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Abstract

It is widely understood that we are just human beings rather than being almighty; as a
result, when utilizing cryptographic technology in practice, we have always to rely on imper-
fect randomness to various extent. For ordinary cryptography (e.g., encryption), if a person
misuses a random number generator (e.g., generating a vulnerable ciphertext), then the person
him/herself will suffer the damage caused by the misuse (e.g., leakage of his/her sensitive plain-
text). In contrast, in this paper we give a concrete example of the following serious situation
for multiparty (in particular, two-party) computation in the semi-honest model: Imagine that
a party replaces the party’s (uniform and independent) internal random tape with an output of
some random function. Then, even if the original two-party protocol is statistically (i.e., almost
perfectly) secure and the output of the random function is statistically (i.e., almost perfectly)
indistinguishable from uniform, it may still happen that the party with the replaced random
tape can now get the other party’s secret input. Due to the unavoidable imperfect randomness
mentioned above, statistical indistinguishability would be the “best possible” quality of the ran-
dom tape in practice, but then, our example may mean that the semi-honest security alone of a
two-party protocol can guarantee nothing about security for a party’s input in real situations.

A technical remark is that, the output of the random function in our example depends also on
the party’s input for our two-party protocol. But the author thinks that the true reason of such
a paradoxical phenomenon is at another point. Namely, there is a famous “clever” technique for
security proofs of two-party protocols, where a simulator for a party’s view emulates a transcript
during the protocol first, and then emulates the party’s random tape depending consistently on
the transcript. This is actually in the opposite order from real, where the transcript does depend
on the random tape; and, in fact, we prove that such a problem caused by “manipulated” random
tapes is prevented (at least under the two conditions for statistical security mentioned above)
provided the simulator in the original security proof is constructed without this “order-reversing”
technique, even if the output of the random function still depends on the party’s local input.

1 Introduction

The difference between the ideal random numbers in theoretical models and the non-ideal (or
sometimes even terrible) random numbers in the real world is always a major worrying problem
in the theory and applications of cryptographic technology. For example, Heninger et al. revealed
in 2012 [10] that, a surprisingly large part of TLS and SSH servers in the world at that time had
serious vulnerability that were caused by inappropriate generation of random cryptographic keys.
This is in fact a kind of “worst” example, but in general, it seems to be even beyond the art
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of human being to generate an ideal random number (moreover, on an accurate, “non-random”
digital computer). Accordingly, for establishing secure cryptographic systems in the real world, we
have always been using random numbers that are non-ideal to various extent (e.g., computationally
indistinguishable from ideal, (seemingly) statistically close to ideal, or sometimes even more casual
“non-cryptographic” pseudorandom generators (PRGs) such as the Mersenne Twister [16]).

There are mainly two directions of efforts towards achieving security in the real world by using
non-ideal random numbers available for human. One direction, from the viewpoint of cryptographic
researchers, is to theoretically design a cryptographic scheme and prove its security, under a hy-
pothesis on the use of a kind of imperfect randomness. Here we refer to only a few papers [5, 6] from
the very wide research area of possibility and impossibility of security with imperfect randomness.
The other direction is to try to realize random numbers as close to ideal as possible, by either (or
combining both of) software-oriented strategies (i.e., PRGs) or utilizing entropy originated from
the aspect of real computers being hardware devices (e.g., thermal noise arising during the run) or
from outside of computers (e.g., timing of program execution or rhythm of users’ keystrokes).

In any case, usually a designer of a cryptographic scheme puts some theoretical hypothesis
on the quality of random numbers (e.g., to be ideally random) used by an implementation of the
scheme, and then we (or, at least some theoretical cryptographers) would think that a user of the
system may still utilize “bad” random numbers not following the scheme’s specification, but only at
the user’s own risk. This paradigm would be (at least to some extent) reasonable for most cases of
“single-party” cryptographic primitives. For example, in an encryption scheme, if a user encrypts
his/her sensitive information by using low-quality random numbers, which will enable an adversary
to reveal the encrypted information, then the person who suffers the damage of the information
leakage is the user him/herself who misused the random numbers. This can be a motivation for a
user to utilize as “good” random numbers as possible when encrypting his/her data.

Now we move to the case of secure multiparty computation; to simplify the argument, we focus
on two-party computation in this paper, where each of the two parties has his/her local input and
they want to compute the value of some function of their inputs by communicating with each other
while keeping each party’s local input still secret against the other party (except any information
implied by the function value itself). Several security models (the semi-honest model, the malicious
model, etc.) for two-party computation have been proposed depending on the supposed level of
trust in each party, and it is at least theoretically feasible (with a certain cryptographic assumption,
if any) to perform secure two-party computation for any function under each security model (see
e.g., Chapter 7 of Goldreich’s book [7], in particular Theorem 7.4.1 in Section 7.4). Moreover, by
virtue of its high practical usefulness, the topic of secure two-party computation has recently been
attracting interests from broader communities not only within cryptography or mathematics; e.g.,
we refer to two recent papers [19, 20] from major journals in the area of bioinformatics.

Anyway, even in a two-party computation protocol, if a party utilizes “bad” random numbers
during the joint computation and the misuse of random numbers causes leakage of this party’s
secret input to the other party, then this would still be within the aforementioned “at the user’s
own risk” paradigm. But how about the opposite case, where a party’s misuse of random numbers
causes leakage of the other party’s secret input (to the party of originally misusing the random
numbers)? This problem is the subject of the present paper.

1.1 Our Results

Briefly summarizing, our main result in this paper is to give a concrete example of a pair of a
(polynomial-time executable) two-party computation protocol π (between two parties P1 and P2)
and a (polynomial-time computable) function F with the following “paradoxical” property:
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• The protocol π is secure against semi-honest P1 in the standard sense (cf. Section 3.1). We
note that π is also secure against semi-honest P2 (under some computational assumption).

• The output distribution of the function F with uniformly random input is statistically indis-
tinguishable from the internal (uniformly) random tape for P1.

• However, the protocol π becomes NOT secure against P1 even when P1 only utilizes the ran-
dom output of F as the internal random tape for π, which is even statistically indistinguishable
from the original random tape, and thereafter behaves as a semi-honest party. More precisely,
in this case, P1 can know the secret input for the other party P2 with high probability. (See
Section 3.2 for our formulation of “security against a party with randomness preparation”.)

See Section 4.1 and Section 4.2 for the construction of the π and F , respectively. The other major
result in this paper will be explained in Section 1.2 below.

The semi-honest model is one of the most standard theoretical models for secure two-party
computation, where each party is supposed to behave during a joint execution of a protocol ex-
actly as specified by the protocol (without e.g., sending some maliciously forged message to the
other party at a step), while a semi-honest party may try to infer some non-trivial information
on the other party’s input (that is not directly implied from the local input and the local output
for the party) from all the data viewed by the party during the protocol execution. Then the
security against a semi-honest party is defined to mean that, the “view” by the party during the
protocol execution can be (polynomial-time) simulated in a (computationally, or sometimes even
statistically) indistinguishable manner, from the input and output for the party only; this then
guarantees that, any information that can be inferred during a real protocol execution can also be
inferred from the party’s input and output only, which is thus only trivial information. Here we
clarify that, the “view” by the party formally consists of the party’s local input, the content of the
party’s internal random tape used in the protocol execution, and all the messages sent from the
other party during the protocol. The most important point here is that a party’s view involves the
party’s random tape, to be mentioned below several times again. The security against semi-honest
party is widely regarded as a “minimal security requirement” for a two-party computation proto-
col to be practically reasonable. (We note that the semi-honest security is in fact not enough in
many practical applications of two-party computation, and hence other security models, such as
the malicious model, have also been proposed and widely studied; see below for further comments.)

We note that the semi-honest model originally supposes each party to use a perfectly uniform
and independent random tape, therefore our result mentioned above is not a contradiction in theory ;
the “attack” by a party utilizing an output of a function F instead of the original random tape
is “out of scope” of the semi-honest security of the original protocol π. However, it is practically
infeasible as mentioned above to generate an ideally random tape, therefore using “statistically
indistinguishable from ideal” random tapes would be a “best possible” way in practice. From this
standpoint, whenever we allow the use of such “best possible” random tapes, our example would
mean that the semi-honest security alone of a protocol can guarantee nothing about the security
in a practical situation, and it cannot be excused by the aforementioned “by the user’s own risk”
paradigm. (It should be remarked here that, the random output of our function F in fact depends
also on the party’s local input for the protocol π; see Section 1.2 for further discussion on this.)

1.2 Discussion on Impact of Our “Counterexample” Protocol

Here we discuss how our results in this paper, especially the “counterexample” mentioned in Section
1.1, are meaningful or are worth considering as a real problem for secure two-party computation.
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First of all, we mention that our “counterexample” does not originate in any technical intricacy
to formalize computational security of two-party computation, in particular, not originate in the
use of non-uniform distinguishers to define the computational indistinguishability of simulator’s
output from the real view. Indeed, the simulator for the view of P1 in the original protocol π
is in fact statistically indistinguishable (see Theorem 1), while the output distribution of F is
also statistically indistinguishable as mentioned above. (We note that, we actually relies on the
computational hardness of integer factoring to show that, the information on the input for P2 that
can be inferred by using the function F is indeed non-trivial information; cf. Theorem 4.)

One may think of the fact (mentioned above), that the output of the function F to prepare the
new random tape for P1 depends also on the input for P1, as the source of our problem here. But
the author of the paper thinks that this point would not be the main origin of the current problem,
by some reasons explained later. Instead, here we revisit the following famous technique in security
proofs for two-party computation. That is, one may construct a simulator for a party’s view by
emulating the transcript part (i.e., messages sent from the other party) first and then adjusting the
random tape part to be consistent with the transcript, opposite to the “true order”; a party in a real
protocol execution generates the random tape first, and then executes the protocol (and receives
the messages from the other party) according to the chosen random tape. Such a construction of
simulators seems to be regarded by experts as a “clever solution” rather than a kind of “bad know-
how”. Nevertheless, this proof technique may cause a problem when considering random tapes
generated by some function, say the F above; that is, in this modified situation, such a simulator
has to adjust the random tape part to both the transcript and the value of F with randomly chosen
input simultaneously. In fact, the construction of simulator for P1 in our protocol π also relies on
this technique (see the proof of Theorem 1); and we prove (as a corollary of a general Theorem 9 in
Section 6) that the problem caused by utilizing the statistically close to uniformly random function
F as in Section 1.1 would be prevented if the statistically indistinguishable simulator for P1 in the
original protocol π were constructed without the “adjusting random tape” technique. (Here we
emphasize that, this affirmative result holds even when the generated random tape depends on the
input for P1 in the protocol as our function F indeed does.)

One may be curious about whether the two “statistically” conditions appeared at the end
of the previous paragraph, in particular that for the random function F , can be weakened to a
seemingly reasonable “computationally indistinguishable” condition. An explanation of why we
put the stronger conditions will be given in a discussion after the proof of Theorem 9. Here we give
another explanation; imagine that the function F were a computationally secure PRG. Now, for
example, in the CPA security game for public key encryption, a distinguisher can see the challenge
ciphertext generated from a challenger’s internal random tape, but cannot see the challenger’s
random tape itself; therefore, the challenger can replace his/her random tape with an output of
such a PRG in an indistinguishable way. In contrast, in the case of two-party computation, a
distinguisher for a simulator of a party’s view is supposed to be able to see the party’s random tape
in a real protocol execution; when a party replaces the random tape with an output of a PRG,
this ability of the distinguisher would also enable oneself to see the seed of the PRG as well (this
observation is in fact reflected in our formulation in Section 3.2 of “security against randomness
preparation function”), which would remove the power of computational security of the PRG.

There would be (at least) three more kinds of objections to the claim of this paper. The first
one would be as follows: The dependence of the new random tape generated by the function F on
the input for the party P1 still looks just an unrealistic, artificially introduced property. A possible
answer is as follows: Consider the case where the operating system of a computer can generate
(pseudo)random numbers from the rhythm of a user’s keystrokes, and a party starts executing a
two-party protocol by typing the input as an option to the program and then hitting the enter key.
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In this case, even when the party is (semi-)honest, the party’s rhythm to type the input string may
depend on how the string is simple or complicated, which may result in the generated random tape
for the protocol dependent on the input. This observation would explain that the input-dependent
generation of the random tape may happen in practice, either maliciously or unintentionally.

The second objection would be as follows: The manipulation of internal random tapes looks
an advanced (or close to fully malicious) attack, and it seems to be too strict to require a counter-
measure against such attacks as “the minimal security requirement” like the semi-honest security
at the present. To answer this, the author would like to refer to an example even from outside of
cryptography — so-called “tool-assisted speedrun” (or “tool-assisted superplay”, TAS), which is a
kind of “joky” way of enjoying computer games. In TAS, a player does basically not modify the
game program itself but, for example, just watches the internal state for random number genera-
tion in order to exhibit, by selecting a best timing of hitting a button, an excellent play that is
still “theoretically possible on a real game machine”. The following description for TAS is quoted
from Wikipedia [21]: “... also facilitates another common technique, luck manipulation, which is
the practice of exploiting the game’s use of player input in its pseudo-random number generation to
make favorable outcomes happen. ...”. This example does or does not show that, manipulation of
randomness by just watching the program’s internal state may be mounted so casually, and it is not
trivially reasonable to just ignore such a kind of attacks. Anyway, if the computer’s random number
generation depends on a user’s previous behavior as in the example of the previous paragraph, then
such an “attack” may happen in practice, either maliciously or even unintentionally.

The third (and the final) objection here would be as follows: The semi-honest model is originally
too weak to capture the practically reasonable attacks, not only the one pointed out in this paper,
and therefore we should have been moved to more realistic models rather than staying at adopting
the semi-honest model, irrelevantly to this paper. This is in some sense reasonable, as we show
in Section 5.4 that such a kind of attacks in this paper can be prevented if the original protocol
π is secure in the semi-malicious model, which was introduced by Asharov, Jain, and Wichs in
Section A.2 of [2] and is still weaker than the fully malicious model. Here we omit the detail of
this model (cf. [2] or Section 5.4 of this paper), but this affirmative result is natural, as the semi-
malicious model already captures such a kind of attacks by definition. (On the other hand, some
other possible alternatives to the semi-honest model, namely the augmented semi-honest model
introduced by Definition 7.4.24 in Section 7.4.4.1 of Goldreich’s book [7] and its variant suggested
in a short note by Hazay and Lindell [8], does not prevent this attack in general; see Section 5.2
and Section 5.3, respectively.) However, the semi-malicious model seems to be “overqualified” for
resolving the problem in this paper. Namely, a semi-malicious party is (roughly speaking) allowed
to alsomodify the local input, not only the random tape, even adaptively during a protocol execution;
while in this paper, we are concerning modification of random tape before a protocol execution only.
In contrast, our Theorem 9 mentioned above proposes sufficient conditions to prevent our attack,
which (in particular, the condition of statistical indistinguishability) may look too strict but are
still verifiable within the framework of the semi-honest model (instead of adopting a new model).

1.3 Related Work

There are some previous papers in which the same problem, that the security of a two-party
protocol is not preserved in general when a party uses a PRG to generate the party’s random tape
in the protocol, has appeared, sometimes even implicitly; e.g., [14] (or Theorem 5.7 of [15]), [11]
(or Section 4 of [12]), and Section 3.3 of [9]. In these papers, the authors seem to had aimed, in
various settings, at proving a kind of lower bounds for communication complexity to realize some
kinds of secure two-party computation. Their strategies seemed to be, first showing a lower bound
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for “overall complexity” of such computation, and then cancelling the effect of the sizes of the
parties’ random tapes to the overall complexity by replacing the random tape with an output of a
PRG (with significantly short random seed). However, the approach should fail at the latter step
due to the problem mentioned above; accordingly, they have shown such lower bounds in a certain
weaker form [9, 15] or under a different security model named “honest-but-deterministic” model
[12]. (To be more precise, the authors of [12] considered the lack of such lower bounds affirmatively
and developed a secure two-party protocol in the semi-honest model that achieves a certain kind
of “surprising” functionality.) Among them, only the authors of [9] clearly mentioned where the
problem is. However, even they did not gave a concrete example (as in the present paper) of that
the use of even reasonably secure random generators compromises the security of a protocol.

There are also other recent studies on some problems caused by artificially manipulated PRGs,
called “backdoored PRGs” (cf. [4]). This topic has some similarity to the present paper; they
also concern a case where a party’s manipulation of random number generators will cause leakage
of another party’s secret and this manipulation looks difficult to detect. However, the notion of
backdoored PRGs focuses mainly on potential attacks to ordinary parties by a third party (such
as NIST) who should be fully trustful; and hence the viewpoint is still different from our study.

2 Preliminaries

2.1 Basic Notations

In this paper, we write {0, 1}∗ =
∪

n≥0{0, 1}n. We say that a non-zero polynomial is positive, if any
of its coefficients is non-negative. We say that a function f(λ) of integers λ ≥ 1 with 0 ≤ f(λ) ≤ 1
is negligible in λ, if for any positive polynomial poly, there exists an integer λ0 ≥ 1 satisfying
f(λ) < poly(λ)−1 for any λ > λ0. We abuse a notation negl = negl(λ) to mean some negligible
value, which may vary depending on the situation. We write a ← D to signify that the element a
is chosen according to a probability distribution D. We define U(X) to be the uniform distribution
on a set X, and let a←R X mean a← U(X).

In this paper, we abbreviate a ≡ b (mod n) to a ≡n b. For any integers M ≤ N , we define
[M,N ] := {a ∈ Z |M ≤ a ≤ N}. We often identify an n-bit sequence with an integer in [0, 2n − 1]
via the binary expression of integers, and sometimes identify an element x ∈ Z/NZ with the
integer a ∈ [0, N − 1] determined by a mod N = x. Let (Z/NZ)× denote the set of invertible
elements in the ring Z/NZ, i.e., elements a mod N where a ∈ [1, N − 1] is coprime to N . We
use a notation such as [F (r) : R] to signify a random variable with value F (r) where r follows
the probability distribution specified by R. For example, [bb : b←R {0, 1}] means U({00, 11}). We
often abbreviate “probabilistic polynomial-time” to “PPT”. For any probabilistic algorithm A with
input x, we may write A(x; r) instead of A(x) in order to emphasize the choice of the random tape
r used by A. On the other hand, when A is a non-uniform algorithm with auxiliary advice z, we
often make the z implicit in the notations, while we may write A(z) to clarify the given advice z.

2.2 Indistinguishability of Random Variable Families

A standard definition of security for two-party computation relies on the notion of indistinguisha-
bility between two families of random variables against non-uniform distinguishers, which we recall
as follows. Our formulation here is essentially the same as the standard one described, e.g., in
Section 7.2.1.2 of [7] but the notations are slightly different. The setting here is: (In)n≥1 is a family
of subsets In ⊂ {0, 1}∗ indexed by a positive integer n. X = (Xn,w)n,w and Y = (Yn,w)n,w are

6



families of random variables Xn,w and Yn,w indexed by a pair of n ≥ 1 and w ∈ In. Then we
describe the definition in the computationally bounded situation:

Definition 1 (Computational Indistinguishability). Let (In)n, X = (Xn,w)n,w and Y = (Yn,w)n,w

be as above. We say that X and Y are computationally indistinguishable and write X
c≡ Y , if for

any non-uniform PPT algorithm D, there exists a negligible function µ(n) satisfying that, for any
n ≥ 1, ∣∣Pr[D(1n, Xn,w) = 1]− Pr[D(1n, Yn,w) = 1]

∣∣ ≤ µ(n) for every w ∈ In.

In order to describe the notion of statistical indistinguishability, first we recall the definition of
the statistical distance between two probability distributions X ,Y over a common (finite) set Z.
Their statistical distance ∆(X ,Y) is defined by

∆(X ,Y) := 1

2

∑
z∈Z

∣∣ Pr
z′←X

[z′ = z]− Pr
z′←Y

[z′ = z]
∣∣ .

It is known that ∆(X ,Y) is equal to the maximum of Prz←X [z ∈ A] − Prz←Y [z ∈ A] taken over
all the subsets A ⊂ Z. We say that X and Y are ε-close, if ∆(X ,Y) ≤ ε. It is important that we
have ∆(f(X ), f(Y)) ≤ ∆(X ,Y) for any probabilistic function f independent of X and Y. Now we
describe the definition of the statistical indistinguishability, which is a “computationally unbounded
variant” of Definition 1:

Definition 2 (Statistical Indistinguishability). Let (In)n, X = (Xn,w)n,w and Y = (Yn,w)n,w be
the same as in Definition 1. We say that X and Y are statistically indistinguishable (or statistically

close) and write X
s≡ Y , if there exists a negligible function µ(n) satisfying that, for any n ≥ 1,

Xn,w and Yn,w are µ(n)-close for every w ∈ In.

2.3 Approximately Uniform Sampling from Some Sets

Here we summarize some easy lemmas used below, stating a kind of facts that uniformly random
sampling from a certain set can be approximated well by the output of some easy-to-compute func-
tion with efficiently samplable random input. In this subsection, let a mod N mean the remainder
of an integer a modulo a positive integer N , which takes a value in [0, N − 1].

Lemma 1. Let M,N be two positive integers. Put δ := M/N − ⌊M/N⌋, hence in particular
0 ≤ δ < 1. Moreover, we set UM := U([0,M − 1]) and UN := U([0, N − 1]). Then we have

∆(UM mod N,UN ) =
δ(1− δ)

M/N
≤ N

4M
.

Proof. The latter part follows from the fact that δ(1 − δ) attains the maximum value 1/4 at
δ = 1/2. For the former part, we note that Pr[UM mod N = a] = (⌊M/N⌋ + 1)/M > 1/N for
0 ≤ a ≤M − ⌊M/N⌋N − 1 and Pr[UM mod N = a] = ⌊M/N⌋/M ≤ 1/N for M − ⌊M/N⌋N ≤ a ≤
N − 1. This implies that

∆(UM mod N,UN ) = (M − ⌊M/N⌋N) ·
(
⌊M/N⌋+ 1

M
− 1

N

)
= Nδ ·

(
M/N − δ + 1

M
− 1

N

)
= Nδ · −δ + 1

M
=

δ(1− δ)

M/N
.

Hence the assertion holds.
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Lemma 2. Let L,M,N be positive integers with L ≤ N . Let a ∈ [0, L − 1], and let A := {k ∈
[0, N − 1] | k mod L = a}, K := ⌊(N − 1− a)/L⌋+ 1, and δ := M/K − ⌊M/K⌋. Moreover, we set
UM := U([0,M − 1]). Then we have a+ (ℓ mod K) · L ∈ A for any ℓ ∈ [0,M − 1], and

∆
(
a+ (UM mod K) · L,U(A)

)
=

δ(1− δ)

M/K
≤ K

4M
.

Proof. We have a ≥ 0 and a−L < 0 by the choice of a. On the other hand, since (N − 1− a)/L <
K ≤ (N − 1− a)/L+ 1, we have a+ (K − 1) · L ≤ N − 1 and a+K · L > N − 1. Hence it follows
that A = {a + k · L | k ∈ [0,K − 1]}, which yields the first part of the assertion and also implies
the second assertion by Lemma 1.

Lemma 3. Let p, q be two distinct primes of λ-bit length (i.e., p, q ∈ [2λ−1, 2λ−1]), and let N := pq.
Moreover, we set U := U(Z/NZ) and U ′ := U((Z/NZ)×). Then we have ∆(U,U ′) < 2−(λ−2).
Hence we also have ∆(f(U), U ′) < 2−(λ−2) for any function f with domain Z/NZ that is identical
on the subset (Z/NZ)×.

Proof. By the property of the statistical distance, we have

∆(U,U ′) =
|(Z/NZ) \ (Z/NZ)×|

N
=

N − (p− 1)(q − 1)

N

=
p+ q − 1

pq
<

1

q
+

1

p
≤ 1

2λ−1
+

1

2λ−1
=

1

2λ−2
.

Hence the assertion holds.

2.4 The Paillier Cryptosystem

Here we summarize some facts about the Paillier cryptosystem [17] used in our argument below; we
make slight modifications for the sake of convenience in later use while keeping the essence of [17].
The Paillier cryptosystem is a public key encryption scheme, which admits a PPT key generation
algorithm Gen, a PPT encryption algorithm Enc, and a deterministic polynomial-time decryption
algorithm Dec. Given a security parameter 1λ, the algorithm Gen(1λ) first generates, in a certain
suitable manner, two different primes p, q of the same ρ(λ)-bit length where ρ = ρ(λ) is a certain
positive polynomial with ρ(λ) ≥ λ. Then the algorithm computes N := pq, and outputs a public
key pk := N and a secret key sk := (p, q). Now the plaintext space is Z/NZ. Given 1λ, pk and a
plaintext m ∈ Z/NZ, the algorithm Encpk(1

λ,m) first chooses a random (4ρ(λ) + λ)-bit sequence
r0 and computes r := r0 mod N2. If r ̸∈ (Z/N2Z)×, then the algorithm replaces the r with 1.
Secondly, the algorithm computes (1+N)mrN mod N2 ∈ (Z/N2Z)× and outputs it as a ciphertext
of m, denoted often by [[m]] in this paper. We note that, by Lemmas 1 and 3 and the fact that
N2 ≤ 24ρ(λ) and ρ(λ) ≥ λ, if the bit sequence r0 is uniformly random, then the distribution of r
(respectively, of [[m]]) is statistically indistinguishable from the uniform distribution on (Z/N2Z)×
(respectively, on the set of ciphertexts of m) where a bound for the statistical distance is negligible
in λ and dependent solely on λ. On the other hand, we omit the detail of the algorithm Dec (using
sk) since it is not relevant to our argument, except the fact that Dec always outputs m for any
given input ciphertext [[m]] of m.

The Paillier cryptosystem admits a deterministic additively homomorphic operation that gener-
ates a ciphertext [[m1+m2]] from two ciphertexts [[m1]] and [[m2]]; in fact, the operation is just the
multiplication in (Z/N2Z)× in this case. Moreover, given any ciphertext [[m]], if a ciphertext [[0]]
is randomly generated as described above, then the result of the additively homomorphic operation

8



for the [[m]] and [[0]] is also statistically indistinguishable (with bound dependent solely on λ) from
the uniform distribution on the set of ciphertexts of m that is independent of the original choice of
[[m]]. We refer to this operation as the statistically perfect re-randomization of a ciphertext.

For the security, we require the indistinguishability against chosen plaintext attacks (CPA se-
curity) as usual, except that now the distinguisher may be a non-uniform PPT algorithm. To be
precise, we consider the following security game between a challenger and a non-uniform PPT (with
respect to λ) adversary:

1. The adversary is given the security parameter 1λ and advice z associated to the parameter λ.

2. The challenger is also given the security parameter 1λ, and then generates (pk, sk) by Gen(1λ)
and sends pk to the adversary.

3. The adversary chooses two plaintexts m0,m1 and sends these to the challenger.

4. Challenger chooses a uniformly random bit b, generates a challenge ciphertext [[mb]] by
Encpk(1

λ,mb), and sends [[mb]] to the adversary.

5. Finally, the adversary generates a bit b′.

Then we assume that, for any non-uniform PPT adversary and any choice of advice, there exists a
negligible function ε = ε(λ) satisfying |Pr[b′ = b]− 1/2| ≤ ε in the game above for every λ.

2.5 The Rabin Function

Here we summarize some facts about the Rabin function [18] used in our argument below. The
Rabin function modulo N computes x2 mod N for a given integer x ∈ (Z/NZ)×, where N = pq
is the product of two distinct primes p, q of the same bit length with p ≡4 q ≡4 3 (see Section 2.1
for notations). It is known [18] that factoring the composite N is polynomial-time reducible to
inverting Rabin function modulo the N and vice versa. Let QRN := {x2 mod N | x ∈ (Z/NZ)×},
the set of quadratic residues modulo N , which is by definition equal to the image of Rabin function
modulo N . Each y ∈ QRN has four preimages for the function (i.e., square roots modulo N).
Namely, we have a decomposition (Z/NZ)× ≃ (Z/pZ)× × (Z/qZ)× owing to Chinese Remainder
Theorem. Then, for y = x2 with x ∈ (Z/NZ)×, the four pairs (±x mod p,±x mod q) with two
choices of each sign represent the square roots of y modulo N .

Now we recall the following fact for finding a square root when a prime factor of N is known:

Lemma 4. There exists a PPT algorithm, with the N , p (or q) and some y ∈ (Z/NZ)× as inputs,
that outputs an element x of (Z/NZ)× satisfying that, if y ∈ QRN , then x is uniformly at random
among the four square roots of y modulo N .

Proof. Since p ≡4 q ≡4 3, both p′ := (p+1)/4 and q′ := (q+1)/4 are integers. The algorithm runs
in the following four steps: (i) Compute yp := y mod p, yq := y mod q, zp := yp

p′ , and zq := yq
q′ .

(ii) Choose xp ←R {zp,−zp} and xq ←R {zq,−zq}. (iii) Compute the unique element x ∈ (Z/NZ)×
corresponding to the pair (xp, xq) ∈ (Z/pZ)× × (Z/qZ)×. (iv) Output the x.

The whole computation can be done in polynomial time with respect to the bit length ofN , since
a factor of N is known. From now, we suppose y ∈ QRN , therefore y = w2 for some w ∈ (Z/NZ)×.
Put wp := w mod p and wq := w mod q. Then we have yp = wp

2 and zp
2 = yp

2p′ = wp
4p′ = wp

p+1,
which is equal (in Z/pZ) to wp

2 = yp by Fermat’s Little Theorem. Hence we have (±zp)2 = yp,
and We have (±zq)2 = yq similarly. This implies that the elements of (Z/NZ)× corresponding to
(±zp,±zq) are the four square roots of y. This completes the proof.
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On the other hand, although it is (believed to be) computationally hard to find a square root
(modulo the N as above) of a given quadratic residue, the next lemma shows that (approximately)
uniform sampling of a pair (x, y) of a random quadratic residue y and its square root x is still
computationally feasible with high probability. Precisely, let N = pq be as above and let λ be the
common bit length of p and q. We consider the following algorithm, which is given 1λ and the N
as inputs but not given any of the prime factors p, q of N :

1. Repeat the following process up to λ times until an appropriate a ∈ (Z/NZ)× is found:

• Compute a := r mod N by using a uniformly random 3λ-bit sequence r, and check if
a ∈ (Z/NZ)× and

(
a
N

)
= −1 where

(
a
N

)
denotes the Jacobi symbol of a modulo N .

In case where such an a has not been found, output a pair (1 mod N,−1 mod N) and stop.

2. Compute x := r mod N by using a uniformly random 3λ-bit sequence r, and if x ̸∈ (Z/NZ)×,
then output a pair (1 mod N,−1 mod N) and stop.

3. Choose y from the four elements ±x2 mod N and ±ax2 mod N uniformly at random, by using
two random bits. Then output (x, y).

Note that the output (x, y) of this algorithm always satisfies x, y ∈ (Z/NZ)×. Note also that the
complexity of the algorithm is polynomial in λ; indeed, the Jacobi symbol

(
a
N

)
can be computed

(without knowledge of prime factors of N) owing to the Law of Quadratic Reciprocity.

Lemma 5. The output (x, y) of the algorithm above satisfies the following:

• The distribution of y is statistically close to uniform over (Z/NZ)×, where the bound of the
statistical distance is dependent solely on λ.

• If y ∈ QRN , then the distribution of x conditioned on the y is statistically close to uniform
over the four square roots of y, where the bound is again dependent solely on λ.

Proof. First, we analyze Step 1. For each of the repeated processes, the combination of Lemmas 1
and 3 as well as the fact N ≤ 22λ implies that, the statistical distance between the distribution of
the element a and the uniform distribution on (Z/NZ)× is at most N/23λ+2 +2−(λ−2) ≤ 2−(λ+2) +

2−(λ−2) < 2−(λ−1). On the other hand, for a′ ←R (Z/NZ)×, we have
(
a′

N

)
= 1 with probability

1/2. This implies that, the a satisfies either a ̸∈ (Z/NZ)× or
(
a
N

)
= 1 with probability at most

1/2 + 2−(λ−1). Therefore, the probability, denoted by ρ1, that the algorithm stops at Step 1 is at
most ρ′1 := (1/2 + 2−(λ−1))λ, the latter being negligible in λ and dependent solely on λ.

Secondly, we analyze Step 2. By the choice of x, each element of (Z/NZ)× appears as the
value of x with probability ⌊23λ/N⌋/23λ or (⌊23λ/N⌋ + 1)/23λ. On the other hand, by Lemmas 1
and 3 and the fact N ≤ 22λ again, the probability, denoted by ρ2, that x ̸∈ (Z/NZ)× is at most
2−(λ+2) + 2−(λ−2) < ρ′2 := 2−(λ−1), the latter being negligible in λ and dependent solely on λ.
Hence, considering throughout Steps 1 and 2, for each element of (Z/NZ)×, the probability that
the algorithm has not stopped at Step 1 and this element appears as the value of x at Step 2 is
either α or α+ δ, where α := (1− ρ1)⌊23λ/N⌋/23λ and δ := (1− ρ1)/2

3λ. On the other hand, the
algorithm stops before arriving at Step 3 with probability ρ1+(1−ρ1)ρ2 ≤ ρ′1+ρ′2, the latter being
negligible in λ and dependent solely on λ.

Thirdly, we analyze Step 3. First we show that, x2 mod N is the only choice among the four
candidates of y for being a quadratic residue. To see this, recall that

(
a
N

)
= −1, therefore precisely

one of a mod p and a mod q is a quadratic residue modulo p and q, respectively. Say, a mod p
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is a quadratic residue and a mod q is not. Note also that, since p ≡4 q ≡4 3, neither −1 mod p
nor −1 mod q is a quadratic residue. Now none of −x2 mod p, ax2 mod q, and −ax2 mod p is a
quadratic residue, which implies that none of −x2 mod N and ±ax2 mod N is a quadratic residue,
too. Hence the claim of this paragraph holds.

By the previous paragraph, an element y ∈ QRN is chosen at Step 3 if and only if one of the
four square roots of y is chosen at Step 2 and then x2 mod N is chosen at Step 3 (with probability
1/4). Hence, the probability, denoted by Py, that the y is chosen satisfies

4α · 1
4
= α ≤ Py ≤ 4(α+ δ) · 1

4
= α+ δ .

On the other hand, for each square root x of y, the probability, denoted by Qx,y, that the pair
(x, y) is chosen satisfies

α · 1
4
=

α

4
≤ Qx,y ≤ (α+ δ) · 1

4
=

α+ δ

4
.

Therefore, the probability of the choice of x conditioned on the choice of y satisfies

α

4
· 1

α+ δ
=

α

4(α+ δ)
≤ Qx,y

Py
≤ α+ δ

4
· 1
α

=
α+ δ

4α
.

The differences of these bounds for Qx,y/Py from the probability 1/4 of the uniformly random
choice are evaluated as

1

4
− α

4(α+ δ)
=

δ

4(α+ δ)
≤ 2−3λ

4(1− ρ′1) ·
(
(1− 2−λ) · 2−2λ + 2−3λ

) =
1

4(1− ρ′1) ·
(
(1− 2−λ) · 2λ + 1

)
and

α+ δ

4α
− 1

4
=

δ

4α
≤ 2−3λ

4(1− ρ′1)(1− 2−λ) · 2−2λ
=

1

4(1− ρ′1)(1− 2−λ) · 2λ

where we used the relations (1− ρ′1)2
−3λ ≤ δ ≤ 2−3λ and

α ≥ (1− ρ1)

(
23λ

N
− 1

)
· 1

23λ
≥ (1− ρ1)

(
23λ

22λ
− 1

)
· 1

23λ
≥ (1− ρ′1)

(
1− 1

2λ

)
· 1

22λ
.

Both of those two upper bounds for |Qx,y/Py − 1/4| are negligible in λ and are dependent solely
on λ, since ρ′1 has the same property. This implies the second assertion of Lemma 5.

Finally, for the first assertion of the lemma, owing to the argument above, we may assume
without loss of generality (except only negligible differences dependent solely on λ) that the algo-
rithm has not stopped before Step 3 and the element x chosen in Step 2 is uniformly random over
(Z/NZ)×. It follows that x2 mod N is uniformly random over QRN . Now by the symmetry, we
may assume without loss of generality (as we already did above) that a mod p is a quadratic residue
modulo p and a mod q is not a quadratic residue modulo q. This implies that ±1 and ±a are the

representatives of the four cosets for the subgroup QRN in (Z/NZ)×; in fact,
((

z
p

)
,
(
z
q

))
= (1, 1)

for z = 1; (1,−1) for z = a; (−1, 1) for z = −a; (−1,−1) for z = −1. Since x2 is uniformly random
over QRN as mentioned above, it follows that the choice of y is uniformly random over (Z/NZ)×.
This completes the proof of Lemma 5.
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3 Two-Party Computation with Randomness Preparation

In this section, first we recall in Section 3.1 the notion of secure two-party computation in the semi-
honest model (in the “simulate the view” formulation, rather than another equivalent “ideal vs.
real” formulation). Except some notational modifications, our formulation here is essentially based
on the standard definitions described, e.g., in Section 7.2 of [7] and in [13]. Then in Section 3.2 we
formalize, or clarify the meaning of, security (against a semi-honest party) of a two-party protocol
in a practically possible situation where some party uses the random output of a certain algorithm
(for example, a cryptographic pseudorandom number generator) for his/her random choices during
the protocol instead of using theoretically ideal coin tosses.

3.1 The Semi-Honest Model

Let π be a two-party computation protocol between two parties P1 and P2. Formally, the parties
are modeled as interactive probabilistic Turing machines that communicate with each other by
following the specification of π. In this paper, we follow a popular convention that an input for Pi
(i ∈ {1, 2}) consists of a security parameter 1λ common to the two parties and an “actual” input
for Pi. Unless specified otherwise, an “actual” input for Pi is denoted by xi, the content of the
random tape for Pi at an execution of π is denoted by ri, and the output obtained by Pi after an
execution of π with inputs x1, x2 and random tapes r1, r2 is denoted by outπi (1

λ, x1, x2; r1, r2), or by
outπi (1

λ, x⃗; r⃗) in short where x⃗ := (x1, x2) and r⃗ := (r1, r2). We define outπ(1λ, x⃗; r⃗) to be the pair of
outπ1 (1

λ, x⃗; r⃗) and outπ2 (1
λ, x⃗; r⃗) in this order. In this paper, we suppose (unless otherwise specified)

that π has polynomial (in λ) time and communication complexity. Accordingly, we assume that
the inputs x1, x2 are elements of {0, 1}∗ and their lengths are bounded by a polynomial in λ. We
also assume that r1 ∈ {0, 1}ρ1(λ) and r2 ∈ {0, 1}ρ2(λ) for some positive polynomials ρ1 = ρπ1 and
ρ2 = ρπ2 . Let Xλ denote the set of the input pairs (x1, x2) associated to security parameter λ.

In this paper, we let the transcript for Party Pi in an execution of π mean the sequence

(m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
ℓi
) of messages (in the chronological order) sent to Pi from the other party during

the protocol execution. Let transπi (1
λ, x1, x2; r1, r2) (or trans

π
i (1

λ, x⃗; r⃗)) denote the transcript for Pi
in the execution of π with inputs x1, x2 and random tapes r1, r2. The view for Pi consists of xi, ri
and transπi (1

λ, x⃗; r⃗); in particular, the view for a party involves the content of the party’s random
tape, which is an important fact in our argument below. Then the party Pi finally computes
outπi (1

λ, x⃗; r⃗) from the view for Pi (as well as the security parameter 1λ).
We let a functionality with input set I ⊂ {0, 1}∗ × {0, 1}∗ mean any pair f = (f1, f2) of

probabilistic functions f1 = f1(x⃗) and f2 = f2(x⃗) with x⃗ = (x1, x2) ∈ I. More precisely, for
each x⃗ ∈ I, f1(x⃗) and f2(x⃗) are (possibly correlated) random variables with their own internal
randomness. In this paper, we suppose that f is polynomial-time computable; more precisely,
there exists an algorithm that runs within polynomial time in |x⃗| and computes the values of f1(x⃗)
and f2(x⃗) from x⃗ and the internal randomness for f1 and f2. We write f(x⃗) = (f1(x⃗), f2(x⃗)). In
the following argument, unless specified otherwise, we assume that f is a functionality with input
set I =

∪
λ≥1Xλ where Xλ is the input set for a two-party protocol π with security parameter λ.

From now, we describe the definition of security for a protocol π in the semi-honest model (it
is often called with different names in the literature; e.g., “π privately computes f” in Section
7.2 of [7]; and “π securely computes f in the presence of static semi-honest adversaries” in [13]).
Intuitively, the condition below means that the view for any of the two parties in an execution of π
can be efficiently recovered, in a computationally indistinguishable manner (see Section 2.2), solely
from the local input and the local output for the party. Note that the following definition implies
also that the protocol computes the value of f correctly. See Section 2.1 for some notations.
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Definition 3 (Security in the semi-honest model). For i ∈ {1, 2}, we say that a two-party protocol
π securely computes a functionality f = (f1, f2) against semi-honest Party Pi, if there exists a PPT
algorithm Si, called a simulator for Pi, satisfying(

Si(1λ, xi, fi(x⃗)), f(x⃗)
)
λ≥1,x⃗∈Xλ

c≡
([
xi, ri, trans

π
i (1

λ, x⃗; r⃗), outπ(1λ, x⃗; r⃗) : r1 ←R {0, 1}ρ1(λ), r2 ←R {0, 1}ρ2(λ)
])

λ≥1,x⃗∈Xλ
.

(1)

We say that this simulator Si is statistically indistinguishable, if the random variable families at
the left-hand and the right-hand sides of (1) are statistically indistinguishable. Moreover, we say
that π securely computes f = (f1, f2) in the semi-honest model, if π securely computes f against
semi-honest Pi for each i ∈ {1, 2}.

3.2 Definition of Security against Randomness Prepared by a Party

Here we consider a practically possible situation in use of a two-party protocol π where, instead of
a uniformly random bit sequence (as in the original situation), any of the two parties, say Pi, uses
the random output of a certain algorithm Ri as the content of his/her random tape in an execution
of π. We call the Ri a randomness preparation algorithm for Pi.

More precisely, let ρi(λ) be (as in Section 3.1) the length of the random tape for Party Pi in an
execution of π with security parameter 1λ. First we give a technical definition:

Definition 4 (Admissible randomness preparation). In the current setting, we say that an algo-
rithm Ri is an admissible randomness preparation algorithm for Party Pi, if the following conditions
are all satisfied: The input for Ri consists of 1

λ and a possible input xi for Pi with security param-
eter 1λ; Ri is PPT with respect to λ; Ri outputs a ρi(λ)-bit sequence; and the internal randomness
for Ri is an element of {0, 1}ρ̃i(λ) for some positive polynomial ρ̃i.

It is worth emphasizing that the output of a randomness preparation algorithm for a party may
be dependent on the input for the party in the current execution of the protocol. We also note
that the algorithm, denoted by id, that simply outputs the content of its random tape is always
admissible in this sense, where ρ̃i = ρi. Intuitively, the function id corresponds to the original case
where the party simply uses the uniformly random tape rather than artificially generating it.

Now for i ∈ {1, 2}, let Ri be an admissible randomness preparation algorithm for Pi as in
Definition 4. Then, to study the aforementioned case where Pi uses a random output of Ri instead
of the uniformly random tape, here we regard the situation as another two-party protocol between
P1 and P2, denoted by π ◦i Ri:

Definition 5 (Two-party protocol with randomness preparation). Let i ∈ {1, 2}, and let π and
Ri be as above; in particular, the algorithm Ri is admissible in the sense of Definition 4. Then we
define a two-party protocol π ◦iRi as follows, where the new input set and the new random tape for
the other party P3−i are the same as π, while the new random tape for the party Pi has ρ̃i(λ)-bit
length when the security parameter is λ:

1. Given a security parameter 1λ, a local input xi and a uniformly random tape r̃i ←R {0, 1}ρ̃i(λ),
Pi first runs Ri(1

λ, xi; r̃i) with internal randomness r̃i, and obtains its output ri ∈ {0, 1}ρi(λ).

2. Then, given a local input x3−i for the other party P3−i further, the two parties P1 and
P2 jointly execute the protocol π with input pair (x1, x2) and security parameter 1λ, where
Pi uses the ri generated above as his/her random tape and P3−i uses a uniformly random
r3−i ←R {0, 1}ρ3−i(λ) as his/her random tape.
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Here we emphasize that, the view for Pi in the new protocol π ◦i Ri involves the new random
tape r̃i rather than the prepared random tape ri for the original π; but we note also that the ri
used during the protocol execution can be deterministically recovered from r̃i and the party’s input
both of that are included in the view for the party.

Then we formalize “security for a protocol against a party’s randomness preparation” in terms
of the security (in the usual sense) for the modified protocol introduced in Definition 5:

Definition 6 (Security against randomness preparation). Let π be a two-party protocol, and let
f = (f1, f2) be a functionality to be computed by the protocol π. Let i ∈ {1, 2}, and let Ri be a set
of algorithms. We say that the protocol π (computing f) is robust against randomness preparation
class Ri by Party Pi under the semi-honest model, if for any algorithm Ri ∈ Ri that is admissible
for Pi with respect to the protocol π (see Definition 4 for the terminology), the protocol π ◦i Ri

securely computes f against semi-honest Pi in the sense of Definition 3. We also use the terminology
“against randomness preparation Ri” instead of “against randomness preparation class Ri” above
if Ri consists of a single (admissible) algorithm Ri only.

We note that the design of Definition 6 supposes the definition to be applied only to a protocol
π that is secure against semi-honest Pi (without any randomness preparation) and the definition
itself does not include the assumption on the security of the original π. Nevertheless, Definition
6 will also imply by itself the security of the original π (against semi-honest Pi) if the set Ri of
randomness preparation algorithms involves the “trivial” algorithm id mentioned above.

4 Insecurity against Indistinguishable Randomness Preparation

In this section, we provide a concrete example of a pair of a two-party protocol π (Section 4.1)
and an (admissible) randomness preparation algorithm F (Section 4.2) for the first party P1, that
causes the following “paradoxical” phenomenon:

• The protocol π securely computes a certain functionality f against semi-honest P1 (with-
out randomness preparation) with even statistically indistinguishable simulator (without any
computational assumption). In fact, our protocol π is not only secure against P1, but also
securely computes f against semi-honest P2 as well.

• With uniformly random tape for F , the output distribution of F is statistically indistinguish-
able from the uniformly random tape for P1 in π.

• However, π is NOT robust against randomness preparation F by P1 under the semi-honest
model (in the sense of Definition 6). Intuitively, this means that the security of one party P2
can be compromised by replacing the random tape of the other party P1 in an even statistically
indistinguishable manner. (We note that, the randomness preparation by P1 does not affect
the correctness of the protocol to compute the functionality f .)

4.1 The Secure Protocol

Here we construct the aforementioned secure two-party protocol π as follows (see Section 2.4 for
definitions and properties about the Paillier cryptosystem used below):
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• For a security parameter λ, the input for Party P1 is an integer N ∈ [0, 22λ−1]; the input for
Party P2 is a pair of two λ-bit integers p, q; and the functionality f = (f1, f2) is defined by

(f1(N, p, q), f2(N, p, q)) :=


(⊥,⊥) unless p, q are primes, p ̸= q, and p ≡4 q ≡4 3 ,

(⊥′,⊥′) if p, q are primes, p ̸= q, p ≡4 q ≡4 3, and N ̸= pq ,

(⊤,⊤) if p, q are primes, p ̸= q, p ≡4 q ≡4 3, and N = pq .

1. P2 checks if p, q are primes, p ̸= q, and p ≡4 q ≡4 3, by using any deterministic polynomial-
time algorithm for primality test (for example, the AKS algorithm [1]). In case where some of
the conditions fails, P2 sends ⊥ to P1 and stops the protocol execution, and now both parties
output ⊥. Otherwise, P2 sends ⊤ to P1.

2. P1 generates a key pair (pk, sk) of the Paillier cryptosystem with plaintext space Z/N ′Z,
where N ′ = p′q′ and both of the prime factors of N ′ have at least (2λ+ 1)-bit length. Then
P1 generates a random ciphertext [[N ]] of N , and sends pk and the [[N ]] to P2.

3. P2 performs the following:

(a) P2 generates a ciphertext [[−pq]] of −pq, and generates [[N − pq]] by applying the
additively homomorphic operation to the [[N ]] and the [[−pq]].

(b) P2 computes a = r mod N ′ by using a random (3λ + 1)-bit sequence r, and if a ̸∈
(Z/N ′Z)× then P2 replaces a with 1.

(c) P2 generates [[a(N−pq)]] from the [[N−pq]] by applying the additively homomorphic op-
erations combined with the standard double-and-add technique for scalar multiplication
(hence the total number of operations is of order O(λ)).

(d) P2 applies the statistically perfect re-randomization to the [[a(N − pq)]], and sends the
result to P1, which we also write [[a(N − pq)]] by abusing notation.

4. P1 decrypts the given [[a(N−pq)]] and obtains a(N−pq) ∈ Z/N ′Z. In case where a(N−pq) ̸=
0 in Z/N ′Z, P1 sends ⊥′ to P2 and stops the protocol execution, and now both parties output
⊥′. Otherwise, P1 computes y := r′ mod N by using a random 3λ-bit sequence r′, and if
y ̸∈ (Z/NZ)×, then P1 replaces y with 1. Then P1 sends N and y to P2.

5. P2 computes x ∈ (Z/NZ)× by using the algorithm of Lemma 4 in Section 2.5 where p and q
play the role of prime factors of N . Then P2 sends x to P1 if x2 = y in Z/NZ, and sends ⊥′′
to P1 otherwise. Now the protocol halts, and both parties output ⊤.

First we verify that this protocol computes the functionality f correctly. The assertion holds
obviously if the protocol stops at Step 1; from now, we suppose that the protocol has not stopped
at Step 1. Secondly, at Step 4, we always have a ∈ (Z/N ′Z)×. On the other hand, |N − pq| is less
than both p′ and q′ by the choice of bit lengths of p′ and q′, therefore we have N − pq ∈ (Z/N ′Z)×
unless N = pq. This implies that, we have a(N−pq) ̸= 0 if and only if N ̸= pq. Hence the assertion
of this paragraph holds.

From now, we prove the security of the protocol π in the semi-honest model, which is divided
into the following two theorems.

Theorem 1. The protocol π securely computes f against semi-honest P1 where the simulator is
statistically indistinguishable.
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Proof. We construct a simulator S1 for P1. In the case where f1 outputs ⊥, S1 has to simply output
a uniformly random tape for P1 and the transcript (⊥), and it is obvious that the simulation is
now perfect.

When f1 outputs ⊥′, first S1 generates the uniformly random tape for P1, and generates a ke
pair (pk, sk) as in Step 2. Now, conditioned on the choice of (pk, sk), Lemmas 1 and 3 imply that
the distribution of a chosen in Step 3 is statistically close to the uniform distribution on (Z/N ′Z)×
(with bound dependent solely on λ). On the other hand, since the output ⊥′ of f1 implies N ̸= pq,
we always have N − pq ∈ (Z/N ′Z)× as in the argument above. Then it follows that a(N − pq) is
also statistically close to the uniform distribution on (Z/N ′Z)× that is independent of the choices
of N , p, and q. Moreover, owing to the statistically perfect re-randomization at Step 3d, in a real
execution of π, P1 will receive at the end of Step 3 a ciphertext that is statistically indistinguishable
(conditioned on any choice of the keys) from a uniformly random ciphertext of a uniformly random
element of (Z/N ′Z)×. According to the observation, the simulator S1 then samples (in a statistically
indistinguishable manner, owing to Lemmas 1 and 3 again) a uniformly random ciphertext c of a
uniformly random element of (Z/N ′Z)×, and outputs the random tape for P1 chosen above and a
transcript (⊤, c). This simulation is statistically indistinguishable by the argument above.

Finally, we consider the case where f1 outputs ⊤; this case guarantees that N = pq satisfies the
condition for the Rabin function (see Section 2.5). First we note that, by an argument similar to the
previous paragraph, in a real execution of π, P1 will receive at the end of Step 3 a ciphertext that
is statistically indistinguishable (conditioned on any choice of the keys) from a uniformly random
ciphertext of plaintext 0. Therefore, the simulator S1 can output the part of the random tape
for P1 used until the end of Step 3 and a transcript (⊤, [[0]]) until the end of Step 3 in a similar,
statistically indistinguishable manner. From now on, we concentrate on simulating the other part
of the view relevant to Steps 4 and 5.

First we focus on the computation y = r′ mod N in a part of Step 4. In a real execution
of π, the distribution of r′ conditioned on a chosen y is uniform over the set {k ∈ [0, 23λ − 1] |
k mod N = y}. Now Lemma 2 implies that the output distribution of a probabilistic function
g(y) := y + (u mod Ky) · N , where Ky := ⌊(23λ − 1 − y)/N⌋ + 1, with a uniformly random bit
sequence u of sufficiently large (but polynomially bounded in and dependent solely on λ) length is
statistically indistinguishable from the conditional distribution of r′ (with bound dependent solely
on λ).

On the other hand, in a real execution of π, the element y chosen in Step 4 is statistically close
to the uniform distribution on (Z/NZ)× (with bound dependent solely on λ) owing to Lemmas 1
and 3. Moreover, by Lemma 4, the message received by P1 at Step 5, denoted here by η, in the real
execution of π is a uniformly random square root x of y in Z/NZ if y ∈ QRN , and it is always ⊥′′ if
y ̸∈ QRN . Now let (x′, y′) denote an output of the algorithm in Lemma 5 (recall that this algorithm
does not use knowledge of prime factors of N), and let η′ denote an element computed in the same

way as η but by using (x′, y′) instead of (x, y). Then by Lemma 5, we have (x′, y′)
s≡ (x, y), therefore

(r′, x, y, η)
s≡ (g(y), x, y, η)

s≡ (g(y′), x′, y′, η′). According to these arguments, the simulator S1 can
also output (within polynomial time) g(y′) as the remaining part of the random tape for P1 and η′

as the final part of the transcript, and the simulation for (r′, η) is statistically indistinguishable by
the argument above. This completes the proof of Theorem 1.

Theorem 2. Assume that the Paillier cryptosystem is CPA secure against non-uniform adver-
saries. Then the protocol π securely computes f against semi-honest P2.

Proof. We construct a simulator S2 for P2. First we note that, S2 can simulate the behavior of P2
at Step 1 perfectly. In particular, S2 can perfectly simulate the view for P2 when f2 outputs ⊥.
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We also note that, when the output of f2 is different from ⊥, S2 can also perfectly simulate the
message received by P2 during Step 4 in a way independent of the behavior of π until the end of
Step 3, given the output of f2 and the input (1λ, p, q) for P2. Indeed, if f2 outputs ⊥′ then the
received message is simply ⊥′; while if f2 outputs ⊤, then it guarantees that the input N for the
other party is equal to pq, which is known by S2.

By the argument above, we may concentrate on simulating the message received by P2 during
Step 2, denoted here by (pk′, η), as well as the random tape for P2. Now note that, the distribution
of (pk′, η) is independent of the random tape for P2. Therefore, it suffices for S2 to simply output
a uniformly random bit sequence as the perfectly simulated random tape. Hence, the task is now
reduced to simulate (pk′, η) by using given 1λ, p, q, and the output of f2 (different from ⊥).

The simulation for (pk′, η) by S2 is performed as follows: Generate a uniformly random bit
sequence used in the key generation algorithm; generate a key pair (pk, sk) for the Paillier cryp-
tosystem by using the chosen randomness; generate a random ciphertext [[0]] of plaintext 0; and
finally output (pk′, η) := (pk, [[0]]).

Now assume, for the contrary, that a non-uniform PPT algorithm D can distinguish the family of
the simulation results (p, q; pk, [[0]]; ν)λ,N,p,q and the family of the real views (p, q; pk, [[N ]]; ν)λ,N,p,q

where we write ν := (f1(N, p, q), f2(N, p, q)). More precisely, there exists a positive polynomial
poly satisfying the following: For any n ≥ 1, there exist a λ = λn > n, advice zλ associated to λ,
and an input pair (Nλ, (pλ, qλ)), satisfying∣∣∣Pr[D(zλ)(1λ, pλ, qλ, pk, [[0]], νλ) = 1]− Pr[D(zλ)(1λ, pλ, qλ, pk, [[Nλ]], νλ) = 1]

∣∣∣ ≥ 1/poly(λ)

where we write νλ := (f1(Nλ, pλ, qλ), f2(Nλ, pλ, qλ)). Then we construct a non-uniform PPT adver-
sary A against CPA security of the Paillier cryptosystem. We focus on the security parameters λ of
the form λ = λn for some n only, as the other cases are not relevant. The advice for A consists of
Nλ, pλ, qλ, and zλ. Given 1λ and pk as inputs (we note that the choice of pk = N ′ is independent
of the choice of N and (p, q)), A first decides the value of νλ depending on whether Nλ = pλqλ or
not. Then A sends m0 := 0 and m1 := Nλ to the challenger of the security game. On receiving the
challenge ciphertext [[mβ]] of plaintext mβ with β ←R {0, 1}, A runs D(zλ)(1λ, pλ, qλ, pk, [[mβ]], νλ)
and then outputs the obtained output of D. Now the input distribution for the D is identical to
the one for the simulated situation and the real situation above if β = 0 and β = 1, respectively.
Therefore, by the assumption on D above, the probabilities that A outputs 1 conditioned on the
two choices of β have difference at least 1/poly(λ). This means that A breaks the CPA security
for the Paillier cryptosystem (against non-uniform adversary), which contradicts the assumption in
the statement. Hence, S2 is a computationally indistinguishable simulator for P2. This completes
the proof of Theorem 2.

4.2 The Randomness Preparation Algorithm

Here we give an example of the aforementioned randomness preparation algorithm F for Party P1
in the two-party protocol π in Section 4.1, with the following two properties: The output of F
(with uniformly random tape) is statistically indistinguishable from the original random tape for
P1; and the protocol π ◦1 F is insecure against semi-honest P1 (though π itself is secure as shown
in Theorem 1). The construction of F is as follows:

• Given security parameter 1λ and an input N for Party P1 in π as well as an internal random
tape r̃, F runs S1(1λ, N,⊤; r̃) where S1 is the simulator for P1 constructed in Theorem 1,
obtains its output (N, r, trans), and then outputs F(1λ, N ; r̃) := r.
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Note that the algorithm F is admissible in the sense of Definition 4. Since the simulator S1 for P1 is
statistically indistinguishable by Theorem 1, the output of F is also statistically indistinguishable
from the original random tape for P1.

From now, we show that the protocol π ◦1 F is indeed insecure against semi-honest P1. The
next theorem means that a semi-honest P1 can infer some non-trivial secret information on the
input for P2 in the protocol π ◦1 F , which was certainly concealed by the original protocol π:

Theorem 3. For any input pair (N, (p, q)) for the two parties P1,P2 satisfying f1(N, (p, q)) =
⊤, the Party P1 can efficiently determine the secret input (p, q) for P2 with probability at least
1/16− negl(λ) by using the view for P1 in the protocol π ◦1 F .

Proof. First of all, the output ⊤ of f1 guarantees that N = pq is a composite integer as for the
Rabin function (see Section 2.5).

We note that, the elements output by S1 during an execution of π ◦1F can be deterministically
recovered from the random tape r̃1 for P1 in π ◦1 F . Now the output of S1, including a simulated
random tape r′1 for P1 in the original protocol π and a simulated message η (either an element
x′ ∈ (Z/NZ)× or ⊥′′) received in Step 5 of π, is statistically indistinguishable from the view
for P1 in an execution of π. On the other hand, in an execution of π, the element y computed
(deterministically) from the random tape for P1 at Step 4 is an element of QRN with probability at
least 1/4− negl(λ) for some negligible negl and, provided y ∈ QRN , the message received by P1 at
Step 5 is an element x with x2 = y. This implies that, for the corresponding element y′ computed
from r′1 in π ◦1 F , the probability (taken over the choice of r̃1) that y

′ ∈ QRN , η = x′ ∈ (Z/NZ)×
and x′2 = y′ is also at least 1/4− negl(λ) for some negligible negl.

For any r̃1 that yields y′ ∈ QRN and x′2 = y′, Party P2 receives the y′ in Step 4 of π internally
executed by π ◦1 F , and then P2 sends to P1 one of the four square roots of y′ chosen uniformly at
random, denoted here by x′′. In particular, the choice of x′′ conditioned on the y′ is independent
of x′. Therefore, we have x′′ ̸∈ {x′,−x′} with probability 1/2; and for any such x′′, we have
x′2 − x′′2 = (x′ + x′′)(x′ − x′′) = 0 in Z/NZ and x′ ± x′′ ̸= 0 in Z/NZ, which implies that
gcd(x′−x′′, N) is one of the two prime factors of N . Hence, given such an x′′ (as well as x′), P1 can
efficiently extract the set {p, q} of two prime factors of N , and then P1 can guess the order of the
pair (p, q) as input for P2 with probability 1/2. Summarizing, the probability that P1 determines
the input for P2 correctly is at least (1/4− negl(λ)) · 1/2 · 1/2 = 1/16− negl(λ) for some negligible
negl. This completes the proof of Theorem 3.

Given only the local input N (and the supposed local output ⊤), P1 can know that the input
for P2 is a pair of prime factors of N , but it is still computationally hard to specify the actual input
for P2 (unless factorizing the N is easy). On the other hand, by Theorem 3, the messages sent from
P2 during the protocol π ◦1F enable P1 to determine the actual input for P2 with almost constant
probability. This means that the protocol π ◦1 F should never be regarded as secure against the
P1, even though the protocol is obtained just by replacing the random tape in a protocol π secure
against such P1 in a statistically indistinguishable manner.

We note that the protocol π ◦1 F does indeed not satisfy the security requirement in Definition
3 (unless the integer factoring is easy). This may be intuitively obvious by the argument above,
but we give a formal proof for the sake of completeness.

Theorem 4. If the protocol π ◦1 F above securely computes the f against semi-honest P1, then
there exists a PPT algorithm that factorizes any integer N = pq of the form in Section 2.5 with
probability at least 1/8− negl(λ).
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Proof. Let S̃1 be the PPT simulator for Party P1 yielded by the assumption on the security of
π◦1F . We consider the following algorithm A: Given 1λ and N as inputs, A first runs S̃1(1λ, N,⊤)
and obtains (N, r1, trans) where trans := (⊤, c, x). Secondly, A runs S1(1λ, N,⊤; r1) and obtains
(N, r′′1 , trans

′′) where trans′′ := (⊤, c′′, x′′). Now A aborts unless x ∈ (Z/NZ)×, x′′ ∈ (Z/NZ)× and
x′′ ̸∈ {x,−x}. Finally, A computes P := gcd(x− x′′, N) and outputs P and N/P . Note that A is
a PPT algorithm.

Now we consider the following distinguisher D for simulator S̃1: Given (1λ, N, r̂1, t̂rans, (⊤,⊤))
as input where t̂rans := (⊤, ĉ, x̂), D runs S1(1λ, N,⊤; r̂1) and obtains (N, r̂′1, t̂rans

′
1) where t̂rans

′
1 :=

(⊤, ĉ′1, x̂′); D computes ŷ ∈ (Z/NZ)× as in Step 4 of π by using r̂′1 as the random tape for P1;
and then D outputs 1 if x̂, x̂′ ∈ (Z/NZ)×, x̂2 = x̂′2 = ŷ and x̂ ̸∈ {x̂′,−x̂′}, and outputs 0
otherwise. Note that D is a deterministic polynomial-time algorithm. Since the output of S̃1 is
computationally indistinguishable from the view of P1 in an execution of π ◦1 F , the probability
that D(1λ, N, r1, trans, (⊤,⊤)) outputs 1 has only negligible difference from the probability that
D(1λ, N, r̃1, (⊤, c, x), (⊤,⊤)) outputs 1, where r̃1 is a uniformly random tape for P1 in π ◦1 F and
(⊤, c, x) is the transcript for P1 in an execution of π ◦1 F corresponding to the random tape r̃1.

For an execution of π ◦1 F , put S1(1λ, N,⊤; r̃1) =: (N, r′1, (⊤, c′, x′)), and let y′ be the element
of (Z/NZ)× computed as in Step 4 of π by using r′1 as the random tape for P1. Then, since the
simulator S1 for P1 in π is statistically indistinguishable, it follows by the property of π that we
have y′ ∈ QRN and x′2 = y′ with probability at least 1/4−negl(λ). Moreover, conditioned on these
y′ and x′, the construction of π ◦1F implies that, for the corresponding elements y and x appeared
in an execution of π ◦1 F with the r̃1 as the random tape for P1, we always have y = y′ since y is
dependent solely on the same random tape r̃1 for P1, and x is uniformly random over the four square
roots of y = y′, which differs from ±x′ with probability 1/2. Hence, D(1λ, N, r̃1, (⊤, c, x), (⊤,⊤))
outputs 1 with probability at least (1/4− negl(λ)) · 1/2 = 1/8− negl(λ) for some negligible negl.

This implies that, the probability that D(1λ, N, r1, trans, (⊤,⊤)) outputs 1 is also at least 1/8−
negl(λ) for some negligible negl. Moreover, by the construction of D, the fact that the output
of D(1λ, N, r1, trans, (⊤,⊤)) is 1 guarantees that A does not abort and correctly outputs the two
factors of N (by the same argument as the proof of Theorem 3). This completes the proof of
Theorem 4.

5 Discussion on Existing Alternative Security Models

In this section, we revisit some existing security models for two-party computation, each of which
is wished to be an alternative to the semi-honest model from some viewpoint. Here we deal with
three existing models: the augmented semi-honest model introduced by Definition 7.4.24 in Section
7.4.4.1 of Goldreich’s book [7] (Section 5.2); a restrictive variant of the augmented semi-honest
model mentioned in a short note by Hazay and Lindell [8] (Section 5.3); and the semi-malicious
model introduced by Asharov, Jain, and Wichs in Section A.2 of [2] (Section 5.4). As formulations of
those models require the “ideal vs. real” framework for security definition instead of the simulator-
based framework for the semi-honest security in Definition 3, we first recall the framework in Section
5.1 before going into details of each existing model.

In Sections 5.2 and 5.3 we show that, even in the augmented semi-honest model and the Hazay–
Lindell’s variant, the protocol π given in Section 4.1 (more precisely, a protocol obtained by mod-
ifying π in a “minimal” way to fit in those different models while keeping the essential property
of π) is still secure against possibly malicious first party P1; while, as shown in Section 4.2, the
protocol falls into insecure against semi-honest P1 when P1 utilizes the statistically indistinguish-
able randomness preparation algorithm F given there. This means that the problem which we
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pointed out in Section 4 is not resolved by moving to those alternative models. (To be fair, we
should emphasize that the original reasons of introducing those models were not focusing on some
problem caused by the treatment of randomness in the two-party computation model as we did in
Section 4; therefore it is not surprising that those models do not resolve the problem in Section 4.)

In contrast, in Section 5.4, we give a positive result that shows that, if a two-party protocol is
secure against possibly malicious P1 under the semi-malicious model, then the protocol is also secure
against semi-honest P1 even when P1 utilizes any randomness preparation algorithm; therefore, our
problem in Section 4 can be resolved by adopting the semi-malicious model instead of the semi-
honest model. This is in fact natural, since the definition of the semi-malicious model has already
captured by itself (even implicitly) the robustness requirement against randomness preparation. We
however note that, in comparison to our current problem which is only the modification of a party’s
random tape prior to the protocol execution, the semi-malicious model allows moreover a party to,
roughly speaking, adaptively modify the party’s input as well as the random tape (and also to abort
the protocol execution) at any timing during a protocol execution provided the consistency of the
party’s behaviors until this timing can be defended with witness, which seems to be significantly
stronger ability than just the prior randomness modification. By this reason, it would be not very
convincing, or be too strict, to adopt the semi-malicious model as “the minimal requirement for
practical two-party computation protocols” in the same way as the semi-honest model being (or
seeming to be) widely regarded so at the present time.

5.1 Preliminaries: Ideal-Real Formulation of Security

In this section, let π denote any two-party protocol (rather than concrete protocols given in Section
4) computing some functionality f = (f1, f2) between two parties P1 and P2. Here we recall the
“ideal vs. real” formulation of security for π against possibly malicious parties; except slight dif-
ferences of expressions, our description here essentially follows the standard formulation described,
e.g., in Section 7.2 of [7]. We also note that, to simplify the description, here we concentrate on
the security definition against the first party P1 only; i.e., the second party P2 is always assumed
to be honest, since it is the case relevant to the problem shown in Section 4.

Below we let M mean some security model for two-party computation (e.g., the semi-honest
model). First we describe the formulation of the “real case”:

Definition 7 (Real execution of protocol). Let A1 be any PPT algorithm (with interaction with
some other algorithm). We say that A1 is an admissible real strategy for the first party P1 in a
protocol π under a model M, if it specifies a possible behavior of P1 during an execution of π that
is allowed under the model M. Then a real execution of π with first party’s strategy A1 goes as
follows:

• P1 is given a security parameter 1λ, the local input x1, and an auxiliary input z (chosen from
a certain set associated to the parameter λ). On the other hand, P2 is given 1λ and the local
input x2. (We note that, P2 is also given the same auxiliary input z under the formulation in
Section 7.2 of [7], but here we omit it since the honest P2 must ignore the auxiliary input.)

• The two parties jointly execute the protocol π, where P1 behaves as specified by A1 and
P2 behaves precisely as specified by π, and then obtain their own views during the protocol
execution. We note that P1 may intentionally abort at any step of the execution provided it
is specified so by A1 and is allowed under the model M.

• Then P1 outputs any information (which e.g., may be not the value of the function f1 and
may involve a guess for the input for P2 provided it is allowed under the model M) inferred

20



from his/her view in the way specified by A1. On the other hand, P2 simply outputs the
value of the function f2 that is implied by his/her view.

We define REALA1,z(1
λ, x1, x2) = REALπA1,z(1

λ, x1, x2) to be the pair of the two parties’ outputs
after the execution of π as above.

Secondly, we describe the formulation of the “ideal case”:

Definition 8 (Ideal computation of functionality). Let B1 be any PPT algorithm (with interaction
with some other algorithm) that specifies a possible behavior of the first party P1 in an ideal
computation of a functionality f explained below. We say that B1 is an admissible ideal strategy
for P1 to compute f under a model M, if the behavior of P1 specified by B1 is allowed under the
model M. Then an ideal computation of f with first party’s strategy B1 goes as follows:

• P1 is given a security parameter 1λ, the local input x1, and an auxiliary input z. P2 is given
1λ and the local input x2.

• P1 either sends a modified input x′1 (which may be the x1 itself) to a trusted third party T ,
or decides to abort at the step, according to the strategy B1 (provided it is allowed under the
model M). In any case, P2 simply sends the x2 to T .

• Unless P1 has aborted, T sends f1(x
′
1, x2) to P1. Then P1 decides, according to the strategy

B1, if he/she aborts at the step or not.

• If P1 has not aborted, then T sends f2(x
′
1, x2) to P2. Otherwise, T only tells P2 that P1 has

already aborted.

• Finally, regardless of whether P1 has aborted or not, P1 outputs any information inferred
from his/her view (including any information received from T ) in the way specified by B1.
On the other hand, P2 simply outputs the value received from T at the previous step if P1
has not aborted; otherwise P2 outputs abort.

We define IDEALB1,z(1
λ, x1, x2) = IDEALfB1,z(1

λ, x1, x2) to be the pair of the two parties’ outputs
after the process above.

Now the security against possibly malicious P1 is defined as follows:

Definition 9 (Security in ideal vs. real formulation). Let π be a two-party protocol for functionality
f . We say that π securely computes f against P1 under a model M, if for any PPT admissible real
strategy A1 for P1 in π under the model M (see Definition 7), there exists a PPT admissible ideal
strategy B1 for P1 to compute f under the model M (see Definition 8) satisfying(

IDEALfB1,z(1
λ, x1, x2)

)
λ,(x1,x2),z

c≡
(
REALπA1,z(1

λ, x1, x2)
)
λ,(x1,x2),z

.

Moreover, when the two distributions above are statistically indistinguishable, we also say that π
computes f in a statistically close to ideal manner against P1 under a model M.

We note that, when M is the semi-honest model, it is known that the security against P1 in the
sense of Definition 9 is equivalent to the security against P1 in the sense of Definition 3; see e.g.,
Proposition 7.2.3 in [7].
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5.2 The Augmented Semi-Honest Model

Here we consider the augmented semi-honest model introduced by Definition 7.4.24 in Section
7.4.4.1 of [7]. Except slight expressional differences, the definition of the model is as follows:

Definition 10 (Augmented semi-honest model). We define the augmented semi-honest model to
be the model where, in addition to the behaviors under the semi-honest model, a party is also
allowed to perform as follows:

• Before starting the protocol execution, the party may either exchange the original local input
for a modified input chosen from the same input set (and execute the protocol according to
the modified input), or abort the execution.

To be more precise, the party decides how to modify the input and whether he/she aborts
or not, by using the security parameter 1λ, the original local input xi, the auxiliary input (if
any), and a “special random tape” that is independent of the random tape for executing the
protocol itself. Moreover, the final output by the party (in the real execution of the protocol)
in the case where the party aborts at this timing is also independent of the part of the random
tape for protocol execution.

• At any step where the party is supposed to send a message to the other party, the party
may abort at the step without sending the message. To be more precise again, whether the
party aborts or not depends on the special (independent) random tape as well as the party’s
currently obtained view.

Then, we would like to show that the protocol π in Section 4.1 is still secure against P1 under
the augmented semi-honest model. However, there is an issue that, an augmented semi-honest P1
may now abort before the end of the protocol execution, while the original protocol π does not
specify how an honest P2 should behave when P1 aborts. Here we slightly modify the protocol
π to resolve this issue, in a simple way that an honest P2 will output abort whenever a possibly
malicious P1 aborts before the end of the protocol. The resulting protocol is denoted by πaug. We
note that this modification does not affect the behavior of a semi-honest (or honest) party during
the protocol; accordingly, the protocol πaug ◦1 F (with F as in Section 4.2) is insecure against
semi-honest P1 by the same reason as the case of π ◦1 F .

Then we have the following result, which, together with the aforementioned insecurity of πaug ◦1
F , means (as mentioned at the beginning of Section 5) that the problem in Section 4 is not resolved
even by adopting the augmented semi-honest model:

Theorem 5. The protocol πaug above computes the same functionality f as π in a statistically
close to ideal manner against P1 under the augmented semi-honest model (see Definition 9 for the
terminology).

Proof. Let A1 be any PPT admissible real strategy for P1 in πaug under the augmented semi-honest
model. Then we construct a PPT admissible ideal strategy B1 for P1 to compute f in the following
manner. The random tape for B1 consists of the random tape r̃1 for the simulator S1 constructed
in Theorem 1 and the special random tape s̃1 for A1 to be used for the input modification and
for the abort decision. Given 1λ, N , an auxiliary input z (if any), and a random tape (r̃1, s̃1), the
strategy B1 is defined as follows:

1. B1 runs A1(1
λ, N, z; (∗, s̃1)) and obtains from the A1 the possibly modified input Naug and

the decision for whether the party aborts before the protocol execution or not, as well as
the party’s output in the case where the party aborts at this timing, where ∗ denotes some
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content of the part of the random tape for A1 used in the protocol execution. Note that the
aforementioned behavior of A1 observed by B1 at this step does not depend on the part ∗
of the random tape. Now, if the A1 decided to abort before the protocol execution, then B1
also decides to abort without sending the (modified) input to the trusted third party T , and
outputs what B1 was given by the A1 as the final output.

2. B1 sends Naug to T , and then receives an element η from T .

3. B1 runs S1(1λ, Naug, (η, η); r̃1) and obtains its output (Naug, r1, trans).

4. B1 runs A1(1
λ, N, z; (r1, s̃1)) to obtain the following information; here, for each step dur-

ing the protocol execution where some message should be sent from P2 to P1, B1 uses the
corresponding part of the simulated transcript trans for P1 as the message sent at the step.

• B1 observes whether or not the A1 aborts before the end of the protocol execution. If
the A1 aborted, then B1 decides to abort at this step (accordingly, T does not send the
value of f2 to P2). Otherwise, B1 does not abort (accordingly, T sends the value of f2
to P2).

• B1 obtains the final output by the A1, which is chosen as the final output by B1.

We note that, by the remark given in Step 1 above, in the real execution of the protocol πaug

between A1 and B1 (playing the role of P2) at Step 4 above, the A1 does not abort before the
protocol execution and uses the same modified input Naug as in Step 1. Note also that the B1
above is indeed admissible under the augmented semi-honest model.

We assume, for the contrary, that the two distributions
(
IDEALfB1,z(1

λ, N, (p, q))
)
λ,(N,(p,q)),z

and(
REALπ

aug

A1,z(1
λ, N, (p, q))

)
λ,(N,(p,q)),z

are not statistically indistinguishable. This means that, there

exist a positive polynomial poly and infinite sequences of λ = λn > n (n = 1, 2, . . . ), N = Nλ, p =

pλ, q = qλ, and z = zλ, satisfying that IDEALfB1,zλ(1
λ, Nλ, (pλ, qλ)) and REALπ

aug

A1,zλ
(1λ, Nλ, (pλ, qλ))

have statistical distance at least 1/poly(λ) for any of those λ = λn. This also implies the existence of
a sequence s̃1,λ of a content of the special random tape for which these two distributions conditioned
on the fixed choice of s̃1,λ also have statistical distance at least 1/poly(λ) for any such λ. From now
on, we fix the choice of s̃1,λ and make it implicit in our argument. Now we note that A1(1

λ, Nλ, zλ)
never aborts before the protocol execution; this is because, if it aborts, then B1(1λ, Nλ, zλ) also
aborts by the construction and now the two distributions above become identical. We also note
that the B1 uses the same modified input Naug = Naug

λ as the A1, and in the ideal case, the B1
receives η = ηλ := f1(N

aug
λ , (pλ, qλ)) = f2(N

aug
λ , (pλ, qλ)) from T .

From now, we show that S1(1λ, Naug
λ , (ηλ, ηλ)) has statistical distance at least 1/poly(λ) from

the real view for P1 in π with input Naug
λ for P1 and input (pλ, qλ) for P2 for any such λ, which

contradicts the statistical indistinguishability of S1 (Theorem 1) and hence will complete the proof.
To show this, for each of such λ, we consider the following function Fλ: Given (Naug

λ , r1, trans) as
input, execute Step 4 in the construction of B1 with the 1λ, N = Nλ and z = zλ (and s̃1 = s̃1,λ),
and output (ν1, ν2) where ν1 is the final output of B1 and ν2 := abort if the B1 aborts during Step
4 and ν2 := f2(N

aug
λ , (pλ, qλ)) otherwise. Now if (Naug

λ , r1, trans) = S1(1λ, Naug
λ , (ηλ, ηλ)), then the

distribution of the value of Fλ is identical to the distribution of IDEALfB1,zλ(1
λ, Nλ, (pλ, qλ)) by the

construction of B1. On the other hand, if (Naug
λ , r1, trans) is a real view for P1 in the protocol π with

input pair (Naug
λ , (pλ, qλ)), then the distribution of the value of Fλ is identical to the distribution

of REALπ
aug

B1,zλ(1
λ, Nλ, (pλ, qλ)) by the construction of B1 again. Since the statistical distance of two

distributions is not increased by applying a common function, it follows that the output distribution
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of S1(1λ, Naug
λ , (ηλ, ηλ)) has also statistical distance at least 1/poly(λ) from the real view for P1 in

π with input pair (Naug
λ , (pλ, qλ)), as desired. This completes the proof of Theorem 5.

5.3 A Model in Hazay–Lindell’s Note

Here we consider a model suggested in a short note by Hazay and Lindell [8]. In their model, the
only ability of a party in addition to the semi-honest model is to modify the party’s local input
before the protocol execution (in the same sense as the augmented semi-honest model), while a
party is not allowed to abort (in contrast to the augmented semi-honest model where a party may
abort). Then we note that the situation for the model is the same as the case of the augmented
semi-honest model in Section 5.2, as shown by the following result:

Theorem 6. The protocol πaug given in Section 5.2 computes the functionality f in a statistically
close to ideal manner against P1 under the model above (see Definition 9 for the terminology).

Proof. Owing to Theorem 5, the only task is to check that for any PPT admissible real strategy A1

for P1 in πaug under the current model, the corresponding PPT ideal strategy B1 for P1 to compute
f that was constructed in the proof of Theorem 5 is admissible under the current model. This is
in fact obvious, as the B1 never aborts unless the A1 aborts by the construction.

5.4 The Semi-Malicious Model

Here we consider the semi-malicious model introduced by Asharov, Jain, and Wichs in Section A.2
of [2]. Roughly speaking, a possibly malicious party in this model can do, at each step of a protocol,
anything provided the party can defend the consistency of the current behavior and all the party’s
previous behaviors by showing a witness in a way as “I honestly used this input and this random
tape!” which may be adaptively forged by the party. Although this model was introduced in [2]
under Canetti’s Universal Composability (UC) framework [3] which is different from our current
setting, we can still formulate the essence of their model in a way fitting in our fashion, as follows:

Definition 11 (Semi-malicious model). We define the semi-malicious model to be the model where
a party’s behavior in a two-party protocol π is specified as follows:

• At any timing during a protocol execution where the party is sending a message m to the
other party, the party must also generate a witness of the form (x†, r†) (which is not sent to
the other party and is kept secret) with the following property: The sequence of all the actual
messages previously sent to the other party and the current message m coincides with the
sequence of expected messages that would have to be sent to the other party if the party were
honestly following the protocol π, the party’s local input were x†, the party’s random tape
were r† and the party were receiving the same messages from the other party as the actually
received ones.

• In addition, the party may abort a protocol execution at any timing, even before starting the
protocol execution.

Here we give a remark on the formulation of the ideal computation under the semi-malicious
model. In Definition 8, a possibly malicious Party P1 may abort during the computation process;
this ability to abort during an ideal computation should also be allowed under the semi-malicious
model by naturally interpreting the description above (or the description in [2]). On the other
hand, a possibly malicious P1 in Definition 8 may also modify his/her input sent to the trusted
third party T . There seem to exist two possible options for this point, to or not to allow the
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modification of the input sent to T ; it would depend on whether or not we should interpret “the
input sent to T (in an ideal computation)” as a kind of “a message m to the other party” in the
description above, which seems to be not very clear. In this paper, we choose an option to allow
the input modification in an ideal computation by default, which then results in the same model
of ideal computation as the case of the augmented semi-honest model (see Section 5). We also
sometimes choose the other option not allowing the input modification, in which case it will be
specified explicitly.

As the semi-malicious model already concerns the modification of the random tape (with “triv-
ial” witness involving the modified random tape itself), it is naturally expected that any protocol
secure in the semi-malicious model is also robust against randomness preparation (in contrast to the
previous cases of the augmented semi-honest model and Hazay–Lindell’s model, where the impli-
cation as above is denied by the protocol πaug). However, we do not have a proof for this expected
implication in a general case so far, due to some technical difficulty caused by the aforementioned
ability of modifying the local input in an ideal computation of the functionality f ; namely, even if a
real strategy for the first party P1 is semi-honest, there remains the following potential possibility
for the corresponding ideal strategy B1 for P1 to compute f under the semi-malicious model: B1
may be able to modify the local input x1 to some other x†1 in a way that B1 infers some non-trivial

information on the other party’s input x2 from the value of f1(x
†
1, x2) received from the trusted

third party that is different from f1(x1, x2) (hence not known by the simulator for P1) while keep-

ing the output f2(x
†
1, x2) by the other party unchanged from f2(x1, x2) (being consistent with the

indistinguishability between the real and the ideal cases). In the following results on the impli-
cation from semi-malicious security to robustness against randomness preparation, we avoid the
technical difficulty in two ways; to restrict the functionality f to those for which the input modifi-
cation ability above does not matter (Theorem 7); and to forbid the input modification in the ideal
computation of f (Theorem 8). One may observe the aforementioned technical difficulty further
by comparing the proofs of Theorems 7 and 8. We also note that, even the restricted Theorem 7
suffices to show that the protocol πaug in Section 5.2 (nor the original protocol π in Section 4.1)
cannot be a counterexample even if the expected implication above does in fact not hold.

From now, we give the two implication results mentioned above:

Theorem 7. Let π be a two-party protocol, and let f = (f1, f2) denote the functionality that is
computed by π between two honest parties. Suppose that π securely computes f against P1 under
the semi-malicious model. Suppose also that f satisfies one of the following conditions:

• f1 = f2 are identical and deterministic functions.

• The output of f1 is independent of the input for P1.

Then π is robust against any admissible randomness preparation R1 by P1 under the semi-honest
model. Moreover, if π computes f in a statistically close to ideal manner against P1 under the
semi-malicious model, then the simulator for P1 in π ◦1 R1 is statistically indistinguishable.

Proof. Let R1 be any admissible (in particular, PPT) randomness preparation algorithm for P1.
Now we consider the following PPT real strategy A1 (without auxiliary input z) for P1 in π under
the semi-malicious model: Given 1λ, a local input x1, and a uniformly random tape r̃1, A1 first runs
R1(1

λ, x1; r̃1) and obtains its output r†1; secondly, A1 honestly executes the protocol π with input

x1 and random tape r†1, where the witness required at each step is simply (x1, r
†
1); and then outputs

(x1, r̃1, trans
†) where trans† denotes the transcript received from P2 during the protocol execution of

π above. Note that this A1 is indeed admissible under the semi-malicious model. By the assumption
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on the security of π under the semi-malicious model, there exists a PPT admissible ideal strategy
B1 for P1 to compute f under the semi-malicious model, for which the output distributions of the
real execution (using A1) and the ideal computation (using B1) is computationally (or statistically,
resp.) indistinguishable.

Then we construct a PPT simulator S1 for semi-honest P1 in the protocol π ◦1 R1 as follows:

1. Given 1λ, x1 and an element ν as inputs, S1 first runs B1 with input (1λ, x1) and observes
how B1 modifies the input to be sent to the trusted third party T and whether or not B1
decides to abort before sending an input to T . If B1 decides to abort, then S1 outputs abort
and halts. Otherwise, let x†1 denote the (possibly) modified input to be sent to T .

2. Secondly, S1 continues to run the B1 with the element ν playing the role of the element
received from T , and outputs what the B1 finally outputs.

We show that the output distribution of S1 is computationally (or statistically, resp.) indistin-
guishable from the view for semi-honest P1 in an execution of π ◦1 R1. First we note that, the
output distribution of the real execution of π between A1 and honest P2 is, by construction of A1,
identical to the pair of the view for P1 and the output by P2 in an execution of π◦1R1. Therefore, it
suffices to show that the output distribution of S1 is statistically indistinguishable from the output
distribution of B1 in the ideal computation of f with honest P2.

We note that A1 never aborts (hence P2 never outputs abort) in a real execution of π as an
honest party never aborts. Therefore, in the ideal computation of f between B1 and P2, B1 aborts
(hence P2 outputs abort) with at most negligible probability (depending solely on λ); otherwise, a
distinguisher can easily distinguish the real execution and the ideal computation by just seeing the
output by P2, a contradiction.

Here we consider the first case in the statement that f1 = f2 are identical and deterministic
functions. As an honestly executed π computes f correctly by definition of f , and as f is now
deterministic, an honestly executed protocol π ◦1 R1 also computes f correctly. It follows by
construction of A1 that, P2 always outputs the correct value of f2(x1, x2) in a real execution of π
with A1. Then, in the ideal computation of f between B1 and P2, the output by P2 is different from
f2(x1, x2) with at most negligible probability depending solely on λ, since otherwise a distinguisher
can easily distinguish the real execution and the ideal computation by just checking whether the
output by P2 is equal to f2(x1, x2) or not, a contradiction again (we note that, since we are
considering non-uniform distinguishers in the definition of indistinguishability, a distinguisher can
learn the “best to distinguish” input pair (x1, x2) as auxiliary advice, and then the distinguisher
can know the correct value of f2(x1, x2)). Since the output by P2 in the ideal computation of f is

f2(x
†
1, x2), and since f1 is identical to f2 by the assumption, it follows that f1(x

†
1, x2) = f2(x

†
1, x2) =

f2(x1, x2) = f1(x1, x2) = ν except negligible probability. This implies that the output distribution
of B1 executed internally in S1 (hence that of S1 itself) has only negligible distance from the output
distribution of B1 in the ideal computation of f with honest P2, as desired.

Finally, we consider the other case in the statement where the output of f1 is independent of the
first input. In this case, the assumption implies that f1(x

†
1, x2) and f1(x1, x2) = ν have identical

probability distributions. Therefore, since B1 aborts with negligible probability as shown above, it
follows that the output distribution of B1 executed internally in S1 (hence that of S1 itself) has only
negligible distance from the output distribution of B1 in the ideal computation of f with honest
P2, as desired. This completes the proof of Theorem 7.

Theorem 8. Let π be a two-party protocol, and let f = (f1, f2) denote the functionality that is
computed by π between two honest parties. Suppose that π securely computes f against P1 under the
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“optional” semi-malicious model where the input modification in the ideal computation of f is not
allowed (see the remark after Definition 11). Then π is robust against any admissible randomness
preparation R1 by P1 under the semi-honest model. Moreover, if π computes f in a statistically
close to ideal manner against P1 under the “optional” semi-malicious model, then the simulator
for P1 in π ◦1 R1 is statistically indistinguishable.

Proof. The proof is basically the same as Theorem 7: R1, A1, B1 and S1 are as in the proof
of Theorem 7. Now the “optional” condition for the semi-malicious model implies (without any
restriction on the functionality f as in the statement of Theorem 7) that, unless B1 aborts before

sending an input to the trusted third party, we always have x†1 = x1 and hence f1(x
†
1, x2) and

f1(x1, x2) = ν have identical probability distributions (where x†1 and ν are as in the proof of
Theorem 7). Since B1 aborts with at most negligible probability by the same reason as the case of
Theorem 7, it follows that the output distribution of B1 executed internally in S1 (hence that of
S1 itself) has only negligible distance from the output distribution of B1 in the ideal computation
of f with honest P2. This completes the proof in the same way as Theorem 7.

6 On Conditions to Prevent Randomness Preparation Problem

In this section, we give another positive result showing some sufficient conditions to prevent the
problem (pointed out in Section 4) caused by a party’s randomness preparation. In contrast to
Theorems 7 and 8 in Section 5.4, our conditions can be fully checked within the semi-honest model,
without introducing some stronger adversary models such as the semi-malicious model. Instead, we
require a simulator constructed in a security proof for the original protocol under the semi-honest
model to satisfy some additional conditions, and also suppose that the output of the randomness
preparation algorithm is sufficiently indistinguishable from uniform (while, in Theorems 7 and 8
above, we put essentially no assumption on the randomness preparation algorithms). We note that
these conditions are not always required to prove the robustness against randomness preparation
for a specific protocol; we give an example of a protocol to see this below.

Our requirement for a simulator in the security proof for the original protocol mentioned above
is the following:

Definition 12. We say that a simulator Si for a view of Party Pi in a two-party protocol is with
raw random tape, if Si is executed in the following manner with some algorithm Ti: Given 1λ, xi
and fi(x⃗) as inputs, Si generates a uniformly random tape ri for Pi, runs Ti(1λ, xi, fi(x⃗), ri) to
obtain a simulated transcript transi for Pi, and then outputs (xi, ri, transi).

Intuitively, the definition means that, for the random tape part of the simulated view, the
simulator just outputs a uniformly sampled random tape as is (which is then used for simulating
the transcript), rather than using an artificially adjusted random tape generated from a simulated
transcript (as is frequently done in a security proof for a two-party protocol). For example, the
simulator S2 constructed in the proof of Theorem 2 is in fact with raw random tape, while the
simulator S1 in the proof of Theorem 1 is not with raw random tape.

From now, we give our aforementioned positive result on preventing the randomness prepara-
tion problem under some conditions. Here we say that a randomness preparation algorithm Ri

for Party Pi is computationally indistinguishable (or statistically indistinguishable, resp.), if the
output distribution of Ri with uniformly random tape is computationally (or statistically, resp.)
indistinguishable from the uniformly random tape for Pi. Then the result is as follows:
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Theorem 9. Let π be any two-party protocol, and let f be any functionality. For each i ∈ {1, 2}, if
π securely computes f against semi-honest Pi with statistically indistinguishable simulator with raw
random tape (see Definition 12 for the terminology), then π is robust against any PPT admissible,
statistically indistinguishable randomness preparation algorithm Ri (see above for the terminology)
by Pi under the semi-honest model. Moreover, for any such Ri, π ◦i Ri also securely computes f
against semi-honest Pi with statistically indistinguishable simulator with raw random tape.

Proof. Here we focus on the case i = 1 only, as the other case i = 2 is similar by symmetry. By
the assumption, there exists a PPT statistically indistinguishable simulator S1 with raw random
tape for P1 in π. Let T1 denote the PPT algorithm yielded by the “raw random tape” condition
as in Definition 12. By definition, (Xλ,x⃗)λ,x⃗ :=

(
x1, r1, T1(1λ, x1, f1(x⃗), r1), f(x⃗)

)
λ,x⃗

is statistically

indistinguishable from (Yλ,x⃗)λ,x⃗ :=
(
x1, r1, trans

π
1 (1

λ, x⃗; r1, r2), out
π(1λ, x⃗; r1, r2)

)
λ,x⃗

, where r1 and
r2 are uniformly random for both Xλ,x⃗ and Yλ,x⃗.

First, let r1 = r1(1
λ, x1) denote the random variable identical to the output distribution of

R1(1
λ, x1). By the assumption on R1, r1 is statistically indistinguishable from r1. Therefore,

the family of X ′λ,x⃗ obtained by replacing each r1 appeared in Xλ,x⃗ with r1 is also statistically
indistinguishable from the family of Y ′λ,x⃗ obtained by replacing each r1 appeared in Yλ,x⃗ with r1.

Secondly, for each possible value of r1, let s(r1) = s(r1(1
λ, x1)) denote the random variable that

follows the conditional probability distribution of the random tape r̃1 for R1(1
λ, x1) conditioned on

the event R1(1
λ, x1; r̃1) = r1. Then, by applying to both X ′λ,x⃗ and Y ′λ,x⃗ the common probabilistic

function that replaces r1 in the second component of the distribution with a random value of s(r1),
it follows that the two families of the resulting distributions X ′′λ,x⃗ and Y ′′λ,x⃗, respectively, are also
statistically indistinguishable.

Now since r1 follows the output distribution of R1(1
λ, x1; r̃1) with uniformly random r̃1 by

definition, it follows that the distribution of s = s(r1(1
λ, x1; r̃1)) with uniformly random r̃1 (and

with the own internal randomness for s) is identical to the uniform distribution of the random
tape for R1(1

λ, x1). Moreover, we always have R1(1
λ, x1; s(r1)) = r1 by the definition of s(r1).

Therefore, the random variable X ′′λ,x⃗ can be rewritten as

X ′′λ,x⃗ =
(
x1, s, T1(1λ, x1, f1(x⃗), R1(1

λ, x1; s)), f(x⃗)
)

where the s follows the uniform distribution for the random tape for R1(1
λ, x1), and the random

variable Y ′′λ,x⃗ can be rewritten as

Y ′′λ,x⃗ =
(
x1, s, trans

π
1 (1

λ, x⃗;R1(1
λ, x1; s), r2), out

π(1λ, x⃗;R1(1
λ, x1; s), r2)

)
where the s follows again the uniform distribution for the random tape for R1(1

λ, x1). By the
definition of π ◦1 R1, this Y ′′λ,x⃗ is also equal to

Y ′′λ,x⃗ =
(
x1, s, trans

π◦1R1
1 (1λ, x⃗; s, r2), out

π◦1R1(1λ, x⃗; s, r2)
)
.

According to the argument above, we now define a simulator S̃1 for P1 in π ◦1 R1 with raw
random tape as follows: Given 1λ, x1 and f1(x⃗) as inputs, S̃1 generates s uniformly at random,
computes trans1 := T1(1λ, x1, f1(x⃗), R1(1

λ, x1; s)), and then outputs (x1, s, trans1). This is a PPT
algorithm as well as T1 and R1, and now X ′′λ,x⃗ is identical to

(
S̃1(1λ, x1, f1(x⃗)), f(x⃗)

)
. Therefore, by

the argument above, it follows that the simulator S̃1 for P1 in π◦1R1 is statistically indistinguishable.
This completes the proof of Theorem 9.
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Here we give a remark on the three conditions in the statement above: “statistical” indis-
tinguishability of the simulator; “raw random tape” property of the simulator; and “statistical
indistinguishability” of the randomness preparation algorithm. First, among the three conditions,
the necessity of the “raw random tape” property is clear, as the results in Section 4 imply that
the protocol π and the randomness preparation algorithm F given there will be a counterexample
for Theorem 9 (unless the integer factoring is easy) once the “raw randomness tape” assumption
is removed from the statement.

Secondly, we discuss the importance of the “statistical” indistinguishability assumption on the
simulator. To see this, suppose instead that the simulator is only computationally indistinguishable
(while keeping the other two conditions). By the notations in the proof above, this means that the
two families of distributions (Xλ,x⃗)λ,x⃗ and (Yλ,x⃗)λ,x⃗ are computationally indistinguishable. Then
the computational indistinguishability of (X ′λ,x⃗)λ,x⃗ and (Y ′λ,x⃗)λ,x⃗ can be similarly deduced from the
computational (in fact, statistical) indistinguishability of the randomness preparation algorithm.
Now if the random variable s(r1) in the proof were efficiently samplable for each value of r1, then
the computational indistinguishability of (X ′λ,x⃗)λ,x⃗ and (Y ′λ,x⃗)λ,x⃗ would imply in a similar way that
(X ′′λ,x⃗)λ,x⃗ and (Y ′′λ,x⃗)λ,x⃗ are also computationally indistinguishable, which is the desired conclusion.
However, in fact s(r1) is not efficiently samplable in general (e.g., consider any one-way permutation
on the set {0, 1}ρ(λ) of random tapes, where the output distribution in forward direction is perfectly
uniform as desired, but sampling the s means inverting the permutation which is computationally
hard by definition), and our proof strategy fails at this point if the “statistical” indistinguishability
assumption on the simulator is weakened to the computational one.

One may feel that, among the three conditions above, the “statistical indistinguishability” of
the randomness preparation algorithm is most stressful; one would expect that, in order to achieve
only computational (rather than unconditional) security, any “secure” protocol should allow a party
to use any computationally indistinguishable (or “cryptographic”) pseudorandom generator (PRG)
to prepare the party’s own random tape. Unfortunately, the use of such a PRG causes two hurdles
in our proof strategy above. The first hurdle is the same as the previous paragraph, namely, it is
generally hard to sample a seed of a PRG conditioned on a given output of the PRG, i.e., s(r1) by the
notation in the previous paragraph. In fact, this hurdle would be resolved if (X ′λ,x⃗)λ,x⃗ and (Y ′λ,x⃗)λ,x⃗
were statistically indistinguishable. But actually, it is only guaranteed that (X ′λ,x⃗)λ,x⃗ and (Y ′λ,x⃗)λ,x⃗
are only computationally indistinguishable even though (Xλ,x⃗)λ,x⃗ and (Yλ,x⃗)λ,x⃗ are assumed to be
statistically indistinguishable, since the PRG used is only computationally indistinguishable. This
is the second hurdle caused by using a PRG in the current situation.

We emphasize that, the necessity of the three conditions discussed above is for a generic proof
strategy, and the robustness against randomness preparation can still be proved for a specific proto-
col even without (at least) one of the three conditions. We give an example of a two-party protocol
to see this, which is an equality test of two parties’ inputs based on the Paillier cryptosystem. This
protocol in fact has already appeared as a part of the protocol π in Section 4.1, but here we describe
the protocol again for the sake of completeness, denoted by π=:

• The inputs x1, x2 are elements of a finite subset Iλ of non-negative integers. The functionality
f = (f1, f2) is defined by f1(x⃗) = f2(x⃗) = 1 if x1 = x2 and f1(x⃗) = f2(x⃗) = 0 if x1 ̸= x2.

1. P1 generates a key pair (pk, sk) of the Paillier cryptosystem with plaintext space Z/NZ, where
N is an η(λ)-bit integer for a positive polynomial η(λ) ≥ λ, and both of the prime factors of
N are larger than the maximum of Iλ (hence Iλ can be regarded as a subset of Z/NZ). Then
P1 generates a random ciphertext [[x1]] of x1, and sends pk and the [[x1]] to P2.

2. P2 generates a ciphertext [[−x2]] of −x2, and generates [[x1− x2]] by applying the additively
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homomorphic operation to the [[x1]] and the [[−x2]].

3. P2 computes a = r mod N by using a random (η(λ)+λ)-bit sequence r, and if a ̸∈ (Z/NZ)×
then P2 replaces a with 1. Then P2 generates [[a(x1−x2)]] from the [[x1−x2]] by applying the
additively homomorphic operations combined with the standard double-and-add technique for
scalar multiplication (hence the total number of operations is of order O(η(λ)).

4. P2 applies the statistically perfect re-randomization to the [[a(x1−x2)]], and sends the result
to P1, which we also write [[a(x1 − x2)]] by abusing notation.

5. P1 decrypts the given [[a(x1−x2)]] and obtains a(x1−x2) ∈ Z/NZ. Secondly, P1 sets χ := 1
if a(x1 − x2) = 0 in Z/NZ, and χ := 0 otherwise. Then P1 sends χ to P2, and P1 and P2
output χ.

Theorem 10. For any PPT admissible randomness preparation algorithm R1 (including the case
R1 = id) for the first party P1 in the protocol π=, the protocol π= ◦1 R1 securely computes the
functionality f against semi-honest P1 where the simulator is statistically indistinguishable with
raw random tape. On the other hand, if the Paillier cryptosystem is CPA secure against non-
uniform adversaries, then for any PPT admissible randomness preparation algorithm R2 (including
the case R2 = id) for the second party P2 in π=, the protocol π= ◦2 R2 securely computes f against
semi-honest P2 where the simulator is with raw random tape.

Proof. First, we construct a simulator S1 for P1 in π= ◦1R1. Given 1λ, x1 and χ = f1(x⃗) ∈ {0, 1} as
inputs, S1 first generates a uniformly random tape r̃1 for R1, and runs R1(1

λ, x1; r̃1) to obtain the
random tape r1 for P1 in π=. Secondly, S1 chooses a key pair (pk, sk) as in the protocol by using
the random tape r1. Now if χ = 1, S1 generates a random ciphertext c of plaintext 0. On the other
hand, if χ = 0, S1 generates a random ciphertext c of a (statistically close to) uniformly random
plaintext chosen from (Z/NZ)× (by virtue of Lemmas 1 and 3). Finally, S1 outputs (x1, r̃1, c). This
S1 is PPT and is with raw random tape by the construction. Note also that S1 perfectly simulates
the first step of π= ◦1 R1.

In the case x1 = x2, we have a(x1−x2) = 0, therefore the ciphertext [[a(x1−x2)]] received at the
fourth step of the protocol is statistically close to a uniformly random ciphertext of 0 (owing to the
statistically perfect re-randomization). Hence the protocol correctly computes the functionality,
and S1 simulates the transcript in a statistically indistinguishable manner in this case.

On the other hand, in the other case x1 ̸= x2, the element a ∈ (Z/NZ)× chosen in the third step
of the protocol is statistically close to uniform (owing to Lemmas 1 and 3), while x1−x2 ∈ (Z/NZ)×
due to the choice of N in the first step (which guarantees that |x1 − x2| is smaller than any of the
two prime factors of N). This implies that a(x1 − x2) ∈ (Z/NZ)× (in particular a(x1 − x2) ̸= 0)
and it is also statistically close to uniform over (Z/NZ)×. Hence the protocol correctly computes
the functionality, and S1 simulates the transcript in a statistically indistinguishable manner in this
case as well. Therefore, the assertion for security against P1 holds (we note that here we did not
rely on the security assumption on the Paillier cryptosystem).

Secondly, we construct a simulator S2 for P2 in π= ◦2 R2. Given 1λ, x2 and χ = f2(x⃗) ∈ {0, 1}
as inputs, S2 first generates a uniformly random tape r̃2 for R2, and runs R2(1

λ, x2; r̃2) to obtain
the random tape r2 for P2 in π=. Secondly, S2 generates the uniformly random tape r1 for P1, and
chooses a key pair (pk, sk) as in the protocol by using the random tape r1. Thirdly, S2 generates
a random ciphertext [[0]] of plaintext 0. Finally, S2 outputs (x2, r̃2, (pk, [[0]], χ)). This S2 is PPT
and is with raw random tape by the construction. Note that the protocol correctly computes the
functionality by the same argument as above; that is, the simulation for the part χ of the transcript
is perfect. We note also that S2 perfectly simulates the part pk of the transcript as well.
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Now assume, for the contrary, that a non-uniform PPT distinguisher D can distinguish the
simulation result Xλ,x⃗ := (x2, r̃2, (pk, [[0]], χ), f(x⃗)) and the real behavior Yλ,x⃗ := (x2, r̃2, trans2, out)
of π= ◦2 R2. More precisely, there exists a positive polynomial poly satisfying the following: For
any n ≥ 1, there exist a λ = λn > n, an input pair x⃗λ = (xλ,1, xλ,2), and advice z = zλ satisfying∣∣Pr[D(zλ)(1λ,Xλ,x⃗λ

) = 1]− Pr[D(zλ)(1λ,Yλ,x⃗λ
) = 1]

∣∣ ≥ 1/poly(λ). Then we construct a non-uniform
PPT adversary A against the CPA security of the Paillier cryptosystem. Here we focus only on
the security parameters of the form λ = λn for some n as the other cases are not relevant. The
advice for A consists of x⃗λ and zλ. Given 1λ and pk as inputs, A chooses a uniformly random tape
r̃2 for R2 (we note that the choice of pk in the protocol is independent of the random tape for P2),
and sends two plaintexts m0 := 0 and m1 := xλ,1 to the challenger. On receiving the challenge
ciphertext [[mβ]] of plaintext mβ with β ←R {0, 1}, A sets Z := (xλ,2, r̃2, (pk, [[mβ]], χ), (χ, χ))
where χ := f1(xλ,1, xλ,2) = f2(xλ,1, xλ,2), runs D(zλ)(1λ,Z), and then outputs the output of the
D. Now by the construction, the distribution of Z is identical to Xλ,x⃗λ

and to Yλ,x⃗λ
if β = 0

and β = 1, respectively. Therefore, by the assumption on D, the probabilities that the A outputs
1 conditioned on the two choices of β have difference at least 1/poly(λ) as well, for any such
λ. This means that A breaks the CPA security (against non-uniform adversary) of the Paillier
cryptosystem, a contradiction. Hence the simulator S2 is computationally indistinguishable, as
desired. This completes the proof of Theorem 10.
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