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Abstract

It is widely understood that we are just human beings rather than being almighty; as a result, we
have always to rely on non-ideal randomness in real-world cryptosystems. In contrast, in a theoretical
design of a cryptosystem, it is usually regarded as sufficient to give a security proof assuming the use of
ideal randomness in the system. This gap between the theory and the real world seems to have not been
considered seriously, due to our common beliefs that computationally secure (close-to-ideal) randomness
generation must be practically possible and the security of cryptosystems must be preserved when the
ideal randomness in theory is replaced by a practical computationally secure pseudorandom generator
(PRG). Nevertheless, in this paper we reveal, as opposed to our intuition, that the latter kind of common
belief on the security under the use of computationally secure PRGs is NOT true for a general two-party
computation protocol. More precisely, we prove as a counterexample that an oblivious transfer protocol
proposed by Asharov et al. in ACM CCS 2013 in the semi-honest model becomes insecure when a party in
the protocol uses, to generate his/her internal randomness, an even statistically secure PRG constructed
in the present paper. Our result implies that, even by using a statistically secure PRG implemented with a
best effort by an honest engineer, the security of an implemented two-party protocol is not automatically
guaranteed; the author thinks that this fact should be widely recognized in the area of cryptography
as well as many other areas where secure multiparty computation is going to be practically applied. It
might be an interesting future research topic to study sufficient conditions for two-party protocols that
imply the security under a use of a secure PRG, a part of which is also done in this paper.

1 Introduction

In the theory and applications of cryptography, the gap between the ideal random numbers in theoretical
models and the non-ideal random numbers in the real world is always a major worrying problem. For
example, Heninger et al. revealed in 2012 [10] that, a surprisingly large part of TLS and SSH servers in the
world at that time had serious vulnerability caused by inappropriate generation of random cryptographic
keys. This is in fact a sort of “worst” examples; but in general, it seems to be even beyond the art of human
being to generate a perfectly ideal random number. Accordingly, for establishing secure cryptographic
systems in the real world, we have always been using random numbers that are non-ideal to various extent;
e.g., computationally indistinguishable from ideal, (seemingly) statistically close to ideal, or sometimes even
more casual “non-cryptographic” pseudorandom generators (PRGs) such as the Mersenne Twister [15].

When a theoretical cryptographer proposes a new cryptographic scheme in an academic paper, he/she
usually gives a mathematical proof showing that the scheme is secure (in a certain, formally defined sense)
provided the scheme is implemented and used precisely as specified by the description in the paper (and,
often moreover, if some cryptographic assumption holds such as the computational hardness of the integer
factoring). On the other hand, he/she usually guarantees nothing about the security in cases where some part
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of the specification for the construction of his/her scheme is not precisely followed by a real implementation
of the scheme. Accordingly, in order to benefit from the security proof in the paper, an engineer who wants
to implement the proposed scheme has to precisely follow the specification in the paper; and it seems to be
an ordinary custom in the area of cryptography that, when an implemented real system does not follow the
specification precisely and then fails the security claimed in the paper, this is regarded as the responsibility
of the engineer rather than the cryptographer who proposed the scheme.

From the viewpoint of human being’s limitation for randomness generation discussed in the first para-
graph, the aforementioned custom in the cryptographic area might look unfavorable for the engineer’s side.
Namely, most of the cryptographic papers to propose a new scheme are assuming that ideal random numbers
are used in the scheme, while it is practically infeasible for the engineers to precisely follow the specification
for the ideal random numbers. This kind of unfairness in the custom has, however, not been considered
seriously so far due to the following two common beliefs in the area of cryptography:

1. It must be practically feasible (possibly under some cryptographic assumption) to generate randomness
that is not ideal but still computationally indistinguishable from the ideal randomness.

2. It must be always true that, given a cryptographic scheme that is computationally secure when using
ideal randomness, the scheme remains secure after replacing the ideal randomness by an output of a
PRG that is computationally indistinguishable from the ideal randomness.

If these are certainly true, it is guaranteed to be sufficient for the engineers to use such a computationally
secure PRG instead of generating the ideal randomness in order to securely implement a cryptographic
scheme, while the author of a paper to propose a new cryptographic scheme is allowed to only consider
the use of the ideal randomness in the same way as the present time. Actually, the standard formalization
of the computational indistinguishability for an output of a PRG from the ideal randomness seems to be
intended to make sure the latter belief above; and the paradigm to bridge a gap between the theory and the
implementation of cryptographic schemes based on the two beliefs above seems to be working well for most
of the situations in cryptography.

Nevertheless, here we recall that there are no formal proofs to guarantee that the second common belief
above is indeed true for an arbitrary cryptographic scheme. And in fact, the aim of the present paper is to
reveal that, as opposed to the usual cryptographers’ intuition, the second common belief above is NOT always
true for some kind of cryptographic schemes, particularly for the case of secure two-party computation. Briefly
summarizing, a secure two-party computation protocol enables two parties endowed with their local inputs to
compute a function from the two local inputs, in a way that each party’s local input (except any information
implied by the function value itself) is kept secret against the other party during the computation.

1.1 Our Results

Briefly summarizing, our main result (Theorem 1 in Section 4) shows that there exist a two-party computation
protocol π† that is (computationally) secure in the semi-honest model and a secure PRG R† with the
following property: If a party in the protocol π† uses a random output of the PRG R† as the party’s internal
randomness instead of the ideal internal randomness, then the resulting protocol becomes not secure against
the party him/herself. This means that the second common belief in the area of cryptography mentioned
above is not true for the case of secure two-party computation in the semi-honest model. It is even worse
that the PRG R† in our counterexample is not just computationally but statistically secure, but such
a significantly strong PRG is not yet sufficient for preventing the counter-intuitive security loss. We also
emphasize that the two-party protocol π† in our counterexample (see Section 4.1) is chosen from an oblivious
transfer protocol proposed by Asharov et al. in ACM CCS 2013 [3], rather than artificially designed only to
prove our theorem. See Section 4 for the details of our main result; in the rest of this section, we intuitively
explain why such a counterexample exists for the case of two-party computation.

The most noticeable characteristic of two-party computation from the viewpoint of causing such an issue
discussed in this paper is that, the entity who uses an internal randomness may be the same as the entity
who attacks against the protocol; namely, a two-party protocol is required to be secure against any party
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joining a protocol execution rather than a third-party attacker1. As a result, the security of two-party
protocols has to be investigated under the assumption that an attacker can even see the internal randomness
itself used in the protocol (since the random numbers may be stored in the attacker’s own device used in a
protocol execution). Accordingly, in the case where a (corrupted) party uses a PRG to generate the internal
randomness for the protocol from a random seed, the security after the use of the PRG has to be considered
by assuming that an attacker can see the random seed for the PRG as well (which may be also stored in
the attacker’s device). On the other hand, the standard formulation for the security of PRGs is established
under the assumption that an attacker cannot directly see the random seed used by the PRG. Therefore,
even if the PRG is secure, the security of the PRG (assuming the seed is not visible) cannot in general help
for preserving the security for a two-party protocol (in the situation where the seed is visible).

In the two-party protocol π† in our counterexample, the two parties are supposed to agree, before a
protocol execution, on some public global parameter including a cyclic group G = ⟨g⟩ of known order q with
generator g; and then start the protocol with their local inputs. The central idea for the protocol is that,
in some kinds of groups G, one can efficiently sample a random element h ∈ G in a way that the discrete
logarithm of h with respect to the generator g cannot be determined even if the randomness used to sample
the h is known. The construction of the protocol π† requires to use such a sampling algorithm for h ∈ G.
Then, by closely analyzing an instantiation (described in the original paper [3]) of the sampling algorithm,
we construct a PRG R† satisfying that for a uniformly random seed s for R†, the distribution of R†(s) is
statistically close to the distribution of the ideal internal randomness for the sampling algorithm, and when
R†(s) is used as the internal randomness for the sampling algorithm, the discrete logarithm of the sampled
h ∈ G with respect to g can be efficiently recovered from the seed s. Hence the security of π† is compromised
when the PRG G is used2. See Section 4.2 for the concrete construction of the PRG R†.

Our negative result explained above would lead us to the following question: How can we guarantee the
security of a two-party protocol in the real world where the ideal randomness is not available? A possible
solution is to use a tamper-resistant physical random number generator with close-to-uniform output dis-
tribution; now even a semi-honest party him/herself cannot see the internal state for the random number
generator and hence the aforementioned negative result may be ignored. Another possibility is to prove the
security of the original two-party protocol under a stronger security model that also covers modification of
randomness, such as the full malicious model and a somewhat weaker “semi-malicious model” introduced by
Asharov, Jain, and Wichs in Section A.2 of [2]. On the other hand, for a more “efficient” solution without a
special physical device or a stronger security model (which is significantly more intricate than the semi-honest
model), we give an affirmative result (Theorem 2 in Section 5) to prove that the security (in the semi-honest
model) of a two-party protocol is preserved by replacing a party’s internal randomness with an output of a
statistically secure PRG, if a simulator can efficiently simulate the party’s view in a real execution of the
protocol in a statistically indistinguishable manner, and the simulator simulates the internal randomness for
the party by using some uniformly sampled randomness as is (rather than, as frequently done in the security
proofs for two-party protocols in the literature, first simulating the other part of the view and then adjusting
the simulated internal randomness according to the already chosen part of the view). One may feel that
the hypothesis of our result here looks very severe, but in fact the argument in the second last paragraph
suggests that it would be significantly non-trivial to improve our result by relaxing the hypothesis.

1.2 Related Work

One may feel that the topic of the present paper seems to be related to some other topics concerning non-
ideal randomness in cryptography, such as cryptography based on so-called “imperfect randomness” (e.g.,

1It is expected that such a security loss by using secure PRGs does not occur for any “single-party” cryptographic scheme
where the user and the attacker are different. See Section 3.1 for a discussion in a typical case of public key encryption schemes.

2In the most strict formulation of two-party computation, the global parameter of the protocol such as the group G may
have to be regarded as a part of the parties’ inputs; in this case, the output of our PRG R† is regarded as dependent on a
part of a party’s input, which some reader may feel somewhat strange. However, in practice such a global parameter is often
hardwired as a constant into an implementation of a protocol (e.g., by following a fixed standard choice of the “safe” group G);
now the output of our PRG R† does not depend on the variable inputs for the protocol.
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[6, 7]) and the security issues caused by “backdoored PRGs” (e.g., [4, 5]). But actually, the former topic
above mainly deals with randomness that is significantly far from being ideal; in contrast, the present paper
focuses on the use of randomness that is significantly close to ideal. On the other hand, the latter topic
above studies the problem of the use of maliciously (and secretly) designed PRGs; while the main concern
of the present paper originates from the practical impossibility of implementing the ideal randomness even
if an engineer is honest and makes a best effort. Hence our problem setting is significantly different.

In the paper [13, 14] of Lindell, Nissim, and Orlandi, they gave feasibility results on some classes of func-
tionality in a certain enhanced (“size-hiding”) two-party computation protocol under the semi-honest model.
At the same time, they also gave an infeasibility result (Theorem 5.7 in [14]) on such a protocol for another
class of functionality, but the security model here is different in a way that an adversarial (semi-honest)
party is assumed to be deterministic. A similar situation also appeared in a recent paper by Shinagawa et al.
[17]. In those papers, the authors seemed to had tried to prove the infeasibility result under the semi-honest
model by first establishing a kind of lower bounds for “overall complexity” of such protocols that involves
the randomness complexity as well, and then cancelling out the effect of the randomness complexity from
the overall complexity by replacing the ideal randomness with an output of a computationally secure PRG
of sufficiently large stretch. However, our counterexample in the paper shows that such a strategy must fail;
namely, when one assumes for contrary the existence of a secure protocol with overall complexity minus
randomness complexity being larger than a given lower bound and then tries to deduce a contradiction by
cancelling out the randomness complexity by replacing the ideal randomness with a PRG, it is not guar-
anteed in general that the resulting protocol with PRG is still secure. We note that Hazai and Zarosim
in their recent paper [9] already mentioned this problem in such a general strategy to cancel out the effect
of randomness complexity when developing a kind of lower bounds for complexity of two-party protocols.
However, they did not give a concrete example (as in the present paper) that the use of even secure PRGs
compromises the security of a two-party protocol.

On the other hand, in [11], Hubácek and Wichs proposed a kind of secure two-party computation protocol
in the semi-honest model, and also gave a lower bound for communication complexity that seemingly excludes
even their own protocol but is actually established only for the case of deterministic adversaries. They also
clearly mentioned that their protocol is an example of the phenomenon where a party’s randomness affects
security of the other party’s secret input. However, their alternative situation of a deterministic adversarial
party is far from the original situation with ideal randomness, in contrast to our counterexample where an
adversarial party uses a PRG with close-to-ideal output distributions.

2 Preliminaries

2.1 Basic Notations and Settings

In this paper, we write {0, 1}∗ =
∪

n≥0{0, 1}n. We say that a function ε(λ) of integers λ ≥ 1 with 0 ≤ ε(λ) ≤ 1
is negligible in λ, if for any polynomial poly with non-negative coefficients, there exists an integer λ0 ≥ 1
satisfying ε(λ) < 1/poly(λ) for any λ > λ0.

For a probability distribution D, we write a ← D to indicate that the element a is chosen according to
the distribution D. Let U(X) denote the uniform distribution on a set X, and let a

u← X mean a← U(X).
We use a notation with a form [F (r) : R] to signify a random variable F (r) where r follows the probability

distribution specified by the term R. For example, [bb : b
u← {0, 1}] means U({00, 11}). For two probability

distributions X and Y over a common (finite) set Z, their statistical distance ∆(X,Y ) is defined by

∆(X,Y )
def
=

1

2

∑
z∈Z

∣∣∣ Pr
z′←X

[z′ = z]− Pr
z′←Y

[z′ = z]
∣∣∣ = max

E⊆Z

(
Pr

z←X
[z ∈ E]− Pr

z←Y
[z ∈ E]

)
.

It is known that we have ∆(f(X), f(Y )) ≤ ∆(X,Y ) for any probabilistic function f having its own internal
randomness independent of X and Y .

For any probabilistic algorithm A with input x and internal randomness r, we may write A(x; r) instead
of A(x) in order to emphasize the choice of the internal randomness r. We often abbreviate the term
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“probabilistic polynomial-time” to “PPT”. When A is a non-uniform algorithm with auxiliary advice z = zλ
(depending solely on the security parameter λ), we may either make the advice implicit in the notations, or
write A(zλ) to clarify the given advice zλ.

2.2 Indistinguishability of Random Variable Families

In this paper we refer to a standard definition (mainly adopted in the area of secure multiparty computation)
of the indistinguishability between two families of random variables parameterized by not only a security
parameter but also some other objects. The formulation below is essentially the same as the one in Section
7.2.1.2 of Goldreich’s book [8] with slight notational modifications.

Definition 1 (Indistinguishability). Let (Iλ)λ≥1 be a family of subsets Iλ ⊂ {0, 1}∗ indexed by security
parameter λ. Let X = (Xλ,w)λ,w and Y = (Yλ,w)λ,w be families of random variables Xλ,w and Yλ,w indexed
by a pair of λ and w ∈ Iλ.

• We say that X and Y are computationally indistinguishable (or computationally close) and write

X
c≡ Y , if for any non-uniform PPT algorithm D with some advice (called a distinguisher), there

exists a negligible function ε(λ) satisfying, for any λ ≥ 1,∣∣Pr[D(1λ, Xλ,w) = 1]− Pr[D(1λ, Yλ,w) = 1]
∣∣ ≤ ε(λ) for every w ∈ Iλ.

• We say that X and Y are statistically indistinguishable (or statistically close) and write X
s≡ Y , if

there exists a negligible function ε(λ) satisfying ∆(Xλ,w, Yλ,w) ≤ ε(λ) for any λ ≥ 1 and any w ∈ Iλ.

3 Security of Cryptography under Deviated Randomness

In this paper, we discuss the security of some kinds of cryptographic schemes in cases where its internal ran-
domness is not ideal but slightly different from being ideal, more precisely, the distribution of the “deviated”
internal randomness is (computationally or statistically) indistinguishable from the uniform distribution. We
also consider the situation where the internal randomness may depend not only on a random seed to generate
the randomness but also on some part of an input for the cryptographic scheme.

Informally, we say that a certain kind of security notion for a cryptographic scheme is robust against
computationally (resp. statistically) deviated randomness, if the scheme is still secure even when the ideal
internal randomness for the scheme is replaced by any randomness that is computationally (resp. statistically)
indistinguishable from being ideal. Our main target for the notion in this paper is the case of secure two-
party computation in the semi-honest model; for the case, we give a more concrete formulation of the
robustness against deviated randomness in Section 3.2. On the other hand, one may feel that the robustness
of security against deviated randomness should be trivial for “ordinary” situations in cryptography provided
the deviated internal randomness is indistinguishable from being ideal. The author indeed supports the
intuition for the case of “single-party” cryptographic schemes; as a supporting evidence, in Section 3.1 we
study the robustness against deviated randomness in the case of public key encryption as a typical example
of such cryptographic schemes.

3.1 Public Key Encryption under Deviated Randomness

As a toy example of “ordinary” situations in cryptography, here we formalize the robustness of the CPA
security (security against chosen-plaintext attacks) for public key encryption (PKE) schemes against deviated
randomness in the aforementioned sense. First we clarify the definition of secure pseudorandom generators
in this paper, which is slightly modified for enabling to deal with the case where the output distribution may
depend on some part of an input for a cryptographic scheme.
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Definition 2 (Pseudorandom generators). Let λ ≥ 1 be a security parameter, and let (Iλ)λ≥1 be a family
of subsets Iλ ⊂ {0, 1}∗ indexed by λ. We call an algorithm R = R(1λ, w; s), with random seed s, security
parameter λ and additional input w ∈ Iλ, a pseudorandom generator (PRG) parameterized by elements of
Iλ; and we say that R is PPT, if it is PPT with respect to the security parameter λ. Then we say that
R is computationally (resp. statistically) secure, if the family

(
R(1λ, w; s)

)
λ,w

of the output distributions

with uniformly random seeds s is computationally (resp. statistically) indistinguishable from the uniform
distribution (in the sense of Definition 1).

Similarly to the ordinary definition, a PKE scheme with deviated randomness for encryption can be
formalized as a collection of the following algorithms; a PPT key generation algorithm Gen(1λ) with security
parameter λ outputs a pair of a public key pk and the corresponding secret key sk; a PPT encryption
algorithm Enc(pk,m;R(1λ, pk,m)) outputs a ciphertext for a plaintext m, where R is a PRG for generating
the internal randomness parameterized by pk and m; and a polynomial-time decryption algorithm Dec(sk, c)
outputs a plaintext for a ciphertext c. The ordinary syntax for a PKE scheme corresponds to the case where
R is ideally random, that is, the output of R(1λ, pk,m) for a given security parameter λ is uniformly random
and independent of pk and m. The attack success probability SuccCPA

A;R (λ) of a (non-uniform) adversary A
against the CPA security with security parameter λ under the use of the PRG R is given by

SuccCPA
A;R (λ) = Pr

[
b = b∗ :

(pk, sk)← Gen(1λ); (m0,m1, st)← A(submit, 1λ, pk); b∗
u← {0, 1};

c∗ ← Enc(pk,mb∗ ;R(1λ, pk,mb∗)); b← A(guess, 1λ, st, pk, c∗)

]
.

We say that a PKE scheme is CPA secure under the PRG R against non-uniform adversaries, if for any

PPT non-uniform adversary A,
∣∣∣SuccCPA

A;R (λ)− 1/2
∣∣∣ is negligible in λ. We may omit the R in the notations

and terminology when R is ideally random. Then the following fact means that the CPA security of PKE
schemes against non-uniform adversaries is robust against computationally deviated randomness:

Proposition 1. If a PKE scheme is CPA secure against non-uniform adversaries, then for any PPT and
computationally secure PRG R = R(1λ, pk,m) parameterized by a public key pk and a plaintext m, the PKE
scheme is also CPA secure under the PRG R against non-uniform adversaries.

Proof. The proof is basically an ordinary game-hopping argument that replaces the PRG R with an ide-
ally random variable owing to the computational security of R, though the description of the argument is
somewhat complicated for dealing with non-uniform adversaries. A full proof is given in Appendix A.

3.2 Secure Two-Party Computation under Deviated Randomness

Here we formalize the robustness of the security for two-party computation protocols in the semi-honest
model against deviated randomness in the aforementioned sense. Except some notational modifications, our
argument below is based on the standard security definitions (in the “view simulator” paradigm, rather than
the equivalent “ideal vs. real” paradigm) described, e.g., in Section 7.2 of [8] and in [12].

3.2.1 Basic Notations and Terminology

We summarize some notations and terminology for two-party protocols. Let π be a two-party protocol
between parties P1 and P2. Formally, the parties are modeled as interactive probabilistic Turing machines
that communicate with each other by following the specification of π. In this paper, we follow a popular
convention that an input for Pi (i ∈ {1, 2}) consists of a security parameter 1λ common to the two parties and
an “actual” input for Pi. Unless specified otherwise, an “actual” input for Pi is denoted by xi, the internal
random tape for Pi at an execution of π is denoted by ri, and the output obtained by Pi after an execution of
π is denoted by outπi (1

λ, x1, x2; r1, r2), or by outπi (1
λ, x⃗; r⃗) in short where x⃗ := (x1, x2) and r⃗ := (r1, r2). We

define outπ(1λ, x⃗; r⃗) to be the pair of outπ1 (1
λ, x⃗; r⃗) and outπ2 (1

λ, x⃗; r⃗) in this order. In this paper, we suppose
(unless otherwise specified) that π has polynomial (in λ) time and communication complexity. Accordingly,
we assume that the inputs x1, x2 are elements of {0, 1}∗ and their lengths are bounded by a polynomial in

6



λ. We also assume that r1 ∈ {0, 1}ρ1(λ) and r2 ∈ {0, 1}ρ2(λ) for some polynomials ρ1 = ρπ1 and ρ2 = ρπ2 . Let
Xλ denote the set of the input pairs (x1, x2) associated to security parameter λ.

We let the transcript for Party Pi in an execution of π mean the sequence (m
(i)
1 , . . . ,m

(i)
ℓi
) of mes-

sages (in the chronological order) sent to Pi from the other party P3−i during the protocol execution. Let
transπi (1

λ, x1, x2; r1, r2) (or transπi (1
λ, x⃗; r⃗)) denote the transcript for Pi in the execution of π with inputs

x1, x2 and random tapes r1, r2. The view for Pi consists of xi, ri and transπi (1
λ, x⃗; r⃗); in particular, the

view for a party involves the content of the party’s random tape, which is an important fact in our argu-
ment below. Then the party Pi finally computes outπi (1

λ, x⃗; r⃗) from the view for Pi (as well as the security
parameter 1λ).

We let a functionality with input set I ⊂ {0, 1}∗ × {0, 1}∗ mean any pair f = (f1, f2) of possibly
probabilistic functions f1 = f1(x⃗) and f2 = f2(x⃗) with x⃗ = (x1, x2) ∈ I. More precisely, for each x⃗ ∈ I,
f1(x⃗) and f2(x⃗) are (possibly correlated) random variables endowed with their own internal randomness.
In this paper, we suppose that f is polynomial-time computable; more precisely, there exists an algorithm
that runs within polynomial time in |x⃗| and computes the values of f1(x⃗) and f2(x⃗) from x⃗ and the internal
randomness for f1 and f2. We write f(x⃗) = (f1(x⃗), f2(x⃗)). In the following argument, unless specified
otherwise, we assume that f is a functionality with input set I =

∪
λ≥1 Xλ where Xλ is the input set for a

two-party protocol π with security parameter λ.

3.2.2 Definitions of Security and Robustness under Deviated Randomness

Here we describe the definition of security for a two-party protocol π in the semi-honest model3. Intuitively,
the condition below means that the view for any party in an execution of π can be efficiently recovered, in
a computationally indistinguishable manner, solely from the local input and the local output for the party.
Note that the following definition implies also that the protocol computes the value of f correctly.

Definition 3 (Security in the semi-honest model). For i ∈ {1, 2}, we say that a two-party protocol π securely
computes a functionality f = (f1, f2) against semi-honest Party Pi, if there exists a PPT algorithm Si, called
a simulator for Pi, satisfying(

Si(1λ, xi, fi(x⃗)), f(x⃗)
)
λ,x⃗

c≡
([
xi, ri, trans

π
i (1

λ, x⃗; r⃗), outπ(1λ, x⃗; r⃗) : r1
u← {0, 1}ρ1(λ), r2

u← {0, 1}ρ2(λ)
])

λ,x⃗

(1)

where the indices λ and x⃗ run over the ranges λ ≥ 1 and x⃗ ∈ Xλ. In this case, we say that this simula-
tor Si is computationally indistinguishable. On the other hand, we say that a simulator Si is statistically
indistinguishable, if the random variable families at the two sides of (1) are statistically indistinguishable.
Moreover, we say that π securely computes f = (f1, f2) in the semi-honest model, if π securely computes f
against semi-honest Pi for each i ∈ {1, 2}.

From now, we consider an extension of the definition above to cases where one of the two parties uses
a PRG (endowed with its own random seed) for generating the party’s random tape. We put a technical
assumption that a PRG R used by Party Pi (i ∈ {1, 2}) has internal random seed s of length ρ̃i(λ) for
some polynomial ρ̃i and is parameterized by an input xi of the party, i.e., it is of the form R(1λ, xi; s) with

s
u← {0, 1}ρ̃i(λ); and its output has precisely length ρi(λ). Then we regard “the execution of π where Party

Pi uses a PRG R” as an individual two-party protocol, which is denoted by π ◦i R and defined as follows:

• The input set for π ◦iR is the same as that for π, and the sets of random tapes of Party Pi and Party
P3−i for π ◦i R are {0, 1}ρ̃i(λ) and {0, 1}ρ3−i(λ), respectively.

• Given a security parameter 1λ, local inputs x1, x2 for two parties, and random tapes si
u← {0, 1}ρ̃i(λ)

and r3−i
u← {0, 1}ρ3−i(λ) for Parties Pi and P3−i, respectively, to execute the protocol π ◦i R, first Pi

3The notion is often called with different names in the literature; e.g., “π privately computes f” in Section 7.2 of [8]; and
“π securely computes f in the presence of static semi-honest adversaries” in [12].
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runs R(1λ, xi; si) with random seed si and obtains its output ri ∈ {0, 1}ρi(λ). Then the two parties
P1,P2 jointly execute the protocol π with security parameter λ, input pair (x1, x2), and random tapes
r1, r2.

Here we emphasize that, the view for the party Pi in the new protocol π◦iR involves the seed si for the PRG
R rather than the random tape ri of Pi for the original protocol π; but we note also that the ri used during
the protocol execution can be deterministically recovered from si and the party’s input, both of which are
included in the view for the party in the new protocol π ◦i R.

Then we formalize the robustness of the security for two-party protocols in the semi-honest model against
deviated randomness as follows:

Definition 4 (Robustness of security against deviated randomness). Let i ∈ {1, 2}, and suppose that a
two-party protocol π securely computes f = (f1, f2) against semi-honest Party Pi. Then we say that the
security of π against semi-honest Party Pi is robust against computationally (resp. statistically) deviated
randomness, if the protocol π ◦i R defined above securely computes f against semi-honest Pi for any PPT
and computationally (resp. statistically) secure PRG R for Party Pi.

4 Non-Robust Two-Party Protocol against Deviated Randomness

In Section 3, we introduced a notion concerning (non-)preservation of some security property for a certain
cryptographic scheme in cases where the ideal internal randomness for the scheme is replaced with an output
of a cryptographically secure PRG. We also verified as a toy example that the CPA security of PKE schemes
is indeed preserved by the use of such a PRG as we naturally expect. In contrast, in this section we show that
the (computational) security of two-party protocols in the semi-honest model is NOT ALWAYS preserved
by the use of such a PRG, even if the PRG has significantly stronger statistical security. We emphasize
that a two-party protocol that provides a counterexample here is found even from the existing protocols in
the literature, rather than those artificially designed to prove our theorem. We also note that the output
distribution of the PRG in our counterexample depends on publicly known global parameters for the protocol
but not on an individual input for each party.

4.1 The Protocol

As a two-party protocol that provides our counterexample, here we use an oblivious transfer protocol pro-
posed by Asharov et al. in ACM CCS 2013 [3]. We refer to Protocol 51 in Section 5.2 of the full version for the
paper [3] for the description of the protocol. Here we slightly modify the detailed description of the protocol
without changing its essential behavior; for example, we explicitly state that the internal randomness for the
two parties are chosen from some sets of bit strings. Our description of the protocol is summarized in Figure
1; we explain the details of the construction below. Before starting the detailed explanation, we emphasize
that the inputs for the parties in the protocol are divided into a set of publicly known global parameters
that are reused in successive executions of the protocol, and “actual” local inputs for the parties at each
individual execution of the protocol4. Moreover, the output distribution of the PRG for our counterexample
constructed in Section 4.2 below depends on the global parameter but not on an individual input.

The global parameter for the protocol involves mainly a cyclic group G (written in multiplicative form) of
publicly known order q generated by an element g, and a polynomial-time key derivation function KDF that
generates an ℓ-bit key string (for a certain parameter ℓ) from a given element of G. A basic assumption on
the group G here is the decisional Diffie–Hellman (DDH) assumption, i.e., given the G, q, g and a uniformly

random element h ∈ G, the distributions of (g, h, ga, ha) and (g, h, ga, gb) with a, b
u← {0, . . . , q − 1} are

computationally indistinguishable. Moreover, in fact there is a significantly stronger requirement for the

4In fact, in the original paper [3], the protocol was designed in a way that n executions of the oblivious transfer can be
performed at once by using the same global parameter. In the present paper, we only focus on the simplest case of a single
oblivious transfer (i.e., n = 1) to simplify the argument.
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Public global parameters: t-bit prime p, cyclic subgroup G = ⟨g⟩ of (Fp)
×, q = |G|,

and a key derivation function KDF : G→ {0, 1}ℓ
(Party P1 (Sender)) Input: (x(0), x(1)) ∈ {0, 1}ℓ Output: (none)

Random tape: r1 ∈ {0, 1}2t
(Party P2 (Receiver)) Input: σ ∈ {0, 1} Output: x(σ)

Random tape: (r′2, r
′′
2 ) ∈ {0, 1}2t × {0, 1}2t

1. (Computation of Hp(r
′
2)) Receiver computes h′ ← r′2 mod p, and if

h′(p−1)/q mod p ̸∈ {0, 1} then sets h← h′(p−1)/q mod p, or else sets h← 1.
2. Receiver computes α ← r′′2 mod q, and sets (h(0), h(1)) ← (gα, h) if σ = 0 and

(h(0), h(1))← (h, gα) if σ = 1 (computed in the group G). Then Receiver sends
(h(0), h(1)) to Sender.

3. Sender computes r ← r1 mod q, u ← gr ∈ G, (k(0), k(1)) ← ((h(0))r, (h(1))r)
and (v(0), v(1))←

(
x(0) ⊕ KDF(k(0)), x(1) ⊕ KDF(k(1))

)
. Then Sender sends u,

v(0), and v(1) to Receiver.
4. Receiver outputs v(σ) ⊕ KDF(uα); while Sender outputs nothing.

Figure 1: An oblivious transfer protocol from [3] for our counterexample (here we assume that t ≥ λ; and ⊕
denotes bit-wise XOR)

group, whose explanation is quoted from the text in the second paragraph of Section 5.2 in the full version
of [3] as follows (where “[......]” indicates omission by the author of the present paper):

[......] We also assume that it is possible to sample a random element of the group, and the DDH
assumption will remain hard even when the coins used to sample the element are given to the
distinguisher (i.e., (g, h, ga, ha) is indistinguishable from (g, h, ga, gb) for random a, b, even given
the coins used to sample h). [......] For finite fields, one can sample a random element h ∈ Zp of
order q by choosing a random x ∈R Zp and computing h = x(p−1)/q until h ̸= 1. [......]

Following the quoted specification, we use the subgroup of order q of the multiplicative group (Fp)
× for

the finite field Fp (denoted by Zp in the quoted text) of prime order p (where q divides p − 1) as the
underlying group G,5 and we adopt the following algorithm (modified in order to guarantee that it halts

within finite steps) to sample a (statistically close to) uniformly random element h of G: Choose x
u← Fp,

and if h = x(p−1)/q ̸∈ {0, 1} then output the h, or else output 1 ∈ G. We note that, by setting the parameters
p and q exponentially large with respect to λ, the probability that h ∈ {0, 1} in the process above, which is
(1 + (p − 1)/q)/p ≈ 1/p + 1/q, is exponentially small and hence the probability distribution of the element
of G chosen as above is indeed statistically close to uniform.

Moreover, in order to generate a random element x of Fp by using a random bit sequence (which is
suitable for our formulation in Section 3.2.1) rather than direct sampling over Fp, here we use the following

well-known technique: For a t-bit prime p, choose x′
u← {0, 1}2t, identify the x′ with the binary expression

of an integer in {0, . . . , 22t − 1}, and set x ← x′ mod p ∈ Fp. Now the statistical distance between U(Fp)
and the distribution of the x is exponentially small with respect to λ if we set e.g., t ≥ λ, which is implied
by the following lemma:

Lemma 1. Let M,N be two positive integers. Put δ = M/N − ⌊M/N⌋, hence in particular 0 ≤ δ < 1.
Moreover, we set UM = U({0, . . . ,M − 1}) and UN = U({0, . . . , N − 1}). Then we have

∆(UM mod N,UN ) =
δ(1− δ)

M/N
≤ N

4M
.

Proof. The latter part follows from the fact that δ(1 − δ) attains the maximum value 1/4 at δ = 1/2. For
the former part, we note that Pr[UM mod N = a] = (⌊M/N⌋+ 1)/M > 1/N for 0 ≤ a ≤M − ⌊M/N⌋N − 1

5The authors of [3] in fact also proposed to use elliptic curve groups. This would be more efficient than the current subgroup
from finite fields, but the very efficiency is not relevant to our argument in the present paper.
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and Pr[UM mod N = a] = ⌊M/N⌋/M ≤ 1/N for M − ⌊M/N⌋N ≤ a ≤ N − 1. This implies that

∆(UM mod N,UN ) = (M − ⌊M/N⌋N) ·
(
⌊M/N⌋+ 1

M
− 1

N

)
= Nδ ·

(
M/N − δ + 1

M
− 1

N

)
= Nδ · −δ + 1

M
=

δ(1− δ)

M/N
.

Hence the assertion holds.

By combining these arguments, we define an algorithm Hp as follows:

• Given an input x′ ∈ {0, 1}2t, compute x← x′ mod p ∈ Fp, and if x(p−1)/q ̸∈ {0, 1} then output x(p−1)/q,
or else output 1 ∈ G.

Then the output distribution of Hp(x
′) with x′

u← {0, 1}2t is statistically indistinguishable from U(G).
On the other hand, for the (deterministic) key derivation function KDF : G → {0, 1}ℓ, the requirement

here is the following: The two distributions of (G, q, g, gr, x′,KDF(Hp(x
′)r)) and of (G, q, g, gr, x′, z) with

r
u← {0, . . . , q − 1}, x′ u← {0, 1}2t and z

u← {0, 1}ℓ are computationally indistinguishable; cf., Appendix A
of the full version for [3]. We note that a concrete construction of such KDF was not discussed even in the
original paper [3]; accordingly, in the present paper we also just assume that such KDF exists.

Summarizing, we obtain the protocol description in Figure 1. We note that the protocol correctly
computes the desired output of Receiver, since uα = (gr)α = (gα)r = (h(σ))r = k(σ) and hence v(σ) ⊕
KDF(uα) = v(σ) ⊕ KDF(k(σ)) = x(σ). On the other hand, here we only focus on the security against semi-
honest Receiver which is sufficient for our purpose, though it is also secure against semi-honest Sender. We
give a security proof for the sake of completeness:

Proposition 2. The protocol in Figure 1 securely computes the specified functionality against semi-honest
Receiver (Party P2) under the assumptions above on the choices of G and KDF.

Proof. First, the real view for Receiver in the protocol consists of u ∈ G and v(0), v(1) ∈ {0, 1}ℓ as well as the
local input σ, local output x(σ), and the random tape (r′2, r

′′
2 ). To construct a simulator S2 = S2(1λ, σ, x(σ))

for the Receiver’s view, we focus only on the case σ = 0 as the other case σ = 1 is similar by symmetry.
The simulator S2(1λ, 0, x(0)) is defined to first choose a uniformly random tape (r′2, r

′′
2 ) for Receiver and

compute the elements h ∈ G, α ∈ {0, . . . , q − 1}, and h(0) = gα in the same manner as the real protocol.
Then the simulator randomly chooses r ∈ {0, . . . , q − 1} and computes elements u ← gr and k(0) ← (h(0))r

as Sender does in the real protocol. Moreover, the simulator computes v(0) ← x(0) ⊕KDF(k(0)) and chooses

v(1)
u← {0, 1}ℓ. The simulator outputs (r′2, r

′′
2 ) as the simulated random tape and (u, v(0), v(1)) as the

simulated transcript.
To prove that the simulator’s output distribution is computationally indistinguishable from the dis-

tribution of a real view, first note that the components r′2, r
′′
2 , u, and v(0) are perfectly simulated by the

construction. On the other hand, since the choice of a sufficiently long random tape r1 implies that the distri-
bution of r = r1 mod q is statistically close to uniform (cf. Lemma 1), we may assume that r

u← {0, . . . , q−1}
in both the simulator and the real execution of the protocol.

Note that v(1) = x(1)⊕KDF(k(1)) = x(1)⊕KDF(hr) = x(1)⊕KDF(Hp(r
′
2)

r) in the real protocol. Now the
assumption on the choice of KDF implies that the distribution of KDF(Hp(r

′
2)

r), hence the distribution of
x(1)⊕KDF(Hp(r

′
2)

r) as well, is computationally close to U({0, 1}ℓ) even when the objects G, q, g, gr = u and
r′2 are seen. This implies that the component v(1) of the simulator’s output also simulates the component
v(1) of the real view in a computationally indistinguishable manner. This completes the proof.

4.2 The PRG

To provide our counterexample, here we construct a PRG R† which is even statistically secure but for which
the two-party protocol in Section 4.1 denoted here by π† becomes not secure against semi-honest Receiver
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(Party P2) when Receiver uses the PRG R† to generate the internal random tape, i.e., the protocol π† ◦2R†
is not secure against semi-honest Party P2. Hence, it gives an example of a secure two-party protocol whose
security is not robust against even statistically deviated randomness.

Recall that, in the construction of the protocol π†, the function Hp enables Receiver to sample a random
element h of the group G = ⟨g⟩ without knowing its discrete logarithm with respect to g even if Receiver
can see the internal randomness used to sample the h. Intuitively, our construction of the PRG is intended
to disable the hiding property of the function Hp. Before the construction, we prepare a lemma:

Lemma 2. Let L,M,N be positive integers with L ≤ N . Let a ∈ {0, . . . , L − 1}, and let A = {k ∈
{0, . . . , N − 1} | k mod L = a}, K = ⌊(N − 1 − a)/L⌋ + 1, and δ = M/K − ⌊M/K⌋. Moreover, we set
UM = U({0, . . . ,M − 1}). Then we have a+ (m mod K) · L ∈ A for any m ∈ {0, . . . ,M − 1}, and

∆
(
a+ (UM mod K) · L,U(A)

)
=

δ(1− δ)

M/K
≤ K

4M
.

Proof. We have a ≥ 0 and a − L < 0 by the choice of a. On the other hand, since (N − 1 − a)/L <
K ≤ (N − 1 − a)/L + 1, we have a + (K − 1) · L ≤ N − 1 and a + K · L > N − 1. Hence it follows that
A = {a+ k · L | k ∈ {0, . . . ,K − 1}}, which yields the first part of the assertion and also implies the second
assertion by Lemma 1.

Now we define the PRG R† with random seed s = (s1, s2, s3, s4) ∈ {0, 1}2t×{0, 1}2t×{0, 1}3t×{0, 1}2t,
parameterized by global parameters G, p, q, and g for the protocol π† (but not dependent on Receiver’s local
input σ). Here we assume that (p − 1)/q is coprime to q; this may be often satisfied, e.g., when p is a safe
prime p = 2q+1. The construction of R† is described as follows, where g0 is a fixed generator of (Fp)

× and
d ∈ {1, . . . , q − 1} is the multiplicative inverse of (p− 1)/q modulo q:

1. Compute e← s1 mod q and h† ← ge ∈ G.

2. Compute e′ ← s2 mod (p− 1) and h†† ← (h†)d · g0qe
′ ∈ (Fp)

×.

3. Compute r† ← h†† + (s3 mod K) · p ∈ {0, . . . , 22t − 1} where K = ⌊(22t − 1− h††)/p⌋+ 1, identify r†

with a 2t-bit sequence, and then output the pair (r†, s4) of the r† ∈ {0, 1}2t and s4.

Proposition 3. For a uniformly random seed s = (s1, s2, s3, s4), the output distribution of R†(s) is statis-
tically close to U({0, 1}2t × {0, 1}2t), and Hp(r

†) = ge where e and r† are as in the construction of R†.

Proof. For the second assertion, we have r† mod p = h†† and

(h††)(p−1)/q = (h†)d·(p−1)/q · g0qe
′·(p−1)/q = h† · g0e

′(p−1) = h† = ge

since h† ∈ G and d · (p− 1)/q ≡ 1 (mod q). Now if ge ̸= 1, then we have Hp(r
†) = ge by the definition. On

the other hand, if ge = 1, then we have e = 0 since g is a generator of G, while Hp(r
†) = 1 by definition,

therefore Hp(r
†) = g0 = ge. Hence we have Hp(r

†) = ge in any case, as desired.

For the first assertion, it suffices to show that r†
s≡ U({0, 1}2t). Let f ∈ {0, . . . , p − 2} be the discrete

logarithm of g ∈ G ⊂ (Fp)
× with respect to g0. Then f divides (p−1)/q since gq = 1; we put f = f ′(p−1)/q

with 1 ≤ f ′ ≤ q − 1. Now f ′ and (p− 1)/q are coprime to q, so is f .
Since s1, s2 ∈ {0, 1}2t are sufficiently long, by virtue of Lemma 1, we may assume without loss of

generality that e
u← {0, . . . , q − 1} and e′

u← {0, . . . , p− 2}. Now we have h†† = ged · g0qe
′
= g0

fed+qe′ . Since
fed + qe′ mod q = e · fd mod q and fd is coprime to q by the argument above, it follows from the choice
of e that fed + qe′ mod q is uniformly random. On the other hand, since ⌊(fed + qe′)/q⌋ = e′ + ⌊fed/q⌋,
it follows from the choice of e′ that ⌊(fed+ qe′)/q⌋ mod (p− 1)/q is uniformly random and is independent
of fed + qe′ mod q. These arguments imply that fed + qe′ mod (p − 1) is uniformly random, therefore
h†† = g0

fed+qe′ is also uniformly random over (Fp)
×.

Since s3 ∈ {0, 1}3t is sufficiently long, Lemma 2 implies that the conditional distribution of r† conditioned
on a given h†† is statistically close to the uniform distribution over the set of all r′2 ∈ {0, 1}2t with r′2 mod p =

11



h††. Now if the distribution of h†† were identical to the distribution of r′2 mod p with r′2
u← {0, 1}2t, then

the distribution of r† would be statistically close to U({0, 1}2t) by the argument above. Moreover, since p is
exponentially large and r′2 ∈ {0, 1}2t is sufficiently long, Lemma 2 implies that the distributions of both h††

and r′2 mod p are statistically close to U(Fp), hence the two distributions are statistically indistinguishable.
By these arguments, it follows that the distribution of r† is in fact statistically close to U({0, 1}2t). This
completes the proof.

By Proposition 3, R† is a statistically secure PRG for the internal random tape for Receiver in the
protocol π†. On the other hand, the protocol π† ◦2 R† is never secure against semi-honest Receiver; indeed,
by using the output of R† instead of the original random tape (r′2, r

′′
2 ), Proposition 3 implies that Receiver

can know the exponent of h = Hp(r
†) = ge by using the seed s for the PRG as e = s1 mod q, therefore

Receiver can recover the other input x(1−σ) of Sender from the messages u and v(1−σ) sent from Sender as
x(1−σ) = v(1−σ) ⊕ KDF(ue), since k(1−σ) = (h(1−σ))r = hr = (ge)r = (gr)e = ue. This yields the following
theorem, which is the main result of the present paper:

Theorem 1. The security of a general two-party protocol against a semi-honest party is NOT robust against
even statistically deviated randomness, namely, there are a two-party protocol π† and a statistically secure
PRG R† satisfying the following: π† securely computes a functionality in the semi-honest model, but π† ◦2R†
is not secure against semi-honest Party P2.

5 How to Prove Robustness against Deviated Randomness

In Section 4, we showed that the security of a two-party protocol in the semi-honest model is in general not
robust against (even statistically) deviated randomness. In contrast, this section is devoted to try to develop
some affirmative result on proving the robustness of the security for two-party protocols against deviated
randomness under certain conditions.

In order to establish the affirmative result on the robustness against deviated randomness, we propose
the following notion regarding simulators for two-party protocols:

Definition 5. We say that a simulator Si for a view of Party Pi in a two-party protocol is with raw random
tape, if Si is executed in the following manner with some algorithm Ti: Given 1λ, xi and fi(x⃗) as inputs, Si
first generates a uniformly random tape ri for Pi, and then runs Ti(1λ, xi, fi(x⃗), ri) to obtain a simulated
transcript transi for Pi and outputs (xi, ri, transi).

Intuitively, the definition means that, for the random tape part of the simulated view, the simulator just
outputs an ideally sampled random tape as is (which is then used for simulating the transcript), rather
than using an artificially adjusted random tape generated from a simulated transcript (as is frequently done
in a security proof for a two-party protocol). For example, the simulator S2 constructed in the proof of
Proposition 2 is in fact with raw random tape in this sense. Then we give the following result:

Theorem 2. Let π be any two-party protocol, and let f be any functionality. For each i ∈ {1, 2}, if π
securely computes f against semi-honest Pi with statistically indistinguishable simulator with raw random
tape in the sense of Definition 5, then the security of π against semi-honest Pi is robust against statistically
deviated randomness. Moreover, for any PPT and statistically secure PRG R for the random tape of Pi, the
protocol π ◦iR also securely computes f against semi-honest Pi with statistically indistinguishable simulator
with raw random tape.

Proof. Here we focus on the case i = 1 only, as the other case i = 2 is similar by symmetry. By the
assumption, there exists a PPT statistically indistinguishable simulator S1 with raw random tape for P1

in π. Let T1 denote the PPT algorithm yielded by the “raw random tape” condition as in Definition

5. By definition, (Xλ,x⃗)λ,x⃗
def
=

(
x1, r1, T1(1λ, x1, f1(x⃗), r1), f(x⃗)

)
λ,x⃗

is statistically indistinguishable from

(Yλ,x⃗)λ,x⃗
def
=

(
x1, r1, trans

π
1 (1

λ, x⃗; r1, r2), out
π(1λ, x⃗; r1, r2)

)
λ,x⃗

, where r1 and r2 are uniformly random for

both Xλ,x⃗ and Yλ,x⃗.

12



First, let r1 = r1(1
λ, x1) denote the random variable identical to the output distribution of R(1λ, x1).

Then we have r1
s≡ r1 by the assumption on R. Therefore, the family of X ′λ,x⃗ obtained by replacing each r1

appeared in Xλ,x⃗ with r1 is also statistically indistinguishable from the family of Y ′λ,x⃗ obtained by replacing
each r1 appeared in Yλ,x⃗ with r1.

Secondly, for each possible value of r1, let s(r1) = s(r1(1
λ, x1)) denote the random variable that follows

the conditional distribution of the random seed r̃1 for R(1λ, x1) conditioned on the event R(1λ, x1; r̃1) = r1.
Then, by applying to both X ′λ,x⃗ and Y ′λ,x⃗ the common probabilistic function that replaces r1 in the second
component of the distribution with a random value of s(r1), it follows that the two families of the resulting
distributions X ′′λ,x⃗ and Y ′′λ,x⃗, respectively, are also statistically indistinguishable.

Now since r1 follows the output distribution of R(1λ, x1; r̃1) with uniformly random r̃1 by definition, it
follows that the distribution of s = s(r1(1

λ, x1; r̃1)) with uniformly random r̃1 (and with the own internal
randomness for s) is identical to the uniform distribution of the random seed for R(1λ, x1). Moreover, we
always have R(1λ, x1; s(r1)) = r1 by the definition of s(r1). Therefore, the random variable X ′′λ,x⃗ can be
rewritten as

X ′′λ,x⃗ =
(
x1, s, T1(1λ, x1, f1(x⃗),R(1λ, x1; s)), f(x⃗)

)
where the s follows the uniform distribution for the random seed for R(1λ, x1), and the random variable
Y ′′λ,x⃗ can be rewritten as

Y ′′λ,x⃗ =
(
x1, s, trans

π
1 (1

λ, x⃗;R(1λ, x1; s), r2), out
π(1λ, x⃗;R(1λ, x1; s), r2)

)
where the s follows again the uniform distribution for the random seed for R(1λ, x1). By the definition of
π ◦1 R, this Y ′′λ,x⃗ is also equal to

Y ′′λ,x⃗ =
(
x1, s, trans

π◦1R
1 (1λ, x⃗; s, r2), out

π◦1R(1λ, x⃗; s, r2)
)
.

According to the argument above, we now define a simulator S̃1 for P1 in π ◦1 R with raw random
tape as follows: Given 1λ, x1 and f1(x⃗) as inputs, S̃1 generates s uniformly at random, computes trans1 ←
T1(1λ, x1, f1(x⃗),R(1λ, x1; s)), and then outputs (x1, s, trans1). This is a PPT algorithm as well as T1 and R,
and now X ′′λ,x⃗ is identical to

(
S̃1(1λ, x1, f1(x⃗)), f(x⃗)

)
. Therefore, by the argument above, it follows that the

simulator S̃1 for P1 in π ◦1 R is statistically indistinguishable. This completes the proof.

Here we give a remark on the three conditions in the statement above: “statistical” indistinguishability
of the simulator; “raw random tape” property of the simulator; and “statistical” security of the PRG.
Among them, the first condition on the statistical indistinguishability of the simulator cannot be relaxed to
computational indistinguishability, as the counterexample given in Section 4 satisfies the other two conditions
in the statement but now the conclusion fails. On the other hand, the second condition on the raw random
tape property of the simulator cannot be removed as well, since there exists an example of a secure two-party
protocol and a PRG that satisfies the other two conditions in the statement but now the conclusion fails;
see Appendix B for a concrete construction of such an example.

One may feel that, among the three conditions above, the statistical security of the PRG is most stressful;
one would expect that, in order to achieve only computational (rather than unconditional) security, any
“secure” protocol should allow a party to use any computationally secure PRG to prepare the party’s own
random tape. Unfortunately, the use of such a PRG causes the following hurdle in our proof strategy above.

We recall that, in the proof, we had the relation X ′λ,x⃗
s≡ Y ′λ,x⃗ owing to the statistical security of the PRG.

When the PRG is just computationally secure, the relation becomes to a weaker relation X ′λ,x⃗
c≡ Y ′λ,x⃗. Now if

the random variable s(r1) in the proof were efficiently samplable for each value of r1, then the computational

indistinguishability of X ′λ,x⃗ and Y ′λ,x⃗ would imply X ′′λ,x⃗
c≡ Y ′′λ,x⃗, which means the desired conclusion that the

protocol after the use of the PRG is still secure. However, in fact s(r1) is not efficiently samplable in general,
and our proof strategy fails at this point if the statistical security for the PRG is relaxed.
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[11] P. Hubácek, D. Wichs: On the Communication Complexity of Secure Function Evaluation with Long
Output. In: Proceedings of ITCS 2015, pp.163–172, 2015. Full version available at IACR Cryptology
ePrint Archive 2014/669 (http://eprint.iacr.org/2014/669), 2014 (Version 20140828:224736).

[12] Y. Lindell: How To Simulate It – A Tutorial on the Simulation Proof Technique. IACR Cryptology
ePrint Archive 2016/046 (http://eprint.iacr.org/2016/046), 2016 (Version 20160524:061302).

[13] Y Lindell, K. Nissim, C. Orlandi: Hiding the Input-Size in Secure Two-Party Computation. In: Pro-
ceedings of ASIACRYPT 2013 (Part II), LNCS vol.8270, 421–440, 2013.

[14] Y Lindell, K. Nissim, C. Orlandi: Hiding the Input-Size in Secure Two-Party Computation.
IACR Cryptology ePrint Archive 2012/679 (http://eprint.iacr.org/2012/679), 2012 (Version
20160401:113657).

14



[15] M. Matsumoto, T. Nishimura: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseu-
dorandom Number Generator. ACM Transactions on Modeling and Computer Simulation, vol.8, no.1,
pp.3–30, 1998.

[16] M. O. Rabin: Digitalized Signatures and Public-Key Functions as Intractable as Factorization. MIT
Laboratory for Computer Science Technical Report, 1979.

[17] K. Shinagawa, K. Nuida, T. Nishide, G. Hanaoka, E. Okamoto: Size-Hiding Computation for Multiple
Parties. In: ASIACRYPT 2016 (Part II), LNCS 10032, pp.937–966, 2016.

Appendix

A Proof of Proposition 1

Here we give a proof of Proposition 1 in Section 3.1. Recall that the statement to be proved is: If a PKE
scheme is CPA secure against non-uniform adversaries, then for any PPT and computationally secure PRG
R = R(1λ, pk,m) parameterized by a public key pk and a plaintext m, the PKE scheme is also CPA secure
under the PRG R against non-uniform adversaries.

By the assumption on R, the family of probability distributions
(
R(1λ, pk,m)

)
λ,(pk,m)

is computationally

indistinguishable from the uniform distribution. Let A be any PPT non-uniform adversary with advice
z = zλ. By using the A, we define two distinguishers D0 and D1 for the PRG R with various advice of the
form ẑ = ẑλ = (zλ, p̂kλ, m̂λ, ŝtλ) as follows, where b̂ ∈ {0, 1}:

• Given an input R that is either uniformly random or a random output of R(1λ, pk,m), Db̂ generates

c∗ ← Enc(p̂kλ, m̂λ;R) and b← A(zλ)(guess, 1λ, ŝtλ, p̂kλ, c
∗), and then outputs 1 if b = b̂ and 0 if b ̸= b̂.

Both D0 and D1 are PPT as Enc and A are PPT. In particular, the number of the possible advice ẑλ is
essentially finite as only a bounded part of ẑλ is read by these algorithms. Therefore, for each λ and each
b̂ ∈ {0, 1}, there exists advice z†

b̂,λ
= (zλ, pk

†
b̂,λ

,m†
b̂,λ

, st†
b̂,λ

) that maximizes the upper bound at the given

security parameter λ for the statistical distance between the output distributions of D(ẑλ)

b̂
(1λ, R) for the two

choices of R. Since D0 and D1 are PPT and R is computationally secure, there exists a negligible function

ε(λ) satisfying that the statistical distance between the output distributions of D
(z†

b̂,λ
)

b̂
(1λ, R) for the two

choices of R is at most ε(λ) for any λ and any b̂. By the choice of the advice z†
b̂,λ

, it then follows that the

statistical distance between the output distributions of D(ẑλ)

b̂
(1λ, R) for the two choices of R is also bounded

by ε(λ) for any b̂ and any advice ẑλ of the form above.
Now we have

SuccCPA
A;R (λ) = Expk,m0,m1,st

[
Pr

[
b = b∗ :

b∗
u← {0, 1}; c∗ ← Enc(pk,mb∗ ;R(1λ, pk,mb∗));

b← A(guess, 1λ, st, pk, c∗)

]]

= Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

Pr

[
b = b∗ :

c∗ ← Enc(pk,mb∗ ;R(1λ, pk,mb∗));
b← A(guess, 1λ, st, pk, c∗)

]
where the expectation value is taken over the probabilistic choice of pk,m0,m1, st with (pk, sk) ← Gen(1λ)
and (m0,m1, st) ← A(submit, 1λ, pk). By the definition of the distinguishers above, the quantity above can
be expressed as

SuccCPA
A;R (λ) = Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

Pr
[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ,R(1λ, pk,mb∗)) = 1

] .
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Then by the triangle inequality, we have∣∣∣∣SuccCPA
A;R (λ)−

1

2

∣∣∣∣ ≤ Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

∣∣∣∣∣∣ Pr
[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ,R(1λ, pk,mb∗)) = 1

]
−Pr

[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ, U) = 1

] ∣∣∣∣∣∣


+

∣∣∣∣∣∣Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

Pr
[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ, U) = 1

]− 1

2

∣∣∣∣∣∣
where U denotes the uniform distribution. Now for the first term in the right-hand side, we have∣∣∣Pr [D(zλ,pk,mb∗ ,st)

b∗ (1λ,R(1λ, pk,mb∗)) = 1
]
− Pr

[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ, U) = 1

]∣∣∣ ≤ ε(λ)

by the aforementioned choice of ε(λ). This implies that the first term above is bounded by

Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

ε(λ)

 = ε(λ) .

On the other hand, for the second term above, we have

Expk,m0,m1,st

1

2

∑
b∗∈{0,1}

Pr
[
D

(zλ,pk,mb∗ ,st)
b∗ (1λ, U) = 1

] = SuccCPA
A (λ)

by the same argument as above. Now it follows that∣∣∣∣SuccCPA
A;R (λ)−

1

2

∣∣∣∣ ≤ ε(λ) +

∣∣∣∣SuccCPA
A (λ)− 1

2

∣∣∣∣ ,

while
∣∣∣SuccCPA

A (λ)− 1/2
∣∣∣ is negligible in λ by the assumption on the CPA security of the PKE scheme (under

the ideal internal randomness). This implies that
∣∣∣SuccCPA

A:R (λ)− 1/2
∣∣∣ is also negligible in λ. This completes

the proof.

B Another Counterexample for the Robustness

In this section, we give a pair of a two-party protocol π (see Section B.2) and a PRG R for Party P1 (see
Section B.3) that shows that the “raw random tape” assumption on the simulator cannot be removed from
the statement of Theorem 2. Namely, the protocol π securely computes a certain functionality f against
semi-honest P1 with statistically indistinguishable simulator, the PRG R is statistically secure, but the
simulator for P1 is not with raw random tape and the protocol π ◦1R is not secure against semi-honest P1.
We note that the protocol π below is also secure against the other party P2 in the semi-honest model.

B.1 Preliminaries: The Rabin Function

Here we summarize some facts about the Rabin function [16] used in our argument below. The Rabin
function modulo N computes x2 mod N for a given integer x ∈ (Z/NZ)×, where N = pq is the product of
two distinct primes p, q of the same bit length with p ≡ q ≡ 3 (mod 4). It is known [16] that factoring the
composite N is polynomial-time reducible to inverting Rabin function modulo the N and vice versa. Let

QRN
def
= {x2 mod N | x ∈ (Z/NZ)×}, the set of quadratic residues modulo N , which is by definition equal

to the image of Rabin function modulo N . Each y ∈ QRN has four preimages for the function (i.e., square
roots modulo N). Namely, we have a decomposition (Z/NZ)× ≃ (Z/pZ)× × (Z/qZ)× owing to Chinese
Remainder Theorem. Then, for y = x2 with x ∈ (Z/NZ)×, the four pairs (±x mod p,±x mod q) with two
choices of each sign represent the square roots of y modulo N . Here we prepare a lemma:
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Lemma 3. Let p, q be two distinct λ-bit primes (i.e., p, q ∈ {2λ−1, . . . , 2λ − 1}), and let N = pq. Moreover,
we set U = U(Z/NZ) and U ′ = U((Z/NZ)×). Then we have ∆(U,U ′) < 2−(λ−2). Hence we also have
∆(f(U), U ′) < 2−(λ−2) for any function f with domain Z/NZ that is identical on the subset (Z/NZ)×.

Proof. By the property of the statistical distance, we have

∆(U,U ′) =
|(Z/NZ) \ (Z/NZ)×|

N
=

N − (p− 1)(q − 1)

N

=
p+ q − 1

pq
<

1

q
+

1

p
≤ 1

2λ−1
+

1

2λ−1
=

1

2λ−2
.

Hence the assertion holds.

We recall the following fact for finding a square root modulo a composite N = pq as in the Rabin function
when a prime factor of N is known:

Lemma 4. There exists a PPT algorithm, with the N , p (or q) and some y ∈ (Z/NZ)× as inputs, that
outputs an element x of (Z/NZ)× satisfying that, if y ∈ QRN , then x is uniformly random among the four
square roots of y modulo N .

Proof. Since p ≡ q ≡ 3 (mod 4), both p′ = (p+ 1)/4 and q′ = (q + 1)/4 are integers. The algorithm runs in
the following four steps: (i) Compute yp ← y mod p, yq ← y mod q, zp ← yp

p′
, and zq ← yq

q′ . (ii) Choose

xp
u← {zp,−zp} and xq

u← {zq,−zq}. (iii) Compute the unique element x ∈ (Z/NZ)× corresponding to the
pair (xp, xq) ∈ (Z/pZ)× × (Z/qZ)×. (iv) Output the x.

The whole computation can be done in polynomial time with respect to the bit length of N , since a
factor of N is known. From now, we suppose y ∈ QRN , therefore y = w2 for some w ∈ (Z/NZ)×. Put
wp = w mod p and wq = w mod q. Then we have yp = wp

2 and zp
2 = yp

2p′
= wp

4p′
= wp

p+1, which is equal
(in Z/pZ) to wp

2 = yp by Fermat’s Little Theorem. Hence we have (±zp)2 = yp, and we have (±zq)2 = yq
similarly. This implies that the elements of (Z/NZ)× corresponding to (±zp,±zq) are the four square roots
of y. This completes the proof.

On the other hand, although it is (believed to be) computationally hard to find a square root (modulo
the N as above) of a given quadratic residue, the next lemma shows that (approximately) uniform sampling
of a pair (x, y) of a random quadratic residue y and its square root x is still computationally feasible with
high probability. Precisely, let N = pq be as in the Rabin function and let λ be the common bit length of p
and q. We consider the following algorithm, which is given 1λ and the N as inputs but not given any of the
prime factors p, q of N :

1. Repeat the following process up to λ times until an appropriate a ∈ (Z/NZ)× is found:

• Compute a← r mod N with r
u← {0, 1}3λ, and check if a ∈ (Z/NZ)× and

(
a
N

)
= −1 where

(
a
N

)
denotes the Jacobi symbol of a modulo N .

In case where such an a has not been found, output a pair (1 mod N,−1 mod N) and stop.

2. Compute x← r mod N with r
u← {0, 1}3λ, and if x ̸∈ (Z/NZ)×, then output a pair (1 mod N,−1 mod

N) and stop.

3. Choose y from the four elements ±x2 mod N and ±ax2 mod N uniformly at random, by using two
random bits. Then output (x, y).

Note that the output (x, y) of this algorithm always satisfies x, y ∈ (Z/NZ)×. Note also that the complexity
of the algorithm is polynomial in λ; indeed, the Jacobi symbol

(
a
N

)
can be computed without knowledge of

prime factors of N by using Law of Quadratic Reciprocity.

Lemma 5. The output (x, y) of the algorithm above satisfies the following:
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• The distribution of y is statistically close to U((Z/NZ)×), where the bound of the statistical distance
is dependent solely on λ.

• If y ∈ QRN , then the conditional distribution of x conditioned on the y is statistically close to uniform
over the four square roots of y, where the bound is again dependent solely on λ.

Proof. First, we analyze Step 1. For each of the repeated processes, the combination of Lemmas 1 and 3
as well as the fact N ≤ 22λ implies that, the statistical distance between U((Z/NZ)×) and the distribution
of the element a is at most N/23λ+2 + 2−(λ−2) ≤ 2−(λ+2) + 2−(λ−2) < 2−(λ−1). On the other hand, for

a′
u← (Z/NZ)×, we have

(
a′

N

)
= 1 with probability 1/2. This implies that, the a satisfies either a ̸∈ (Z/NZ)×

or
(

a
N

)
= 1 with probability at most 1/2 + 2−(λ−1). Therefore, the probability, denoted by ρ1, that the

algorithm stops at Step 1 is at most ρ′1
def
= (1/2 + 2−(λ−1))λ, the latter being negligible in λ and dependent

solely on λ.
Secondly, we analyze Step 2. By the choice of x, each element of (Z/NZ)× appears as the value of x with

probability ⌊23λ/N⌋/23λ or (⌊23λ/N⌋+1)/23λ. On the other hand, by Lemmas 1 and 3 and the fact N ≤ 22λ

again, the probability, denoted by ρ2, that x ̸∈ (Z/NZ)× is at most 2−(λ+2) + 2−(λ−2) < ρ′2
def
= 2−(λ−1), the

latter being negligible in λ and dependent solely on λ. Hence, regarding Steps 1 and 2, for each element
of (Z/NZ)×, the probability that the algorithm has not stopped at Step 1 and this element appears as the

value of x at Step 2 is either α or α + δ, where α
def
= (1 − ρ1)⌊23λ/N⌋/23λ and δ

def
= (1 − ρ1)/2

3λ. On the
other hand, the algorithm stops before arriving at Step 3 with probability ρ1 + (1 − ρ1)ρ2 ≤ ρ′1 + ρ′2, the
latter being negligible in λ and dependent solely on λ.

Thirdly, we analyze Step 3. First we show that, x2 mod N is the only choice among the four candidates
of y for being a quadratic residue. To see this, recall that

(
a
N

)
= −1, therefore precisely one of a mod p

and a mod q is a quadratic residue modulo p and q, respectively. Say, a mod p is a quadratic residue and
a mod q is not. Note also that, since p ≡ q ≡ 3 (mod 4), neither −1 mod p nor −1 mod q is a quadratic
residue. Now none of −x2 mod p, ax2 mod q, and −ax2 mod p is a quadratic residue, which implies that
none of −x2 mod N and ±ax2 mod N is a quadratic residue, too. Hence the claim of this paragraph holds.

By the previous paragraph, an element y ∈ QRN is chosen at Step 3 if and only if one of the four square
roots of y is chosen at Step 2 and then x2 mod N is chosen at Step 3 (with probability 1/4). Hence, the
probability, denoted by Py, that the y is chosen satisfies

4α · 1
4
= α ≤ Py ≤ 4(α+ δ) · 1

4
= α+ δ .

On the other hand, for each square root x of y, the probability, denoted by Qx,y, that the pair (x, y) is
chosen satisfies

α · 1
4
=

α

4
≤ Qx,y ≤ (α+ δ) · 1

4
=

α+ δ

4
.

Therefore, the conditional probability of the choice of x conditioned on the choice of y satisfies

α

4
· 1

α+ δ
=

α

4(α+ δ)
≤ Qx,y

Py
≤ α+ δ

4
· 1
α

=
α+ δ

4α
.

The differences of these bounds for Qx,y/Py from the probability 1/4 of the uniformly random choice are
evaluated as

1

4
− α

4(α+ δ)
=

δ

4(α+ δ)
≤ 2−3λ

4(1− ρ′1) ·
(
(1− 2−λ) · 2−2λ + 2−3λ

) =
1

4(1− ρ′1) ·
(
(1− 2−λ) · 2λ + 1

)
and

α+ δ

4α
− 1

4
=

δ

4α
≤ 2−3λ

4(1− ρ′1)(1− 2−λ) · 2−2λ
=

1

4(1− ρ′1)(1− 2−λ) · 2λ
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(Party P1) Input: N = pq (p, q are unknown for P1) Output: (none)
Random tape: r1 ∈ {0, 1}3λ

(Party P2) Input: λ-bit primes p ̸= q with p ≡ q ≡ 4 (mod 3) Output: (none)
Random tape: r2 ∈ {0, 1}2

1. P1 computes y ← r1 mod N and sends N and y to P2.
2. P2 decides if y ∈ QRN ⊂ (Z/NZ)× or not, based on Chinese Remainder

Theorem and Law of Quadratic Reciprocity by using p and q.
3. If y ∈ QRN , then P2 computes a uniformly random square root x of y modulo

N by using the two random bits in r2 as in Lemma 4 of Section B.1, and sends
x to P1.
If y ̸∈ QRN , then P2 sends ⊥ to P1.

Figure 2: Another two-party protocol for our counterexample

where we used the relations (1− ρ′1)2
−3λ ≤ δ ≤ 2−3λ and

α ≥ (1− ρ1)

(
23λ

N
− 1

)
· 1

23λ
≥ (1− ρ1)

(
23λ

22λ
− 1

)
· 1

23λ
≥ (1− ρ′1)

(
1− 1

2λ

)
· 1

22λ
.

Both of those two upper bounds for |Qx,y/Py − 1/4| are negligible in λ and are dependent solely on λ, since
ρ′1 has the same property. This implies the second assertion of this lemma.

Finally, for the first assertion of this lemma, owing to the argument above, we may assume without loss
of generality (except only negligible differences dependent solely on λ) that the algorithm has not stopped
before Step 3 and the element x chosen in Step 2 is uniformly random over (Z/NZ)×. It follows that
x2 mod N is uniformly random over QRN . Now by symmetry, we may assume without loss of generality (as
we already did above) that a mod p is a quadratic residue modulo p and a mod q is not a quadratic residue
modulo q. This implies that ±1 and ±a are the representatives of the four cosets for the subgroup QRN in

(Z/NZ)×; in fact,
((

z
p

)
,
(

z
q

))
= (1, 1) for z = 1; (1,−1) for z = a; (−1, 1) for z = −a; (−1,−1) for z = −1.

Since x2 is uniformly random over QRN as mentioned above, it follows that the choice of y is uniformly
random over (Z/NZ)×. This completes the proof.

B.2 The Protocol

Here we construct the aforementioned two-party protocol π as in Figure 2.6 The security against P2 is now
trivial since P2 knows the secret input N = pq for P1. On the other hand, we have the following:

Proposition 4. The protocol π is secure against semi-honest P1 with statistically indistinguishable simulator.

Proof. We construct a simulator S1 for P1 with input 1λ and N . First we focus on the computation
y = r1 mod N in Step 1. In a real execution of π, the distribution of r1 conditioned on a chosen y is uniform
over the set {k ∈ {0, . . . , 23λ − 1} | k mod N = y}. Now Lemma 2 implies that the output distribution of a

probabilistic function g(y) = y + (u mod Ky) ·N with u
u← {0, 1}4λ, where Ky = ⌊(23λ − 1 − y)/N⌋ + 1, is

statistically indistinguishable from the conditional distribution of r1 (with bound dependent solely on λ).
On the other hand, in a real execution of π, the element y chosen in Step 1 is statistically close to

U(Z/NZ) s≡ U((Z/NZ)×) (with bound dependent solely on λ) owing to Lemmas 1 and 3. Moreover, by
Lemma 4, the message received by P1 at Step 3, denoted here by η, in the real execution of π is a uniformly

6One may feel that this protocol is too unrealistic since, not just it outputs nothing, but it seems to be infeasible for each
party to even verify the correctness of the local input. In fact, by using the AKS deterministic primality test [1] (for checking if
p and q are primes) and an appropriate secure equality test protocol (for checking if N = pq), we can modify the protocol in a
way that the local inputs for P1 and P2 are any integer N and any pair of integers (p, q) of appropriate lengths, respectively, and
the protocol behaves in the same way as the original protocol if the conditions for inputs of the original protocol are satisfied,
or else the protocol aborts.
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random square root x of y in Z/NZ if y ∈ QRN , and it is always ⊥ if y ̸∈ QRN . Now let (x′, y′) denote an
output of the algorithm in Lemma 5 (recall that this algorithm does not use knowledge of prime factors of
N), and let η′ denote an element computed in the same way as η but by using (x′, y′) instead of (x, y). Then

by Lemma 5, we have (x′, y′)
s≡ (x, y), therefore (r1, x, y, η)

s≡ (g(y), x, y, η)
s≡ (g(y′), x′, y′, η′). According to

these arguments, the simulator S1 can output (within polynomial time) g(y′) as the simulated random tape
for P1 and η′ as the simulated transcript at Step 3, and the simulation is statistically indistinguishable (i.e.,

(g(y′), η′)
s≡ (r1, η)) by the argument above. This completes the proof.

B.3 The PRG

Here we construct the aforementioned statistically secure PRG R for Party P1 in the two-party protocol π
in Section B.2 with the property that the protocol π ◦1 R is not secure against semi-honest P1 (though π
itself is secure as shown in Proposition 4 above). The construction of R is as follows:

• Given security parameter 1λ and an input N for Party P1 in π as well as a random seed r̃, R
runs S1(1λ, N ; r̃) where S1 is the simulator for P1 constructed in Proposition 4, obtains its output
(N, r1, trans1), and then outputs r1.

Since the simulator S1 for P1 is statistically indistinguishable by Proposition 4, the output of R is also
statistically indistinguishable from the original random tape for P1, hence R is statistically secure.

From now, we show that the protocol π ◦1 R is indeed not secure against semi-honest P1. The next
result means that a semi-honest P1 can infer some non-trivial secret information on the input for P2 in the
protocol π ◦1 R, which was certainly concealed by the original protocol π:

Proposition 5. For any input pair (N, (p, q)) for the two parties P1,P2, Party P1 can efficiently determine
the secret input (p, q) for Party P2 with probability at least 1/16 − negl(λ) by using the view for P1 in the
protocol π ◦1 R, where negl denotes some negligible function.

Proof. We note that, the elements output by S1 executed internally in R during an execution of π ◦1R can
be deterministically recovered from the random tape r̃1 for P1 in π ◦1 R. Now the output of S1, including
a simulated random tape r′1 and a simulated transcript η (either an element x′ ∈ (Z/NZ)× or ⊥) for P1

in the original protocol π, is statistically indistinguishable from the view for P1 in an execution of π. On
the other hand, in an execution of π, the element y computed (deterministically) from the random tape
for P1 at Step 1 is an element of QRN with probability at least 1/4 − negl′(λ) for some negligible function
negl′ and, provided y ∈ QRN , the transcript for P1 is an element x with x2 = y. This implies that, for the
corresponding element y′ computed from r′1 in π ◦1 R, the probability (taken over the choice of r̃1) that
y′ ∈ QRN , η = x′ ∈ (Z/NZ)× and x′2 = y′ is also at least 1/4− negl′′(λ) for some negligible function negl′′.

For any r̃1 that yields y′ ∈ QRN and x′2 = y′, Party P2 receives the y′ in Step 1 of π internally executed
by π ◦1 R, and then P2 sends to P1 one of the four square roots of y′ chosen uniformly at random, denoted
here by x′′. In particular, the choice of x′′ conditioned on the y′ is independent of x′. Therefore, we have
x′′ ̸∈ {x′,−x′} with probability 1/2; and for any such x′′, we have x′2 − x′′2 = (x′ + x′′)(x′ − x′′) = 0
in Z/NZ and x′ ± x′′ ̸= 0 in Z/NZ, which implies that gcd(x′ − x′′, N) is one of the two prime factors
of N . Hence, given such an x′′ (as well as x′), P1 can efficiently extract the unordered set {p, q} of two
prime factors of N , and then P1 can correctly guess the order of the pair (p, q) of the input for P2 with
probability 1/2. Summarizing, the probability that P1 determines the input for P2 correctly is at least
(1/4− negl′′(λ)) · 1/2 · 1/2 = 1/16− negl′′(λ)/4. This completes the proof.

Given only the local input N , it is computationally hard (unless factoring the N is easy) for P1 to specify
the input for P2 which is the pair of the prime factors of N . On the other hand, by Proposition 5, the
message sent from P2 during the protocol π ◦1 R enables P1 to determine the input for P2 with almost
constant probability. Therefore, the protocol π ◦1 R should never be regarded as secure against the P1

(unless the integer factoring is easy). In fact, we have the following result:
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Proposition 6. If the protocol π ◦1 R above is secure against semi-honest P1, then there exists a PPT
algorithm that factorizes any integer N = pq as in the Rabin function with probability at least 1/8− negl(λ)
where negl denotes some negligible function.

Proof. Let S̃1 be the PPT simulator for Party P1 yielded by the assumption on the security of π ◦1 R. We
consider the following algorithm A: Given 1λ and N as inputs, A first runs S̃1(1λ, N) and obtains (N, r1, x)
where either x ∈ (Z/NZ)× or x = ⊥. Secondly, A runs S1(1λ, N ; r1) and obtains (N, r′′1 , x

′′) where either
x′′ ∈ (Z/NZ)× or x′′ = ⊥. Now A aborts unless x ∈ (Z/NZ)×, x′′ ∈ (Z/NZ)× and x′′ ̸∈ {x,−x}. Finally,
A computes P = gcd(x− x′′, N) and outputs P and N/P . Note that A is a PPT algorithm.

Now we consider the following distinguisher D for simulator S̃1: Given (1λ, N, r̂1, x̂) as input, D runs
S1(1λ, N ; r̂1) and obtains (N, r̂′1, x̂

′); D computes ŷ ∈ (Z/NZ)× as in Step 1 of π by using r̂′1 as the random
tape for P1; and then D outputs 1 if x̂, x̂′ ∈ (Z/NZ)×, x̂2 = x̂′2 = ŷ and x̂ ̸∈ {x̂′,−x̂′}, or else outputs

0. Note that D is a deterministic polynomial-time algorithm. Since the output of S̃1 is computationally
indistinguishable from the view of P1 in an execution of π ◦1 R, Pr

[
D(1λ, N, r1, x) = 1

]
has only negligible

difference from Pr
[
D(1λ, N, r̃1, x) = 1

]
, where r̃1 is a uniformly random tape for P1 in π ◦1 R and x is the

transcript for P1 in an execution of π ◦1 R corresponding to the random tape r̃1.
For an execution of π ◦1 R, write S1(1λ, N ; r̃1) = (N, r′1, x

′), and let y′ be the element of (Z/NZ)×
computed as in Step 1 of π by using r′1 as the random tape for P1. Then, since the simulator S1 for P1

in π is statistically indistinguishable, it follows by the property of π that we have y′ ∈ QRN and x′2 = y′

with probability at least 1/4 − negl′(λ) for some negligible function negl′. Moreover, conditioned on these
y′ and x′, the construction of π ◦1 R implies that, for the corresponding elements y and x appeared in an
execution of π ◦1 R with the r̃1 as the random tape for P1, we always have y = y′ since y is dependent
solely on the same random tape r̃1 for P1, and x is uniformly random over the four square roots of y = y′,
which differs from ±x′ with probability 1/2. Hence, D(1λ, N, r̃1, x) outputs 1 with probability at least
(1/4− negl′(λ)) · 1/2 = 1/8− negl′(λ)/2.

This implies that Pr
[
D(1λ, N, r1, x) = 1

]
≥ 1/8− negl′′(λ) for some negligible function negl′′. Moreover,

by the construction of D, the fact D(1λ, N, r1, x) = 1 guarantees that A(1λ, N) does not abort and correctly
outputs the two factors of N (similarly to the proof of Proposition 5). This completes the proof.
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