
Constant-Time Higher-Order
Boolean-to-Arithmetic Masking

Michael Hutter and Michael Tunstall

Cryptography Research,
425 Market Street, 11th Floor, San Francisco,

CA 94105, United States
{michael.hutter,michael.tunstall}@cryptography.com

Abstract. Converting a Boolean mask to an arithmetic mask, and vice
versa, is often required in implementing side-channel resistant instances
of cryptographic algorithms that mix Boolean and arithmetic operations.
In this paper, we describe a method for converting a Boolean mask to an
arithmetic mask that runs in constant time for a fixed order. We propose
explicit algorithms for a second-order secure Boolean-to-arithmetic mask
conversion that uses 31 instructions and for a third-order secure mask
conversion that uses 74 instructions. We show that our solution is more
efficient than previously proposed methods for any choice of masking-
scheme order, typically by several orders of magnitude.

Keywords: Side-channel analysis, higher-order DPA, mask switching,
countermeasures, Boolean-to-arithmetic mask conversion, SHA.

1 Introduction

Differential Power Analysis (DPA) was introduced as a means of extracting cryp-
tographic keys by Kocher, Jaffe, and Jun [1] in 1999, who noted that the power
consumption of a device was dependent on the operations being performed, and
the value of the operands used. They showed that one could acquire the power
consumption over time while a device was computing a cryptographic algorithm,
and analyze the acquisitions to determine the cryptographic key. Subsequently,
it was shown that the same analyses could be conducted by exploiting other side
channels, e.g., the changes in the electromagnetic field around a microproces-
sor [2,3,4].

A typical DPA attack involves acquiring a series of acquisitions while a device
is operating on varying inputs and analyzing the power traces by comparing
what occurred at the same point in time in each trace. The simplest analysis
is to choose one bit of an intermediate state and divide the set of acquisitions
depending on the value of this bit, make two mean traces and subtract one trace
from the other point-by-point. A significant difference should be visible in the
trace corresponding to where this intermediate state was created by the device.
This is typically referred to as a first-order analysis, as each point in the output
trace is dependent on the same point in time in the acquisitions. If two (or more)

points in each trace are combined, we refer to as a second-order (or higher-order)
analysis.

To prevent the side-channel analyses of a cryptographic implementation, one
would typically apply a random mask to the input such that operating on the
masked data is indistinguishable from random data. A common masking tech-
nique is Boolean masking, where an input word gets masked by a random value.
All operations are then performed using the Boolean-masked data. However,
there exist many cryptographic algorithms that require both Boolean and arith-
metic operations, such as integer addition, e.g., SHA-2 [5], ChaCha [6], Blake [7],
Skein [8], IDEA [9], RC6 [10], etc. Masked versions of these algorithms therefore
require changing Boolean masks into arithmetic masks, and vice versa, which
we refer to as “Boolean-to-arithmetic” and “Arithmetic-to-Boolean” mask con-
versions, respectively.

In 2001, Goubin proposed an efficient constant-time method for Boolean-to-
arithmetic mask conversion [11]. His method is secure against first-order analysis,
but does not resist second-order attacks. The solutions in the literature use
recursive methods [12,13], where the missing carry bits are calculated using a
masked-adder structure, or Look-up Table based methods [14,15], that perform
pre-computations and store intermediates in memory. It has also been suggested
that higher-order versions of Boolean-to-arithmetic mask conversion cannot be
done in constant time [14].

In this paper, we present novel algorithms for higher-order secure Boolean-
to-arithmetic mask conversion. All proposed methods run in constant time and
are independent on the input word size. In particular, we present a second-order
secure algorithm that requires only 31 instructions and a third-order secure
algorithm that requires only 74 instructions. Furthermore, we provide a gener-
alized algorithm that provides side-channel resistance for masking schemes of
any higher order. Our n-th order secure algorithm is significantly faster than the
best recursive method in the literature [12] for any order, often by several orders
of magnitude.

Outline. The paper is organized as follows. In Section 2, we describe the Boolean-
to-arithmetic mask conversion problem and discuss previous work. In Section 3
we present a novel constant-time algorithm to perform a secure second-order
Boolean-to-Arithmetic mask conversion, and generalize it to higher orders in
Section 4. Section 5 discusses implementation considerations in both software
and hardware. Conclusions are drawn in Section 6.

2 Boolean-to-Arithmetic Masking

In this paper we shall consider operations available in a typical microprocessor
with registers of a fixed bit length. Specifically, we shall consider values that are
in the field (Z2k ,⊕,+) where k ∈ Z≥0 is the bit length of the registers used, ⊕ is
a bitwise XOR operation and + is integer addition. Other operations are available
in a typical microprocessor, but are not relevant to the algorithms described in
this paper.

2

We define the problem of changing a Boolean mask into an arithmetic mask
as follows:

Definition 1 (Boolean-to-Arithmetic Mask Conversion Problem). Given
x′ = x ⊕ r, where x, r ∈ (Z2k ,⊕,+), as a Boolean masked secret x and r is a
random value taken from Z2k , we wish to be able to compute x′′ = x + s, with
s ∈ (Z2k ,⊕,+) where k ∈ Z≥0, without revealing any information on x through
some side channel. Where x′′ is the arithmetically masked secret x and s is a
random value taken from Z2k .

One näıve approach would be to perform the conversion directly by simply
removing the Boolean mask and by adding an arithmetic mask afterwards, i.e.,

(x′ ⊕ r) + s = ((x⊕ r)⊕ r) + s = x+ s = x′′ ,

using the notation given in Definition 1. This, however, would manipulate x
directly, allowing an attacker to use side-channel analysis to determine that a
hypothesized value of x is manipulated during the mask conversion. Hence, one
needs to use an algorithm where all intermediates are statistically independent
of the secret x.

Definition 1 generalizes to higher-order masking schemes as follows:

Definition 2 (Higher-Order Boolean-to-Arithmetic Mask Conversion
Problem). Assuming a masking scheme of order n. Then, given x′ = x⊕ r1 ⊕
. . . ⊕ rn, where x, ri ∈ (Z2k ,⊕,+), k ∈ Z≥0 for i ∈ {1, . . . , n}, as a Boolean
masked secret x and n a random values, ri for i ∈ {1, . . . , n}, taken from Z2k ,
we wish to compute x′′ = x+s1+. . .+sn, with si ∈ (Z2k ,⊕,+) for i ∈ {1, . . . , n},
without revealing any information on x through some side channel. Where x′′ is
the arithmetically masked secret x and si, for i ∈ {1, . . . , n}, are random values
taken from Z2k .

Higher-order mask conversion methods require that the masks used for the
arithmetically masked output are not related to the Boolean masked input to
avoid any side-channel leakage. If we consider, without loss of generality, a
second-order secure Boolean-to-arithmetic mask conversion that uses the same
input masks r1 and r2 to mask the output, information would leak through the
carries generated from the arithmetic masks. For ease of expression, we shall con-
sider an attacker able to XOR two intermediate states together in a second-order
side-channel attack (a very rough approximation of a second-order side-channel
attack, we refer the interested reader to Mangard et al. [16] for a more detailed
discussion). If an attacker can combine the input x′ and the output x′ using
some side channel they obtain the following:

x′ ⊕ x′′ = (x⊕ r1 ⊕ r2)⊕ (x+ r1 + r2)

= (x⊕ r1 ⊕ r2)⊕ ((x⊕ r1 ⊕ c1)⊕ r2 ⊕ c2)

= c1 ⊕ c2,

3

where c1 and c2 represent the carries produced in the additions x + r1 and
(x + r1) + r2, respectively, as an XOR difference. That is, ci = (x + ri) ⊕ x ⊕ ri
for i ∈ {1, 2}. We note that c1 and c2 are dependent on x and could be used to
conduct a side-channel attack.

To avoid this source of higher-order leakage, the output of the mask conver-
sion needs to be masked with values that are independent of the input Boolean
masks. This can be achieved through re-freshing the masks during the conver-
sion, either once or periodically, as required [12].

In the following, we describe some of the methods for mask conversion that
have been presented in the literature.

2.1 Goubin’s Method

Goubin proposed an efficient method of converting a Boolean mask to an arith-
metic mask at CHES 2001 [11]. His method requires a constant number of in-
structions, is resistant to first-order side-channel analysis and, at the time of
writing, remains the most efficient algorithm known.

The essential observation of Goubin was that the function

ΦZ(a, b) : Z2 −→ Z : a, b 7−→ (a⊕ b) + b (1)

is affine over F2, from which it follows that (Φ(a, b)⊕ Φ(a, 0)) is linear for any
value of b. Trivially, we note the same function is valid in the field (Z2k ,⊕,+), for
any k ∈ Z≥0, and in the remainder of this paper we shall consider the function:

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (2)

a, b 7−→ (a⊕ b) + b

for some k ∈ Z≥0.
Taking the notation from Definition 1, for some arbitrary k in Z≥0, the above

allows one to mask the computation of Φ(x′, r) = (x′⊕ r) + r with an additional
random value γ ∈ Z2k . We recall x, r ∈ (Z2k ,⊕,+) and x′ = x⊕ r. Then,

Φ(x′, γ ⊕ r) = (x′ ⊕ (γ ⊕ r)) + (γ ⊕ r) , (3)

which can be followed by an unmasking step using

Φ(x′, γ) = (x′ ⊕ γ) + γ . (4)

Hence, a secure Boolean-to-arithmetic mask conversion can be performed using
the following relationship:

x′′ = x′ ⊕ Φ(x′, γ)⊕ Φ(x′, γ ⊕ r)
= x′ ⊕ [(x′ ⊕ γ) + γ]⊕ [(x′ ⊕ (γ ⊕ r)) + (γ ⊕ r)] (5)

where, following the notation in Definition 1, s = r, i.e., x′′ = x+r. One can im-
plement this conversion using 7 instructions (2 additions and 5 XOR operations),
as described by Goubin, and is recalled in Algorithm 1.

Goubin then proceeds to give a proof of the following:

4

Algorithm 1: First-order Secure Boolean-to-Arithmetic Masking

Input: x′ = x⊕ r, the mask r, a random integer γ, where
x, r, γ ∈ (Z2k ,⊕,+)

Output: x′′ = x+ r

1 t← x′ ⊕ γ
2 t← t+ γ
3 t← t⊕ x′
4 γ ← γ ⊕ r
5 z ← x′ ⊕ γ
6 z ← z + γ
7 z ← z ⊕ t

return z

Lemma 1. An implementation of Algorithm 1 is resistant to first-order side-
channel analysis.

Proof. From Algorithm 1, we can obtain the list of intermediate values V0, . . . , V6
that appear during the computation of (5):

V0 = γ
V1 = γ ⊕ r
V2 = x′ ⊕ γ
V3 = (x′ ⊕ γ) + γ

V4 = [(x′ ⊕ γ) + γ]⊕ x′
V5 = x′ ⊕ γ ⊕ r
V6 = (x′ ⊕ γ ⊕ r) + (γ ⊕ r)

If we suppose that γ is uniformly distributed on Z2k , for some arbitrary k ∈ Z≥0,
it is easy to see that:

– the values V0, V1, V2, and V5 are uniformly distributed on Z2k .
– the distributions of V3, V4, and V6 are dependent on x′ but not on r. ut

We note that this proof holds in the field (Z2k ,⊕,+), for any k ∈ Z≥0, but
not in Z since the carry produced by the most significant bits of x combined
with the arithmetic mask will depend on x.

2.2 Recursive Methods

One can also convert a Boolean masked value into an arithmetically masked value
using an addition operation, which generates the required carries that can then
be applied to the Boolean masked input value bit-by-bit. The first application
was proposed by Goubin [11] as a means of converting an arithmetic mask to a
Boolean mask (a topic beyond the scope of this paper), and a similar technique
was described by Golić in 2007 who proposed using the same method for Boolean-
to-arithmetic mask conversion in hardware [17]. Both conversion methods have
a complexity of O(n) with regard to the bit length of the inputs because all n
bits of the input word are processed individually.

5

Another hardware-oriented design was proposed by Schneider et al. [13], who
presented a conversion method based on a Carry Look-ahead Adder (CLA) struc-
ture which reduces the complexity to O(log n). They adopted a threshold imple-
mentation [18,19] approach to avoid first and second-order side-channel leakage.

Recursive software implementations were proposed by, for example, Karroumi
et al. They described a method adding two Boolean masked values in O(n)
time [20]. Coron et al. [21] were the first to propose the use of Carry Look-ahead
Adders in software, thus reducing the complexity to O(log n). Both works made
use of masked AND operations, as defined by Trichina [22] and Ishai et al. [23],
respectively.

2.3 Higher-Order Boolean-to-Arithmetic Masking

Coron et al. [12] proposed a method for higher-order Boolean-to-arithmetic mask
conversion (see Definition 2) at CHES 2014. Their algorithm calculates carries
recursively and is built on masked AND and XOR operations that are resistant
to higher-order side-channel analysis. Using these secure operations, one can
construct an adder resistant to higher-order side-channel analysis with which one
can also convert an arithmetic mask to a Boolean mask (the latter topic being
beyond the scope of this paper). The authors reported that their fastest h-th
order Boolean-to-arithmetic mask conversion has a minimum time complexity
of O((2h+ 1)2n), with regard to the bit length of the inputs n.

The first look-up table-based conversion algorithm that resists second-order
attacks was proposed by Vadnala and Großschädl in 2013 [14], where, to achieve
the desired level of resistance, the algorithm adopts the generic second-order se-
cure S-box implementation of Rivain et al. [24]. Using this method, following the
notation in Definition 2, one computes xi + r for fixed r, where xi ∈ {0, . . . , 2k},
and then chooses the correct masked output from all the possible values gener-
ated. However, a table with 2k entries is required which is problematic if k is
not small.

An improved version was proposed by Vadnala and Großschädl in 2015 [15],
where an input k-bit word would be split into p words with smaller bit widths
of ` ≤ 8 bits. The conversion is then done on each word individually, and the
results combined. Their final solution has a time complexity of O(2`+2p) and a
memory requirement of O(2`+2(`+ 2)).

3 Constant-Time Second-Order Boolean-to-Arithmetic
Mask Conversion

In this section, we present a novel method to perform second-order secure Boolean-
to-arithmetic mask conversion whose time complexity is independent of the
input-word size. Following the notation in Definition 2, we consider a Boolean
masked input x′ = x⊕r1⊕r2, where x, r1, r2 ∈ (Z2k ,⊕,+), and an arithmetically
masked output x′′ = x+ s1 + s2, where s1, s2 ∈ (Z2k ,⊕,+).

6

In the following, we try to express the ideas behind the mask conversion as
clearly as possible. This leads to many instances where an expedient expression
will leak if implemented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt to enumerate all the
possible leaks that could be caused by incorrectly ordering operations.

3.1 Definitions

We recall (2), defined over the field (Z2k ,⊕,+), for any k ∈ Z≥0

Φ(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (6)

a, b 7−→ (a⊕ b) + b

for any k ∈ Z≥0. We shall also use the function

Φ̄(a, b) : (Z2k ,⊕,+)2 −→ (Z2k ,⊕,+) (7)

a, b 7−→ (a⊕ b)− b

for any k ∈ Z≥0. While subtraction is not a field operation, we shall use it
as a convenient way of expressing the addition with the additive inverse of an
operand. Similar to Φ, Goubin notes that

x− r = x′ ⊕ Φ̄(x′, γ)⊕ Φ̄(x′, γ ⊕ r) , (8)

using the notation in Definition 1, and that Φ̄ is also affine over F2 [11].

3.2 The Algorithm

Our conversion method consists of three steps.

1. We compute (x+ (r1 ⊕ r2 ⊕ α)) + s1 for some random values α, s1 ∈ Z2k .
2. We compute s2 − (r1 ⊕ r2 ⊕ α) for some random s2 ∈ Z2k .
3. Add the results of Steps 1 and 2, resulting in x+ s1 + s2.

We describe these steps in detail below.

Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5),

x+ r = (x⊕ r)⊕ Φ(x⊕ r, γ)⊕ Φ(x⊕ r, γ ⊕ r) .

Let r = r1 ⊕ r2 and γ = γ1 ⊕ γ2, where r1, r2, γ1, γ2 ∈ Z2k , then

x+ (r1 ⊕ r2) = (x⊕ r1 ⊕ r2)⊕ Φ(x⊕ r1 ⊕ r2, γ1 ⊕ γ2)

⊕ Φ(x⊕ r1 ⊕ r2, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) , (9)

or, more succinctly, using the notation from Definition 2,

x+ (r1 ⊕ r2) = x′ ⊕ Φ(x′, γ1 ⊕ γ2)⊕ Φ(x′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) . (10)

7

Given that Φ is affine over F2, we can split the first Φ operation giving,

x+ (r1 ⊕ r2) = Φ(x′, γ1)⊕ Φ(x′, γ2)⊕ Φ(x′, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) . (11)

If one were to compute x+(r1⊕r2) using the above, a second-order side-channel
attack would be possible for same reason that we require the input and output
mask to be different. That is, the combined leakage of the input x′ and x+(r1⊕r2)
will depend on x (see Section 2).

To overcome this problem, we apply an extra Boolean mask, α ∈ Z2k , to x′

as follows:

(x⊕ α) + (r1 ⊕ r2) = Φ(x′ ⊕ α, γ1)⊕ Φ(x′ ⊕ α, γ2)⊕ Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2) .
(12)

However, (x ⊕ α) + (r1 ⊕ r2) is not useful but can be modified given that Φ is
affine over F2, resulting in

x+ (r1 ⊕ r2 ⊕ α) =Φ(x′ ⊕ α, γ1)⊕ Φ(x′ ⊕ α, γ2)⊕
Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α) . (13)

If we consider (13), we note that the combination of x+(r1⊕ r2⊕α) with either
Φ(x′ ⊕ α, γ1) or Φ(x′ ⊕ α, γ2) will not be statistically independent of x. We can,
prevent this by applying a Boolean mask s1 ∈ Z2k , giving:

(x+ (r1 ⊕ r2 ⊕ α))⊕ s1 =Φ(x′ ⊕ α, γ1)⊕ Φ(x′ ⊕ α, γ2)⊕
Φ(x′ ⊕ α, γ1 ⊕ γ2 ⊕ r1 ⊕ r2 ⊕ α)⊕ s1 . (14)

The order that (14) is computed is important to avoid combining masks that
would allow a second-order side-channel attack. However, this is quite straight-
forward and will not be detailed here.

Then, given (x+ (r1 ⊕ r2 ⊕ α)) ⊕ s1, one can apply Goubin’s first-order
Boolean to arithmetic mask conversion, as described in Algorithm 1, which will
produce

x+ (r1 ⊕ r2 ⊕ α) + s1 (15)

without any first and second-order leakage.

Step 2: The second step is another Boolean-to-arithmetic mask conversion to
securely compute s2 − (r1 ⊕ r2 ⊕ α), where s2 represents one of the two output
masks. For this purpose, one can use the first-order secure Boolean-to-arithmetic
mask conversion defined in (5), where we define s′2 = s2 ⊕ (r1 ⊕ r2 ⊕ α) as the
Boolean masked input and s′′2 = s2 − (r1 ⊕ r2 ⊕α) as the arithmetically masked
output of the following conversion. Then, given (5), we have

s′′2 = s′2 ⊕ Φ̄(s′2, δ)⊕ Φ̄(s′2, δ ⊕ r1 ⊕ r2 ⊕ α) , (16)

where δ is a random value taken from Z2k . If we let δ = r1, then

s′′2 = s′2 ⊕ Φ̄(s′2, r1)⊕ Φ̄(s′2, r2 ⊕ α) , (17)

8

and, given that Φ̄ is affine over F2, this can be rewritten as

s2 − (r1 ⊕ r2 ⊕ α) = Φ̄(s′2, r1)⊕ Φ̄(s′2, r2)⊕ Φ̄(s′2, α) . (18)

Equation (17) requires a total of 7 XORs and 2 additions, whereas Equation (18)
requires 5 XORs and 3 additions. Thus, the first equation might be attractive for
hardware implementations in cases where additions are more expensive than XOR

operations.

Step 3: We can now compute the desired arithmetically masked value x′′ by
combining the output of (15) and (18), i.e.,

x′′ = ((x+ (r1 ⊕ r2 ⊕ α) + s1)) + (s2 − (r1 ⊕ r2 ⊕ α))

= x+ s1 + s2 .

3.3 Implementation Details

Algorithm 2 shows the second-order secure Boolean-to-arithmetic mask conver-
sion described above, which requires 31 instructions.

Algorithm 2: Second-order Secure Boolean-to-Arithmetic Masking.

Input: x′ = x⊕ r1 ⊕ r2 with x, r1, r2 ∈ Z2k and random numbers
γ1, γ2, α, s1, s2 ∈ Z2k for some k ∈ Z≥0

Output: x′′ = x+ s1 + s2

1 z ← γ1 ⊕ r1
2 z ← z ⊕ γ2
3 z ← z ⊕ r2
4 u← x′ ⊕ z
5 z ← z ⊕ α
6 u← u+ z
7 v ← x′ ⊕ γ1
8 v ← v ⊕ α
9 v ← v + γ1

10 w ← x′ ⊕ γ2
11 w ← w ⊕ α

12 w ← w + γ2
13 z ← r2 ⊕ s1
14 u← u⊕ r2
15 u← u⊕ v
16 u← u⊕ w
17 v ← u⊕ s1
18 v ← v + r2
19 w ← u⊕ z
20 v ← v ⊕ w
21 w ← u+ z
22 z ← v ⊕ w

23 w ← α⊕ r2
24 u← s2 ⊕ r1
25 u← u− w
26 w ← w ⊕ s2
27 v ← w ⊕ r1
28 w ← w − r1
29 u← u⊕ v
30 u← u⊕ w
31 z ← z + u

return z

We prove the security of Algorithm 2 using the probing model proposed by
Ishai, Sahai, and Wagner [23], where we seek to show that it is secure for up to
two probes. For this, we use the refined model proposed by Barthe et al. [25]
where we make use of the t-NI (Non-Interference) construction, with t being the
security order. This allows us to prove that an algorithm is only vulnerable to a
side-channel attack of order n, where n ≥ t+ 1 (rather than n ≥ 2 t+ 1 required
by Ishai et al.).

9

Lemma 2. (2-NI of Algorithm 2) Let {x′, r1, r2} be the input shares of Al-
gorithm 2, and {x′′, s1, s2} be the output shares for any set of t intermediate
variables and any subset |k| ≤ tk of output shares such that t + tk ≤ 2, there
exists a subset I of indices with |I| ≤ 2, such that the distribution of those t
intermediate variables, and the output shares can be perfectly simulated from
{x′, r1, r2}.

Proof. We construct two sets I = {x′, r1, r2} and J = {γ1, γ2, α, s1, s2} corre-
sponding to the input shares and the random values required, respectively. We
denote ai, for 1 ≤ i ≤ 31, as the intermediate values in Algorithm 2, the defini-
tion of which means that is easy to see that each ai can be perfectly simulated
from the input shares and/or the required random values. That is, any internal
variable within Algorithm 2 can be perfectly simulated from a subset of elements
from I and/or J .

This was validated by implementing a simulator and verifying that the dis-
tributions of all ai, for 1 ≤ i ≤ 31 are identical for all values of x ∈ Z24 , without
loss of generality. Likewise, the simulator also verified the joint distribution of
all possible combinations of pairs of elements in {x′, r1, r2} ∪ {γ1, γ2, α, s1, s2} ∪
{a1, . . . , a31} (i.e., the union of the set of inputs, required random values, and
intermediate states) are identical for all values of x ∈ Z24 , without loss of gen-
erality. Thus, demonstrating that Algorithm 2 is resistant to first and second
order side-channel analysis.

We do not attempt to prove that Algorithm 2 is t-SNI (Strong Non-Interference)
secure because this would require completely changing masks at the end of the
algorithm which we do not consider necessary in all cases. Moreover, the main
advantage of using t-SNI is to break up an algorithm into smaller gadgets that
can be verified independently. The use of arithmetic operations makes it hard to
divide our algorithm up into independent gadgets with any confidence.

4 Higher-Order Boolean-to-Arithmetic Masking

To generalize the algorithm described in Section 3, we consider an n-th order
Boolean masking scheme, for n > 2, that masks the secret value x with random
masks r1, . . . , rn. That is, we wish to take x′ = x⊕

⊕n
i=1 ri and compute x′′ =

x+
∑n

i=1 si without allowing any n-th order leakage to occur (see Definition 2).
In the following, we try to express the ideas behind the mask conversion as

clearly as possible. This leads to many instances where an expedient expression
will leak if implemented as shown because of the ordering of operations. We
highlight some of the issues in the text but do not attempt to enumerate all the
possible leaks that could be caused by incorrectly ordering operations.

4.1 The Algorithm

Our conversion method consists of four steps.

10

1. We compute x + (α⊕
⊕n

i=1 ri) +
⊕n−1

i=1 µi for some random values α, µi ∈
Z2k .

2. We compute (α⊕
⊕n

i=1 ri) +
⊕n−1

i=1 µi +
⊕n−1

i=1 κi for some random values
κi ∈ Z2k .

3. We compute
⊕n−1

i=1 κi +
∑n

i=1 si for all output masks si ∈ Z2k .
4. We combine the results of Steps 1, 2, and 3 to obtain x+

∑n
i=1 si.

We describe these steps in detail below.

Step 1: We consider Goubin’s solution to the first-order Boolean-to-arithmetic
mask conversion (5):

x+ r = (x⊕ r)⊕ Φ(x⊕ r, γ)⊕ Φ(x⊕ r, γ ⊕ r) .

Let r = r1 ⊕ . . . ⊕ rn and γ = γ1 ⊕ . . . ⊕ γn, where r1, . . . , rn, γ1, . . . , γn ∈ Z2k ,
then following the reasoning given in Section 3.2, we can state

x+

n⊕
i=1

ri = x′ ⊕ Φ

(
x′,

n⊕
i=1

γi

)
⊕ Φ

(
x′,

n⊕
i=1

γi ⊕ ri

)
. (19)

Given that Φ is affine over F2, we can split the first Φ operation giving,

x+

n⊕
i=1

ri = ((n ∧ 1)x′)⊕

(
n⊕

i=1

Φ(x′, γi)

)
⊕ Φ

(
x′,

n⊕
i=1

γi ⊕ ri

)
. (20)

where ∧ is a logical-AND operation. That is, we require an XOR with x′ only when
n is odd.

To prevent second-order leakage caused by the combination of the input x′

and the output of (20), we apply an extra Boolean mask, α ∈ Z2k , following the
reasoning given in Section 3, i.e.,

x+

(
α⊕

n⊕
i=1

ri

)
= ((n ∧ 1) (x′ ⊕ α))⊕

(
n⊕

i=1

Φ(x′ ⊕ α, γi)

)

⊕ Φ

(
x′ ⊕ α, α⊕

n⊕
i=1

γi ⊕ ri

)
, (21)

where we compute Φ(x′ ⊕ α, γi), for i ∈ {1, . . . , n}, as

x′, α, γi 7−→ ((x′ ⊕ γi)⊕ α) + γi

to avoid any second-order leakage caused by combining (x′⊕α) with the output
of (21).

However, the computation would still cause a higher-order leak, i.e., when x′,
α, and (21) get combined. Thus, we are required to add extra masks to prevent
this leakage, and we use µi for i ∈ {1, . . . , n−1} and also ξi for i ∈ {1, . . . , n−2},

11

as follows:(
x+

(
α⊕

n⊕
i=1

ri

))
⊕

n−1⊕
i=1

µi =

n−2⊕
i=1

ξi ⊕ ((n ∧ 1) (x′ ⊕ α))

⊕

(
n−1⊕
i=1

Φ(x′ ⊕ α, γi)⊕ µi

)
⊕ Φ(x′ ⊕ α, γn))

⊕ Φ

(
x′ ⊕ α, α⊕

n⊕
i=1

γi ⊕ ri

)
⊕

n−2⊕
i=1

ξi . (22)

Note that the masks ξi are used to protect the intermediate values of (22) as
there is not a secure way of ordering these terms without causing leakage. The
masks, therefore need to be added at the beginning of the computation and
removed at the end.

The result is then passed through a function that will perform a Boolean-to-
arithmetic mask conversion to replace the Boolean operation with an arithmetic
operation, i.e.,

x+

(
α⊕

n⊕
i=1

ri

)
+

n−1⊕
i=1

µi = (((n− 1) ∧ 1) ε)

⊕

(
n−1⊕
i=1

Φ(ε, δi)

)
⊕ Φ

(
ε,

n−1⊕
i=1

µi ⊕ δi

)
, (23)

where ε = (x+ (α⊕
⊕n

i=1 ri))⊕
⊕n−1

i=1 µi and δi are random values taken from
Z2k for i ∈ {1, . . . , n− 1}.

Step 2: In the second step, we wish to compute (α⊕
⊕n

i=1 ri) +
⊕n−1

i=1 µi +⊕n−1
i=1 κi, for some random values κi ∈ Z2k . In which, we view the combination

of any elements of {κ1, . . . , κn−1}, {µ1, . . . , µn−1}, and, likewise, the combination

of any elements of (r1⊕ . . .⊕rn) as secret. Let ε = α⊕
⊕n

i=1 ri⊕
⊕n−1

i=1 κi, then,
given (20), we can compute(
α⊕

n⊕
i=1

ri

)
+

n−1⊕
i=1

κi = (((n− 1) ∧ 1) ε)⊕

(
n−1⊕
i=1

Φ(ε, βi)

)
⊕ Φ

(
ε,

n−1⊕
i=1

κi ⊕ βi

)
,

(24)

where βi are random values taken from Z2k for i ∈ {1, . . . , n− 1}. We note that
the order in which operands are treated is particularly important. For exam-
ple, the terms of the XOR sums need to be computed separately, i.e.,

⊕n
i=1 ri ⊕⊕n−1

i=1 κi = (κ1 ⊕ r1)⊕ (κ2 ⊕ r2)⊕ . . .⊕ (κn−1 ⊕ rn−1)⊕ rn .

We further need to add additional masks to avoid higher-order leakages.
Similarly as in Step 1, we use (n− 1) masks, i.e., we use µi for i ∈ {1, . . . , n− 1}

12

as follows:(
α⊕

n⊕
i=1

ri +

n−1⊕
i=1

κi

)
⊕

n−1⊕
i=1

µi = (((n− 1) ∧ 1) ε) (25)

⊕

(
n−1⊕
i=1

Φ(ε, βi)⊕ µi

)
⊕ Φ

(
ε,

n−1⊕
i=1

κi ⊕ βi

)
.

Finally, we can perform a Boolean-to-arithmetic mask conversion to replace the
Boolean operation with an arithmetic operation as follows(

α⊕
n⊕

i=1

ri +

n−1⊕
i=1

κi

)
+

n−1⊕
i=1

µi = (((n− 1) ∧ 1) ε)⊕ (26)(
n−2⊕
i=1

Φ(ε, λi)

)
⊕ Φ

(
ε,

n−1⊕
i=1

µi ⊕
n−2⊕
i=1

λi

)
,

where ε =
(
α⊕

⊕n
i=1 ri +

⊕n−1
i=1 κi

)
⊕
⊕n−1

i=1 µi and λi are random values taken

from Z2k for i ∈ {1, . . . , n− 2}.

Step 3: In the third step, we wish to compute
⊕n−1

i=1 κi +
∑n

i=1 si, for some
random values to be used as output masks si ∈ Z2k , for i ∈ {1, . . . , n}. This can
be achieved by conducting an (n−2)th-order secure Boolean-to-arithmetic mask
conversion (e.g., using Algorithm 1 when n = 3 or Algorithm 2 when n = 4 etc.)

using the input
⊕n−1

i=1 κi ⊕
⊕n−2

i=1 si, resulting in

n−1⊕
i=1

κi +

n−2∑
i=1

si . (27)

Then one can add sn−1 and sn to get the desired result, i.e.,

n−1⊕
i=1

κi +

n∑
i=1

si . (28)

Step 4: We add the output of each step. Adding the output of Step 1 to the
output of Step 3, produces

x+

(
α⊕

n⊕
i=1

ri

)
+

n−1⊕
i=1

µi +

n−1⊕
i=1

κi +

n∑
i=1

si . (29)

Then subtracting the output of Step 2 results in

x+

n∑
i=1

si . (30)

13

Complexity
Each of the steps described above, without the use of Boolean-to-arithmetic mask
conversions of a lower order, will have a linear increase in time complexity with
regard to the order of the side-channel resistance. That is, have time complexity
O(n). The recursive call (in Step 3) to a Boolean-to-arithmetic mask conversion
of a lower order will increase the time complexity to O

(
n2
)
.

4.2 Implementation Details

Algorithm 3 shows a third-order secure Boolean-to-arithmetic mask conversion
as an example of the method described above, which requires 74 instructions.

Algorithm 3: Third-order Secure Boolean-to-Arithmetic Masking.

Input: x′ = x⊕ r1 ⊕ r2 ⊕ r3 with x, r1, r2, r3 ∈ Z2k and random numbers
γ1, γ2, γ3, β1, β2, δ1, δ2, κ1, κ2, α, µ1, µ2, s1, s2, s3 ∈ Z2k for some k ∈ Z≥0

Output: x′′ = x+ s1 + s2 + s3

1 z ← κ1 ⊕ r1
2 z ← z ⊕ κ2

3 z ← z ⊕ r2
4 z ← z ⊕ r3
5 z ← z ⊕ α
6 w ← z ⊕ β1
7 u← w + β1
8 u← u⊕ µ1

9 v ← z ⊕ β2
10 v ← v + β2
11 u← u⊕ v
12 v ← w ⊕ κ1

13 v ← v ⊕ β2
14 v ← v ⊕ κ2

15 w ← v ⊕ z
16 v ← v + w
17 v ← v ⊕ µ2

18 w ← u⊕ v
19 z ← r3 ⊕ µ1

20 z ← z ⊕ µ2

21 u← w ⊕ r3
22 u← u+ r3
23 v ← w ⊕ z
24 v ← v + z
25 u← u⊕ w

26 w ← u⊕ v
27 u← x′ ⊕ γ1
28 u← u⊕ α
29 u← u+ γ1
30 u← u⊕ γ1
31 u← u⊕ µ1

32 v ← x′ ⊕ γ2
33 v ← v ⊕ α
34 v ← v + γ2
35 u← u⊕ v
36 v ← x′ ⊕ γ3
37 v ← v ⊕ α
38 v ← v + γ3
39 u← u⊕ α
40 u← u⊕ v
41 z ← γ1 ⊕ r1
42 z ← z ⊕ γ2
43 z ← z ⊕ r2
44 z ← z ⊕ γ3
45 z ← z ⊕ r3
46 v ← z ⊕ α
47 z ← x′ ⊕ z
48 z ← z + v
49 z ← z ⊕ u
50 z ← z ⊕ µ2

51 z ← z ⊕ x′
52 z ← z ⊕ γ1;
53 u← z ⊕ δ1
54 u← u+ δ1
55 v ← z ⊕ δ2
56 v ← v + δ2
57 u← u⊕ v
58 v ← δ1 ⊕ µ2

59 v ← v ⊕ δ2
60 v ← v ⊕ µ1

61 z ← z ⊕ v;
62 z ← z + v
63 z ← z ⊕ u;
64 v ← κ1 ⊕ s1
65 u← v + κ2

66 u← u⊕ v
67 u← u⊕ κ2

68 v ← κ2 ⊕ s1
69 v ← v + κ1

70 u← u⊕ v
71 u← u+ s2
72 u← u+ s3
73 z ← z + u
74 z ← z − w

return z

As previously, we proceed with a 3-NI proof:

Lemma 3. (3-NI of Algorithm 3) Let {x′, r1, r2, r3} be the input shares of
Algorithm 3, and {x′′, s1, s2, s3} be the output shares for any set of t intermediate

14

variables and any subset |k| ≤ tk of output shares such that t + tk ≤ 3, there
exists a subset I of indices with |I| ≤ 3, such that the distribution of those t
intermediate variables, and the output shares can be perfectly simulated from
{x′, r1, r2, r3}.
Proof. We construct two sets I = {x′, r1, r2, r3} and J = {γ1, γ2, γ3, β1, β2,
δ1, δ2, κ1, κ2, α, µ1, µ2, s1, s2, s3} corresponding to the input shares and the
random values required, respectively. We denote ai, for 1 ≤ i ≤ 74, as the
intermediate values in Algorithm 3, the definition of which means that is easy
to see that each ai can be perfectly simulated from the input shares and/or the
required random values. That is, any internal variable within Algorithm 3 can
be perfectly simulated from a subset of elements from I and/or J .

This was validated by implementing a simulator and verifying that the dis-
tributions of all ai, for 1 ≤ i ≤ 74 are identical for all values of x ∈ Z24 , without
loss of generality. Likewise, the simulator also verified the joint distribution of
all possible combinations of pairs and triplets of elements in {x′, r1, r2, r3} ∪
{γ1, γ2, γ3, β1, β2, δ1, δ2, κ1, κ2, α, µ1, µ2, s1, s2, s3}∪{a1, . . . , a74} (i.e., the union
of the set of inputs, required random values, and intermediate states) are identi-
cal for all values of x ∈ Z24 , without loss of generality. Thus, demonstrating that
Algorithm 3 is resistant to first, second, and third-order side-channel analysis.

The number of inputs required for Algorithm 3 would seem to be too large
for an efficient exhaustive search through all the possible sources of third-order
leakage. However, we note that in simulating individual operations only a subset
of the inputs or random values are required. The effect is similar to the use of
gadgets in t-SNI proofs [25], but the use of arithmetic operations means that
there is often interference between different parts of the algorithm. Detecting
were this occurs to allow one to break such algorithms into gadgets, is left for
future research.

4.3 Comparison

Table 1 compares the performance of our proposed method with related work.
We consider the work of Coron et al. [12] who proposed a higher-order secure
Boolean-to-arithmetic algorithm; we do not consider LUT-based methods as they
would require a pre-compuation phase and additional memory (see Section 2).
We estimated the operation count of all methods by considering all necessary
operations excluding the generation of random numbers, loop-instruction over-
heads, and variable initialization.

We estimate the costs for Coron et al.’s higher-order Boolean-to-arithmetic
mask conversion method [12] as follows. For a single masked AND (SecAnd) oper-
ation [12, Section 3] we estimate the number of required instructions to be

2 · (n+ 1) · n+ 25,

with n being the security order. Furthermore, we estimate the higher-order secure
masked addition function (SecAddGoubin) as defined in [12, Section 3.2] to be

(2 · (n+ 1) · n+ 26 + n) + (k − 1) · [2 · (n+ 1) · n+ 27] + (2 · (n+ 1)),

15

Table 1. Operation count for different Boolean-to-arithmetic mask conversion methods
up to a security order of 8.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Goubin’s method 7 - - - - - - -

Coron et al. (8 bits) - 909 1,369 1,962 2,619 3,372 4,189 5,171

Coron et al. (16 bits) - 1,781 2,681 3,842 5,131 6,612 8,221 10,155

Coron et al. (32 bits) - 3,525 5,305 7,602 10,155 13,092 16,285 20,123

Coron et al. (64 bits) - 7,013 10,553 15,122 20,203 26,052 32,413 40,059

Our proposal - 31 74 123 242 386 557 753

where k represents the bit-width of the operands. The Expand function has an
estimated complexity of 2 · (n+ 1) and the FullXor function requires 2 · n+ n.

Using these estimations, we calculated the total operation count for higher-
order Boolean-to-arithmetic mask conversion as defined in [12, Section 5] for
register sizes of 8, 16, 32, and 64 bits and provide the results in Table 1. It shows
that our solution is faster than Coron et al.’s method for all considered register
widths and security orders, often by several orders of magnitude.

Performance details. Table 2 lists the number of required instructions in terms
of arithmetic and Boolean operations up to a security order of 8. We list Goubin’s
solution in the first-order security case, and our solution in the other cases.
Note that Coron et al.’s solution [12] does not require arithmetic operations, we
therefore refer to the total instruction count given in Table 1.

Table 2. Number of required arithmetic and Boolean operations of our proposed
method up to a security order of 8.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Arithmetic operations 2 8 18 28 42 56 74 110

Boolean operations 5 23 56 95 200 330 483 643

Required number of random variables. We list the number of required
random variables to perform a Boolean-to-arithmetic mask conversion in Table 3.
We estimate the number of random variables according to [12] and, for simplicity,
we do not consider optimization techniques such as re-using random inputs or
common sub-expression elimination. Furthermore, we do not apply optimization
techniques for our proposed method for security order 4 and above (for lower

16

Table 3. Comparison of required number of random variables.

B → A Security Order

Conversion 1 2 3 4 5 6 7 8

Goubin’s method 1 - - - - - - -

Coron et al. (8 bits) - 66 127 221 331 465 615 806

Coron et al. (16 bits) - 122 239 421 635 897 1,191 1,566

Coron et al. (32 bits) - 234 463 821 1,243 1,761 2,343 3,086

Coron et al. (64 bits) - 458 911 1,621 2,459 3,489 4,647 6,126

Our proposal - 5 15 26 42 59 81 104

security orders, we give the same number of required random variables from the
explicit algorithms proposed in this paper). For completeness, we also list the
number of required random variables for the first-order mask conversion method
proposed by Goubin [11].

5 Implementation Considerations

All algorithms described in this paper have the property that all calculated
intermediates (and relevant higher-order combinations thereof) are statistically
independent of the secret value x. In the past, it has been shown that the claimed
security order of those algorithms is usually lower when they are directly applied
in software or hardware. For example, in a software implementation intermediate
values are often unintentionally combined by the underlying hardware architec-
ture. One typical cause of leakage is where intermediate values of the algorithm,
which are stored in some registers, get overwritten with other intermediate re-
sults of the algorithms. Other sources of leakage include the combination of
internal signals that depend on two or more intermediate values which are ei-
ther stored in registers (register interferences) or currently (or previously) used
in operations in the processor’s datapath. Hence, implementations of first-order
side-channel resistant algorithms may show first-order leakages in practice, and
the same holds true for higher-order secure algorithms whose resistance level has
shown to be actually lower than claimed [26].

Direct applications of secure algorithms in hardware require similar care when
implemented. Integrated circuits in CMOS, for example, have the property that
many gates make output transitions several times per clock cycle. Such tran-
sitions (glitches) contain information about the secret value, even though all
intermediates have been carefully masked at the algorithm level [27]. State-of-
the-art countermeasures try to get rid of those physical effects by applying (ad-
ditional) countermeasures at the gate level (e.g., using secure logic styles such as
dual-rail logic [28]) or algorithm level (e.g., using secret sharing and multi-party
computation such as threshold implementations [18]).

17

Näıve implementation of algorithms that have been proven secure—in the
sense that every calculated intermediate is statistically independent of the secret
value—can, therefore, not be automatically considered resistant to side-channel
analysis. However, the algorithms proposed in this paper can be combination
with other countermeasures in order to guarantee resistance at the claimed secu-
rity order. We do not provide any further details here since the countermeasures
required will vary from one platform to another.

6 Conclusions

In this paper, we present Boolean-to-arithmetic mask conversion methods that
can be computed in constant time for a masking scheme of a given order. Our
proposed methods have a complexity of O(n2) with regard to the security order
n and are independent of the input-word size. We present explicit algorithms
for a second-order secure mask conversion that requires 31 instructions, i.e., a
multiple of about 4 compared to the instruction count of Goubin’s method (7
instructions), and a third-order secure mask conversion that requires 74 instruc-
tions, i.e., a factor of about 10 more expensive compared to Goubin’s method.
We also describe a generic conversion method for masking schemes of any higher
order. All methods offer a better performance than the state-of-the-art by at
least one order of magnitude and also require fewer random values also by at
least one order of magnitude.

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In Wiener, M.J., ed.:
CRYPTO ’99. Volume 1666 of LNCS., Springer, Heidelberg (1999) 388–397

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-channel(s).
In Kaliski Jr., B.S., Koç, Ç.K., Paar, C., eds.: CHES 2003. Volume 2523 of LNCS.,
Springer, Heidelberg (2003) 29–45

3. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In Koç, C.K., Naccache, D., Paar, C., eds.: CHES 2001. Volume 2162 of LNCS.,
Springer, Heidelberg (2001) 251–261

4. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In Attali, I., Jensen, T.P., eds.: E-smart 2001.
Volume 2140 of LNCS., Springer, Heidelberg (2001) 200–210

5. National Institute of Standards and Technology (NIST): FIPS-180-4: Secure Hash
Standard (August 2015) http://csrc.nist.gov/publications/fips/fips180-4.

6. Bernstein, D.J.: Chacha, a variant of salsa20 (2008)
7. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 Proposal BLAKE

(December 2010) https://131002.net/blake.
8. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,

J., Walker, J.: The Skein Hash Function Family (October 2010) http://www.skein-
hash.info.

9. Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In
Damg̊ard, I., ed.: Workshop on the Theory and Application of Cryptographic Tech-
niques. Volume 473 of LNCS., Springer, Heidelberg (1990) 389–404

18

10. Rivest, R.L., Robshaw, M., Sidney, R., Yin, Y.: The RC6 Block Cipher.
ftp://ftp.rsasecurity.com/pub/rsalabs/rc6/rc6v11.pdf (August 1998)

11. Goubin, L.: A Sound Method for Switching between Boolean and Arithmetic
Masking. In Koç, Ç.K., Naccache, D., Paar, C., eds.: CHES 2001. Volume 2162 of
LNCS., Springer, Heidelberg (2001) 3–15

12. Coron, J.S., Großschädl, J., Vadnala, P.K.: Secure Conversion between Boolean
and Arithmetic Masking of Any Order. In Batina, L., Robshaw, M., eds.: CHES
2014. Volume 8731 of LNCS., Springer, Heidelberg (2014) 188–205

13. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic Addition over Boolean
Masking—Towards First- and Second-Order Resistance in Hardware. In Malkin,
T., Kolesnikov, V., Lewko, A.B., Polychronakis, M., eds.: ACNS 2015. Volume
9092 of LNCS., Springer, Heidelberg (2015) 559–578

14. Vadnala, P.K., Großschädl, J.: Algorithms for Switching between Boolean and
Arithmetic Masking of Second Order. In Gierlichs, B., Guilley, S., Mukhopadhyay,
D., eds.: SPACE 2013. Volume 8204 of LNCS., Springer, Heidelberg (2013) 95–110

15. Vadnala, P.K., Großschädl, J.: Faster Mask Conversion with Lookup Tables. In
Mangard, S., Poschmann:, A.Y., eds.: COSADE 2015. Volume 9064 of LNCS.,
Springer, Heidelberg (2015) 207–221

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks — Revealing the
Secrets of Smart Cards. Springer (2007)

17. Golić, J.D.: Techniques for Random Masking in Hardware. IEEE Transactions on
Circuits and Systems 54(2) (2007) 291–300

18. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In Ning, P., Qing, S., Li, N., eds.: ICICS 2006.
Volume 4307 of LNCS., Springer, Heidelberg (2006) 529–545

19. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. Journal of Cryptology 24(2) (2011)
292–321

20. Karroumi, M., Richard, B., Joye, M.: Addition with Blinded Operands. In Prouff,
E., ed.: COSADE 2014. Volume 8622 of LNCS., Springer, Heidelberg (2014) 41–55

21. Coron, J.S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from Arith-
metic to Boolean Masking with Logarithmic Complexity. In Leander, G., ed.: FSE
2015. Volume 8731 of LNCS., Springer, Heidelberg (2015) 130–149

22. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptology ePrint Archive 2003 (2003) 236

23. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against
Probing Attacks. In Boneh, D., ed.: CRYPTO 2003. Volume 2729 of LNCS.,
Springer, Heidelberg (2003) 463–481

24. Rivain, M., Dottax, E., Prouff, E.: Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis. In Nyberg, K., ed.: FSE 2008.
Volume 5086 of LNCS., Springer, Heidelberg (2008) 127–143

25. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.

26. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.X.: On the Cost
of Lazy Engineering for Masked Software Implementations. In Joye, M., Moradi,
A., eds.: CARDIS 2014. Volume 8968 of LNCS., Springer, Heidelberg (2014) 64–81

27. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In Menezes, A., ed.: CT-RSA 2005. Volume 3376 of LNCS., Springer, Hei-
delberg (2005) 351–365

19

28. Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-level masking under a path-
based leakage metric. In Batina, L., Robshaw, M., eds.: CHES 2014. Volume 8731
of LNCS., Springer, Heidelberg (2014) 580–597

20

