE, though in the selective-identity sense.

• On the positive side, we present two constructions that achieve KDM security in the
adaptive-identity sense for the first time. One is generically built from identity-based
hash proof system (IB-HPS) with homomorphic property, which indicates that the
IBE schemes of Gentry (Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS
2010) are actually KDM-secure in the multiple-key setting. The other is built from
indistinguishability obfuscation and a new notion named puncturable unique signature,
which is bounded KDM-secure in the single-key setting.

• On the negative side, we separate n-circular security (which is a prototypical case of
KDM security) from the standard IND-CPA/CCA security for IBE by giving a coun-
terexample based on differing-inputs obfuscation and a new notion named puncturable
IBE.

1 Introduction

Secure encryption is arguably the most central subject in cryptography. Starting with semantic
(or IND-CPA) security [GM84], secure encryption has developed a series of successively stronger
security notions providing secrecy in increasingly adversarial scenarios. Nevertheless, standard
security notions (including semantic security and its successive stronger notions) have to assume
that the encrypted messages do not directly depend on the secret key, since as observed by
the seminal work of Goldwasser and Micali [GM84] semantic security may compromise if the
adversary gets to see encryptions of the secret key. As a result, for a long time encrypting key-
dependent messages was considered as a dangerous abuse of an encryption scheme. However,
recent research has revealed great importance of secure key-dependent encryption. On the
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practical side, it admits natural implementation of encrypted storage systems (e.g. BitLocker
in Windows operating systems). On the theoretical side, it has surprising connections with
other fundamental notions such as obfuscation and encryption with weakly random keys. It also
plays a crucial role for designing some high-level cryptographic protocols, such as discouraging
delegation of credentials in anonymous credential system [CL01], enabling “bootstrapping”
technique in fully homomorphic encryption [Gen09], and realizing symbolic protocols with the
framework of axiomatic security [ABHS05].

1.1 Related Work

The formal study of key-dependent message (KDM) security dates back to more than a decade
ago. Camenisch and Lysyanskaya [CL01] considered n-circular security, which stipulates se-
mantic security remains in the presence of an encrypted “key circle”, where n secret keys is
organized in a cycle and each secret key is encrypted under the public key of its left neigh-
bor. Black et al. [BRS02] suggested generalized KDM security, which stipulates semantic se-
curity still holds even when the adversary can ask for encryptions of key-dependent messages
m← f(sk1, . . . , skn) under pki, where (pki, ski)1≤i≤n are n public/secret key pairs and f is an
arbitrary function from permissible dependent function family F . However, the circular-secure
and KDM-secure PKE schemes proposed in [CL01, BRS02] are only provably secure in the
random oracle model. Since then, a challenging problem is to achieve KDM security without
relying on random oracle heuristic.

Several years later, Boneh et al. [BHHO08] made a major step by giving an elegant KDM-
secure PKE scheme w.r.t. affine functions in the standard model under the decisional Diffie-
Hellman assumption. After this breakthrough, a large number of results have emerged, both
on the positive and negative side.

On the positive side, there are three main lines of research. The first direction focuses
on broadening F from a weak family of functions to a larger one via generic amplification
techniques, including [BHHI10, BGK11, App11]. The second direction aims to achieve bet-
ter efficiency by adopting block-wise encryption, including [ACPS09, MTY11]. The third
direction considers KDM security under more powerful attacks, including chosen-ciphertext
attack [BDU08, CCS09, Hof13, QLH13, LLJ15, HLL16], key leakage attack [BG10, HKS16],
related-key attack [BDH14]. Recently, a new trend is seeking constructions of KDM-secure
PKE from general assumptions or systems. Wee [Wee16] presents a framework of KDM-secure
PKE schemes via hash proof system with homomorphic property. This elegant framework yields
a conceptually simple and unified treatment of the works of Boneh et al. [BHHO08], Brakerski
and Goldwasser [BG10] and Brakerski, Goldwasser and Kalai [BGK11] in the single-key setting.
Marcedone et al. [MPS16] proposes an ingenious PKE scheme with bounded KDM security from
one-way functions and indistinguishability obfuscation (iO).

On the negative side, there are two lines of research. The first direction focuses on the
complexity of KDM security. Haitner and Holenstein [HH09] showed that there is no black-box
construction of KDM-secure PKE w.r.t. all (unbounded size) circuits. Barak et al. [BHHI10]
extended this impossibility result by showing that it is impossible to prove KDM security w.r.t.
F that contains exponentially hard pseudorandom functions, using only black-box access to the
query function and the adversary. The second direction considers the separation of n-circular
security (a restricted form of KDM security) from standard security notions like IND-CPA/IND-
CCA security. For the case of n = 1 there are trivial counterexamples via folklore argument,
but when n ≥ 2 the question turns out to be much more challenging. For the case of n = 2,
Acar et al. [ABBC10] and Cash et al. [CGH12] respectively gave the counterexamples that are
IND-CPA secure but not 2-circular secure, based on the SXDH assumption over asymmetric
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bilinear groups. Later, Bishop et al. [BHW15] obtained more counterexamples for n = 2, based
on the decision linear assumption and learning with errors (LWE) assumptions. For the more
general case of arbitrary n, Koppula et al. [KRW15] derived a counterexample based on the
assumption that iO for arbitrary polynomial sized circuits exists. Concurrently and indepen-
dently, Marcedone and Orlandi [MO14] gave a similar result under on a stronger assumption of
virtual black-box (VBB) obfuscation exists for a certain functionality.1 Very recently, Koppula
and Waters [KW16] and Alamati and Peikert [AP16] contrived the counterexamples based on
the plain LWE and ring-LWE assumptions, respectively.

1.2 Motivation

Most existing works on KDM security dealt with the symmetric or public-key settings. Compare
to PKE, IBE is generally more difficult to construct due to its higher functionality. To date,
there are only two works addressed KDM security in the identity-based setting. Alperin-Sheriff
and Peikert [AP12] initiated the study of KDM security for IBE. They considered user-level
KDM security, which captures the scenario that the encrypted messages may be functions of
users secret keys. They also proposed a KDM-secure IBE scheme w.r.t. affine functions under
the LWE assumption. Galindo et al. [GHV12] considered system-level KDM security for IBE,
which captures the scenario that the encrypted messages may be functions of the master secret
key. They constructed such an IBE scheme w.r.t. affine functions under the rank assumption
in bilinear groups, but only provides security against a bounded number of encryption queries.

The constructions of [AP12, GHV12] have two common downsides: from the security aspect,
they are only provably secure in the selective-identity sense (the adversary is asked to commit
the target identities even before seeing the master public key), which is a weaken model in IBE;
from the efficiency aspect, they are not compact (the size of the master public key, the master
secret key, the user secret keys and the ciphertexts depend on the parameter n, which denotes
the number of users involved in KDM security). Thereby, seeking compact KDM-secure IBE
schemes in the adaptive-identity sense is an interesting open problem (as noted in [GHV12]).

On the other hand, to justify the dedicate pursue of KDM security for IBE, a fundamental
problem is whether the standard security notions like IND-CPA/CCA already imply KDM
security in the identity-based setting. Relative to few positive results, no such negative results
are known.

In summary, as opposite to the extensive study in the PKE setting, the research of KDM
security for IBE is largely open, both on the positive and negative side. We are thus motivated
to consider the following intriguing questions:

Can we transfer the KDM security results for PKE to IBE in a general manner? How to
construct compact KDM-secure IBE schemes in the adaptive-identity sense? Do standard
security notions like IND-CPA/CCA security imply KDM security in the realm of IBE?

2 Our Contributions

Our focus. The fact that in IBE there are two types of secret keys gives rise to two levels
of KDM security in the identity-based setting, depending on whether the adversary gets to see
encryptions of functions of the master secret keys or users secret keys. In this work, following
the choice of [AP12] we choose to focus on user-level KDM security. The first reason is that
it is a mirror image of KDM security for PKE in the IBE setting, and thus allows us to carry
out comparative study. The second reason is that it enables some important applications such
as “bootstrapping” technique for identity-based fully homomorphic encryption [GSW13]. Last

1Later, the authors of [MO14] refined their counterexample to rely only on iO following [KRW15].
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but not the least, it is crucial for the management of an IBE system itself (e.g. key revocation,
updating and retrieve), as demonstrated in [AP12].

Our contributions of this work is threefold. We first give an exquisite PKE-to-IBE transfor-
mation based on iO and puncturable PRFs. A distinguished property of this transformation is
structure-preserving, which provides us a generic complier to translate the KDM security results
for PKE to IBE. The downside is that the obtained results are restricted to the selective-identity
sense. We then focus on the constructions of KDM-secure IBE in the adaptive-identity sense.
On the first place, we propose a generic construction from identity-based hash proof system
with homomorphic property, which is compact and KDM-secure w.r.t. F defined by the pro-
jective hash. On the second place, we give a concrete construction from iO and a new notion
named puncturable unique signature, which is KDM-secure w.r.t. all polynomial size circuits.
To the best of our knowledge, they are the first two IBE schemes achieve KDM security in the
adaptive-identity sense. On the negative side, we show that in the IBE setting the standard
IND-CPA/CCA security does not imply n-circular security by contriving a counterexample
based on differing-inputs obfuscation and a new notion called puncturable IBE. We give an
overview of our results as below.

2.1 Transfer KDM Security Results for PKE to IBE

Given fruitful results on KDM security in the public-key setting, a promising idea for construct-
ing KDM-secure IBE is to make a KDM-secure PKE identity-based. To do so, we need an
efficient id-to-pk hash to map identities to well-formed public keys as well as a master trap-
door to enable the Private Key Generator (PKG) to extract secret keys for any identities. In
addition, the master trapdoor should be “puncturable” to admit a reduction to the starting
PKE.

We observe that the construction by Alperin-Sheriff and Peikert [AP12] is a good exempli-
fication of this idea. Roughly, they first constructed a KDM-secure PKE from lattices which
is of “dual”-style and thus admits an efficient id-to-pk hash, then transform it into an IBE
by embedding a puncturable master trapdoor via so the called “all-but-d” trapdoor functions.
Their construction is smart, but it seems hard to generalize since its id-to-pk hash and all-but-d
trapdoor functions heavily rely on the specific algebra of lattices.

From this case study, we realize that the primary technical hurdles to implement the above
promising idea in a general manner lie in the id-to-pk hash is not always obvious especially when
the well-formed public keys are exponentially sparse (as noted in [GPV08], e.g. the Regev’s
PKE), and the existence of a puncturable master trapdoor is unclear.

Structure-Preserving PKE-to-IBE transformation. We circumvent these hurdles by giv-
ing a generic PKE-to-IBE transformation which proceeds as follows: choose a puncturable PRF
whose domain is the desired identity space and pick a random PRF key as the master secret
key msk; build the master public key mpk as an obfuscation of a circuit that first computes
the PRF value of the input identity, then uses the PRF value as the random coins to invoke
PKE.KeyGen to obtain a key pair, and finally discards the secret key and only outputs the
public key; to extract a secret key for an identity id, PKG first computes its PRF value at point
id using msk, then invokes PKE.KeyGen to recover the corresponding key pair and outputs the
secret key; to encrypt a message under an identity id, the sender first derives the corresponding
public key by executing msk on id (note that mpk is essentially an obfuscated circuit), then
runs PKE.Encrypt; the decryption algorithm is same as that of the underlying PKE. We high-
light that the heart of this transformation is using a puncturable PRF key as msk and invoking
PKE.Encrypt with random coins PPRF(msk, id) to obtain the corresponding key pair for id.
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This key mechanism provides us a universal id-to-pk hash as well as an all purpose puncturable
master trapdoor, which work with any PKE.

A salient feature of the above transformation is structure-preserving, which means the re-
sulting IBE preserves the structures of secret keys and ciphertexts of the starting PKE.2 This
feature enables us to translate the KDM security results (including positive constructions and
negative counterexamples) for PKE to IBE in a neat and generic way: If the starting PKE is
KDM-secure (w.r.t. F under CPA/CCA attacks), the resulting IBE is also KDM-secure in the
same setting. If the starting PKE is n-circular insecure, so is the resulting IBE.

More surprisingly, the generality of this transformation leads much broader applications
beyond KDM security: it immediately lifts a bunch of security results (e.g., CCA security,
leakage/tampering resilience) from PKE to IBE.

The shortcoming of this transformation is it only yields security in the selective-identity
sense. Such security loss seems unavoidable due to the use of the punctured programming
techniques [SW14]: the reduction has to program the target identities to the target public
keys when publishing mpk. We leave the generic PKE-to-IBE transformation that guarantees
adaptive security as a challenging open problem.

2.2 KDM-secure IBE from Identity-Based Hash Proof System

Recently, Wee [Wee16] presented an elegant framework for constructing KDM-secure PKE from
hash proof system (HPS) [CS02] with homomorphic property. Inspired by this result, a tempt-
ing idea is to construct KDM-secure IBE from identity-based hash proof system (IB-HPS)
introduced by Alwen et al. [ADN+10], which is a counterpart of HPS in the identity-based
setting.

Next, we briefly review the generalized notion of IB-HPS and then sketch the how to build
KDM-secure IBE from it.

Generalized IB-HPS. Let L ⊂ X be a collection of languages indexed by the identity set I.
An IB-HPS for L ⊂ X consists of four polynomial-time algorithms: (Setup, Extract, Priv, Pub).
The Setup algorithm outputs a master key pair (mpk,msk); the Extract algorithm outputs a
secret key skid for id using msk; the Priv algorithm defines a hash Λ : SK ×X → Π where SK
is the secret key space and Π is the proof space; the Pub algorithm admits public evaluation of
Λ on L. We say Λskid is smooth if its output distributes uniformly over Π when x

R←− X\Lid,
and say it is projective if its output is completely determined by id for x ∈ Lid. We also require
the language membership problem is hard in the identity-based setting: for arbitrarily chosen
id ∈ I, the two distributions of x

R←− Lid and x
R←− X\Lid are computationally indistinguishable,

even the adversary knows a secret key for any identities (including id).

KDM security from IB-HPS. Starting with an smooth IB-HPS, we can build an IND-CPA
secure IBE scheme as below. Let Π be a group under operation “+” and the message space
M = Π.3 The Setup and Extract algorithms are exactly the same as that of IB-HPS. To encrypt
a message m under an identity id, the sender randomly picks x← Lid with witness w, computes
π ← Λskid(x) publicly via Pub with w, and sets c = (x, y = π + m) as ciphertext. To decrypt
a ciphertext c = (x, y), the receiver computes π ← Λskid(x) privately via Priv with skid, then
outputs m = (y − π). The correctness of this construction follows from the projective property

2In the realm of structure-preserving cryptography, the term “structure-preserving” refers to all public objects
such as public-keys, messages, commitments merely consist of elements in groups, and verifying relations of inter-
est can be done only by group operations, membership testing, and evaluating pairing product equations. In this
work, we use this term to emphasize the structures of secret keys and ciphertexts preserve during transformation.

3Generally, one can always assume there exists an efficient invertible encoding φ : M → K.
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of Λ, while the IND-CPA security follows from a simple hybrid: we switch the distribution of
challenging ciphertext from x∗

R←− Lid∗ to x∗
R←− X\Lid∗ in a computationally indistinguishable

manner by the hardness of language membership problem, then Λsk∗id(x
∗) statistically hides

message m∗ by the smoothness of Λskid∗ .
Akin to public-key setting, the general difficulty in constructing KDM-secure IBE arises

from the simulation of KDM encryption queries without knowledges of the secret keys, while a
notable property in the above security reduction is that an IB-HPS simulator always possesses
all secret keys. It seems that with such property one can trivially bypass the general difficulty:
achieving KDM security w.r.t. any computable functions, a.k.a, no PPT adversary can tell a
real KDM encryption oracle apart from a zero encryption oracle given only black-box access.
Unfortunately, we could not get this intuition to work. The problem is that the responses to
real KDM encryption oracle, i.e., encryptions of key dependent messages f(skid∗) may leak the
information of skid∗ in an uncontrollable way, and thus we are unable to directly apply smooth
property of Λskid∗ to ensure semantic security anymore.

We tackle this problem following the high-level idea outlined in [MTY11]: find a way to
simulate KDM encryptions without knowledges of the secret keys, yet ensure them are indis-
tinguishable to real KDM encryptions as well as zero encryptions. Naturally, to make such
simulation possible, we have to restrict F to a function family tied to IB-HPS. Concretely,
we implement this idea by extending the techniques due to [Wee16]. Assume Λ additionally
satisfies homomorphism, i.e., Λskid(x1 · x2) = Λskid(x1) + Λskid(x2) for any x1, x2 ∈ X and
id ∈ I, we first show that the above IBE construction from IB-HPS is actually KDM-secure
w.r.t. F = {fu,v : sk → Λsk(u) + v}u∈X,v∈Π.

The KDM security is established in two steps, as depicted in Figure 4 and 5. Let id∗ be the
challenge identity. We first exploit the homomorphism of Λskid∗ (coupled with the projective
property) and the group structure of X (coupled with the language membership problem) to
show that real KDM encryptions are indistinguishable from simulated encryptions without using
skid∗ . Now, we are safe to apply smoothness of Λskid∗ (coupled with the projective property and
group structures of X and Π) to show simulated encryptions are indistinguishable from zero
encryptions. The formal proof is done via a sequence of hybrids that changes query by query.
This proves the KDM security in the single-key setting.

Moving from single-key to multiple-keys setting can be done with the power of IB-HPS,
but requires more efforts. Now let (id∗1, . . . , id

∗
n) be the challenge identities. Observe that the

simulator is in procession of all secret keys and the information of secret key sk∗i for id∗i does
not affect the smoothness of Λid∗j if i 6= j. This allows us to carry out a sequence of outer
hybrids identity by identity, as we will detail in the formal proof. It appears to us the same
proof strategy also works in the public-key setting, which is not addressed in [Wee16]

Note that the homomorphic requirement on Λ is met by most known instantiations of IB-
HPS,4 this result immediately indicates that the IBE schemes in [Gen06, Cor09, CDRW10] are
actually KDM secure. When F induced by Λ consists of a affine family (possibly in the exponent
as in [BG10]), we can amplify F to the class of circuits of a-priori bounded size [BHHI10, App11].

Achieving leakage-resilience simultaneously. Note that IB-HPS is also a powerful tool
in constructing leakage-resilient IBE schemes in the bounded-retrieval model. The leakage-
resilient IBE from IB-HPS [ADN+10] is almost identical to the IND-CPA construction except
that a randomness extractor is applied to the hash proof before using it. More precisely, let
ext : S×Π→ K be an average-case strong randomness extractor, and the message spaceM = K.
To encrypt m under id, the sender randomly picks x

R←− Lid with witness w and a random seed
s ∈ S, computes π ← Λskid(x) publicly via Pub and w, then sets c = (x, s, y = exts(π) + m)

4If the projective hash in IB-HPS instantiations due to Boneh et al. [BGH07] and Gentry et al. [GPV08]
satisfy homomorphic property is still unclear to us.
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as ciphertext. It is not hard to see that if exts is homomorphic on Π, then exts ◦ Λskid is
homomorphic on X. In this case, the above construction simultaneously achieves KDM security
w.r.t. F ′ = {f ′u,v,s : sk → exts(Λsk(u) + v))}u∈X,v∈Π. Note that as an explicit construction of
average-case strong extractor [DORS08], universal hash family usually admits simple algebra
structure, and thus naturally satisfies the homomorphic requirement on Π. Particularly, as
noted in [Wee16], when Λskid itself serves as a good extractor, the leakage-resilient construction
is already KDM-secure without any modification. This could be viewed as a special case of our
generalized explanation by setting exts as identity function.

Comparison with [AP12]. Their scheme is KDM-secure w.r.t. affine functions based on the
LWE assumption. However, it only offers security in the selective-identity sense. Besides, their
scheme is not compact: the size of the master public key, the master secret key, the user secret
keys and the ciphertexts all depend on n, which is an important parameter that characterize F
(the larger, the better). Hence, it is hard to make a balance between efficiency and security.

Our scheme is a completely generic construction based on IB-HPS, which achieves KDM-
security w.r.t. affine-like functions5 in the adaptive-identity sense. Moreover, our scheme is
fully compact in that the size of the master keys, the user secret keys and the ciphertexts are
all independent on n. Last but not the least, it admits efficient instantiations under various
assumptions and possibly achieves leakage-resilience simultaneously.

2.3 KDM-secure IBE from iO and Puncturable Unique Signature

KDM security grows stronger when F is larger. The largest possible F is the family of cir-
cuits of a-priori bounded size, and the corresponding security is known as bounded KDM se-
curity [BHHI10].6 Though we can attain bounded KDM security by applying amplification
technique [BHHI10, App11] to our construction based on IB-HPS, it is still instructive to seek
direct constructions.

Very recently, Marcedone et al. [MPS16] proposed an ingenious bounded KDM-secure PKE
scheme from one-way functions (OWF) and iO, which are of more general nature and qual-
itatively different7 to the specific assumptions (LWE, DDH, QR or DCR) previously used to
achieve bounded KDM security. We refer to their construction as the MPS scheme, and choose
it as the starting point of our IBE construction.

Starting Point: the MPS scheme. We first briefly review the MPS scheme (in the single-
key case), then show how to adapt it into an IBE scheme. Let F : X → Y be a family of

injective OWFs. The secret key is just a random x ∈ X, while the public key consists of g
R←− F

and y ← g(x). To encrypt a message m, the ciphertext is an obfuscation of a circuit Enc that
hardwires pk = (g, y) and m as constants, and on input sk returns m if g(sk) = y and ⊥
otherwise. To decrypt a ciphertext, one just runs the ciphertext (which is an obfuscated circuit
in nature) on input the secret key.

The proof for KDM security follows the triple mode proof framework [MTY11]. More pre-
cisely, it proceeds via three games. Game0 and Game2 correspond to the usual key-dependent
vs. zero encryption, and the intermediate Game1 responds with simulated encryption. An im-
portant requirement is that the simulation should be done without the knowledge of secret key
and the simulated encryption must be indistinguishable from that of Game0 and Game2.

5Since our construction is generic, the exact form of F is decided by the concrete instantiation of IB-HPS.
6[BHHI10] also introduces a slighter stronger notion named length-dependent security, in which the circuit

size could grow polynomially in the length of their inputs and outputs. In this work, we stick to bounded KDM
security for simplicity of exposition.

7It is known that black-box construction of collision-resistant hash functions (CRHFs) from OWF and iO is
impossible, and as a result, they are separated from those assumptions that imply the existence of CRHFs.
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The authors of [MPS16] achieve this by obfuscating a circuit Sim that hardwires pk = (g, y)
and a function f as constants, and on input sk outputs f(sk) if y = g(sk) and ⊥ otherwise. Since
Encpk,m=f(sk) and Simpk,f are functionally equivalent, one can reduce the indistinguishability
between Game0 and Game1 to the security of iO. Proving Game1 ≈c Game2 is more involved,
because Simpk,f and Encpk,0|m| may have differing inputs. Here, a stronger form of obfuscation –
differing-input obfuscation (diO) [BGI+12, ABG+13, BCP14] is required. Before applying diO,
one have to show that no PPT adversary can find a differing input of Simpk,f and Encpk,0|m| .
Since the entire simulations of Game1 and Game2 do not require the secret key, thus one easily
argue this based on the one-wayness of g. In addition, by requiring the underlying OWF to be
injective, the above two circuits have at most one differing input. According to [BCP14], diO
for such circuit family is implied by standard iO.

Basic idea for adaption. A straightforward approach to adapt the MPS scheme to the
identity-based setting is using our structure-preserving PKE-to-IBE transformation. However,
the resulting IBE scheme only achieves bounded KDM security in the selective-identity sense.
A useful observation is that, unlike most encryption schemes, the ciphertext in the MPS scheme
is simply an obfuscated circuit which outputs m if its input is a valid secret key corresponding
to the public key and outputs ⊥ otherwise. Such distinguished feature makes the encryption
and decryption insensitive to the concrete algebra structures of the secret key and public key.
This gives us more freedom for the adaption, and possibly admits dedicated approach rather
than the general-purpose PKE-to-IBE transformation.

The crux of the adaption is to introduce a master trapdoor for the MPS scheme. A tempting
idea is to replace injective OWFs with injective adaptive trapdoor functions (ATDFs) [KMO10].
More precisely, the master public key is an ATDF g, while the master secret key is its trapdoor
td. The identity space is the range Y of g, and a secret key for id ∈ Y is simply its preimage
under g, which is efficiently computable with td. Unfortunately, ATDF does not suffice for the
adaption. This is because the security of IBE implies that no PPT adversary is able to find
a secret key for any adversarially chosen identity even given access to a secret key extraction
oracle, while with ATDF it only guarantees that no PPT adversary is able to find a preimage
for a uniformly chosen image (corresponds to identity) even given access to an inversion oracle.
Intuitively, we need a stronger version of ATDFs whose adaptive one-wayness holds w.r.t. any
adversarially chosen image.

We observe that unique signature [GO92, Lys02] can be somewhat viewed as such a “strong”
injective ATDF. This leads to the following bounded KDM-secure IBE adapted from the MPS
scheme: the PKG generates a key pair for unique signature, output the verification key as mpk
and the singing key as msk; a secret key for an identity id is its unique signature signing by
msk; to encrypt a message m under an identity id, one outputs an obfuscation of a circuit Enc
that hardwires mpk, id and m as constants, and on input sk returns m if sk is valid signature
of id and ⊥ otherwise; to decrypt a ciphertext, one just runs the ciphertext on input the secret
key.

Superficially, the security proof can be easily adapted from that for the MPS scheme. In
more details, it also proceeds via three games. While Game0 and Game2 correspond to the
usual key-dependent vs. zero encryption, the intermediate Game1 simulates encryption queries
by obfuscating a circuit Sim, which hardwires mpk, id and a function f as constants, and on
input sk outputs f(sk) if sk is a valid signature of id and ⊥ otherwise.

Puncturable unique signature. The devil is in the details. Akin to the proof for the
MPS scheme, we have to rely on the security of diO to prove Game1 ≈c Game2, in that the
two circuits Simmpk,id,f and Encmpk,id,0|m| may have differing inputs. The tricky part is in our
context the auxiliary information aux (typically derived from the random coins used to sample
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the challenging circuits) plays a crucial role when applying diO, which is different from the
situation in the MPS scheme. On one hand, aux might not contain the entire random coins
used for sampling the two differing-input circuits, since otherwise an adversary may easily find
the differing-input. On the other hand, in some applications aux must contain proper secret
random coins to admit a reduction from a distinguishing adversary to an algorithm against the
security of diO.

We illustrate this subtlety in details via our basic construction. Let id∗ be the target
identity. If aux = msk, then a PPT adversary can easily find a differing-input of Simmpk,id∗,f

and Encmpk,id∗,0|m| by computing skid∗ ← Sign(msk, id∗) with msk. From one extreme to the
other, if aux contains nothing, there is no way to reduce the indistinguishability of Game1 and
Game2 to the security of diO, because the simulator is unable to handle the extraction queries
made by the distinguishing adversary. We remark that the same issue does not occur in the
MPS scheme, because in their setting the adversary does not make queries related to the secret
key and thus the simulation for Game1 and Game2 could be done without the secret key (in
other words, aux could be empty).

We tackle this dilemma by introducing a new notion called puncturable unique signature
(PUS). Roughly speaking, a PUS is a unique signature scheme with an additional algorithm
Puncture that on input a signing key sk and a message m∗ outputs a succinct punctured signing
key sk({m∗}), where sk({m∗}) can be used to sign any messages other than m∗. Moreover, the
signature scheme is still unforgeable on m∗ even given this punctured key.

By exploring PUS instead of normal unique signature, we are able to split the secret coins
(a.k.a. msk) surgically, i.e., setting aux = msk({id∗}). On one hand, given msk({id∗}) no PPT
adversary can find a differing input of Simmpk,id∗,f and Encmpk,id∗,0|m| based on the unforgeability
of PUS. On the other hand, the indistinguishability of Game1 and Game2 can be reduced to
the security of diO because with msk({id∗}) the reduction is able handle all legal extraction
queries correctly.

By the unique property of PUS, the two circuits have at most one differing input. According
to [BCP14], diO for such circuits are implied by iO. Besides, we note that PUS is implied by
injective OWF and iO. This allows us to base the bounded KDM security of our IBE scheme
on solely OWF and iO.

2.4 Counterexample of n-Circular Security

One fundamental question is whether KDM security is implied by standard security notions
such as IND-CPA (or IND-CCA) in the identity-based setting. If this were true, we would get
it for free without considering such notion specifically.

A cursory examination of the problem reveals that the answer is no. As we will sketch in
Section 7, one can derive a simple counterexample for 1-circular security. However, akin to
the situation in the public-key setting, contriving counterexamples for n ≥ 2 based on well-
studied assumptions becomes significantly more challenging. The primary difficulty somewhat
resembles to that identified in [BHW15]: when n identities are thrown into a mix, we need a
magic mechanism to enable the identities and ciphertexts to communicate with each other in
a way that admits cycle detection but does not compromise semantic security. In public-key
setting, prior counterexamples [ABBC10, CGH12, BHW15, KW16, AP16] based on pairing
or lattice realize this magic mechanism by introducing extra structures (tie to the algebra
of the underlying assumptions) over public keys and ciphertexts. One may be tempted to
extend this line of works to the IBE setting. Unfortunately, two technical hurdles rule out this
possibility. Firstly, in IBE identities are self contained and thus it seems impossible to expose
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extra structures on them.8 Secondly, in IBE the target identities are adaptively chosen by the
adversary. This stands in sharp contrast to the PKE setting where the target public keys are
chosen by the challenger, and thus intuitively requires the magic mechanism could be executed
“on the fly”.

We then turn our attention to iO, which had demonstrated its power in deriving counterex-
amples in public-key setting.

Review of counterexamples from iO in the PKE setting. Koppula et al. [KRW15]
and Marcedone and Orlandi [MO14] gave two counterexamples for arbitrary n using iO. In a
nutshell, their idea is to publish an obfuscation of a circuit called CycleTest along with each
normal IND-CPA encryption, which hardwires the message m as the secret key, takes as inputs
public keys (pk1, . . . , pkn) and ciphertexts (c1, . . . , cn), and detects if they form an encryption
circle of length n. To prove the modified encryption is still IND-CPA secure, the crux is to
argue the circuit CycleTest does not compromise the CPA security. For this purpose, another
circuit CycleReject which always outputs ⊥ is introduced. Clearly, CycleReject does not leak
any information, and thus the desired IND-CPA security follows provided that iO(CycleTest)
and iO(CycleReject) are computationally indistinguishable. In combination with iO, their key
idea is to introduce valid/invalid public keys such that the two types public keys are compu-
tationally indistinguishable on themselves, but are discernible given the associated secret keys.
Accordingly, the circuit CycleTest will check whether its input public keys are valid and output
⊥ if not.

The overall security is established by the following three hybrids: Hyb1 uses valid public keys
and attaches iO(CycleTest) along with each encryption; Hyb2 switches to invalid public keys and
the rest are same to Hyb1; Hyb3 replaces iO(CycleTest) with iO(CycleReject). Eventually, Hyb1

and Hyb2 are indistinguishable based on the indistinguishability of valid and invalid public keys,
while Hyb2 and Hyb3 are indistinguishable based on the security of iO. Thereby, the modified
encryption scheme is still IND-CPA secure but n-circular insecure.

Initial attempts. As noted in [MO14, KRW15], the valid/invalid public keys switching mech-
anism lies at the heart of their counterexamples. One might be tempted to adapt their coun-
terexamples to the identity-based setting. However, it does not work due to the fundamental
difference between PKE and IBE, as we elaborate below.

The first attempt is to introduce valid/invalid identity in an analogous manner. But, this
is impossible because identities are always self-recognizable in identity-based setting and thus
there is no concept of validity for identities.

The second attempt is to introduce valid/invalid master public keys. To establish IND-CPA
security in combination with iO, on one hand we need to stipulate invalid master public keys
are discernible given secret keys for any identity, whereas on the other hand the hybrid using
valid master public key and another hybrid using invalid one must be indistinguishable. This
is also impossible since an adversary against IBE can obtain secret keys for any identity other
than the target one and thus can easily tell these two hybrids apart.

The above analysis indicates that we have to find a new way to work with obfuscation,
without relying on valid/invalid switching technique.

Our approach. We choose an arbitrary IND-CPA secure IBE scheme which satisfies a mild
property named checkable secret key (which we will formally define in Definition 3.5) as the
starting point of our counterexample. Our basic idea is still to publish an obfuscation of a circuit
CycleTest along with each encryption of a messagem under some identity id. CycleTest hardwires

8Though arguably we can do this indirectly via our structure-preserving PKE-to-IBE transformation, it only
yields results in the selective-identity sense.
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m and id as constants, takes as inputs identities (id1, . . . , idn) and ciphertexts (c1, . . . , cn), sets
m as the secret key for id2 and then attempts to decrypt circularly.

As opposed to the design of checking validity of public key in [MO14, KRW15], during
decryption process CycleTest checks whether each intermediate result is a valid secret key for
the corresponding identity as defined. Finally, it outputs “1” if all intermediate results pass the
check and “⊥” otherwise. To show the modified encryption scheme remains IND-CPA secure,
we also introduce a circuit CycleReject which always returns ⊥, and wish to show the original
game (using obfuscation of CycleTest) and the final game (using obfuscation of CycleReject)
are computationally indistinguishable. However, as we analyzed before, valid/invalid switching
technique does not extend to identity-based setting. As a consequence, it is unlikely to create an
intermediate game in which CycleTest always returns ⊥, and thus iO does not suffice to ensure
the original game and the final game are computationally indistinguishable since CycleTest and
CycleReject are not functionally equivalent.

Differing-Input obfuscation. To overcome this problem, we have to resort to diO. In our
context, a prerequisite to utilize diO is to show that no PPT adversary can find a differing input
of CycleTest and CycleReject. To this end, we further modify CycleTest, making it output the
secret key for id1 rather than a single bit “1” when inputs indeed form an encryption circle. It
is easy to see that with this design, if a PPT adversary can find a differing input, the reduction
immediately obtains a secret key of id1, and thus completely breaks the assumed security of the
starting IBE scheme. Now we are able to show the obfuscations of CycleTest and CycleReject
are computationally indistinguishable based on the security of diO, and thus the desired IND-
CPA security follows since CycleReject reveals nothing. We highlight that here we use diO in
a novel way: prior works [ABG+13, BCP14, BST14] directly use the differing inputs to yield
contradiction, while we use the output of differing-inputs.

Puncturable IBE. Similar to the status in our second positive construction, here we need
to manipulate aux carefully when employing diO. Let id∗ be the target identity. If we
set aux = msk, then a PPT adversary can easily find a differing-input of CycleTest and
CycleReject by generating an encryption circle (c1, . . . , cn) with respect to (id∗, id2, . . . , idn),
where id2, . . . , idn could be arbitrary distinct identities. If aux contains nothing, there is no
way to reduce the indistinguishability of the original game using diO(CycleTest) and the final
game using diO(CycleReject) to the security of diO, because the simulator is unable to handle
the extraction queries made by the distinguishing adversary.

We resolve this problem by introducing a new notion of puncturable IBE (PIBE). Roughly
speaking, a PIBE is an IBE with an additional algorithm Puncture that on input msk and
an identity id∗ outputs a succinct punctured master secret key msk({id∗}), where msk({id∗})
can be used to extract secret keys for any identities other than id∗. We show that PIBE can
be generically constructed from hierarchical IBE. By choosing a PIBE as the starting point of
our counterexample, we are able to split the secret coins (a.k.a. msk) surgically, i.e., setting
aux = msk({id∗}). This allows us finally prove the IND-CPA security of our counterexample
based on the security of diO.

In addition, we extend the framework for counterexamples [BHW15] to the IBE setting,
which might be of independent interest. Via this framework, we can easily augment the above
counterexample to a new one that separates n-circular security from IND-CCA security.

Remark 2.1. Garg et al. [GGHW14] showed that existence of diO with respect to general
auxiliary inputs contradicts a certain “special purpose” obfuscation conjecture. However, this
conjecture is not implied by diO. Bellare et al. [BSW16] showed that if sub-exponentially secure
OWF exists, then sub-exponentially secure diO for TMs with unbounded inputs does not exist.
Given the results [ABG+13, BCP14] that diO for circuits and SNARKs [BCCT12, BCC+14]
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imply diO for TMs with unbounded inputs, if SNARKs exist then their negative result extends
to diO for circuits. However, their primary negative result only rules out sub-exponentially
secure diO for TMs with unbounded inputs, based on sub-exponential hardness assumption.
Besides, Gentry and Wichs [GW11] showed that SNARGs (and thus also SNARKs) cannot be
reduced to any falsifiable cryptographic assumptions [Nao03] in a black-box manner. So far, the
existence of polynomially-secure diO for polynomial sized circuits (which we used in this work)
does not contradict to any standard assumption.

We are also aware of that two variants of diO evade the aforementioned implausible results.
One is diO for circuits that differ on only polynomially-many inputs proposed by Boyle et
al. [BCP14], which is implied by iO. The other one is public-coin diO proposed by Ishai et
al. [IPS15], which stipulates that only public coins can be used to sample the challenging circuits.
However, we can use them in the place of diO in our counterexample sketched as above. Firstly,
the fact that CycleTestid∗,m and CycleReject having super-polynomial differing-inputs excludes
the first choice. Secondly, with public-coin diO it is impossible to reduce the hardness of finding
differing-inputs to the security of IBE, which is a secret-coin notion.

Interpreting our result. We view our result as a first step toward showing that standard
security notions for IBE do not imply circular security. Although one may complain that the
evidence is not strong due to the use of diO, it do give us some elementary understanding
of circular security and its challenges in the IBE setting. We left the counterexamples from
well-studied assumptions as a challenging open problem.

3 Preliminaries

3.1 Basic Notations

For a set X, we use x
R←− X to denote the operation of sampling x uniformly at random from

X, and use |X| to denote its size. We use UX to denote the uniform distribution over X.
For a positive integer d, we use [d] to denote the set {1, . . . , d}. We denote λ ∈ N as the
security parameter. We say that a quantity is negligible, written negl(λ), if it vanishes faster
than the inverse of any polynomial in λ. A probabilistic polynomial time (PPT) algorithm is
a randomized algorithm that runs in time poly(λ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r.
For notational clarity we usually omit r and write z ← A(x1, . . . , xn).

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by
λ. We say that X and Y are statistically indistinguishable, written X ≈s Y , if the statistical
distance between Xλ and Yλ is negligible in λ. We say that X and Y are computationally
indistinguishable, written X ≈c Y , if the advantage of any PPT algorithm in distinguishing Xλ

and Yλ is negl(λ).

3.2 Indistinguishability/Differing-Input Obfuscation for Circuits

We recall the notion of indistinguishability obfuscation for circuits from Garg et al. [GGH+13].
First, we define the notion of equivalent sampler.

Definition 3.1 (Equivalent Sampler for Circuits). An efficient non-uniform sampling algorithm
Sample is called an equivalent sampler for a circuit family Cλ if there exists a negligible function
α such that the following holds:

Pr[∀x,C0(x) = C1(x) : (C0, C1, aux)← Sample(λ)] > 1− α(λ)
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Definition 3.2 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x ∈ {0, 1}∗, we have that:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• (Indistinguishability of Obfuscation) For any PPT adversaries S, D, if S constitutes an
equivalent sampler w.r.t. a negligible function α, then we have:

|Pr[D(aux, iO(λ,C0)) = 1]− Pr[D(aux, iO(λ,C1)) = 1]| ≤ α(λ)

where (C0, C1, aux)← S(λ).

[GGH+13] showed how iO can be constructed for the circuit class P/poly. Next, we recall
the notion of differing-input obfuscation from Ananth et al. [ABG+13], which is also equivalent
to that of Boyel et al. [BCP14]. First, we define the notion of a differing-inputs sampler.

Definition 3.3 (Differing-Inputs Sampler for Circuits). An efficient non-uniform sampling algo-
rithm Sample is called a differing-inputs sampler for a circuit family Cλ if for all PPT adversary
A, we have that:

Pr[C0(x) 6= C1(x) : (C0, C1, aux)← Sample(λ), x← A(C0, C1, aux)] ≤ α(λ)

Definition 3.4 (Differing-Inputs Obfuscator for Circuits). A uniform PPT machine diO is
called a differing-inputs obfuscator for a circuit family {Cλ} if it satisfies the following conditions:

• (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ, for all inputs
x ∈ {0, 1}∗, we have that:

Pr[C ′(x) = C(x) : C ′ ← diO(λ,C)] = 1

• (Indistinguishability of Obfuscation) For any PPT adversaries S, D, if S constitutes a
differing-inputs sampler w.r.t. a negligible function α, we have:

|Pr[D(aux, diO(λ,C0)) = 1]− Pr[D(aux, diO(λ,C1)) = 1]| ≤ α(λ),

where (C0, C1, aux)← S(λ).

Lemma 3.1 ([BCP14]). For the circuit class P/poly, iO implies diO for circuits differing on
at most polynomially-many inputs.

3.3 Punctureable Pseudorandom Functions

Puncturable PRFs (PPRFs) [SW14] is a simplest type of constrained PRFs (CPRFs) [KPTZ13,
BW13, BGI14]. In PPRFs, constrained key can be derived for any polynomial size subset T of
domain X, and such a constrained key allows evaluation on all elements x ∈ X\T . Formally, a
puncturable PRF F : K ×X → Y is given by three polynomial time algorithms as below:

• KeyGen(λ): on input a security parameter λ, output a random secret key k
R←− K.

• Puncture(k, T ): on input a secret key k ∈ K and a polynomial size subset T ⊂ X, output
a punctured key k(T ).
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• Eval(k(T ), x): on input a punctured key k(T ) and an element x ∈ X, output F(k, x) if
x /∈ T and a special reject symbol ⊥ otherwise.

Security. Let A = (A1,A2) be an adversary against PPRFs and define its advantage in the
following experiment:

AdvA(λ) = Pr

β = β′ :

k ← KeyGen(λ);

(state, T, x∗)← AOeval(·)
1 (λ);

k(T )← Puncture(k, T );

β
R←− {0, 1}, y∗0 ← F(k, x∗), y∗1

R←− Y ;

β′ ← AOeval(·)
2 (state, k(T ), y∗β);

−
1

2
.

Here Oeval(·) is an evaluation oracle that on input x returns y ← F(k, x). A = (A1,A2) is
not allowed to query Oeval(·) with x∗ and x∗ must not in T . A puncturable PRF is said to
be pseudorandom if for any PPT adversary, its advantage defined as above is negligible in λ.
A weaker notion named selective pseudorandomness for PPRF can be defined via a similar
experiment by asking A1 to commit (T, x∗) at the very beginning.

3.4 Identity-Based Encryption

Definition 3.5 (Identity-Based Encryption). An identity-based encryption scheme [BF03] con-
sists of four algorithms as follows.

• Setup(λ): on input a security parameter λ, output a master public key mpk and a master
secret key msk.9

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid for id.

• Encrypt(mpk, id,m): on input mpk and an identity id ∈ I and a message m ∈M , output
a ciphertext c.

• Decrypt(skid, c): on input a secret key skid and a ciphertext c ∈ C, output a message
m ∈M or a special reject symbol ⊥ indicating c is invalid.

Perfect correctness. For all (mpk,msk)← Setup(λ), all id
R←− I, all skid ← Extract(msk, id),

all m
R←−M and all c← Encrypt(mpk, id,m), it holds that Decrypt(skid, c) = m.

Checkable secret key. We say a secret key sk is valid for id if sk is honestly generated by
Extract(msk, id). Moreover, we say an IBE scheme satisfies “checkable secret key” property if
there exists an efficient deterministic algorithm CheckSK that can check if a given secret key sk
is valid for id. It is easy to verify that most existing pairing-based IBE schemes [BF03, BB04,
Wat05, Gen06, Wat09] and lattice-based IBE schemes [GPV08, ABB10] satisfy such property.

IND-CPA Security. Let A = (A1,A2) be an adversary against IBE and define its advantage
in the following experiment:

AdvA(λ) = Pr

β = β′ :

(mpk,msk)← Setup(λ);

(state, id∗,m0,m1)← AOext(·)
1 (mpk);

β
R←− {0, 1};

c∗ ← Encrypt(mpk, id∗,mβ);

β′ ← AOext(·)
2 (state, c∗);

−
1

2
.

9We assume mpk includes the descriptions of identity space I, message space M , and ciphertexts space C.
mpk will be used as an input for algorithms Extract and Decrypt, and is omitted when the context is clear.
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Here Oext(·) is an extraction oracle that on input id ∈ I returns skid ← Extract(msk, id). Note
that Oext(·) returns the same skid for repeated extraction queries on id. A = (A1,A2) is not
allowed to query Oext(·) with id∗. An IBE scheme is said to be IND-CPA secure if for any
PPT adversary A, its advantage defined as above is negligible in λ. The IND-CCA security for
IBE can be defined similarly by giving the adversary access to an additional decryption oracle
Odec(·, ·) that on input 〈id, c〉 returns m ← Decrypt(skid, c). A natural constraint is that A2 is
not allowed to query Odec(·, ·) with (id∗, c∗).

A weaken security notion for IBE is selective-identity IND-CPA/IND-CCA security, where
the adversary has to commit the target identity id∗ before seeing mpk.

3.5 Key-Dependent Message Security for IBE

The following definition is adapted from [AP12]. We use slightly different but actually equivalent
notation, however.

Let F be a finite set of functions {f : SKn → M}, where n > 0 is an integer and SK is
the secret key space and M is the message space. We use |m| to represent the length of each
message in M . We define KDM security w.r.t. F (F-KDM security for short) for IBE as below.

KDM Security. Let A = (A1,A2) be an adversary against F-KDM security for IBE and
define its advantage as:

AdvA(λ) = Pr

β = β′ :

(mpk,msk)← Setup(λ);

(state, id = (id∗1, . . . , id
∗
n))← AOext(·)

1 (mpk);

β
R←− {0, 1};

β′ ← AOext(·),Oβenc(·,·)
2 (state);

− 1

2
.

Here Oext(·) is an extraction oracle that on input an identity id ∈ I returns a secret key
skid ← Extract(msk, id). Note that Oext(·) returns the same skid for repeated extraction queries

on id. A = (A1,A2) is not allowed to query Oext(·) with any idi ∈ id. Oβenc(·, ·) is an encryption
oracle depending on a hidden bit β chosen by CH, which on input i ∈ [n] and f ∈ F returns a
key-dependent encryption Encrypt(mpk, idi, f(sk∗1, . . . , sk

∗
n)) where sk∗i is the secret key for id∗i

if β = 0 and returns a zero encryption Encrypt(mpk, idi, 0
|m|) if β = 1. An IBE scheme is said

to be F-KDM secure if for any PPT adversary A, its advantage defined as above is negligible
in λ. The selective-identity F-KDM security for IBE can be defined similarly by requiring the
adversary A to commit the list of target identities id before seeing mpk.

In this work, we mainly consider two KDM function families for IBE.

Polynomial-size circuits. Let Fbound be the set of all functions f : SKn → M that can be
encoded as circuits of size bounded by a polynomial p(λ). Such F is the largest ensemble for
which it is feasible to achieve KDM security, and the corresponding KDM security is known
bounded KDM security [BHHI10].

Affine functions. We assume for simplicity SK ⊆ M . If M is a ring, we can define affine
class Faff = {a1sk1 + · · · + anskn + c | ai, c ∈ M}. The set of all constant functions Fconst =
{fc(sk1, . . . , skn) = c}c∈M and the set of all selector functions Fselec = {fj(sk1, . . . , skn) =
skj}j∈[n] are two important subsets of Faff . As observed in [BHHO08], KDM security w.r.t.
Fconst is equivalent to semantic security, whereas KDM security w.r.t. Fselec implies (and is
actually stronger than) circular security.

Single-key vs. multiple-keys. Note that F is parameterized by an integer n, which indicates
that the message might be dependent of n secret keys associated with n distinct identities. In
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this work, for simplicity of exposition, we choose present our positive results in the single-key
setting first and then discuss how to extend them to the multiple-keys setting.

4 KDM-secure IBE from KDM-secure PKE and iO
As mentioned before, in contrast to few KDM results for IBE, there are fruitful KDM results
for PKE. Thus, a promising idea is to translate the results of PKE to IBE. Observe that IBE
can be viewed as an extension of PKE in which identity plays the role of public key and secret
keys can be extracted from a master secret key, and thus the KDM security w.r.t. users secret
key in identity-based setting is a mirror image of that in public-key setting. If there exists a
structure-preserving transformation from PKE to IBE (i.e., mapping an identity id to a public
key pk, using secret key sk for pk as that for id, inheriting the same encryption/decryption
algorithms of PKE), then we are able to compile a KDM-secure PKE into a KDM-secure IBE
in a generic manner, while almost ignoring technical details of the starting PKE.

Recall that a PKE scheme consists of three polynomial time algorithms (KeyGen, Encrypt,
Decrypt), while an IBE scheme consists of four polynomial time algorithms (Setup, Extract,
Encrypt, Decrypt). The key idea of the transformation is to map an identity to random coins,
then invoke PKE.KeyGen with the obtained random coins to generate its corresponding public
key. Such “id-to-pk” procedure must be done publicly without revealing the corresponding
secret key, whereas with master secret key one can recover the random coins associated with
any identity and then extracts the secret key. The encryption and decryption algorithms are
essentially the same as that of the starting PKE. We implement the above idea by employing
iO and puncturable PRF.

Let R be the randomness space of PKE.KeyGen, I be the desired identity space and PPRF
be a puncturable PRF that maps I to R. The transformation works as follows:

• Setup(λ): run k ← PPRF.KeyGen(λ), then create an obfuscation of circuit id-to-pk hash
depicted in Figure 1. Finally, output the obfuscated circuit as mpk and k as msk.

• Extract(msk, id): on input msk and id ∈ I, compute r ← PPRF.Eval(msk, id), (pk, sk)←
PKE.KeyGen(λ; r), output sk as skid for id.

• Encrypt(mpk, id,m): run the obfuscated circuit mpk on input id to obtain its correspond-
ing public key pk (write as pk = mpk(id)), then output c← PKE.Encrypt(pk,m).

• Decrypt(skid, c): output m← PKE.Decrypt(skid, c).

id-to-pk hash

Constants: PPRF key k

Input: id

1. Compute r ← PPRF.Eval(k, id), (pk, sk)← PKE.KeyGen(r), and output pk.

Figure 1: id-to-pk hash takes as input id, and has constant a PPRF key k hardwired. The size
of this circuit is padded to be the maximum of itself and id-to-pk hash∗ as described in Figure 2.

The correctness of the above IBE construction follows immediately from that of the starting
PKE. For the security, we have the following theorem.

Theorem 4.1. If the starting PKE is F-KDM secure, the puncturable PRF is selective pseu-
dorandom and the iO is secure, then the above IBE is F-KDM secure in the selective-identity
sense.
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id-to-pk hash∗

Constants: punctured PPRF key k({id∗}), id∗, pk∗

Input: id

1. If id = id∗, output pk∗.

2. Else compute r ← PPRF.Eval(k({id∗}), id), (pk, sk)← PKE.KeyGen(r), output pk.

Figure 2: id-to-pk hash∗ takes as input id, and has constants a punctured PPRF key k({id∗})
and identity id∗ and public key pk∗ hardwired.

Proof. For simplicity of exposition, we first prove this theorem in the single-key setting (i.e.,
there is only one target identity involved). Then we show how to adapt the proof to the
multiple-keys setting. The proof proceeds via a sequence of games as below.

Game 0 (the real game):

1. A commits the target identity id∗ it will attack at the very beginning.

2. CH picks a fresh key k for PPRF as msk, creates an obfuscation of circuit id-to-pk hash
as mpk, and sends mpk to A. CH picks a random bit β, computes pk∗ ← mpk(id∗) and
skid∗ ← IBE.Extract(msk, id∗).

3. A then can make extraction and encryption queries, in the order of its choice.

• Extraction query 〈id〉: for any id 6= id∗, CH responds with msk.

• Encryption query 〈f〉10: CH responds with c← PKE.Encrypt(pk∗, f(skid∗)) if β = 0
or c← PKE.Encrypt(pk∗, 0|m|) if β = 1.

4. Finally, A outputs a guess β′ for β and wins if β′ = β.

Game 1 (create an obfuscation of circuit id-to-pk hash∗ as mpk):

2. CH picks a fresh key k for PPRF as msk, computes k({id∗}) ← PPRF.Puncture(k, id∗),
r∗ ← PPRF.Eval(k, id∗), (pk∗, sk∗) ← PKE.KeyGen(r∗), creates an obfuscation of circuit
id-to-pk hash∗ as mpk. CH sets skid∗ for id∗ as sk∗ and sends mpk to A.

Game 2 (replace r∗ with a uniformly random string over R):

2. CH picks r∗
R←− R instead of computing r∗ ← PPRF.Eval(k, id∗).

Lemma 4.2. The advantages of any PPT adversary in Game 0 and Game 1 are negligibly close
in λ, given the security of iO.

Proof. We prove this lemma by giving a reduction to the security of iO. Suppose there is a
PPT adversary A whose advantages in Game 0 and Game 1 are not negligibly close, then we
can build an algorithm B = (S,D) against the security of iO by interacting with A as follows.
S(λ) behaves as follows: It invokes A to obtain the target identity id∗, then runs k ←

PPRF.KeyGen(λ), computes k({id∗}) ← PPRF.Puncture(k, id∗), r∗ ← PPRF.Eval(k, id∗), and
(pk∗, sk∗) ← PKE.KeyGen(λ; r∗). It sets aux = (k, id∗, sk∗), then builds C0 as the circuit
id-to-pk hash and C1 as the circuit id-to-pk hash∗.

Before describing D, we observe that by construction, the circuits C0 and C1 always behave
identically on every input by the correctness of PPRF. With suitable padding, both C0 and C1

10In the single-key setting the encryption query is associated with the only one target identity, thus we just
refer to it as 〈f〉 and implicitly assume n = 1.
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have the same size. Thus, S satisfies the conditions needed for invoking the indistinguishability
property of iO.

Now, we can describe the algorithm D. Given aux and iO(Cb) as the challenge, D continues
to interacts with A with the aim to determine b. To do so, D sets mpk = iO(Cb) and msk =
k, picks a random bit β and sends mpk to A. When A makes extraction queries 〈id〉, D
responds normally with msk = k. When A makes encryption queries 〈f〉, D returns c∗ ←
PKE.Encrypt(pk∗, f(sk∗)) if β = 0 and c∗ ← PKE.Encrypt(pk∗, 0|m|) otherwise. Finally, A
outputs a guess β′ for β. If A wins, D outputs 1.

By construction, if D receives iO(C0) (resp. iO(C1)), then the probability that D outputs
1 is exactly the probability of A winning in Game 0 (resp. Game 1). The lemma follows.

Lemma 4.3. The advantages of any PPT adversary in Game 1 and Game 2 are negligibly
close, given the selective pseudorandomness of puncturable PRF.

Proof. We prove this lemma by giving a reduction to selective pseudorandomness of PPRF.
Suppose there is a PPT adversary A whose advantages in Game 1 and Game 2 are not negligibly
close, then we can build an algorithm B that breaks the selective pseudorandomness of PPRF
by interacting with A as follows.
B invokes A to obtain the target identity id∗, then submits id∗ to its own PPRF challenger

and receives back a punctured key k({id∗}) as well as r∗, where r∗ is either the real PPRF value
at id∗ or a uniformly random string over R. B then computes (pk∗, sk∗) ← PKE.KeyGen(r∗),
builds an obfuscation of the circuit id-to-pk hash∗ from (k({id∗}, id∗, pk∗) as mpk. B sends
mpk to A and picks a random bit β ∈ {0, 1}. When A makes extraction queries 〈id〉 where
id 6= id∗, B responds with k({id∗}). When A makes encryption queries 〈f〉, B returns c∗ ←
PKE.Encrypt(pk∗, f(sk∗)) if β = 0 and c∗ ← PKE.Encrypt(pk∗, 0|m|) otherwise. Finally, A
outputs a guess β′ for β and wins if β′ = β. If A wins, B outputs 1.

By the definitions of Game 1 and Game 2 and the correctness of PPRF, if B receives a
real PRF value at id∗ (resp. a random value over R), then the probability that B outputs 1 is
exactly the probability of A winning in Game 1 (resp. Game 2). The lemma follows.

Lemma 4.4. The advantage of any PPT adversary in Game 2 is negligible, given the assumed
KDM security of starting PKE.

Proof. We prove this lemma by giving a reduction to the assumed KDM security of PKE. More
precisely, suppose there is a PPT adversary A wins in Game 2 with non-negligible advantage,
then we can build an algorithm B against the KDM security of PKE with the same advantage.
B receives pk∗ from its PKE challenger, where pk∗ is honestly generated by PKE.KeyGen

under real random coins r∗. B invokes A to obtain the target identity id∗, then runs k ←
PPRF.KeyGen(λ), k({id∗}) ← PPRF.Puncture(k, id∗), builds the circuit id-to-pk hash∗ from
(k({id∗}), id∗, pk∗) and computes its obfuscation as mpk. B then sends mpk to A. Clearly, B
can handle all extraction queries for id 6= id∗ with msk = k. When A makes encryption queries
〈f〉, B submits 〈f〉 to its own challenger and forwards the reply to A. Finally, when A outputs
its guess β′ for β, B outputs β′ to its PKE challenger.

By construction, a PKE encryption under pk∗ is also an IBE encryption under id∗ for the
same underlying message, and thus B perfectly simulates Game 2. The lemma follows.

Putting all the above together, the theorem follows immediately.

Extension to the multiple-keys case. The above theorem formally proves that if the starting
PKE is KDM-secure in the single-key case, so is the derived IBE. It is easy to verify that if
the starting PKE is also KDM-secure in the multiple-keys case, the derived IBE is KDM-secure
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w.r.t. the same KDM function family. The transformation requires no change, while the proof
can be easily adapted from that for Theorem 4.1 by setting the punctured set T as {id∗1, . . . , id∗n}
rather than {id∗} when introducing id-to-pk hash∗ to establish security.

On the negative side, we have the following result.

Proposition 4.5. If the starting PKE is n-circular insecure, then the above IBE is also n-
circular insecure, even in the selective-identity sense.

Proof. The proof for this proposition is in the same spirit of that for the above theorem. We
sketch the rough idea as follows: The distribution of crooked public keys (generated using PRF
values of identities) are computationally indistinguishable to that of real public keys (generated
using true random coins). Therefore, the advantages of a PPT Test algorithm in these two cases
are negligibly close. We omit the details here.

Other applications. Thanks to the promising “structure-preserving” property, our transfor-
mation also maintains many other security notions, such as security against chosen-ciphertext
attacks, leakage attacks and tampering attacks. The security proofs can be easily adapted from
that for Theorem 4.1 by simulating the decryption (resp. leakage and tampering) oracle of IBE
via that of PKE.

A downside of this transformation lies in it only yields security results in the selective-identity
sense, which seems intrinsic due to the use of “puncture programming technique” [SW14].

5 KDM-secure IBE from Homomorphic Identity-Based Hash
Proof System

In this section, we present a generic construction of KDM-secure IBE from homomorphic IB-
HPS. To the best of our knowledge, this is the first IBE scheme that attains KDM security in
the adaptive-identity sense and multiple-keys setting.

5.1 Identity-Based Hash Proof System

In what follows, we adapt the notion of identity-based hash proof system (IB-HPS) from [ADN+10],
in the context of group-theoretic languages. (In Definition 5.1 below we generalize the notion
so that the language depends not only on security parameter λ but also on the identity id.)

Definition 5.1 (Identity-Based Hash Proof System). An IB-HPS for L ⊂ X consists of the
following algorithms:

• Setup(λ): on input a security parameter λ, output master public key mpk and master se-
cret key msk. We assume that mpk specifies a multiplicative group X, an identity space
I, a collection of NP languages L = {Lid}id∈I defined over X, as well as an additive group
Π. We require that X (resp. Lid and X\Lid for each id ∈ I) are efficiently samplable
(w.l.o.g. obey uniform distribution) given mpk (resp. mpk and id), and denote the as-
sociate sampling algorithms by SampAll, SampYes and SampNo respectively. Particularly,
we require SampYes outputs an element x ∈ Lid together with a witness w.

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid. This
algorithm implicitly defines a binary relation R : SK × I, where (skid, id) ∈ R iff ∃r s.t.
skid = Extract(msk, id; r). Clearly, R is a many-to-one relation.
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• Priv(skid, x): on input a secret key skid and an element x ∈ X, output π ∈ Π. This
algorithm defines a family of hash functions Λ = {Λskid : X → Π} indexed by the set of
secret keys for id.

• Pub(id, x, w): on input an identity id ∈ I and an element x ∈ Lid together with a witness
w, output π ∈ Π.

Language membership assumption. Let X be a group fixed by mpk, and L = {Lid}id∈I be
a collection of languages defined over X. The language membership assumption in the identity-
based setting roughly states that for any id ∈ I the uniform distributions over Lid and X\Lid
are computationally indistinguishable. We now formally define it via the following experiment.

AdvA(λ) = Pr


b = b′ :

(mpk,msk)← Setup(λ);

(state, id∗)← AOext(·)
1 (mpk);

β
R←− {0, 1};

x∗0 ← SampYes(mpk, id∗);
x∗1 ← SampNo(mpk, id∗);

β′ ← AOext(·)(state, x∗β);


− 1

2
.

Here Oext(·) is an oracle that on input id ∈ I returns a secret key skid ← Extract(msk, id). We
require that Oext(·) returns the same secret key for repeated extraction queries on the same
identity id.11 Language membership assumption holds if for any PPT adversary, its advantage
εlmp defined as above is negligible in λ. We stress that A is allowed to query Oext(·) with any
id ∈ I (include id∗). This strengthening is crucial for attaining KDM security, as we will see
shortly.

Remark 5.1. The language membership assumption in the identity-based setting defined as
above requires that ULid ≈c UX\Lid for any id ∈ I. In some scenarios, it is useful to consider
an alternative assumption, which requires that ULid ≈c UX for any id ∈ I. Let ρid = |Lid|/|X|
be the density of Lid. It is easy to see that when ρid is negligible for any id ∈ I, the two
assumptions are equivalent due to fact that UX and UX\Lid are statistically close.

In what follows, we define three properties of Λ.

Projection. We say Λ is projective if the action of Λskid on Lid is determined by id, that
is, for all id ∈ I and all skid s.t. (skid, id) ∈ R, and for all x ∈ Lid with witness w, we have:
Λskid(x) = Pub(id, x, w).

Homomorphic. We say Λ is homomorphic if for all id ∈ I and all skid the function Λskid
is a group homomorphism from X to Π, that is, for all x1, x2 ∈ X, we have: Λskid(x1 · x2) =
Λskid(x1) + Λskid(x2).

Smoothness. We say Λ is smooth if for all id ∈ I, we have:

(mpk,msk, x,Λskid(x)) ≈s (mpk,msk, x, π)

where (mpk,msk) ← Setup(λ), skid ← Extract(msk, id), x
R←− X\Lid, and π

R←− Π. The
statistical distance is at most εsmooth, which is negligible in λ.

Remark 5.2. When ρid is negligible for any id ∈ I, the smoothness also holds w.r.t. x
R←− X.

11This restriction is natural yet necessary. If an adversary obtains multiple secret keys for the same identity,
according to projective and smooth properties of Λ, it can break the language membership problem with high
probability by checking if the hash values evaluated under these different secret keys are same.
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5.2 KDM Secure IBE from Homomorphic IB-HPS

Construction. Starting from an IB-HPS whose projective hashing Λ : X → Π is smooth and
homomorphic, we can derive a KDM-secure IBE scheme with the same identity set and message
space M = Π. The construction is as below.

• The Setup and Extract algorithms are identical to that of the starting IB-HPS.

• Encrypt(mpk, id,m): on input mpk and an identity id and a message m, run (x,w) ←
SampYes(mpk, id), compute π ← Pub(id, x, w), y ← π +m, output c = (x, y).

• Decrypt(skid, c): on input skid and a ciphertext c, parse c = (x, y), compute π ←
Priv(skid, x), output m = y − π.

The correctness of the above construction follows readily from the projective property of Λ.
For the security, we have the following theorem.

Theorem 5.1. Suppose the projective hash Λ : X → Π is smooth and homomorphic, and the
language membership problem is hard. Then the above construction is Fn-KDM secure where
Fn = {fu1,...,un,v : (sk1, . . . , skn)→ {Λsk1(u1) + · · ·+ Λskn(un) + v}ui∈X,v∈Π.

For simplicity of exposition, we first prove the following theorem that addresses the single-
key setting, then discuss how to adapt the proof to the multiple-keys setting.

Theorem 5.2. Suppose the projective hash Λ : X → Π is smooth and homomorphic, and the
language membership problem is hard. Then the above construction is F-KDM secure where
F = {fu,v : sk → φ−1(Λsk(u) + v)}u∈X,v∈Π.

Proof. For technical convenience, we will stick to the second language membership assumption,
i.e., ULid and UX are computationally indistinguishable for any id ∈ I. We prove the above
theorem via a sequence of games. An overview of the security proof is depicted in Figure 3.

Game 0: answer all encryption queries with O0
enc(·)

Hyb0

≡

Hybi−1

Hybi

Hybq

≡

≡ Expi,0

≡ Expi,6

Game 1: answer all encryption queries with Osim(·)

Hyb0

≡

Hybi−1

Hybi

Hybq

≡

≡ Expi,0

≡ Expi,8

Game 2: answer all encryption queries with O1
enc(·)

Figure 3: An overview of the security proof.

Game 0: This game corresponds to the KDM security game that for each encryption query 〈f〉
toOβenc(·), CH always responds with real KDM encryption, i.e., O0

enc(f) = Encrypt(mpk, id∗, f(skid∗)).
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Game 1: This game corresponds to the KDM security game that for each encryption query
〈f〉 to Oβenc(·), CH always responds with simulated encryption Osim(f). Suppose f is indexed

by (u, v), i.e., fu,v(sk) = Λsk(u) + v, Osim(f) samples x∗
R←− Lid∗ with witness w∗, outputs

(x∗ · u−1,Pub(id∗, x∗, w∗) + v).

Game 2: This game corresponds to the KDM security game that for each encryption query 〈f〉
to Oβenc(·), CH always responds with zero encryption, i.e., O1

enc(f) = Encrypt(mpk, id∗, 0|m|).

To establish the desired KDM security, it suffices to show that Game 0 and Game 2 are
computationally indistinguishable. To this end, we show both Game 0 and Game 2 are com-
putationally indistinguishable from the intermediate Game 1. Without loss of generality, we
assume the maximum number of encryption queries made by the adversary is upper bounded
by a polynomial q in λ.

Lemma 5.3. Game 0 and Game 1 are computationally indistinguishable.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 0 and Game 1, where
in Hybi the first i encryption queries are answered with Osim(·) and the rest encryption queries
are answered with O0

enc(·). Clearly, Hyb0 is exactly Game 0 and Hybq is exactly Game 1.
In what follows, we show that for each 1 ≤ i ≤ q, Hybi−1 and Hybi are computationally
indistinguishable. Note that these two successive hybrids only differ at the response to the i-th
encryption query 〈fi〉, the crux is to show that:

O0
enc(fi) ≈c Osim(fi)

To this end, we further introduce seven experiments (from Expi,0 to Expi,6) between each
successive Hybi−1 and Hybi. In all the seven intermediate experiments, the first i−1 encryption
queries are answered withOsim(·), and the last q−i encryption queries are answered withO0

enc(·).
They only differ at the response to the i-th encryption query 〈fi = fui,vi〉 as highlighted below.

O0
enc(fi)

≡ (x∗,Pub(id∗, x∗, w∗) + Λskid∗ (ui) + vi) Expi,0 : x∗
R←− Lid∗

≡ (x∗,Λskid∗ (x
∗) + Λskid∗ (ui) + vi) Expi,1 : x∗

R←− Lid∗ , via projective property

≡ (x∗,Λskid∗ (x
∗ · ui) + vi) Expi,2 : x∗

R←− Lid∗ , via homomorphism

≈c (x∗,Λskid∗ (x
∗ · ui) + vi) Expi,3 : x∗

R←− X, via language membership

≡ (x∗ · u−1
i ,Λskid∗ (x

∗) + vi) Expi,4 : x∗
R←− X,X is a group

≈c (x∗ · u−1
i ,Λskid∗ (x

∗) + vi) Expi,5 : x∗
R←− Lid∗ , via language membership

≡ (x∗ · u−1
i ,Pub(id∗, x∗, w∗) + vi) Expi,6 : x∗

R←− Lid∗ , via projective property

Osim(fi)

Figure 4: Transitions between O0
enc(fi) and Osim(fi)

As depicted in Figure 4, we need to show Expi,2 ≈c Expi,3 and Expi,4 ≈c Expi,5 based on
the language membership assumption. Recall that a reduction to the language membership
problem knows exactly one secret key for any id ∈ I even including the target identity. This
allows us to carry out hybrid arguments between Expi,2,Expi,3 and Expi,4,Expi,5.

Expi,0 (identical to Hybi−1): CH interacts with A as follows.

1. Run Setup(λ) to generate (mpk,msk), send mpk to A.

22



2. On extraction query 〈id〉, return skid ← Extract(msk, id).

3. A chooses id∗ as the target identity. CH computes skid∗ ← Extract(msk, id∗),

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Pub(id∗, x∗, w∗) + Λskid∗ (ui) + vi, returns c∗ = (x∗, y∗). Besides, the first i − 1
encryption queries are answered with Osim(·), while the last q − i encryption queries are
answered with O0

enc(·).
5. On extraction query 〈id〉 where id 6= id∗, CH responds the same way as in Phase 1.

Expi,1 (compute Λskid∗ (x
∗) privately): Expi,1 is identical to Expi,0 except that CH computes

Λskid∗ (x
∗) privately in step 4.

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λskid∗ (x

∗) + Λskid∗ (ui) + vi, returns c∗ = (x∗, y∗).

Expi,2 (compute y∗ via homomorphism): Expi,2 is identical to Expi,1 except that CH computes
y∗ via homomorphism in step 4.

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λskid∗ (x

∗ · ui) + vi, returns c∗ = (x∗, y∗).

Expi,3 (sample x∗ from X): Expi,3 is identical to Expi,2 except that CH samples x∗
R←− X.

4. On the i-th encryption query 〈fi〉, CH picks x∗ ← SampAll(mpk), then computes y∗ ←
Λskid∗ (x

∗ · ui) + vi, returns c∗ = (x∗, y∗).

Expi,4 (replace x∗ with x∗ · u−1
i ): Expi,4 is identical to Expi,3 except that CH replaces x∗ with

x∗ · u−1
i in the ciphertext.

4. On the i-th encryption query 〈fi〉, CH first picks x∗ ← SampAll(mpk), then computes
y∗ ← Λskid∗ (x

∗) + vi, returns c∗ = (x∗ · u−1
i , y∗).

Expi,5 (sample x∗ from Lid∗): Expi,5 is identical to Expi,4 except that CH samples x∗ from Lid∗

instead of X.

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗)← SampYes(mpk, id∗), computes y∗ ←
Λskid∗ (x

∗) + vi, returns c∗ = (x∗ · u−1
i , y∗).

Expi,6 (compute Λskid∗ (x
∗) publicly): Expi,6 is identical to Expi,5 except that CH compute

Λskid∗ (x
∗) publicly.

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Pub(id∗, x∗, w∗) + vi, returns c∗ = (x∗ · u−1

i , y∗).

The differences between Expi,0 and Expi,1, Expi,1 and Expi,2, Expi,3 and Expi,4, Expi,5 and
Expi,6 are only conceptual. Therefore, they are perfectly equivalent.

Claim 5.4. Expi,2 and Expi,3 are computationally indistinguishable, given the hardness of the
language membership problem.

Proof. Suppose there is an adversary A that can distinguish Expi,2 and Expi,3, we show how to
build an algorithm B breaks the language membership problem. B interacts with A as follows:

1. Given mpk from its own challenger where (mpk,msk)← Setup(λ), B sends mpk to A.

2. On extraction query 〈id〉, B forwards the query to its own challenger and sends the reply
to A.
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3. A chooses id∗ as the target identity. B submits id∗ to its own challenger and receives back
x∗, which is either sampled from Lid∗ or X. B also makes an extraction query 〈id∗〉 and
receives back skid∗ .

4. On the i-th encryption query 〈fi〉, B computes y∗ ← Λskid∗ (x
∗ ·ui)+vi, sends c∗ = (x∗, y∗)

to A. Besides, B answers the first i− 1 encryption queries with Osim(·), and the last q− i
encryption queries with O0

enc(·). Since B can obtain a secret key for any identities by
querying its challenger, it is able handle all the encryption queries properly.

5. On extraction query 〈id〉 where id 6= id∗, B responds the same way as in Phase 1.

It is easy to see that if x∗
R←− Lid∗ , B simulates Expi,2 perfectly; if x∗

R←− X, B simulates Expi,3
perfectly. Therefore, B breaks the language membership problem with the same advantage as
A distinguishing Expi,2 and Expi,3. This proves Claim 5.4.

Claim 5.5. Expi,4 and Expi,5 are computationally indistinguishable, given the hardness of the
language membership problem.

Proof. We omit the proof since it is similar to that for Claim 5.4.

Note that Expi,0 is exactly Hybi−1, while Expi,6 is exactly Hybi. Combining all these above,
we have |AdvA(Hybi) − AdvA(Hybi−1)| ≤ 2 · εlmp for each i ∈ [q], and thus |AdvA(Game1) −
AdvA(Game0)| ≤ 2q · εlmp. This proves Lemma 5.3.

Lemma 5.6. Game 1 and Game 2 are computationally indistinguishable.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 1 and Game 2, where
in Hybi the first i encryption queries are answered with O1

enc(·) and the rest encryption queries
are answered with Osim(·). Clearly, Hyb0 is exactly Game 1 and Hybq is exactly Game 2.
In what follows, we show that for each 1 ≤ i ≤ q, Hybi−1 and Hybi are computationally
indistinguishable. Note that these two each successive hybrids only differ at the response to the
i-th encryption queries, the crux is to show that:

Osim(fi) ≈c O1
enc(fi)

To this end, we further introduce nine experiments (from Expi,0 to Expi,8) between each
successive hybrids Hybi−1 and Hybi. In all the nine intermediate experiments, the first i − 1
encryption queries are answered with O1

enc(·), while the last q−i encryption queries are answered
with Osim(·). They only differ at the response to the i-th encryption query 〈fi = fui,vi〉 as
highlighted below.

As depicted in Figure 5, we need to prove Expi,1 ≈c Expi,2 and Expi,6 ≈c Expi,7 based on
the language membership assumption, and show Expi,2 ≈s Expi,3 and Expi,5 ≈s Expi,6 based
on the smoothness of Λ. Similar to previous analysis, a reduction to the language membership
assumption knows exactly one secret key for any id ∈ I. This fact allows us to carry out
hybrid arguments between Expi,1,Expi,2 and Expi,6,Expi,7. In addition, throughout Expi,2 and
Expi,5, the information of skid∗ is not leaked elsewhere except when answering i-th encryption
query, thus we can safely apply smoothness of Λ for the transitions between Expi,2,Expi,3 and
Expi,5,Expi,6.

Expi,0 (identical to Hybi−1): CH interacts with A as follows.

1. Run Setup(λ) to generate (mpk,msk), send mpk to A.

2. On extraction query 〈id〉, return skid ← Extract(msk, id).

3. A chooses id∗ as the target identity. CH computes skid∗ ← Extract(msk, id∗).
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Osim(fi)

≡ (x∗ · u−1
i ,Pub(id∗, x∗, w∗) + vi) Expi,0 : x∗

R←− Lid∗
≡ (x∗ · u−1

i ,Λskid∗ (x
∗) + vi) Expi,1 : x∗

R←− Lid∗ , via projective property

≈c (x∗ · u−1
i ,Λskid∗ (x

∗) + vi) Expi,2 : x∗
R←− X, via language membership

≈s (x∗ · u−1
i , π∗ + vi) Expi,3 : π∗

R←− Π, via smoothness

≡ (x∗, π∗ + vi) Expi,4 : x∗
R←− X,X is a group

≡ (x∗, π∗ + 0|m|) Expi,5 : π∗
R←− Π,Π is a group

≈s (x∗,Λskid∗ (x
∗) + 0|m|) Expi,6 : via smoothness

≈c (x∗,Λskid∗ (x
∗) + 0|m|) Expi,7 : x∗

R←− Lid∗ , via language membership

≡ (x∗,Pub(id∗, x∗, w∗) + 0|m|) Expi,8 : x∗
R←− Lid∗ , via projective property

O1
enc(fi)

Figure 5: Transitions between Osim(fi) and O1
enc(fi)

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Pub(id∗, x∗, w∗) + vi, returns c∗ = (x∗ · u−1

i , y∗). Besides, B answers the first i − 1
encryption queries with O1

enc(·), and the last q − i encryption queries with Osim(·).
5. On extraction query 〈id〉 where id 6= id∗, CH responds the same way as in Phase 1.

Expi,1 (compute Λskid∗ (x
∗) privately): Expi,1 is identical to Expi,0 except that CH computes

Λskid∗ (x
∗) privately in step 4.

4. On the i-th encryption query 〈fi〉, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λsk∗id(x

∗) + vi, sends c∗ = (x∗ · u−1
i , y∗) to A.

Expi,2 (sample x∗ from X): Expi,2 is identical to Expi,1 except that CH samples x∗
R←− X.

4. On the i-th encryption query 〈fi〉, CH first picks x∗ ← SampAll(mpk), then computes

y∗ ← Λskid∗ (x
∗) + vi, sends c∗ = (x∗ · u−1

i , y∗) to A.

Expi,3 (replace Λskid∗ (x
∗) with π∗

R←− Π): Expi,3 is identical to Expi,2 except that CH replaces

Λskid∗ (x
∗) with π∗

R←− Π.

4. For the i-th encryption query 〈fi〉, CH picks x∗ ← SampAll(mpk), picks π∗
R←− Π, computes

y∗ ← π∗ + vi, sends c∗ = (x∗ · u−1
i , y∗) to A.

Expi,4 (replace x∗ · u−1
i with x∗): Expi,4 is identical to Expi,3 except that CH replaces x∗ · u−1

i

with x∗ in the ciphertext.

4. For the i-th encryption query 〈fi〉, CH picks x∗ ← SampAll(mpk), picks π∗
R←− Π, computes

y∗ ← π∗ + vi, sends c∗ = (x∗, y∗) to A.

Expi,5 (replace vi with 0|m|): Expi,5 is identical to Expi,4 except that CH replaces vi with 0|m|

in the ciphertext.

4. For the i-th encryption query 〈fi〉, CH runs x∗ ← SampAll(mpk), picks π∗
R←− Π, computes

y∗ ← π∗ + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,6 (replace π∗ with Λskid∗ (x
∗)): Expi,6 is identical to Expi,5 except that CH replaces π∗

with Λskid∗ (x
∗) when computing y∗ in the ciphertext.
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4. For the i-th encryption query 〈fi〉, CH picks x∗ ← SampAll(mpk), then computes y∗ ←
Λskid∗ (x

∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,7 (sample x∗ from Lid∗): Expi,7 is identical to Expi,6 except that CH samples x∗
R←− Lid∗ .

4. For the i-th encryption query 〈fi〉, CH runs (x∗, w∗)← SampYes(mpk, id∗), then computes

y∗ ← Λskid∗ (x
∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,8 (compute Λskid∗ (x
∗) publicly): Expi,8 is identical to Expi,7 except that CH compute

Λskid∗ (x
∗) publicly.

4. For the i-th encryption query 〈fi〉, CH runs (x∗, w∗)← SampYes(mpk, id∗), then computes
y∗ ← Pub(id∗, x∗, w∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

The differences between Expi,0 and Expi,1, Expi,3 and Expi,4, Expi,4 and Expi,5, Expi,7 and
Expi,8 are only conceptual. Therefore, they are perfectly equivalent. Expi,2 and Expi,3 (resp.
Expi,5 and Expi,6) are statistically close due to the smoothness of Λ.

Claim 5.7. Expi,1 and Expi,2 are computationally indistinguishable, given the hardness of the
language membership problem.

Claim 5.8. Expi,6 and Expi,7 are computationally indistinguishable given the hardness of the
language membership problem.

Proof. We omit the detailed proof of Claim 5.7 and 5.8 here since they are similar to that for
Claim 5.4.

Note that Expi,0 is exactly Hybi−1, while Expi,8 is exactly Hybi. Combining all these
above, we have that |AdvA(Hybi)−AdvA(Hybi−1)| ≤ 2εsmooth + 2εlmp for each i ∈ [q], and thus
|AdvAGame2 − AdvAGame1| ≤ q · (2εsmooth + 2εlmp). This proves Lemma 5.6.

Putting Lemma 5.3 and 5.6 together, we conclude that |Game2 − Game0| ≤ q(2εsmooth +
4εlmp). This proves the theorem.

Extension to the multiple-keys setting. The above construction is also KDM secure in
the multiple-keys setting, that is, the permissible KDM function family expands to Fn =
{fu1,...,un,v : (sk1, . . . , skn)→ {Λsk1(u1) + · · ·+ Λskn(un) + v}ui∈X,v∈Π. Due to the lack of space,
we only sketch the proof idea.

As we stressed several times, with the magic power of IB-HPS the simulator always knows
at least one secret key for any identities even the target ones. Therefore, we can prove the
multiple-key case by adding a sequence of outer hybrids (changes identity by identity) over the
single-key case. Concretely, the proof for multiple-case proceeds in a similar way as that for the
single-key case. It also consists of three games, which only differ at the response to encryption
queries, while the rest are identical to the original KDM security game. Let (id∗1, . . . , id

∗
n) be

the target identities, (sk∗1, . . . , sk
∗
n) be the corresponding secret keys, f be a function from Fn

with index (u1, . . . , un, v). We specify them as below for completeness.

Game 0: Oβenc(f, j) is answered with the real KDM encryption oracle

O0
enc(f, j) = (x∗,Pub(id∗j , x

∗, w∗) + Σk∈[n]Λsk∗k(uk) + v)

Game 1: Oβenc(f, j) is answered with the simulated KDM encryption oracle

Osim(f, j) = (x∗ · u−1
j ,Pub(id∗, x∗, w∗) + Σk 6=j

k∈[n]Λsk∗k(uk) + v)
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Game 2: Oβenc(f, j) is answered with the zero encryption oracle

O1
enc(f, j) = (x∗,Pub(id∗, x∗, w∗) + 0|m|)

Henceforth, we assume a PPT adversary makes at most q = poly(λ) times encryption queries
regarding each idj for j ∈ [n]. To prove Game 0 ≈c Game 2, it suffices to show that both of
them are computationally indistinguishable to Game 1.

The first step is to prove Game 0 ≈c Game 1. We introduce n+ 1 outer hybrids indexed by
0 ≤ j ≤ n between Game 0 and Game 1, where in HYBj the encryption queries of the form 〈f, k〉
are answered with Osim(·, ·) if k ≤ j and with O0

enc(·, ·) if k > j. By definition, HYB0 ≡ Game 0
and HYBn ≡ Game 1. We then show that for each j ∈ [n] we have HYBj−1 ≈c HYBj .

Note that these two successive outer hybrids only differ at the responses to the encryption
queries of the form 〈f, j〉 (regarding identity id∗j ), and the number of such queries is at most q.
Now we further introduce q + 1 inner hybrids indexed by 0 ≤ i ≤ n for each j ∈ [n], where in
Hybj the first i encryption queries of the form 〈f, j〉 are answered with Osim(·, ·) and the rest
encryption queries regarding id∗j are answered with O0

enc(·, ·); besides, encryption queries 〈f, k〉
are answered with Osim if k < j and with O0

enc(·, ·) if k > j. By definition, Hyb0 ≡ HYBj−1 and
Hybq ≡ HYBj . Via a similar argument as we made in the single-key case, we can prove that
each two successive inner hybrids are computationally indistinguishable based on the hardness of
language membership problem. The reduction goes through since the simulator knows the secret
key for any identities (thanks to the power of IB-HPS) and thus is able to perfectly simulate
O0

enc(·, ·) and Osim(·, ·). Thereby, each two successive outer hybrids are also computationally
indistinguishable. This finishes the first step.

The second step is to prove Game 1 ≈c Game 2. Analogously, we first introduce n+ 1 outer
hybrids indexed by 0 ≤ j ≤ n between Game 1 and Game 2, which transfer the responses to
encryption queries from Osim(·, ·) to Oenc(·, ·) to identity by identity. We then introduce q + 1
inner hybrids indexed by 0 ≤ i ≤ q between each two successive outer hybrids (that is, HYBj−1

and HYBj), which transfer the responses to encryption queries regarding identity id∗j from

Osim(·, ·) to O1
enc(·, ·) query by query. Again, via a similar argument as we made in the single-

key case, we can prove that each two successive inner hybrids (between HYBj−1 and HYBj)
are computationally indistinguishable. The reduction goes through because: (i) the simulator
knows the secret key for any identities and thus is able to perfectly simulate Osim(·, ·); (ii)
simulation of Osim(·, j) does not need sk∗j and thus one can apply smoothness to transfer inner
hybrids. Thereby, each two successive outer hybrids are also computationally indistinguishable.
This finishes the second step.

The proof for multiple-keys setting immediately.

6 KDM-secure IBE from iO and Puncturable Unique Signature

In the PKE setting, the largest possible KDM function family is the ensemble of circuits of
a-priori bounded size. Though we have shown how to construct KDM-secure IBE scheme w.r.t.
reasonable function family in the preceding section, seeking direct construction of bounded
KDM-secure IBE is still of great interest on its own right.

In this section, we propose a bounded KDM-secure IBE from iO and puncturable unique
signature, which is delicately adapted from the recent work by [MPS16]. Before presenting our
construction, we first introduce a new notion named puncturable unique signature.
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6.1 Puncturable Unique Signature

We introduce a new notion named puncturable unique signature (PUS), which adds the possi-
bility to derive punctured signing keys to unique signature [Lyu12].

Definition 6.1 (Puncturable Unique Signature). A PUS scheme consists of four polynomial
algorithms as follows:

• Setup(λ): on input a security parameter λ, output a verification key vk and a signing key
sk. We assume vk includes the descriptions of the message space M and the signature
space Σ.

• Puncture(sk,m): on input sk and a message m∗, output a punctured signing key sk({m∗}),
which enables signing all messages but m∗.

• Sign(sk,m): if sk is the normal signing key, output a signature σ for m; if sk is a punctured
signing key sk({m∗}), output a signature σ for m if m 6= m∗ and ⊥ otherwise.

• Verify(vk,m, σ): on input vk, m and σ, output “1” to indicate σ is a valid signature of m
and “0” otherwise.

We require the following properties:

Uniqueness of signature. For all (vk, sk) ← KeyGen(λ) and all m ∈ M , there do not exists
values σ1, σ2 ∈ Σ such that σ1 6= σ2 and Verify(vk,m, σ1) = Verify(vk,m, σ2) = 1.

Unforgeability. Let A = (A1,A2) be an adversary against PUS and define its advantage in
the following experiment:

AdvA(λ) = Pr

Verify(vk,m∗, σ∗) = 1 :

(vk, sk)← KeyGen(λ);

(state,m∗)← AOsign(·)
1 (vk);

sk({m∗})← Puncture(sk,m∗);
σ∗ ← A2(state, sk({m∗}));

− 1

2
,

where Osign(·) is an oracle that on input m ∈M returns σ ← Sign(sk,m), and A1 is not allowed
to choose the message that has been queried for signatures as the target one. A PUS is said to
be unforgeable if for any PPT adversary A, its advantage defined as above is negligible in λ.

Constructions of PUS. Interestingly, we observe that the short signature from OWF and
iO by Sahai and Waters [SW14] exactly constitutes a PUS if the underlying OWF is injective.
This provides us a direct construction of PUS.

On the other hand, as noted in [Lyu12], the construction of unique signature from verifiable
random functions (VRFs) is immediate if the proofs in the VRFs are unique. Likewise, PUS is
immediately implied by punctured VRFs satisfying the uniqueness of proofs, where punctured
PRFs itself is a special class of constrained VRFs [Fuc14]. Inspection of the circuit-constrained
VRF construction presented in [Fuc14] reveals that it has unique proof. This provides us an
indirect construction of PUS.

6.2 Bounded KDM-secure IBE Scheme

Construction. Let PUS be a puncturable unique signature with message space I, and iO be
an indistinguishability obfuscator. Our construction is as below:

• Setup(λ): run (vk, sk)← PUS.KeyGen(λ), output mpk = vk, msk = sk.

• Extract(msk, id): on input msk and id ∈ I, run σ ← PUS.Sign(msk, id), output skid = σ.
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Encmpk,id,m

Constants: mpk, id, m

Input: sk

1. If PUS.Verify(mpk, id, sk) = 1, then output m; else output ⊥.

Figure 6: Encmpk,id,m takes as input sk, and has constants mpk and id and m hardwired. The
size of this circuit is padded to be the maximum of itself and Simmpk,id,f as described in Figure 7.

Simmpk,id,f

Constants: mpk, id, f

Input: sk

1. If PUS.Verify(mpk, id, sk) = 1, then output f(sk); else output ⊥.

Figure 7: Simmpk,id,f takes as input sk, and has constants mpk and id and f hardwired.

• Encrypt(mpk, id,m): on input mpk = vk and id and a message m, output an obfuscated
circuit c← iO(Encmpk,id,m). The circuit Encmpk,id,m is depicted in Figure 6.

• Decrypt(skid, c): on input skid and a ciphertext c, output m← c(skid).

The correctness of the above construction is straightforward. For security, we have the
following theorem.

Theorem 6.1. If iO is secure and PUS is unforgeable, then the above IBE is a bounded KDM-
secure in the single-key setting.

Proof. We prove the above theorem via a sequence of games.

Game 0: This game corresponds to the KDM security game that for each encryption query 〈f〉
to Oβenc(·), CH responds with O0

enc(f), i.e., the real KDM encryption iO(Encmpk,id∗,f(skid∗ )) ←
Encrypt(mpk, id∗, f(sk(id∗))).

Game 1: This game corresponds to the KDM security game that for each encryption query
〈f〉 to Oβenc(·), CH responds with Osim(f) = iO(Simmpk,id∗,f ).

Game 2: This game corresponds to the KDM security game that for each encryption query
〈f〉 to Oβenc(·), CH responds with O1

enc(f), i.e., the zero encryption iO(Encmpk,id∗,0|m|) ←
Encrypt(mpk, id∗, 0|m|).

To establish the desired KDM security, it suffices to show that Game 0 and Game 2 are
computationally indistinguishable. To this end, we show that both Game 0 and Game 2 are
computationally indistinguishable from the intermediate Game 1. We assume the maximum
number of encryption queries made by the adversary is upper bounded by a polynomial q in λ.

Lemma 6.2. Game 0 and Game 1 are computationally indistinguishable, given the security of
iO.

Proof. We introduce q+ 1 hybrids indexed by 0 ≤ i ≤ q between Game 0 and Game 1, where in
Hybi the first i encryption queries are answered with Osim(·) and the rest encryption queries are
answered withO0

enc(·). By definition, Hyb0 is exactly Game 0 and Hybq is exactly Game 1. Since
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q = poly(λ), it suffices to show that for each 1 ≤ i ≤ q we have Hybi−1 ≈c Hybi. Note that these
two successive hybrids only differ at the response to the i-th encryption query 〈fi〉, thus the crux
of the proof is to show O0

enc(fi) ≈c Osim(fi), i.e., iO(Encmpk,id∗,fi(skid∗ )) ≈c iO(Simmpk,id∗,fi).
Next, we formally prove the above intuition by giving a reduction to the security of iO.

Suppose there is an adversary A that distinguishes Hybi−1 and Hybi with non-negligible
probability, we show how to build an algorithm B = (S,D) breaks the security of iO.
S(λ) behaves as follows: It runs (vk, sk)← PUS.KeyGen(λ), sends mpk = vk to A. In Phase

1, when A makes extraction queries 〈id〉, S responds with skid ← PUS.Sign(msk, id). In the
challenge phase, A chooses id∗ as the target identity. S computes skid∗ ← PUS.Sign(msk, id∗).
In Phase 2, when A makes extraction queries 〈id〉 with id 6= id∗, S responds the same way as
in Phase 1. When A makes the first i − 1 encryption queries, S responds with Osim(·). When
A makes the i-th encryption query 〈fi〉, S sets aux = (mpk,msk, id∗), then builds C0 as the
circuit Encmpk,id∗,fi(skid∗ ), and C1 as the circuit Simmpk,id∗,fi .

Before describing D, we observe that C0 and C1 behaves identically. It is easy to see that
both C0 and C1 output fi(skid∗) on the single input skid∗ (this is guaranteed by the unique
property of PUS) and ⊥ elsewhere. Thus, S satisfies the conditions needed for invoking the
indistinguishability property of iO.

Now, we can describe the algorithm D. Given aux and iO(Cb) as challenge, D continues
to interact with A with the aim to determine b. When A makes extraction queries 〈id〉 where
id 6= id∗, D responds with skid ← PUS.Sign(msk, id). When A makes the i-th encryption query,
D answers with iO(Cb). When A makes the rest encryption queries, D responds with O0

enc(·).
By construction, if B receives iO(C0) (resp. iO(C1)), then A’s view is identical to that

in Hybi−1 (resp. Hybi). Thereby, we have Hybi−1 ≈c Hybi for each 1 ≤ i ≤ q based on
the security of iO. By the definitions of the hybrids and the fact that q = poly(λ), we have
Game 0 ≈c Game 1. The lemma follows.

Lemma 6.3. Game 1 and Game 2 are computationally indistinguishable, given the security of
iO and the security of puncturable unique signature.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 1 and Game 2, where
in Hybi the first i encryption queries are answered with O1

enc(·) and the rest encryption queries
are answered with Osim(·). By definition, Hyb0 is exactly Game 1 and Hybq is exactly Game 2.
Since q = poly(λ), it suffices to show that for each 1 ≤ i ≤ q we have Hybi−1 ≈c Hybi. Note that
these two successive hybrids only differ at the response to the i-th encryption query 〈fi〉, thus the
crux of the proof is to show Osim(fi) ≈c O1

enc(fi), i.e., iO(Simmpk,id∗,fi) ≈c iO(Simmpk,id∗,0|m|).
Next, we formally prove the above intuition by giving a reduction to the security of iO and the
security of puncturable unique signature.

Suppose there is an adversary A that distinguishes Hybi−1 and Hybi with non-negligible
probability, we show how to build an algorithm B = (S,D) breaks the security of iO.
S(λ) behaves as follows: It invokes a PUS challenger and receives a verification vk, then

simulates A’s challenger by sending him mpk = vk. In Phase 1, when A makes extraction
queries 〈id〉, S submits signing queries 〈id〉 to its PUS challenger and forwards the reply to
A. In the challenge phase, A chooses id∗ as the target identity. S submits id∗ to its PUS
challenger and receives back a punctured signing key sk({id∗}) ← PUS.Puncture(sk, id∗). In
Phase 2, when A makes extraction queries 〈id〉 with id 6= id∗, S responds the same way as in
Phase 1. When A makes the first i − 1 encryption queries, S responds with O1

enc(·). When A
makes the i-th encryption query 〈fi〉, S sets aux = (mpk, sk({id∗}), id∗), then builds C1 as the
circuit Simmpk,id∗,fi , and C2 as the circuit Encmpk,id∗,0|m| .

Before describing D, we observe that the circuits C1 and C2 have at most one differing-input.
To see this, note that C1 outputs fi(skid∗) and C2 outputs 0|m| on the single input skid∗ (this
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is guaranteed by the unique property of PUS), and the two circuits output ⊥ elsewhere. For
the case fi(skid∗) = 0|m|, C0 and C1 are functionally equivalent. For the case fi(skid∗) 6= 0|m|,
it remains to show that no PPT adversary is able to find the only differing-input. Observe that
the only differing-input skid∗ is exactly the unique signature on id∗, a reduction to the security
of PUS is immediate: suppose given (C1, C2, aux) there exists a PPT adversary F can find
such differing-input, say skid∗ , of C1 and C2 with non-negligible probability, then S breaks the
security of PUS with the same probability.

Now, we can describe the algorithm D. Given aux and iO(Cb) as challenge, D continues
to interact with A with the aim to determine b. When A makes extraction queries 〈id〉 where
id 6= id∗, D responds with skid ← PUS.Sign(sk({id∗}), id). When A makes the i-th encryption
queries, D responds with iO(Cb). When A makes the rest encryption queries, A responds with
Osim(·).

By construction, if B receives iO(C1) (resp. iO(C2)), then A’s view is identical to that
in Hybi−1 (resp. Hybi). Thereby, we have Hybi−1 ≈c Hybi for each 1 ≤ i ≤ q based on
the security of iO. By the definitions of the hybrids and the fact that q = poly(λ), we have
Game1 ≈c Game2. The lemma follows.

The theorem follows from Lemma 1 and Lemma 2.

Remark 6.1. In the proof of Lemma 2, we actually need to use diO. Nevertheless, the two
circuits C1 and C2 have at most one differing-input. Thereby, according to Lemma 3.1 we could
safely use iO rather than resort to diO.

Currently, we do not know how to extend the above construction to the multiple-keys setting.
The challenge is that the circuit Simmpk,id,f is given as input one of the secret keys but now has
to output a function of (possibly) n secret keys. In the PKE setting, Marcedone et al. [MPS16]
solved this problem by embedding a special relationship among secret keys into Simmpk,id,f .
However, their approach seems not work here, because in IBE secret keys are derived from
identities and thus it is hard to manipulate the relationship among them. We left the extension
to the multiple-keys setting as an interesting problem.

7 Counterexample for n-Circular Security from diO and Punc-
turable IBE

Beyond constructing IBE schemes for which we can prove KDM security, one may ask the more
fundamental question of “if standard security notions already imply KDM security”. Recent
works [ABBC10, CGH12, MO14, KRW15, BHW15, KW16, AP16] give the negative answer to
this question in the public-key setting.

In this section, we try to make some progress toward the truth of this question in the
identity-based setting. Our goal is to figure out whether n-circular security (which is a special
case of KDM security) is implied by IND-CPA/CCA security.

For the case n = 1, such a counterexample is easy to construct. Concretely, start from
an IND-CPA secure IBE scheme Π =(Setup, Extract, Encrypt, Decrypt) which admits effi-
cient CheckSK algorithm (c.f. Definition 3.5), one can modify it to a new IBE scheme Π′ =
(Setup,Extract,Encrypt′,Decrypt′), where the algorithms Setup and Extract are same as that of
Π; Encrypt′(mpk, id,m) outputs Encrypt(mpk, id,m)||0 if m 6= skid and m||1 otherwise (this
could be done with the help of CheckSK); Decrypt′(skid, c||b) outputs Decrypt(skid, c) if b = 0
and c otherwise. Clearly, Π′ is correct and inherits IND-CPA security from that of Π, but it is
completely 1-circular insecure. The strategy behind this counterexample is “check-then-mark”,
that is, the encryption algorithm first checks if the encrypted message is a valid secret key, then
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encrypts in two distinguished manners (e.g., by attaching a bit mark) according to the check
result.

From the proceeding discussion in introduction, while it can be easily shown that IND-CPA
security does not imply 1-circular security, the case for n ≥ 2 turns out to be much challenging.
When n ≥ 2 it seems difficult to implement the “check-then-mark” strategy since the circle is
specified by the adversary “on the fly”. To circumvent this difficulty, we embed an obfuscation
of a circuit to the ciphertext with the hope that the circuit admits dynamic cycle detection
without compromising IND-CPA security. As we sketched earlier, we need a new notion called
puncturable IBE as the basis of our counterexample. In what follows, we first formally introduce
puncturable IBE.

7.1 Puncturable IBE

Definition 7.1 (Punctureable IBE). A puncturable IBE (PIBE) scheme is an IBE scheme
whose master secret key allows efficient puncturing (analogous to puncturable PRF). The syntax
of puncturable IBE is identical to standard IBE except it equips two additional PPT algorithms
as follows:

• Puncture(msk, id): on input msk and an identity id∗ ∈ I, output a punctured master
secret key msk({id∗}).
• Derive(msk({id∗}), id): on input msk({id∗}) and an identity id ∈ I, output a secret key
skid for id if id 6= id∗ and ⊥ otherwise. We require that for all id∗ 6= id, the outputs of
Extract(msk, id) and Derive(msk({id∗}), id) have the same distribution.

Intuitively, the two algorithms ensure that there is a succinct description of the set of secret
keys for all identities but one.

Security. Let A = (A1,A2) be an adversary against puncturable IBE and define its advantage
in the following experiment:

AdvA(λ) = Pr


β = β′ :

(mpk,msk)← Setup(λ);

(state, id∗,m0,m1)← AOext(·)
1 (mpk);

msk({id∗})← Puncture(msk, id∗);

β
R←− {0, 1};

c∗ ← Encrypt(mpk, id∗,mβ);
β′ ← A2(state,msk({id∗}), c∗);


− 1

2
,

where Oext(·) is an oracle that on input id ∈ I returns skid ← Extract(msk, id), and A1 is not
allowed to choose the identity that had been queried for secret keys as the target one. A PIBE
is said to be IND-CPA secure if for any PPT adversary A, its advantage defined as above is
negligible in λ.

We then proceed to show the existence of PIBE.

PIBE from Hierarchical IBE. Let HIBE be an `-level HIBE with identity space ({0, 1}∗)`,
we can build a PIBE with identity space {0, 1}` as follows.

• Setup(λ): output (mpk,msk)← HIBE.Setup(λ, `).

• Extract(msk, id): on input msk and an identity id ∈ {0, 1}`, map id to depth ` ID-
vector v = (id[1], . . . , id[`]) where id[i] denotes the i-th bit of id, then compute skv ←
HIBE.Extract(msk, v), output skid = skv.
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• Puncture(msk, id∗): on input msk and an identity id∗ ∈ {0, 1}`: for 1 ≤ i ≤ `, set depth
i ID-vector vi = (id∗[1], . . . , id

∗
[i−1], id

∗
[i]), then compute skvi ← HIBE.Extract(msk, vi), out-

put msk({id∗}) = (skv1 , . . . , skv`). It is easy to verify that the size of msk({id∗}) is
polynomial in λ.

• Derive(msk({id∗}), id): on input msk({id∗}) = (skv1 , . . . , skv`) and an identity id ∈
{0, 1}`, if id 6= id∗, find vj that is a prefix of id∗ and output skid ← HIBE.Derive(skvj , id);
if id = id∗, output ⊥.

• Encrypt(mpk, id,m): on input mpk and an identity id and a message m, map id to depth
` ID-vector v = (id[1], . . . , id[`]), output ciphertext c← HIBE.Encrypt(mpk, v,m).

• Decrypt(skid, c): on input skid and a ciphertext c, interpret skid as skv, output m ←
HIBE.Decrypt(skv, c).

The correctness, checkable property and IND-CPA security of the PIBE follows readily from
that of the underline HIBE. We omit the details here.

Remark 7.1. For our main purpose, we simply define puncture IBE with respect to a singleton
{id}. It can be easily generalized to a polynomial-size identity set T ⊂ I. In addition, we
only demonstrate the existence of PIBE by giving a direct construction from HIBE. We remark
that PIBE can also be neatly derived from Binary Tree Encryption (BTE) [CHK03], which is
arguably a more simple and general notion than HIBE.

7.2 Construction of the Counterexample for n-circular security

Construction of Counterexample. Let PIBE be a puncturable IBE scheme with efficient
CheckSK algorithm, diO be a differing-inputs obfuscator. For simplicity, we also assume SK ⊆
M in PIBE. We construct an IBE scheme with the same identity space, message space, secret
key space as the starting PIBE:

• The Setup, Extract and CheckSK algorithms are the same as that of PIBE.

• Encrypt(mpk, id,m): on input mpk and an identity id ∈ I and a message m, first compute
ce ← PIBE.Encrypt(mpk, id,m), then create an obfuscated circuit ct ← diO(λ,CycleTestid,m),
output the final ciphertext c = (ct, ce). The circuit CycleTestid,m is depicted in Figure 8.

• Decrypt(skid, c): on input skid and c = (ce, ct), output m← PIBE.Decrypt(skid, ce).

The correctness of the above construction follows from that of the starting PIBE. We then
prove it is still IND-CPA secure.

Theorem 7.1. If PIBE is an IND-CPA secure puncturable IBE and diO is a secure differing-
input obfuscator, then the above construction is IND-CPA secure.

Proof. We prove this theorem via a sequence of games.

Game 0 (the original game):

1. CH runs (mpk,msk)← Setup(λ), then sends mpk to A.

2. On extraction query 〈id〉, CH responds with skid ← Extract(msk, id).

3. A submits (id∗,m0,m1). CH picks a random bit β, runs Encrypt(mpk, id∗,mβ), i.e.,
computes c∗e ← PIBE.Encrypt(mpk, id∗,mβ), c∗t ← diO(λ,CycleTestid∗,mβ ). CH sets c∗ =
(c∗e, c

∗
t ) and sends c∗ to A.

4. On extraction query 〈id〉 that id 6= id∗, CH responds the same way as in Phase 1.

5. Finally, A outputs a guess β′ for β and wins if β′ = β.
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CycleTest

Constants: id, m.

Input: id = (id1, . . . idn) and ce = (c1,e, . . . , cn,e).

1. If id 6= id1, output ⊥.

2. Assign sk2 := m.

3. For i = 2 to n, do:

(a) If CheckSK(ski, idi) = 0, output ⊥.

(b) Else, compute sk(i mod n)+1 ← PIBE.Decrypt(ski, ci,e), and output ⊥ if
PIBE.Decrypt fails.

4. If CheckSK(sk1, id1) = 0, output ⊥; else output sk1.

Figure 8: CycleTest takes as input id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e), and has constants
id and m hardwired. The size of this circuit is padded to be the maximum of itself and
CycleReject as described in Figure 9.

CycleReject

Constants: none

Input: id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e).

1. Output ⊥.

Figure 9: CycleReject takes as input id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e), and has no
constant hardwired.

Game 1 (replace CycleTestid∗,mβ with CycleReject):

3. CH picks a random bit β, runs c∗e ← PIBE.Encrypt(mpk, id∗,mβ), c∗t ← diO(λ,CycleReject).
CH sets c∗ = (c∗e, c

∗
t ) and sends c∗ to A.

Lemma 7.2. The advantages of any PPT adversary in Game 0 and Game 1 are negligibly
close, given the security of the diO and the security of PIBE.

Proof. Suppose there is a PPT adversary A whose advantages in Game 0 and Game 1 are not
negligibly close, then we can build an algorithm B = (S,D) breaks the assumed security of diO
by interacting with A as follows.
S(λ) behaves as follows: It invokes a PIBE challenger and receivesmpk, where (mpk,msk)←

PIBE.Setup(λ). It then begin to simulates A’s challenger by sending him mpk. In Phase 1, when
Amakes extraction queries 〈id〉, S forwards them to its own PIBE challenger and sends the reply
back. In the challenge phase, upon receiving (id∗,m0,m1) from A, S submits (id∗,m0,m1) to its
PIBE challenger, and receives back a punctured master secret key msk({id∗}) and a ciphertext
c∗e ← Π.Encrypt(mpk, id∗,mγ) (where γ is unknown to S). S then picks a random bit β ∈ {0, 1},
sets aux = (mpk,msk({id∗}), id∗,mβ, β), builds C0 = CycleTestid∗,mβ and C1 = CycleReject.

Before describing D, we have to show that S satisfies the conditions needed for invoking
the indistinguishability property of diO, i.e., given (C0, C1, aux) no PPT adversary can find
a differing input of C0 and C1 with non-negligible probability. Observe that C0 outputs skid∗

on some inputs and ⊥ on the rest inputs, whereas C1 always outputs ⊥. A reduction to the
security of PIBE is immediate: suppose given (C0, C1, aux) there exists an adversary F that
can find a differing-input, say x, of C0 and C1 with non-negligible probability, then S obtains
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a valid secret key skid∗ for id∗ with the same probability by simply computing C0(x) and thus
totally breaks the assumed IND-CPA security of PIBE (always guess the right γ).12

Now, we can describe the algorithm D. Given diO(Cb) and auxiliary information aux =
(mpk,msk({id∗}), id∗,mβ, β) as challenge, D continues to interact with A with the aim to
determine b. To prepare the challenge ciphertext, D computes c∗e ← Π.Encrypt(mpk, id∗,mβ),
sets c∗t ← diO(Cb), and sends c∗ = (c∗e, c

∗
t ) to A. When A makes extraction query 〈id〉 with

id 6= id∗, D responds with skid ← PIBE.Derive(msk({id∗}), id). Finally, A outputs a guess β′

for β. If A wins, D outputs 1.
By construction, if D receives diO(C0) (resp. diO(C1)), the probability that D outputs 1 is

exactly the probability of A winning in Game 0 (resp. Game 1).
The lemma follows.

Lemma 7.3. No PPT adversary has non-negligible advantage in Game 1, given the starting
PIBE is IND-CPA secure.

Proof. Suppose there is an adversaryA that wins in Game 1 with some non-negligible advantage,
we show how to build an algorithm B breaks the IND-CPA security of PIBE with the same
advantage. B interacts with A as follows:

1. Given mpk where (mpk,msk)← PIBE.Setup(λ), B sends mpk to A.

2. On extraction query 〈id〉, B forwards the query to its own challenger and sends the reply
to A.

3. Upon receiving (id∗,m0,m1) from A, B submits (id∗,m0,m1) to its own challenger. Af-
ter receiving back a punctured master secret keymsk({id∗}) and challenge ciphertext c∗e ←
PIBE.Encrypt(mpk, id∗,mβ) for some unknown bit β, B computes c∗t ← diO(λ,CycleReject),
and sends c∗ = (c∗e, c

∗
t ) to A.

4. On extraction query 〈id〉 that id 6= id∗, B responds with punctured master secret key
msk({id∗}), i.e., skid ← PIBE.Derive(msk({id∗}), id).

5. Finally, A outputs a guess β′ for β. B forwards β′ to its own challenger.

It is easy to check that B simulates Game 1 perfectly. Therefore, if A wins in Game 1 with
some non-negligible advantage, B breaks the assumed IND-CPA security of PIBE with the same
advantage. The lemma follows.

Combining all these above, the theorem immediately follows.

We then show the above construction is n-circular insecure.

Proposition 7.4. The above construction is n-circular insecure.

Proof. We construct a PPT algorithm Test that breaks the n-circular security of the above con-
struction as follows. After receiving mpk from the challenger, Test randomly picks n identities
id = (id1, . . . , idn) and submits them to the challenger, and receives back c = (c1, . . . , cn). To
decide whether c is a circle encryption or a zero encryption, Test first parses ci = (ci,e, ci,t). By
definition, ci,t is diO(λ,CycleTestidi,m), where m is either sk(i mod n)+1 or 0|m|. Test then sets
ce = (c1,e, . . . , cn,e) and runs c1,t(id, ce), and outputs 0 if the result of is ⊥ and 1 otherwise. If
c is a cycle encryption w.r.t. id, the output of c1,t(id, ce) is 1. If c is a zero encryption, the
output of c1,t(id, ce) must be ⊥ with overwhelming probability. Otherwise, this means that Test
algorithm finds n identities whose secret keys are all zero strings with non-negligible probability,
which contradicts to the assumed IND-CPA security of PIBE.

12A subtlety here is we have to require Π to satisfy perfect correctness, i.e., valid secret keys always decrypt
correctly. Most known IBE schemes based on number-theoretic assumptions meet this requirement.
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Clearly, Test is a PPT algorithm and wins the n-circular security game with advantage
negligibly close to 1/2. The desired result follows.

7.3 Separation from IND-CCA security

The above counterexample shows that in the IBE setting IND-CPA security does not necessarily
imply n-circular security. It is interesting to know if stronger notions, say IND-CCA security,
imply n-circular security.

Toward this question, we extend the framework [BHW15] of building counterexamples for
circular security to the IBE setting in Appendix A, which might be of independent interest. In
this framework, a so called n-cycle tester plays a crucial role. More precisely, an IND-CPA (resp.
IND-CCA) secure IBE scheme in combination with a compatible IND-CPA secure n-cycle tester
instantly imply a new IBE scheme which is IND-CPA (resp. IND-CCA) secure but n-circular
insecure. Note that our counterexample described above can certainly serve as an IND-CPA
n-cycle tester, thereby a counterexample of n-circular security from IND-CCA security follows
immediately via this framework by coupling with an IND-CCA secure IBE scheme.
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A A Framework for Generating Counterexamples for n-Circular
Security

Recently, Bishop et al. [BHW15] introduced a new abstraction called an n-cycle tester which
greatly simplifies the process of finding and describing counterexamples in the PKE setting. In
this section, we extend n-Cycle Tester to the IBE setting, and show its usefulness in separating
n-circular security from IND-CPA/IND-CCA security for IBE.

Definition A.1 (n-Cycle Tester). An n-cycle tester in the IBE setting consists of four algo-
rithms specified as follows:

• Setup(λ): on input a security parameter λ, output master public key mpk and master
secret key msk.

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid for id.

• Encrypt(mpk, id,m): on input mpk and an identity id ∈ I and a message m ∈M , output
a ciphertext c.

• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), output “1” to indicate c
forms encryption cycle w.r.t. id and “0” otherwise.

Testing Correctness. For any id = (id1, . . . , idn) ∈ In, the advantage of algorithm Test
defined in the following experiment is non-negligible in Λ.

AdvTest(λ) = Pr


β′ = β :

(mpk,msk)← Setup(λ);
ski ← Extract(msk, idi) for each i ∈ [n];

β
R←− {0, 1};

For i = 1 to n :
β = 1 : ci ← Encrypt(mpk, idi, sk(i mod n)+1);

β = 0 : ci ← Encrypt(mpk, idi, 0
`);

c← (c1, . . . , cn);
β′ ← Test(id, c);


− 1

2
,

where the probability is taken over the random coins used by Setup, Extract, Encrypt, and Test.

IND-CPA Security. Similar to the case in the PKE setting [BHW15], an n-cycle tester in
the IBE setting can be viewed as an IBE scheme without decryption algorithm, and recall the
IND-CPA security experiment for IBE is not involved with decryption algorithm. Therefore,
we can use the same security experiment (c.f. Definition 3.5) to capture the IND-CPA security
of n-cycle tester in the IBE setting.
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A.1 CPA Counterexample from Cycle Testers

Let Π = (Setup,Extract,Encrypt,Decrypt) be an IBE scheme with identity space I and message
space M1 × M2 and secret key space SK1 ⊆ M1. Let Γ = (Setup,Extract,Encrypt,Test) be
an n-cycle tester with the same identity space I and message space M2 and secret key space
SK2 ⊆M2. We compose them to an IBE scheme Ψ with identity space I and secret key space
SK = SK1 × SK2 and message space M = M1 ×M2.

• Setup(λ): run (mpk1,msk1)← Π.Setup(λ) and (mpk2,msk2)← Γ.Setup(λ), output mas-
ter public key mpk = (mpk1,mpk2) and master secret key msk = (msk1,msk2).

• Extract(msk, id): on input msk = (msk1,msk2) and an identity id ∈ I, compute sk1 ←
Π.Extract(msk1, id) and sk2 ← Γ.Extract(msk2, id), output a secret key skid = (sk1, sk2).

• Encrypt(mpk, id,m): on input mpk = (mpk1,mpk2) and an identity id ∈ I and a message
m = (me,mt) ∈ M , compute ce ← Π.Encrypt(mpk1, id,m), ct ← Γ.Encrypt(mpk2, id,mt),
output a ciphertext c = (ce, ct).

• Decrypt(skid, c): on input skid = (sk1, sk2) and c = (ce, ct), outputm← Π.Decrypt(sk1, ce).

• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), parse ci = (ci,e, ci,t) for each
i ∈ [n], set ct = (c1,t, . . . , cn,t), output Γ.Test(id, ct).

The correctness of Ψ.Test follows from that of Γ.Test. If (id, c) is an circle encryption (resp.
zero encryption) under Ψ, then (id, ct) is an circle encryption (resp. zero encryption) under Γ.
Thereby, Ψ.Test distinguishes the two cases with the same advantage as that of Γ.Test.

It remains to show the above construction is IND-CPA secure. This follows by a simple
hybrid argument based on the fact that an encryption under Ψ is a combination of two IND-
CPA secure encryptions, from Π and Γ respectively. We omit this proof as it is simplified version
of the proof for Theorem A.1 that we show later.

A.2 CCA Counterexample from Cycle Testers

Let Π = (Setup,Extract,Encrypt,Decrypt) be an IBE scheme with identity space I and message
space M1 ×M2 × C2 and secret key space SK1 ⊆ M1. Let Γ = (Setup,Extract,Encrypt,Test)
be a n-Cycle Tester with the same identity space I and message space M2 and secret key space
SK2 ⊆M2 and ciphertext space C2. We compose them to an IBE scheme Ψ with identity space
I and message space M = M1 ×M2 and secret key space SK = SK1 × SK2.

• Setup(λ): run (mpk1,msk1)← Π.Setup(λ) and (mpk2,msk2)← Γ.Setup(λ), output mas-
ter public key mpk = (mpk1,mpk2) and master secret key msk = (msk1,msk2).

• Extract(msk, id): on input msk = (msk1,msk2) and an identity id ∈ I, compute sk1 ←
Π.Extract(msk1, id) and sk2 ← Γ.Extract(msk2, id), output a secret key skid = (sk1, sk2).

• Encrypt(mpk, id,m): on input mpk = (mpk1,mpk2) and an identity id ∈ I and a mes-
sage m = (me,mt) ∈ M , compute ct ← Γ.Encrypt(mpk2, id,mt), then compute ce ←
Π.Encrypt(mpk1, id, (me,mt, ct)), output a ciphertext c = (ce, ct).

• Decrypt(skid, c): on input skid = (sk1, sk2) and ciphertext c = (ce, ct), run Π.Decrypt(sk1, ce).
If the decryption result is not of the form (me,mt, ct), then output ⊥. Otherwise, output
the message m = (me,mt).

• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), parse ci = (ci,e, ci,t) for each
i ∈ [n], set ct = (c1,t, . . . , cn,t), output Γ.Test(id, ct).

Similar to the IND-CPA setting as analyzed above, the correctness of Ψ.Test follows from
that of Γ.Test. We then proceed to examine the security of Ψ.
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Theorem A.1. If Π is an IND-CCA secure IBE scheme, Γ is an IND-CPA secure n-cycle
tester, then Ψ is an IND-CCA secure IBE scheme.

Proof. We prove the IND-CCA security of Ψ via a sequence of games. Let m0 and m1 be the
messages submitted by the adversary. We begin with Game 0 in which CH encrypts m0 as the
challenge ciphertext, and end with the hybrid that CH encrypts m1 as the challenge ciphertext.
In all these games, mpk and msk distribute identically to the real game, but either the structure
of the challenge ciphertext or the rules of answering the decryption queries are changed in each
two successive games. We specify these games as follows.

Game 0 (encrypt m0 = (m0,e,m0,t) into c∗): CH interacts with A as follows.

1. Run (mpk,msk)← Setup(λ).

2. On extraction query 〈id〉, return skid ← Extract(msk, id).

3. On decryption query 〈id, c〉, return m← Decrypt(skid, c).

4. A submits (id∗,m0,m1) to CH, where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).

5. CH runs c∗ ← Encrypt(mpk, id∗,m0): computes c∗t ← Γ.Encrypt(mpk2, id
∗,m0,t), c

∗
e ←

Π.Encrypt(mpk1, id
∗, (m0,e,m0,t, c

∗
t )), return c∗ = (c∗e, c

∗
t ).

6. On extraction query 〈id〉 where id 6= id∗, return skid ← Extract(msk, id).

7. On decryption query 〈id, c〉 where (id, c) 6= (id∗, c∗), output m← Decrypt(skid, c).

Game 1 (modify the decryption rules in Phase 2 step 7):

7. On decryption query 〈id, c〉 6= 〈id∗, c∗〉 where c = (ce, ct) and c∗ = (c∗e, c
∗
t ), if id = id∗ and

ce = c∗e directly output ⊥, otherwise output m← Decrypt(skid, c).

Game 2 (encrypt m1,t rather than m0,t when generating c∗t ):

5. CH computes c∗t ← Γ.Encrypt(mpk2, id
∗,m1,t), computes c∗e as in Game 1, outputs c∗ =

(c∗e, c
∗
t ).

Game 3 (encrypt (m1,e,m1,t, c
∗
t ) rather than (m0,e,m0,t, c

∗
t ) when generating c∗e):

5. CH computes c∗e ← Π.Encrypt(mpk1, id
∗, (m1,e,m1,t, c

∗
t )), computes c∗t as in Game 2, out-

puts c∗ = (c∗e, c
∗
t ).

Game 4 (modify back the decryption rules in Phase 2 step 7):

7. On decryption query 〈id, c〉 6= 〈id∗, c∗〉, output m← Decrypt(skid, c).

Lemma A.2. Game 0 and Game 1 are equivalent.

Proof. We note that the only difference between Game 0 and Game 1 is that when answering
decryption queries in Phase 2 CH directly returns ⊥ if id = id∗ and ce = c∗e. Note that for
decryption query of the form 〈id∗, (c∗e, ct)〉: if ct = c∗t , the query is illegal and will be rejected
with ⊥; if ct 6= c∗t , the ciphertext is not valid since according to the construction of Ψ the third
element of the decryption result of c∗e must be c∗t . Thus, such change of decryption rule in Phase
2 is purely conceptual and the two games are perfectly equivalent.

Lemma A.3. Game 1 and Game 2 are computationally indistinguishable, given Γ is IND-CPA
secure.

Proof. We prove this lemma by giving a reduction to the IND-CPA security of Γ. Suppose
there is a PPT adversary A that can distinguish Game 1 and Game 2, then we can construct
an algorithm B against the IND-CPA security of Γ by interacting with A as follows:
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1. Given mpk2 (where (mpk2,msk2) ← Γ.Setup(λ)) from the n-cycle tester challenger, B
runs (mpk1,msk1)← Π.Setup(λ), sets mpk = (mpk1,mpk2) and sends mpk to A.

2. On extraction query 〈id〉, B first computes sk1 ← Π.Extract(msk1, id) on its own, then
makes extraction query 〈id〉 to its challenger and gets back sk2 ← Γ.Extract(msk2, id), B
sends skid = (sk1, sk2) to A.

3. On decryption query 〈id, c〉, B computes sk1 ← Π.Extract(msk1, id), then answers the
decryption query with sk1. Note that the second component of skid, namely sk2, is not
used in decryption, thus B can handle all decryption queries correctly.

4. A submits (id∗,m0,m1), where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).

5. B submits (id∗,m0,t,m1,t) to its own challenger, and receives back a challenge cipher-
text c∗t ← Γ.Encrypt(mpk2, id

∗,mβ,t) for some unknown bit β. B then computes c∗e ←
Π.Encrypt(mpk1, id

∗, (m0,e,m0,t, c
∗
t )), and sends c∗ = (c∗e, c

∗
t ) to A.

6. On extraction query 〈id〉 6= 〈id∗〉, B responds the same way as in Phase 1.

7. On decryption query 〈id, c〉 6= 〈id∗, c∗〉, B responds the same way as in Phase 1 except
directly reject the queries of the form 〈id∗, (c∗e, ct)〉 with ⊥.

In the above, B perfectly simulates Game 1 if c∗t is a Γ-encryption of m0,t, and B perfectly
simulates Game 2 if c∗t is a Γ-encryption of m1,t. Therefore, B has the same advantage against
the IND-CPA security of Γ as A distinguishes Game 1 and Game 2. According to the hypothesis
that Γ is IND-CPA secure, Game 1 and Game 2 are computationally indistinguishable. This
proves the lemma.

Lemma A.4. Game 2 and Game 3 are computationally indistinguishable, given the IND-CCA
security of Π.

Proof. We prove this lemma by giving a reduction to the IND-CCA security of Π. Suppose
there is a PPT adversary A that can distinguish Game 2 and Game 3, then we can construct
an algorithm B against the IND-CCA security of Π by interacting with A as follows:

1. Given mpk1 (where (mpk1,msk1) ← Π.Setup(λ)) from the IBE challenger, B computes
(mpk2,msk2)← Γ.Setup(λ), sets mpk = (mpk1,mpk2), and sends mpk to A.

2. On extraction query 〈id〉, B computes sk2 ← Γ.Extract(msk2, id) on its own, makes ex-
traction query 〈id〉 to its challenger and gets back sk1 ← Π.Extract(msk1, id), B sends
skid = (sk1, sk2) to A.

3. On decryption query 〈id, c〉, B parses c = (ce, ct), then submits decryption query 〈id, ce〉
to its challenger and gets the reply (me,mt, c

′
t). If c′t 6= ct, B returns ⊥. Otherwise, B

returns (me,mt).

4. A submits (id∗,m0,m1), where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).

5. B computes c∗t ← Γ.Encrypt(mpk2, id
∗,m1,t), submits (id∗, (m0,e,m0,t, c

∗
t ), (m1,e,m1,t, c

∗
t ))

to its challenger. As soon as B receives back c∗e ← Π.Encrypt(mpk1, id
∗, (mβ,e,mβ,t, c

∗
t ))

for some unknown bit β from its challenger, B sends c∗ = (c∗e, c
∗
t ) to A.

6. On extraction query 〈id〉 6= 〈id∗〉, B responds the same way as in Phase 1.

7. On decryption query 〈id, c〉 6= 〈id∗, c∗〉, B responds the same way as in Phase 1 except
directly rejects the queries of the form 〈id∗, (c∗e, ct)〉 with ⊥. Note that B is able to handle
all decryption queries in Phase 2 properly since it can always make decryption queries
〈id, ce〉 6= 〈id∗, c∗e〉 to its challenger.

According to the definitions, B perfectly simulates Game 2 if c∗e is a Π-encryption of
(m0,e,m0,t, c

∗
t ), and B perfectly simulates Game 3 if c∗e is a Π-encryption of (m1,e,m1,t, c

∗
t ).

Therefore, B has the same advantage against the IND-CPA security of Π as A distinguishing
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Game 2 and Game 3. According to the hypothesis that Π is IND-CCA secure, Game 2 and
Game 3 are computationally indistinguishable. This proves the lemma.

Lemma A.5. Game 3 and Game 4 are equivalent.

Proof. The only difference between Game 3 and Game 4 is that CH directly returns ⊥ when
id = id∗ and ce = c∗e in Game 3 whereas CH returns ⊥ when id = id∗ and c = c∗ in Game 4.
Nevertheless, the response to all the decryption queries are identical. This case is the mirror
image of the argument made in proof of Lemma A.2. This proves the lemma.

According to the definition, in Game 0 c∗ is a Ψ-encryption of m0, while in Game 4 c∗ is a
Ψ-encryption of m1. The above lemmas indicates that Game 0 and Game 4 are computationally
indistinguishable. Thus, the desired IND-CCA security immediately follows.
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