
Semi-Honest Secure Multiparty Computation Can Be Insecure by

Using Secure Pseudorandom Generators

Koji Nuida12

1 The University of Tokyo, Japan
(nuida@mist.i.u-tokyo.ac.jp)

2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

July 20, 2018

Abstract

It is widely understood that we are just human beings rather than being almighty; hence using
ideally random numbers in practice, as supposed in usual theoretical designs of cryptographic protocols,
is beyond our ability or at least too expensive. For this point, a standard solution in implementation is
to use secure pseudorandom generators (PRGs); ordinary cryptographers’ intuition tells that the security
of cryptographic protocols should not be lost when applying a secure PRG though no general proof for
this is known. In this paper, as opposed to the intuition, we give two examples (under certain, different
computational assumptions) of a pair of a secure two-party computation protocol in the semi-honest
model (one of which is essentially a practical protocol proposed in ACM CCS 2013, not just an artificially
constructed one) and a secure PRG satisfying that the security is lost when the PRG is applied. This
phenomenon comes mainly from the fact that, in the security model for two-party protocols the seed for
a PRG will be visible by a corrupted party him/herself, while the security notion for PRGs assumes that
the seed is not visible. On the other hand, as an affirmative result, we give a sufficient condition for a
two-party protocol and a PRG to ensure that the security is preserved when the PRG is applied.

1 Introduction

In cryptography, the gap between the ideal randomness assumed in the theoretical models and the non-ideal
randomness in the real world is always a major worrying problem. For example, Heninger et al. revealed
in 2012 [9] that, a surprisingly large part of TLS and SSH servers in the world at that time had serious
vulnerability caused by inappropriate generation of random cryptographic keys. In order to avoid such
a crucial vulnerability, an honest and earnest cryptographic engineer would like to implement a protocol
by following the description of the protocol in the document or the original academic paper as faithfully
as possible. However, there is a problem for such an engineer that, though the theoretical design of a
cryptographic protocol usually assumes the use of perfectly random numbers, practically generating such
perfectly random numbers is even beyond the art of human being or at least requires much expensive cost.

A standard solution for such a problem of randomness generation (at least for computational security
settings rather than information-theoretic security) is to use a cryptographically secure pseudorandom gen-
erator (PRG) that stretches a short random seed to generate a long pseudorandom string. In fact, the
standard formalization of security notion for a cryptographic PRG intends to be well-suited to any “natural”
security notion for cryptographic protocols. As a result, it is an ordinary cryptographer’s daily-life intuition
that, if a cryptographic protocol is secure, then it should remain secure when a secure PRG is applied to
generate the internal randomness for the protocol.

Nevertheless, the aim of the present paper is to revisit the seemingly reasonable intuition that a secure
PRG should preserve the security of a protocol. Our starting point is that there have been no formal proofs

1

showing that a secure PRG preserves the security of an arbitrary cryptographic protocol. We emphasize
that we do NOT claim here that the use of cryptographic PRGs is unreasonable at all in implementing
cryptographic protocol; using secure PRGs would indeed preserve the security in most of the cryptographic
situations. However, one of the main results of this paper still reveals that, there is a cryptographic situation
where the security of the original protocol is not preserved when a secure PRG is used.

1.1 Our Results

In this paper, under a certain computational assumption, we show the following: there exists a pair of
a computationally secure two-party computation protocol in the semi-honest model and a secure PRG
satisfying that, when a party for the protocol uses the PRG to generate the party’s internal random tape,
the resulting protocol falls into an insecure protocol. We give two such examples in Sections 4 and 5 under
different computational assumptions. While the computational assumption in Section 4 is relatively simple,
the protocol in the example of Section 5 is more natural than that of Section 4. In fact, the protocol in
Section 5 is essentially an oblivious transfer protocol proposed by Asharov et al. in ACM CCS 2013 [1].

Here we give an intuitive explanation of such a “counter-intuitive” insecurity for a PRG-based protocol.
First we recall that, a two-party computation protocol enables two parties endowed with their local inputs
to compute a function from the two local inputs, in a way that each party’s local input (except information
implied by the function value itself) is kept secret against the other party during the interactive computation.
The security notion of such a protocol against a party in the semi-honest model is described by using a
simulator for the party; the protocol is regarded as secure if everything obtained by the party during a
protocol execution can be simulated from the party’s local input and output only. The important point here
is that, the party’s random tape itself is also included in the party’s “view” during the protocol execution,
which has to be simulated by the simulator in a security proof. This convention for the security definition
reflects the fact that the random tape is stored in the party’s own device, therefore a corrupted party can
also utilize this random tape for extracting some information on the other party’s secret. Now by the same
observation, when the party uses a PRG, the security proof has to suppose that the seed for the PRG
(stored in the party’s device as well) used during a protocol execution can also be seen by the corrupted
party. However, this visibility of the seed conflicts with the security notion of PRGs, the latter assuming
that the seed is not visible by the distinguisher for the PRG. Hence, in general, the security of the PRG is
not sufficient for ensuring that the security of a two-party protocol is preserved when the PRG is used.

On the other hand, as an affirmative result, in this paper we also give (in Section 6) a sufficient condition
for a two-party protocol and a PRG to ensure that the protocol remains secure when a party uses the PRG to
generate the internal random tape. To explain the condition, first we observe that, the current formulation
of the security for a two-party protocol (in the semi-honest model) allows a security proof using a simulator
that generates the party’s view except the party’s random tape first and then adjusts the random tape as
a function of the other part of the view. This is in fact reverse to the chronological order of a real protocol
execution where the party’s random tape is sampled first and the behavior of the protocol depends on the
content of the random tape. Based on the observation, we introduce the following definition: a simulator in
a security proof is said to be with raw random tape if the simulator chooses the party’s simulated random
tape first and then generates the remaining part of the party’s simulated view depending on the chosen
random tape. Our affirmative result in this paper also requires additional condition on the simulator that
the output of the simulator is statistically (not just computationally) close to the party’s view in a real
protocol execution. Assuming the “raw random tape” and the “statistical” conditions for the simulator, our
result shows that the use of a PRG preserves the security of the two-party protocol provided the output
distribution of the PRG with uniformly random seed has sufficiently large min-entropy (e.g., the PRG has
logarithmic stretch in the case where the PRG is injective).

We give remarks on the reasons of the two conditions for the simulator in our affirmative result mentioned
above. First we consider the “raw random tape” condition. From a purely technical viewpoint, our result
in Section 4 would suggest the necessity of the condition as the counterexample in Section 4 lacks this
condition while satisfying the other “statistical” condition. Moreover, we can also give the following intuitive
explanation. Suppose that the simulator S in the security proof of a given protocol is not with raw random

2

tape and the party’s random tape in the output of S is a function, denoted here by F , of the other part
of the party’s simulated view. Given a secure PRG R, we try to construct a simulator S̃ for the party in
the protocol combined with the PRG R. Now S̃ has to simulate the seed r of the PRG R. On the other
hand, S̃ has also to simulate the party’s view v except the random tape, and this would have to be done
by executing the original simulator S. But in this case, the seed r should be sampled with the constraint
R(r) = F (v), which looks difficult as the secure PRG R is in general hard to invert. Due to the observation,
the “raw random tape” condition seems fairly crucial when developing a similar affirmative result.

Secondly, we consider the “statistical” condition for the simulator. Again, our result in Section 5 would
suggest the technical necessity of the condition as the counterexample in Section 5 lacks this condition while
satisfying the other “raw random tape” condition. Moreover, the aforementioned visibility of the seed for
the PRG would make it difficult to develop such an affirmative result by utilizing the computational security
properties of the building blocks. In fact, the proof of our affirmative result is information-theoretic rather
than cryptographic, as it is based on information-theoretic properties such as the statistical closeness of the
simulator and the min-entropy of the PRG. It will be an interesting challenge to improve our affirmative
result by utilizing some cryptographic properties rather than information-theoretic ones.

Finally, we give a remark on the standpoint of the results in this paper. We emphasize that, the negative
results in this paper do not claim that a two-party protocol will be concretely broken when a practical PRG
is used (in fact, the PRGs for our results in Sections 4 and 5 are very artificial) but just point out the lack of a
theoretical security proof under the use of a PRG. This situation would have a flavor somewhat similar to the
case of security proofs in the random oracle model. Although the random oracle model is just a theoretical
approximation and a real hash function is never a random oracle, the security proofs for practical protocols
based on the random oracle model are regarded as meaningful at least to some extent. Similarly, even after
the negative results of this paper, security proofs for two-party protocols (in the semi-honest model) using
ideal randomness would still have meaning at least to some extent when PRGs are applied to those protocols.
But at the same time, we emphasize that recognizing the lack of a fully rigorous security proof in the case
of two-party protocols combined with PRGs (revealed in this paper) would be as significant as recognizing
that the random oracle assumption is never achieved completely in practical protocols.

1.2 Related Work

One may feel that the topic of the present paper seems to be related to some other topics concerning non-
ideal randomness in cryptography, such as cryptography based on so-called “imperfect randomness” (e.g.,
[4, 5]) and the security issues caused by “backdoored PRGs” (e.g., [2, 3]). But actually, the former topic
above mainly deals with randomness that is significantly far from being ideal; in contrast, the present paper
focuses on the use of randomness that is significantly close to ideal. On the other hand, the latter topic
above studies the problem of the use of maliciously (and secretly) designed PRGs; while the main concern
of the present paper originates from the practical impossibility of implementing the ideal randomness even
if an engineer is honest and makes a best effort. Hence our problem setting is significantly different.

In the paper [12, 13] of Lindell, Nissim, and Orlandi, they gave feasibility results on some classes of func-
tionality in a certain enhanced (“size-hiding”) two-party computation protocol under the semi-honest model.
At the same time, they also gave an infeasibility result (Theorem 5.7 in [13]) on such a protocol for another
class of functionality, but the security model here is different in a way that an adversarial (semi-honest)
party is assumed to be deterministic. A similar situation also appeared in a recent paper by Shinagawa et al.
[15]. In those papers, the authors seemed to had tried to prove the infeasibility result under the semi-honest
model by first establishing a kind of lower bounds for “overall complexity” of such protocols that involves
the randomness complexity as well, and then cancelling out the effect of the randomness complexity from
the overall complexity by replacing the ideal randomness with an output of a computationally secure PRG
of sufficiently large stretch. However, our counterexample in the paper shows that such a strategy must fail;
namely, when one assumes for contrary the existence of a secure protocol with overall complexity minus
randomness complexity being larger than a given lower bound and then tries to deduce a contradiction by
cancelling out the randomness complexity by replacing the ideal randomness with a PRG, it is not guar-

3

anteed in general that the resulting protocol with PRG is still secure. We note that Hazai and Zarosim
in their recent paper [8] already mentioned this problem in such a general strategy to cancel out the effect
of randomness complexity when developing a kind of lower bounds for complexity of two-party protocols.
However, they did not give a concrete example (as in the present paper) that the use of even secure PRGs
compromises the security of a two-party protocol.

On the other hand, in [10], Hubácek and Wichs proposed a kind of secure two-party computation protocol
in the semi-honest model, and also gave a lower bound for communication complexity that seemingly excludes
even their own protocol but is actually established only for the case of deterministic adversaries. They also
clearly mentioned that their protocol is an example of the phenomenon where a party’s randomness affects
security of the other party’s secret input. However, their alternative situation of a deterministic adversarial
party is far from the original situation with ideal randomness, in contrast to our counterexample where an
adversarial party uses a secure PRG.

2 Preliminaries

2.1 Basic Notations and Settings

In this paper, we write {0, 1}∗ =
∪

n≥0{0, 1}n and denote the set of positive integers by Z>0. We say that
a function ε(λ) ∈ [0, 1] of an integer λ ≥ 1 is negligible in λ, if for any k ∈ Z>0, there exists a λ0 ∈ Z>0

satisfying ε(λ) < λ−k for any λ > λ0. An anonymous negligible function is sometimes denoted by negl(λ).
For a probability distribution D, we write a ↢ D to indicate that the element a is chosen according

to the distribution D. Let U [X] denote the uniform distribution on a set X. We use a notation of a form
[F (r) : R] to signify a random variable F (r) where r follows the probability distribution specified by the
term R. For example, [bb : b ↢ U [{0, 1}]] equals U [{00, 11}]. For two probability distributions X and Y
over a (finite) set Z, their statistical distance ∆(X,Y) is defined by

∆(X,Y)
def
=

1

2

∑
z∈Z
|Pr[z ↢ X]− Pr[z ↢ Y]| = max

E⊆Z

(
Pr

z↢X
[z ∈ E]− Pr

z↢Y
[z ∈ E]

)
.

It is known that we have ∆(f(X,D), f(Y,D)) ≤ ∆(X,Y) for any function f and any probability distribution
D independent of X and Y . We also present the following properties for statistical distances:

Lemma 1. Let p, q be two distinct λ-bit primes, i.e., p, q ∈ [2λ−1, 2λ − 1], and let N = pq. Moreover,
we set U = U [Z/NZ] and U ′ = U [(Z/NZ)×]. Then we have ∆(U,U ′) < 2−(λ−2). Hence we also have
∆(f(U), U ′) < 2−(λ−2) for any function f with domain Z/NZ that is identical on the subset (Z/NZ)×.

Proof. By the property of the statistical distance, we have

∆(U,U ′) =
|(Z/NZ) \ (Z/NZ)×|

N
=

N − (p− 1)(q − 1)

N

=
p+ q − 1

pq
<

1

q
+

1

p
≤ 1

2λ−1
+

1

2λ−1
=

1

2λ−2
.

Hence the assertion holds.

Lemma 2. Let M,N be two positive integers. Put δ = M/N − ⌊M/N⌋, hence 0 ≤ δ < 1. Moreover, we set
UM = U [{0, . . . ,M − 1}] and UN = U [{0, . . . , N − 1}]. Then we have

∆(UM mod N,UN) =
δ(1− δ)

M/N
≤ N

4M
.

4

Proof. The latter part follows from the fact that δ(1 − δ) attains the maximum value 1/4 at δ = 1/2. For
the former part, we note that

Pr[UM mod N = a] =

⌊M/N⌋+ 1

M
>

1

N
for 0 ≤ a ≤M − ⌊M/N⌋N − 1 ,

⌊M/N⌋
M

≤ 1

N
for M − ⌊M/N⌋N ≤ a ≤ N − 1 .

This implies that

∆(UM mod N,UN) = (M − ⌊M/N⌋N) ·
(
⌊M/N⌋+ 1

M
− 1

N

)
= Nδ ·

(
M/N − δ + 1

M
− 1

N

)
= Nδ · −δ + 1

M
=

δ(1− δ)

M/N
.

Hence the assertion holds.

Lemma 3. Let L,M,N be positive integers with L ≤ N . Let a ∈ {0, . . . , L − 1}, and let A = {k ∈
{0, . . . , N − 1} | k mod L = a}, K = ⌊(N − 1 − a)/L⌋ + 1, and δ = M/K − ⌊M/K⌋. Moreover, we set
UM = U [{0, . . . ,M − 1}]. Then we have a+ (m mod K) · L ∈ A for any m ∈ {0, . . . ,M − 1}, and

∆
(
a+ (UM mod K) · L,U [A]

)
=

δ(1− δ)

M/K
≤ K

4M
.

Proof. We have a ≥ 0 and a − L < 0 by the choice of a. On the other hand, since (N − 1 − a)/L <
K ≤ (N − 1 − a)/L + 1, we have a + (K − 1) · L ≤ N − 1 and a + K · L > N − 1. Hence it follows that
A = {a+ k · L | k ∈ {0, . . . ,K − 1}}, which yields the first part of the assertion and also implies the second
assertion by Lemma 2.

For any probabilistic algorithm A with input x and internal randomness r, we may write A(x; r) instead
of A(x) in order to emphasize the choice of the internal randomness r. We often abbreviate the term
“probabilistic polynomial-time” to “PPT”. In this paper, for simplifying the argument, we adopt a convention
about non-uniform algorithms in a way that an advice for such an algorithm depends solely on the security
parameter λ. By using an appropriate padding to the input, our convention here can be made consistent
with a standard convention where an advice depends solely on the input length for the algorithm. An advice
z = zλ for an algorithm A may be either made implicit in notation or indicated by writing A(zλ) or similarly.

2.2 Indistinguishability of Random Variable Families

In this paper we refer to a standard definition (mainly adopted in the area of secure multiparty computation)
of the indistinguishability between two families of random variables parameterized by not only a security
parameter but also some other objects. The formulation below is essentially the same as the one in Section
7.2.1.2 of Goldreich’s book [7] with slight notational modifications. A main remark here is that the notion
is formulated against non-uniform distinguishers.

Definition 1 (Indistinguishability). Let (Iλ)λ≥1 be a family of subsets Iλ ⊆ {0, 1}∗ indexed by security
parameter λ. Let X = (Xλ,w)λ,w and Y = (Yλ,w)λ,w be families of random variables Xλ,w and Yλ,w indexed
by a pair of λ and w ∈ Iλ.

• We say that X and Y are computationally indistinguishable and write X
comp
≡ Y , if for any non-

uniform PPT algorithm D with some advice (called a distinguisher), there exists a negligible function
ε(λ) satisfying, for any λ ≥ 1,∣∣Pr[D(1λ, Xλ,w) = 1]− Pr[D(1λ, Yλ,w) = 1]

∣∣ ≤ ε(λ) for every w ∈ Iλ.

5

• For a function ε(λ), we say that X and Y are ε(λ)-close and write X
ε(λ)
≡ Y , if ∆(Xλ,w, Yλ,w) ≤ ε(λ)

for any λ ≥ 1 and any w ∈ Iλ. We say that X and Y are statistically close and write X
stat≡ Y , if these

are negl(λ)-close.

2.3 Pseudorandom Generators

As the security notion for multiparty computation in our argument in this paper is formulated by simulators
against non-uniform distinguishers, the security for pseudorandom generators is also considered against
non-uniform distinguishers. The definition is as follows.

Definition 2 (Pseudorandom generators). Let ℓ : Z>0 → Z>0 be a function satisfying ℓ(λ) > λ for each
λ ≥ 1. We say that a deterministic polynomial-time (in λ) algorithm R = R(1λ, s) with seed s ∈ {0, 1}λ is
a secure pseudorandom generator (PRG) with stretch function ℓ, if

• the output of R(1λ, s) is an ℓ(λ)-bit sequence; and

• its output distribution R(1λ) = R(1λ, U [{0, 1}λ]) with uniformly random seed is computationally
indistinguishable (against non-uniform distinguisher) from the uniform distribution U [{0, 1}ℓ(λ)] (in
the sense of Definition 1).

3 Secure Two-Party Computation

Among secure multiparty computation, in this paper we focus on the simplest case of two-party computation,
though our result could be extended to the case of a larger number of parties. We also focus on the semi-
honest model as described in Section 3.1. In Section 3.2, we give a formalization of the situation (of main
concern in this paper) where a party uses a secure PRG as the internal randomness.

3.1 Basic Notations and Terminology

Here we summarize some notations and terminology for two-party protocols in the semi-honest model. Except
some notational modifications, our argument below is based on the standard security definitions (in the “view
simulator” paradigm, rather than the equivalent “ideal vs. real” paradigm) described, e.g., in Section 7.2 of
[7] and in [11].

Let π be a two-party protocol between parties P1 and P2. Formally, the parties are modeled as interactive
PPT Turing machines that communicate with each other by following the specification of π. In this paper,
we follow a popular convention that an input for Pi (i ∈ {1, 2}) consists of a security parameter 1λ common
to the two parties and an “actual” input for Pi. Unless specified otherwise, an “actual” input for Pi is
denoted by xi ∈ {0, 1}∗, the internal random tape for Pi at an execution of π is denoted by ri ∈ {0, 1}∗, and
the output obtained by Pi after an execution of π is denoted by outπi (1

λ, x1, x2; r1, r2), or by outπi (1
λ, x⃗; r⃗)

in short where x⃗ := (x1, x2) and r⃗ := (r1, r2). We define outπ(1λ, x⃗; r⃗) to be the pair of outπ1 (1
λ, x⃗; r⃗) and

outπ2 (1
λ, x⃗; r⃗) in this order. As the parties are PPT, we may assume that the lengths of the inputs x1, x2

and of the random tapes r1, r2 are bounded by a polynomial in λ. Moreover, for simplifying the argument,
we also assume that r1 ∈ {0, 1}ρ1(λ) and r2 ∈ {0, 1}ρ2(λ) for some positive-valued polynomials ρ1, ρ2. Let Xλ

denote the set of the input pairs (x1, x2) associated to security parameter λ.

We let the transcript for Party Pi in an execution of π mean the sequence (m
(i)
1 , . . . ,m

(i)
ℓi
) of mes-

sages (in the chronological order) sent to Pi from the other party P3−i during the protocol execution. Let
transπi (1

λ, x1, x2; r1, r2) or trans
π
i (1

λ, x⃗; r⃗) denote the transcript for Pi in the execution of π with inputs x1, x2

and random tapes r1, r2. The view for Pi consists of xi, ri and transπi (1
λ, x⃗; r⃗); in particular, the view for

a party involves the content of the party’s random tape, which is an important fact in our argument below.
Then the party Pi finally computes outπi (1

λ, x⃗; r⃗) from the view for Pi.
We let a functionality with input set I ⊆ {0, 1}∗ × {0, 1}∗ mean any pair f = (f1, f2) of possibly

probabilistic functions f1 = f1(x⃗) and f2 = f2(x⃗) with x⃗ = (x1, x2) ∈ I. More precisely, for each x⃗ ∈ I,

6

f1(x⃗) and f2(x⃗) are (possibly correlated) random variables endowed with their own internal randomness.
We write f(x⃗) = (f1(x⃗), f2(x⃗)). In the following argument, unless specified otherwise, we assume that f is a
functionality with input set I =

∪
λ≥1 Xλ where Xλ is the input set for a two-party protocol π with security

parameter λ.
We describe the definition of security for a two-party protocol π in the semi-honest model1. Intuitively,

the condition below means that the view for any party in an execution of π can be efficiently recovered, in
a computationally indistinguishable manner, solely from the local input and the local output for the party.
Note that the following definition implies also that the protocol computes the value of f correctly.

Definition 3 (Security in the semi-honest model). Let π be a two-party protocol to compute a functionality
f = (f1, f2). For i ∈ {1, 2}, we say that π is secure against semi-honest Party Pi with computational
(respectively, statistical) simulator, if there exists a PPT algorithm Si, called a simulator for Pi, satisfying
that the two probability distributions (

Si(1λ, xi, fi(x⃗)), f(x⃗)
)
λ,x⃗

and ([
(xi, ri, trans

π
i (1

λ, x⃗; r⃗), outπ(1λ, x⃗; r⃗)) : r1 ↢ U [{0, 1}ρ1(λ)], r2 ↢ U [{0, 1}ρ2(λ)]
])

λ,x⃗

are computationally indistinguishable (respectively, statistically close), where the indices λ and x⃗ run over
the ranges λ ≥ 1 and x⃗ ∈ Xλ.

3.2 The Case of Using a PRG

From now, we consider an extension of the definition above to the case where one of the two parties uses
a secure PRG for generating the party’s random tape. Recall that, a motivation of including a party’s
random tape to the party’s view (hence to a simulator’s output as well) in the standard security formulation
comes from an observation that a corrupted (semi-honest) party in a practical situation might be able to see
the random tape which is stored in the party’s own device, therefore any extra information should not be
yielded by the random tape used in a protocol execution. Accordingly, when such a party uses a PRG, it is
reasonable that the seed for the PRG is also included to the party’s view (and also to a simulator’s output).

The following formulation is based on the observation above. Let π be a two-party protocol as in Section
3.1. Let i ∈ {1, 2}, and let R be a secure PRG with stretch function ℓ(λ) = ρi(λ). Then we regard “the
execution of π where Party Pi uses a PRG R” as the following two-party protocol, denoted by π ◦i R:

• The input set for π ◦i R is the same as π, and the sets of random tapes of Party Pi and Party P3−i
for π ◦i R are {0, 1}λ and {0, 1}ρ3−i(λ), respectively.

• Given a security parameter 1λ, local inputs x1, x2 for two parties, and random tapes si ↢ U [{0, 1}λ]
and r3−i ↢ U [{0, 1}ρ3−i(λ)] for Parties Pi and P3−i, respectively, to execute the protocol π ◦i R, first
Pi runs R(1λ, si) with seed si and obtains its output ri ∈ {0, 1}ρi(λ). Then the two parties P1,P2

jointly execute the protocol π with security parameter λ, input pair (x1, x2), and random tapes r1, r2.

Here we emphasize that, the view for the party Pi in the new protocol π ◦i R involves the seed si for the
PRG R rather than the random tape ri of Pi for the original protocol π. Accordingly, a simulator to prove
the security of π ◦i R against Pi has to simulate the seed si as well as the other part of the party’s view.
On the other hand, we note that the pseudorandom tape ri used during the protocol execution can be
deterministically recovered from si, which is included in the view for Pi in the new protocol π ◦i R.

1The notion is often called with different names in the literature; e.g., “π privately computes f” in Section 7.2 of [7]; and
“π securely computes f in the presence of static semi-honest adversaries” in [11].

7

4 Security When Using a PRG: First Negative Results

By a cryptographer’s daily-life intuition, it is expected that computational security of a cryptographic pro-
tocol should be preserved when its internal true randomness is replaced by an output of a secure PRG.
Nevertheless, as opposed to this expectation, in this section we give (under a certain computational assump-
tion) a concrete example of a situation where a secure two-party protocol becomes insecure when a party
uses a secure PRG to generate its internal random tape.

In order to state the main result of this section, we prepare some terminology. Recall that an integer N
is called a Blum integer if it is of the form N = pq with p, q being distinct primes congruent to 3 modulo 4.
We say that a deterministic algorithm B = B(1λ) is a Blum integer generator, if its output B(1λ) (for λ ≥ 5)2

is a Blum integer with two prime factors having λ-bit lengths. We say that a Blum integer generator B is
efficiently factorizable, if there is a PPT uniform3 algorithm F satisfying that F(B(1λ)) is a prime factor of
B(1λ) with probability Ω(1). Then our result is stated as follows:

Theorem 1. Assume that there exists a polynomial-time Blum integer generator that is not efficiently
factorizable (see above for the terminology). Assume moreover that a secure PRG exists. Then there exist a
two-party protocol π and a secure PRG R with the following two properties:

• π is secure against semi-honest Party P1 (with statistical simulator).

• π ◦1 R is not secure against semi-honest Party P1 (even with computational simulator).

Section 4.1 is devoted to the preliminaries towards constructing the two-party protocol and the PRG in
Theorem 1. Section 4.2 gives the two-party protocol and its security proof, which is the first part of the
claim in Theorem 1. The construction of the PRG is given in Section 4.3, where we also give a proof of the
second part of the claim in Theorem 1 and hence conclude the proof of the theorem.

4.1 Preliminaries: The Rabin Function

Here we summarize some facts about the Rabin function [14] used in our argument below. The Rabin
function modulo N computes x2 mod N for a given integer x ∈ (Z/NZ)×, where N = pq is the product of
two distinct primes p, q of the same bit length with p ≡ q ≡ 3 (mod 4). It is known [14] that factoring the
composite N is polynomial-time reducible to inverting Rabin function modulo the N and vice versa. Let

QRN
def
= {x2 mod N | x ∈ (Z/NZ)×}

be the set of quadratic residues modulo N , which is by definition equal to the image of Rabin function
modulo N . Each y ∈ QRN has four preimages for the function (i.e., square roots modulo N). Namely, we
have a decomposition (Z/NZ)× ≃ (Z/pZ)× × (Z/qZ)× owing to Chinese Remainder Theorem. Then, for
y = x2 with x ∈ (Z/NZ)×, the four pairs (±x mod p,±x mod q) with two choices of each sign represent the
square roots of y modulo N .

We recall the following fact for finding a square root modulo a composite N = pq as in the Rabin function
when a prime factor of N is known:

Lemma 4. There exists a PPT algorithm, with the N , p (or q) and some y ∈ (Z/NZ)× as inputs, that
outputs an element x of (Z/NZ)× satisfying that, if y ∈ QRN , then x is uniformly random among the four
square roots of y modulo N .

Proof. As p ≡ q ≡ 3 (mod 4), both p′ = (p + 1)/4 and q′ = (q + 1)/4 are integers. The algorithm runs in
the following four steps: (i) Compute yp ← y mod p, yq ← y mod q, zp ← yp

p′
, and zq ← yq

q′ . (ii) Choose
xp ↢ U [{zp,−zp}] and xq ↢ U [{zq,−zq}]. (iii) Compute the unique element x ∈ (Z/NZ)× corresponding
to the pair (xp, xq) ∈ (Z/pZ)× × (Z/qZ)×. (iv) Output the x.

2Note that, for λ ≤ 4, there is at most one λ-bit prime congruent to 3 modulo 4.
3We note that a non-uniform algorithm with advice can trivially factorize the deterministic output of B(1λ).

8

The whole computation can be done in polynomial time with respect to the bit length of N , since a
factor of N is known. From now, we suppose y ∈ QRN , therefore y = w2 for some w ∈ (Z/NZ)×. Put
wp = w mod p and wq = w mod q. Then we have yp = wp

2 and zp
2 = yp

2p′
= wp

4p′
= wp

p+1, which is equal
(in Z/pZ) to wp

2 = yp by Fermat’s Little Theorem. Hence we have (±zp)2 = yp, and we have (±zq)2 = yq
similarly. This implies that the elements of (Z/NZ)× corresponding to (±zp,±zq) are the four square roots
of y. This completes the proof.

On the other hand, although it is (believed to be) computationally hard to find a square root modulo
the N above of a given quadratic residue, the next lemma shows that (approximately) uniform sampling of
a pair (x, y) of a random quadratic residue y and its square root x is still computationally feasible with high
probability. Precisely, let N = pq be as above and let λ be the common bit length of p and q. We consider
the following algorithm, which is given 1λ and N as inputs but not given any prime factors p, q of N :

1. Repeat the following process up to λ times until an appropriate a ∈ (Z/NZ)× is found:

• Compute a ← r mod N with r ↢ U [{0, 1}3λ], and check if a ∈ (Z/NZ)× and
(

a
N

)
= −1 where(

a
N

)
denotes the Jacobi symbol of a modulo N .

In case where such an a has not been found, output a pair (1 mod N,−1 mod N) and stop.

2. Compute x ← r mod N with r ↢ U [{0, 1}3λ], and if x ̸∈ (Z/NZ)×, then output a pair (1 mod
N,−1 mod N) and stop.

3. Choose y from the four elements ±x2 mod N and ±ax2 mod N uniformly at random, by using two
random bits. Then output (x, y).

Note that the output (x, y) of this algorithm always satisfies x, y ∈ (Z/NZ)×. Note also that the complexity
of the algorithm is polynomial in λ; indeed, the Jacobi symbol

(
a
N

)
can be computed without knowledge of

prime factors of N by using Law of Quadratic Reciprocity. Now the following property holds.

Lemma 5. The output (x, y) of the algorithm above satisfies the following:

• The distribution of y is statistically close to U [(Z/NZ)×], where the bound of the statistical distance is
dependent solely on λ.

• If y ∈ QRN , then the conditional distribution of x conditioned on the y is statistically close to uniform
over the four square roots of y, where the bound is again dependent solely on λ.

Proof. First, we analyze Step 1. For each of the repeated processes, the combination of Lemmas 1 and 2
as well as the fact N ≤ 22λ implies that, the statistical distance between U [(Z/NZ)×] and the distribution
of the element a is at most N/23λ+2 + 2−(λ−2) ≤ 2−(λ+2) + 2−(λ−2) < 2−(λ−1). On the other hand,

for a′ ↢ U [(Z/NZ)×], we have
(

a′

N

)
= 1 with probability 1/2. This implies that, the a satisfies either

a ̸∈ (Z/NZ)× or
(

a
N

)
= 1 with probability at most 1/2 + 2−(λ−1). Therefore, the probability, denoted by

ρ1, that the algorithm stops at Step 1 is at most ρ′1
def
= (1/2+ 2−(λ−1))λ, the latter being negligible in λ and

dependent solely on λ.
Secondly, we analyze Step 2. By the choice of x, each element of (Z/NZ)× appears as the value of x with

probability ⌊23λ/N⌋/23λ or (⌊23λ/N⌋+1)/23λ. On the other hand, by Lemmas 1 and 2 and the fact N ≤ 22λ

again, the probability, denoted by ρ2, that x ̸∈ (Z/NZ)× is at most 2−(λ+2) + 2−(λ−2) < ρ′2
def
= 2−(λ−1), the

latter being negligible in λ and dependent solely on λ. Hence, regarding Steps 1 and 2, for each element
of (Z/NZ)×, the probability that the algorithm has not stopped at Step 1 and this element appears as the

value of x at Step 2 is either α or α + δ, where α
def
= (1 − ρ1)⌊23λ/N⌋/23λ and δ

def
= (1 − ρ1)/2

3λ. On the
other hand, the algorithm stops before arriving at Step 3 with probability ρ1 + (1 − ρ1)ρ2 ≤ ρ′1 + ρ′2, the
latter being negligible in λ and dependent solely on λ.

9

Thirdly, we analyze Step 3. First we show that, x2 mod N is the only choice among the four candidates
of y for being a quadratic residue. To see this, recall that

(
a
N

)
= −1, therefore precisely one of a mod p

and a mod q is a quadratic residue modulo p and q, respectively. Say, a mod p is a quadratic residue and
a mod q is not. Note also that, since p ≡ q ≡ 3 (mod 4), neither −1 mod p nor −1 mod q is a quadratic
residue. Now none of −x2 mod p, ax2 mod q, and −ax2 mod p is a quadratic residue, which implies that
none of −x2 mod N and ±ax2 mod N is a quadratic residue, too. Hence the claim of this paragraph holds.

By the previous paragraph, an element y ∈ QRN is chosen at Step 3 if and only if one of the four square
roots of y is chosen at Step 2 and then x2 mod N is chosen at Step 3 (with probability 1/4). Hence, the
probability, denoted by Py, that the y is chosen satisfies

4α · 1
4
= α ≤ Py ≤ 4(α+ δ) · 1

4
= α+ δ .

On the other hand, for each square root x of y, the probability, denoted by Qx,y, that the pair (x, y) is
chosen satisfies

α · 1
4
=

α

4
≤ Qx,y ≤ (α+ δ) · 1

4
=

α+ δ

4
.

Therefore, the conditional probability of the choice of x conditioned on the choice of y satisfies

α

4
· 1

α+ δ
=

α

4(α+ δ)
≤ Qx,y

Py
≤ α+ δ

4
· 1
α

=
α+ δ

4α
.

The differences of the upper and lower bounds for Qx,y/Py from the probability 1/4 of the uniformly random
choice are evaluated as

α+ δ

4α
− 1

4
=

δ

4α
≤ 2−3λ

4(1− ρ′1)(1− 2−λ) · 2−2λ
=

1

4(1− ρ′1)(1− 2−λ) · 2λ

and
1

4
− α

4(α+ δ)
=

δ

4(α+ δ)
≤ δ

4α

where we used the relations δ ≤ 2−3λ and

α ≥ (1− ρ1)

(
23λ

N
− 1

)
· 1

23λ
≥ (1− ρ1)

(
23λ

22λ
− 1

)
· 1

23λ
≥ (1− ρ′1)

(
1− 1

2λ

)
· 1

22λ
.

Hence we have ∣∣∣∣Qx,y

Py
− 1

4

∣∣∣∣ ≤ 1

4(1− ρ′1)(1− 2−λ) · 2λ
,

which is negligible in λ and is dependent solely on λ, since ρ′1 has the same property. This implies the second
assertion of this lemma.

Finally, for the first assertion of this lemma, owing to the argument above, we may assume without loss
of generality (except only negligible differences dependent solely on λ) that the algorithm has not stopped
before Step 3 and the element x chosen in Step 2 is uniformly random over (Z/NZ)×. It follows that
x2 mod N is uniformly random over QRN . Now by symmetry, we may assume without loss of generality (as
we already did above) that a mod p is a quadratic residue modulo p and a mod q is not a quadratic residue
modulo q. This implies that ±1 and ±a are the representatives of the four cosets for the subgroup QRN

in (Z/NZ)×; in fact,
((

z
p

)
,
(

z
q

))
is equal to (1, 1) for z = 1; (1,−1) for z = a; (−1, 1) for z = −a; and

(−1,−1) for z = −1. Since x2 is uniformly random over QRN as mentioned above, it follows that the choice
of y is uniformly random over (Z/NZ)×. This completes the proof of Lemma 5.

10

(Party P1) Input: N = pq (p, q are unknown for P1) Output: (none)
Random tape: r1 ∈ {0, 1}3λ

(Party P2) Input: λ-bit primes p ̸= q with p ≡ q ≡ 4 (mod 3) Output: (none)
Random tape: r2 ∈ {0, 1}2

1. P1 computes y ← r1 mod N (where r1 is regarded as a binary representation
of an integer), and sends N and y to P2.

2. P2 decides if y ∈ QRN or not, based on Chinese Remainder Theorem and Law
of Quadratic Reciprocity by using p and q.

3. – If y ∈ QRN , then P2 computes a uniformly random square root x of y modulo
N by using the two random bits in r2 as in Lemma 4 of Section 4.1, and sends
x to P1.
– If y ̸∈ QRN , then P2 sends ⊥ to P1.

Figure 1: The two-party protocol for Theorem 1

4.2 The Protocol

Here we construct the two-party protocol π in the statement of Theorem 1. The protocol π is described in
Figure 1. We note that the security of the protocol against P2 is trivial (as P2 receives the input N of P1)
though our argument concerns the security against P1 only. We also note that the protocol π has no output,
therefore the simulator constructed in the security proof may ignore the part of its input corresponding to
the empty output of π. Now we have the following result.

Proposition 1. The protocol π is secure against semi-honest P1 with statistical simulator.

Proof. We construct a simulator S1 for P1 with input 1λ and N . First we focus on the computation
y = r1 mod N in Step 1. In a real execution of π, the distribution of r1 conditioned on a chosen y is uniform
over the set {k ∈ {0, . . . , 23λ − 1} | k mod N = y}. Now Lemma 3 implies that the output distribution of a
probabilistic function g(y) = y + (u mod Ky) ·N with u ↢ U [{0, 1}4λ], where Ky = ⌊(23λ − 1− y)/N⌋+ 1,
is statistically close to the conditional distribution of the r1 (with bound dependent solely on λ).

On the other hand, in a real execution of π, the element y chosen in Step 1 is statistically close to

U [Z/NZ] stat≡ U [(Z/NZ)×] (with bound dependent solely on λ) owing to Lemmas 1 and 2. Moreover, by
Lemma 4, the message received by P1 at Step 3, denoted here by η, in the real execution of π is a uniformly
random square root x of y in Z/NZ if y ∈ QRN , and it is always ⊥ if y ̸∈ QRN . Now let (x′, y′) denote
an output of the algorithm in Lemma 5 (recall that this algorithm does not use knowledge of prime factors
of N), and let η′ denote an element computed in the same way as η but by using (x′, y′) instead of (x, y).

Then by Lemma 5, we have (x′, y′)
stat≡ (x, y), therefore (r1, x, y, η)

stat≡ (g(y), x, y, η)
stat≡ (g(y′), x′, y′, η′).

According to these arguments, the simulator S1 can output (within polynomial time) g(y′) as the simulated
random tape for P1 and η′ as the simulated transcript at Step 3, and the simulation is statistically close to

the real (i.e., (g(y′), η′)
stat≡ (r1, η)) by the argument above. This completes the proof.

4.3 The PRG

Here we construct the secure PRG R in the statement of Theorem 1. First, by the hypothesis of Theorem 1,
there exists a polynomial-time Blum integer generator B that is not efficiently factorizable. Recall that B is
a deterministic algorithm by definition. Secondly, there exists a secure PRG by the hypothesis of Theorem
1 again. As the simulator S1 constructed in the proof of Proposition 1 is PPT, a standard technique to
securely expand the output length of a PRG (see e.g., Section 3.3 of [6]) yields a secure PRG R0 with stretch
function ℓ0 satisfying that ℓ0(λ) equals the length of the internal random tape for S1 with security parameter
λ. Now we construct the PRG R with stretch function ℓ(λ) = 3λ as follows:

1. Given security parameter 1λ and a random seed s ↢ U [{0, 1}λ], the algorithm first execute R0(1
λ, s)

and obtain its output r̃ ∈ {0, 1}ℓ0(λ).

11

2. Secondly, the algorithm executes S1(1λ,B(1λ); r̃) and obtains its output (N, r1, trans1). Then the
algorithm outputs r1 ∈ {0, 1}3λ.

Proposition 2. The PRG R is secure.

Proof. Assume, for the contrary, that a PPT distinguisher D satisfies that P1
def
= Prr1←R(1λ)[D(1λ, r1) = 1]

and P2
def
= Prr1↢U [{0,1}3λ][D(1λ, r1) = 1] have a non-negligible difference. First note that, as the simulator

S1 for P1 in the protocol π is statistically close to the real protocol execution by Proposition 1, it follows that
the distribution of r1 generated by (N, r1, trans1) ← S1(1λ,B(1λ); r̃) with r̃ ↢ U [{0, 1}ℓ0(λ)] is statistically

close to U [{0, 1}3λ]. This implies that P3
def
= Pr(N,r1,trans1)←S1(1λ,B(1λ);U [{0,1}ℓ0(λ)])[D(1λ, r1) = 1] has a

negligible difference from P2, therefore P1 and P3 should have a non-negligible difference. Now we consider
the following distinguisher D for R0;

• given 1λ and r̃ ∈ {0, 1}ℓ0(λ), the distinguisher computes (N, r1, trans1)← S1(1λ,B(1λ); r̃) and outputs
the output value of D(1λ, r1).

Then we have P3 = Prr̃↢U [{0,1}ℓ0(λ)][D(1λ, r̃) = 1], while P1 = Prr̃↢R0(1λ)[D(1λ, r̃) = 1] by the construction

of R. As D is PPT as well as D, the non-negligible difference of P1 and P3 mentioned above contradicts the
security of R0. Hence R is secure, which completes the proof.

To complete the proof of Theorem 1, we give the following result.

Proposition 3. If there exists a PPT computational simulator S̃1 for Party P1 in the protocol π ◦1 R,
then there exists a PPT uniform algorithm F that outputs a prime factor of the Blum integer B(1λ) with
probability Ω(1).

Proof. Before constructing the algorithm F in the statement, first we define the following auxiliary algorithm
F0, where its input consists of 1λ, an integer N of at most (2λ)-bit length, a bit sequence r̃1 ∈ {0, 1}ℓ0(λ),
and an object x̃:

1. The algorithm executes S1(1λ, N ; r̃1) and obtains a triple (N, r′′1 , x
′′). Now the algorithm aborts unless

x̃ ∈ (Z/NZ)×, x′′ ∈ (Z/NZ)×, and x′′ ̸∈ {x̃,−x̃}.

2. The algorithm outputs gcd(x̃− x′′, N).

Note that F0 is a PPT uniform algorithm. By using this, we construct the algorithm F as follows:

1. Given 1λ and Nλ
def
= B(1λ) as inputs, the algorithm executes S̃1(1λ, Nλ) and obtains a triple (Nλ, r1, x)

where either x ∈ (Z/NλZ)× or x = ⊥.

2. The algorithm executes R0(1
λ, r1) and obtains r̃1 ∈ {0, 1}ℓ0(λ).

3. The algorithm executes F0(1
λ, Nλ, r̃1, x); if this F0 aborts then the algorithm also aborts, otherwise

the algorithm outputs the output value of the F0.

Note that F is a PPT uniform algorithm as well as F0.
Now we consider the following distinguisher D1 for (N, r1, x) which is either a real view for P1 in π ◦1R

or an output of the simulator S̃1(1λ, N):

1. The distinguisher executes R0(1
λ, r1) and obtains r̃1 ∈ {0, 1}ℓ0(λ).

2. The distinguisher executes F0(1
λ, N, r̃1, x); if this F0 aborts then the distinguisher outputs 0, otherwise

we denote the output value of the F0 by p.

3. The distinguisher outputs 1 if p is a non-trivial divisor of N , otherwise outputs 0.

12

Note that D1 is PPT. Now by the construction of the algorithms, the probability, denoted by PF , that F
succeeds to factorize the given integer Nλ is equal to

PF = Pr
(Nλ,r1,x)←S̃1(1λ,Nλ)

[D1(1
λ, Nλ, r1, x) = 1] .

Now let pλ and qλ be the two prime factors of Nλ. As S̃1 is computationally indistinguishable from the real
execution of π ◦1 R by the hypothesis, it follows that |PF − P1| is negligible, where

P1
def
= Pr

r1↢U [{0,1}λ],x←trans
π◦1R
1 (1λ,Nλ,(pλ,qλ);r1,U [{0,1}2])

[D1(1
λ, Nλ, r1, x) = 1] .

Secondly, we consider the following non-uniform distinguisher D2 for PRG R0, where the advice for D2

associated to the security parameter λ consists of the pλ, qλ, and Nλ:

1. Given 1λ and r̃1 ∈ {0, 1}ℓ0(λ) as input and pλ, qλ, and Nλ as advice, the distinguisher executes
S1(1λ, Nλ; r̃1) and obtains a triple (Nλ, r

′′
1 , x
′′).

2. The distinguisher emulates the execution of π with input Nλ and random tape r′′1 for P1 and input
(pλ, qλ) and a uniformly random tape r2 for P2. Let x denote the transcript received by P1 during the
emulated execution of π.

3. The distinguisher outputs 0 unless x ∈ (Z/NλZ)×, x′′ ∈ (Z/NλZ)×, and x′′ ̸∈ {x,−x}.

4. The distinguisher computes p
def
= gcd(x− x′′, Nλ), and outputs 1 if p ∈ {pλ, qλ}, otherwise outputs 0.

The constructions of algorithms D1 and F0 imply that, when λ ≥ 5, the probability P1 above can be written
as

P1 = Pr
r̃1←R0(1λ)

[D(pλ,qλ,Nλ)
2 (1λ, r̃1) = 1] .

As the PRG R0 is secure against non-uniform distinguishers (due to our security definition for PRGs) and
D2 is PPT, it follows that |P1 − P2| is negligible, where

P2
def
= Pr

r̃1↢U [{0,1}ℓ0(λ)]
[D(pλ,qλ,Nλ)

2 (1λ, r̃1) = 1] .

Thirdly, we consider the following non-uniform distinguisher D3 for simulator S1 for Party P1 in π, where
the advice for D3 associated to the security parameter λ consists of the pλ, qλ, and Nλ:

1. Given 1λ and a triple (N, r′1, x
′) as input and pλ, qλ, and Nλ as advice, the distinguisher outputs 0 if

N ̸= Nλ.

2. The distinguisher emulates the execution of π with input Nλ and random tape r′1 for P1 and input
(pλ, qλ) and a uniformly random tape r2 for P2. Let x denote the transcript received by P1 during the
emulated execution of π.

3. The distinguisher outputs 0 unless x ∈ (Z/NλZ)×, x′ ∈ (Z/NλZ)×, and x′ ̸∈ {x,−x}.

4. The distinguisher computes p
def
= gcd(x− x′, Nλ), and outputs 1 if p ∈ {pλ, qλ}, otherwise outputs 0.

By the construction of D3, we have

P2 = Pr
(Nλ,r′1,x

′)←S1(1λ,Nλ)
[D(pλ,qλ,Nλ)

3 (1λ, Nλ, r
′
1, x
′) = 1] .

As the simulator S1 is statistically close to the real execution of π, it follows that |P2 − P3| is negligible,
where

P3
def
= Pr

r1↢U [{0,1}3λ],x←transπ1 (1
λ,Nλ,(pλ,qλ);r1,U [{0,1}2])

[D(pλ,qλ,Nλ)
3 (1λ, Nλ, r1, x) = 1] .

13

Now we evaluate the last probability P3. The key fact is that, the random tape for P2 (denoted here
by r2 ∈ {0, 1}2) used when choosing the transcript x in defining the probability P3 is independent of the
random tape for P2 (denoted here by r′2 ∈ {0, 1}2) used in the emulation of the protocol π during the
algorithm D3. Let y = r1 mod N . By combining Lemmas 1 and 2, the distribution of y is statistically
close to U [(Z/NλZ)×], therefore we have y ∈ QRNλ

with probability at least 1/4 − negl(λ). On the other
hand, assuming y ∈ QRNλ

, the construction of the protocol π implies that both x and x (the latter being
chosen in the algorithm D3) are uniformly random square roots of y modulo Nλ, hence are elements of
(Z/NλZ)×, and x and x are independent due to the independence of r2 and r′2 mentioned above. Therefore,
we have x ̸∈ {x,−x} with (conditional) probability 1/2, and once x ̸∈ {x,−x} is satisfied, it follows that
p = gcd(x − x,Nλ) is a non-trivial divisor of Nλ due to the property x2 = y = x2 modulo Nλ. Hence D3

outputs 1 in this case. Summarizing, we have P3 ≥ 1/8− negl(λ)/2 = Ω(1).
Now recall that all of |PF − P1|, |P1 − P2|, and |P2 − P3| are negligible as shown above. Therefore, we

have PF = Ω(1) as well as P3, which means that the algorithm F outputs a prime factor of B(1λ) with
probability Ω(1). This completes the proof of Proposition 3.

Proof of Theorem 1. Owing to Propositions 1 and 2, it suffices to show that the protocol π ◦1 R is not
secure against semi-honest P1. Now if π ◦1 R were secure, then Proposition 3 would imply the existence
of a PPT uniform algorithm that outputs a prime factor of B(1λ) with probability Ω(1), which contradicts
the hypothesis that the Blum integer generator B is not efficiently factorizable. This completes the proof of
Theorem 1.

5 Security When Using a PRG: Second Negative Results

One may feel that our example of a two-party protocol constructed in Section 4, where the use of the given
secure PRG leads to an insecure protocol, looks too artificial (for example, the protocol even has no outputs).
In this section, we show that a similar phenomenon may still occur for a more realistic protocol. Namely,
we show (under a certain computational assumption) that an existing two-party protocol in the literature
(proposed by Asharov et al. in ACM CCS 2013 [1]; see Section 5.1) also falls into insecure when one of the
two parties uses a certain secure PRG constructed in Section 5.2.

5.1 The Protocol

We focus on a two-party oblivious transfer protocol proposed by Asharov et al. in ACM CCS 2013 [1]; more
precisely, we refer to Protocol 51 in Section 5.2 of the full version for the paper [1]. Here we slightly modify
the detailed description of the protocol without changing its essential behavior; for example, we explicitly
state that the internal randomness for the two parties are bit strings and then utilize approximately uniform
sampling of several objects using random bit strings based on Lemmas 1 and 2.

Before going into details of the aforementioned protocol, we note that the input objects for the protocol
are classified into global parameters that can be reused for several protocol executions (such as the underlying
cyclic group) and “actual” inputs for each individual protocol execution. In fact, the protocol was designed
in the original paper [1] for allowing multiple executions of the oblivious transfer using the same global
parameter, though this paper deals with the case of a single execution only. For those global parameters,
in this paper we put an assumption that a secure global parameter (associated to each security parameter)
can be chosen efficiently and deterministically (see below for a more precise statement). This technical
assumption would also have some practical meaning, since it may sometimes happen that an implementation
of a protocol hard-wires such a reusable global parameter.

In order to specify our choice of global parameters, we quote the following description from the text in
the second paragraph of Section 5.2 in the full version of [1] (where “[......]” indicates omission by the author
of the present paper):

[......] We also assume that it is possible to sample a random element of the group, and the DDH
assumption will remain hard even when the coins used to sample the element are given to the

14

distinguisher (i.e., (g, h, ga, ha) is indistinguishable from (g, h, ga, gb) for random a, b, even given
the coins used to sample h). [......] For finite fields, one can sample a random element h ∈ Zp of
order q by choosing a random x ∈R Zp and computing h = x(p−1)/q until h ̸= 1. [......]

Accordingly, we use the subgroup of a given order q in the multiplicative group (Fp)
× of a finite field Fp

(denoted by Zp in the quoted text) as the underlying group of the protocol4, where p is a t-bit prime for some
polynomially bounded t ≥ λ and q is a divisor of p− 1. Then the sampling method for the group elements
indicated in the quoted text above can be realized as the following algorithm H, where slight modification
is made in order to ensure that it always halts within finite (polynomial) time.

• Given an input x′ ∈ {0, 1}2t, the algorithm H computes x ← x′ mod p ∈ Fp, and if x(p−1)/q mod p ̸∈
{0, 1} then it outputs the x(p−1)/q mod p, or else it outputs 1.

Lemma 6. The output H(x′) for x′ ↢ U [{0, 1}2t] is an element of the unique subgroup of order q in (Fp)
×

and is statistically close to uniform over this subgroup.

Proof. As (Fp)
× is a cyclic group of order p− 1, x(p−1)/q mod p is either 0 or an element of (Fp)

× of order
dividing q. This proves the former assertion. For the latter assertion, if the x were a uniformly random
element of (Fp)

× then x(p−1)/q mod p would be a uniformly random element of this subgroup. Now Lemmas
1 and 2 imply that the x is statistically close to a uniformly random element of (Fp)

× (since t ≥ λ), therefore
the latter assertion indeed holds. This completes the proof.

Now we introduce the aforementioned assumption on the secure and deterministic choice for the global
parameters, which is a variant of the decisional Diffie–Hellman (DDH) assumption; cf., Appendix A of the
full version for [1]5.

Assumption 1. There exists a deterministic polynomial-time algorithm to choose (given a security param-
eter 1λ) a t-bit prime p with t ≥ λ, a divisor q of p−1, a generator g of the subgroup of order q in (Fp)

×, and
a deterministic polynomial-time (in λ) key derivation function KDF : ⟨g⟩ → {0, 1}L for some L, satisfying
the following: The two distributions[

(p, q, g, gr mod p, x′,KDF(H(x′)r mod p)) : r ↢ U [{0, . . . , q − 1}], x′ ↢ U [{0, 1}2t]
]

and [
(p, q, g, gr mod p, x′, z) : r ↢ U [{0, . . . , q − 1}], x′ ↢ U [{0, 1}2t], z ↢ U [{0, 1}L]

]
are computationally indistinguishable against non-uniform distinguishers.

Now we give the description of the protocol in Figure 2, where the global parameters associated to security
parameter 1λ are supposed to be chosen deterministically as in Assumption 1. We note that the protocol
correctly computes the desired output of Receiver (Party P2), since

uα = (gr)α = (gα)r = (h(σ))r = k(σ) in Fp

and hence v(σ) ⊕ KDF(uα mod p) = v(σ) ⊕ KDF(k(σ)) = x(σ).
For the security of the protocol, here we focus only on the security against semi-honest Receiver, which is

sufficient for our purpose. We give a security proof below rather than just referring to the original paper [1]
in order to clarify the concrete construction of the simulator, which will be relevant in our discussion given
in Section 6.

Proposition 4. Under Assumption 1, the protocol in Figure 2 is secure against semi-honest Receiver with
computational simulator.

4The authors of [1] in fact also proposed to use elliptic curve groups, which would make the protocol more efficient. Our
choice of the subgroup of (Fp)× here is due to the technical simplicity.

5We note that a concrete construction of a key derivation function used in the protocol was not discussed even in the original
paper [1]. In the present paper, we just assume that such a key derivation function exists and can be efficiently determined.

15

Global parameters: t-bit prime p, divisor q of p− 1, g ∈ (Fp)
× of order q,

and a key derivation function KDF : G→ {0, 1}L
(Party P1 (Sender)) Input: (x(0), x(1)) ∈ {0, 1}L Output: (none)

Random tape: r1 ∈ {0, 1}2t
(Party P2 (Receiver)) Input: σ ∈ {0, 1} Output: x(σ)

Random tape: (r′2, r
′′
2) ∈ {0, 1}2t × {0, 1}2t

1. Receiver computes h← H(r′2) (h ∈ ⟨g⟩) by using the algorithm H.
2. Receiver computes α← r′′2 mod q, and sets (h(0), h(1))← (gα mod p, h) if σ = 0

and (h(0), h(1)) ← (h, gα mod p) if σ = 1. Then Receiver sends (h(0), h(1)) to
Sender.

3. Sender computes r ← r1 mod q, u← gr mod p,
(k(0), k(1))← ((h(0))r mod p, (h(1))r mod p) and
(v(0), v(1))←

(
x(0) ⊕ KDF(k(0)), x(1) ⊕ KDF(k(1))

)
. Then Sender sends u, v(0),

and v(1) to Receiver.
4. Receiver outputs v(σ) ⊕ KDF(uα mod p); while Sender outputs nothing.

Figure 2: An oblivious transfer protocol from [1]; here we suppose that the global parameters associated to
security parameter 1λ are chosen deterministically as in Assumption 1, and ⊕ denotes bit-wise XOR

Proof. First of all, by Assumption 1, the global parameters associated to security parameter 1λ are efficiently
and uniquely determined, therefore those can be ignored when considering the (real or simulated) views for
the two parties.

We define a simulator S2 = S2(1λ, σ, x(σ)) for Receiver as follows:

1. Given 1λ, σ and x(σ) as input, S2 first chooses a uniformly random tape (r′2, r
′′
2) for Receiver.

2. S2 computes α← r′′2 mod q and h(σ) ← gα mod p.

3. S2 chooses a uniformly random tape r1 for Sender, and computes r ← r1 mod q, u ← gr mod p,
k(σ) ← (h(σ))r mod p, and v(σ) ← x(σ) ⊕ KDF(k(σ)).

4. S2 chooses v(1−σ) ↢ U [{0, 1}L], and outputs (r′2, r
′′
2) as the simulated random tape for Receiver and

(u, v(0), v(1)) as the simulated transcript for Receiver.

We assume, for the contrary, that the output of S2 and Receiver’s view in a real protocol execution can be

distinguished by a PPT non-uniform distinguisher D with advice aλ. Then there are sequences of σλ, x
(0)
λ ,

and x
(1)
λ satisfying that, the probability

Preal
def
= Pr[D(aλ)(1λ, σλ, r

′
2, r
′′
2 , u, v

(0), v(1), x
(σλ)
λ) = 1]

for the objects distributed as in a real protocol execution with Sender’s input (x
(0)
λ , x

(1)
λ) and Receiver’s input

σλ has non-negligible difference from the probability

Psim
def
= Pr[D(aλ)(1λ, σλ, r

′
2, r
′′
2 , u, v

(0), v(1), x
(σλ)
λ) = 1]

for the objects simulated by S2(1λ, σλ, x
(σλ)
λ).

Now we define a non-uniform distinguisher D, with advice aλ
def
= (aλ, σλ, x

(0)
λ , x

(1)
λ), for two triples

T0
def
= (gr mod p, x′,KDF(H(x′)r mod p)) and T1

def
= (gr mod p, x′, z) as in Assumption 1 in the following

manner:

1. Given 1λ and a triple (u, x′, z), D chooses r′′2 ↢ U [{0, 1}2t] and computes α← r′′2 mod q and h(σλ) ←
gα mod p.

16

2. D computes k(σλ) ← uα mod p and ṽ(σλ) ← x
(σλ)
λ ⊕ KDF(k(σλ)).

3. D computes ṽ(1−σλ) ← x
(1−σλ)
λ ⊕ z, executes D(aλ)(1λ, σλ, x

′, r′′2 , u, ṽ
(0), ṽ(1), x

(σλ)
λ), and outputs the

output value of the D.

We note that the distinguisher D is PPT as well as D.
By the constructions of D and the protocol, when the input is T0, the distribution of (x′, r′′2 , u, ṽ

(0), ṽ(1))
generated in D is identical to (r′2, r

′′
2 , u, v

(0), v(1)) in a real protocol execution except that the element r is
given by r ↢ U [{0, . . . , q − 1}] in the former, while r ← r1 mod q with r1 ↢ U [{0, 1}2t] in the latter. As
t ≥ λ and the bit length of q is at most t, Lemma 2 implies that the two distributions of r are statistically
close. Hence the distributions of (x′, r′′2 , u, ṽ

(0), ṽ(1)) and of (r′2, r
′′
2 , u, v

(0), v(1)) above are also statistically
close, therefore we have

|Pr[D(aλ)
(1λ, T0) = 1]− Preal| = negl(λ) .

On the other hand, when the input is T1, z ∈ {0, 1}L is uniformly random and is independent of the
other objects, therefore ṽ(1−σλ) is also uniformly random over {0, 1}L and is independent of the other objects.
This implies that the distribution of (x′, r′′2 , u, ṽ

(0), ṽ(1)) generated in D is identical to (r′2, r
′′
2 , u, v

(0), v(1))

generated in S2(1λ, σλ, x
(σλ)
λ) except that the element r is given by r ↢ U [{0, . . . , q−1}] in the former, while

r ← r1 mod q with r1 ↢ U [{0, 1}2t] in the latter. Now the same argument as above implies that the two
distributions of r are statistically close and hence

|Pr[D(aλ)
(1λ, T1) = 1]− Psim| = negl(λ) .

Since |Preal − Psim| is non-negligible as mentioned above, it follows that Pr[D(aλ)
(1λ, T0) = 1] and

Pr[D(aλ)
(1λ, T1) = 1] also have non-negligible difference. This contradicts the hypothesis in Assumption

1 that T0 and T1 are computationally indistinguishable against non-uniform distinguishers. As a result, it
follows that the output of S2 and Receiver’s view in a real protocol execution are computationally indistin-
guishable. This completes the proof of Proposition 4.

5.2 The PRG

Based on the protocol described in Section 5.1, we can establish the following result which is analogous to
Theorem 1. For the result, we also put another technical assumption as follows:

Assumption 2. In the situation of Assumption 1, the parameters can be chosen in a way that (p− 1)/q is
coprime to q, and a generator g0 of (Fp)

× can also be chosen in deterministic polynomial time (in λ).

Then our result is stated as follows:

Theorem 2. Suppose that Assumptions 1 and 2 are true. Assume moreover that a secure PRG exists. Then
there exist a two-party protocol π and a secure PRG R with the following two properties:

• π is secure against semi-honest Party P2.

• π ◦2 R is not secure against semi-honest Party P2.

The protocol π indicated in the statement of the theorem is the one described in Section 5.1, which is
secure against semi-honest Party P2 (Receiver) as in Proposition 4. From now, we construct the PRG R
indicated in the statement of the theorem.

Recall that the central idea of the protocol π was to let Receiver sample, by using the algorithm H, a
random element h of the cyclic group ⟨g⟩ in a way that Receiver cannot know the discrete logarithm of h
with respect to g even if Receiver can see the internal randomness used to sample the h. Intuitively, our
construction of the PRG R is intended to disable the functionality of H for concealing the discrete logarithm.

To construct the PRG, first we define an algorithm R† = R†(1λ, s) with random seed s = (s1, s2, s3, s4) ∈
{0, 1}2t × {0, 1}2t × {0, 1}3t × {0, 1}2t. Recall from Assumptions 1 and 2 that the global parameters p, q, g,

17

and KDF, as well as a generator g0 of (Fp)
×, can be deterministically chosen in polynomial time (in λ), and

that (p− 1)/q is coprime to q. We fix those parameters in the following construction. Now we define R† as
follows:

1. Given 1λ and s = (s1, s2, s3, s4) ∈ {0, 1}2t×{0, 1}2t×{0, 1}3t×{0, 1}2t, R† computes the multiplicative
inverse d of (p− 1)/q modulo q.

2. R† computes e← s1 mod q and h† ← ge mod p.

3. R† computes e′ ← s2 mod (p− 1) and h†† ← (h†)d · g0qe
′
mod p.

4. R† computes r† ← h††+(s3 mod K) · p ∈ {0, . . . , 22t− 1} where K = ⌊(22t− 1−h††)/p⌋+1, identifies
the r† with a 2t-bit sequence, and then outputs the pair (r†, s4) ∈ {0, 1}2t × {0, 1}2t.

Proposition 5. For s = (s1, s2, s3, s4) ↢ U [{0, 1}2t × {0, 1}2t × {0, 1}3t × {0, 1}2t], the output distribution
of R†(1λ, s) is statistically close to U [{0, 1}2t × {0, 1}2t], and we have H(r† mod p) = ge mod p where e and
r† are as computed in R†.

Proof. For the latter assertion, we have r† mod p = h†† and

(h††)(p−1)/q = (h†)d·(p−1)/q · g0qe
′·(p−1)/q = h† · g0e

′(p−1) = h† = ge in Fp

since h† ∈ ⟨g⟩ and d · (p− 1)/q ≡ 1 (mod q). Now if ge ̸= 1 in Fp, then we have H(r† mod p) = ge mod p by
the definition of H. On the other hand, if ge = 1 in Fp, then we have e = 0 since g is of order q, while now
H(r† mod p) = 1 by the definition of H. Hence we have H(r† mod p) = ge mod p in any case.

For the former assertion, it suffices to show that r†
stat≡ U [{0, 1}2t]. Let f ∈ {0, . . . , p− 2} be the discrete

logarithm of g with respect to g0. Then f is a multiple of (p−1)/q since gq = 1 in Fp; we put f = f ′(p−1)/q
with 1 ≤ f ′ ≤ q − 1. Now both f ′ and (p− 1)/q are coprime to q, so is f .

Since s1, s2 ∈ {0, 1}2t are sufficiently long, by virtue of Lemma 2, we may assume without loss of generality
that e ↢ U [{0, . . . , q−1}] and e′ ↢ U [{0, . . . , p−2}]. Now we have h†† = ged ·g0qe

′
= g0

fed+qe′ in Fp. Since
fed+qe′ mod q = e ·fd mod q and fd is coprime to q by the argument above, it follows that fed+qe′ mod q
is uniformly random as well as e. On the other hand, since ⌊(fed+qe′)/q⌋ = e′+⌊fed/q⌋, it follows from the
uniformly random choice of e′ that ⌊(fed + qe′)/q⌋ mod (p − 1)/q is uniformly random and is independent
of fed + qe′ mod q = fed mod q. These arguments imply that fed + qe′ mod (p − 1) is uniformly random,
therefore h†† = g0

fed+qe′ is also uniformly random over (Fp)
×.

Since s3 ∈ {0, 1}3t is sufficiently long, Lemma 3 implies that the conditional distribution of r† conditioned
on a given h†† is statistically close to the uniform distribution over the set of all r′2 ∈ {0, 1}2t with r′2 mod p =
h††. Now if the distribution of h†† were identical to the distribution of r′2 mod p with r′2 ↢ U [{0, 1}2t], then
the distribution of r† would be statistically close to U [{0, 1}2t] by the argument above. Moreover, since p
has bit length t ≥ λ and r′2 ∈ {0, 1}2t, Lemma 3 implies that the distributions of both h†† and r′2 mod p
are statistically close to U [Fp], hence the two distributions themselves are statistically close to each other.
By these arguments, it follows that the distribution of r† is indeed statistically close to U [{0, 1}2t]. This
completes the proof of Proposition 5.

On the other hand, there exists a secure PRG by the hypothesis of Theorem 2. As 2t+ 2t+ 3t+ 2t = 9t
is polynomially bounded in λ, a standard technique to securely expand the output length of a PRG (see e.g.,
Section 3.3 of [6]) yields a secure PRG R0 with stretch function ℓ0(λ) = 9t. Now we define the PRG R as
the composition of R† and R0; R(1λ, s) = R†(1λ,R0(1

λ, s)) for s ∈ {0, 1}λ. Then by essentially the same
argument as Proposition 2, the security of R0 combined with Proposition 5 implies the following result.

Proposition 6. The PRG R is secure.

Proof of Theorem 2. It suffices now to show that the protocol π ◦2R is not secure against semi-honest Party
P2 (Receiver). We note that, if the protocol were secure, then given a local input σ and a local output x(σ),
Receiver should not be able to distinguish Receiver’s views during protocol executions for different choices

18

of Server’s secret input x(1−σ). However, when using the output (r†, s4) of R(1λ, s) with known seed s as
Receiver’s random tape in π, Receiver can compute from the seed s as in Proposition 5 the discrete logarithm
e of the element h = H(r† mod p) = ge mod p used in the protocol. This enables Receiver to extract the other
secret input x(1−σ) of Sender from the received messages u and v(1−σ) as x(1−σ) = v(1−σ)⊕KDF(ue mod p),
since k(1−σ) = (h(1−σ))r = hr = (ge)r = (gr)e = ue in Fp. This means that the protocol π ◦2R is not secure
against semi-honest Receiver, completing the proof of Theorem 2.

6 Security When Using a PRG: Positive Result

Due to the results in Sections 4 and 5, an intuitive expectation, that a secure two-party protocol combined
with a secure PRG would also be secure, is not unconditionally true. In this section, we give a sufficient
condition for a two-party protocol and a PRG to ensure that their combination is still secure.

A part of the proposed condition for a two-party protocol concerns a certain structure of a simulator
constructed in a security proof of the protocol. More precisely, we introduce the following definition.

Definition 4. We say that a simulator Si for Party Pi in a two-party protocol is with raw random tape, if
Si is executed in the following manner with some PPT algorithm Ti:

• Given 1λ, xi and fi(x⃗) as inputs, Si first generates a uniformly random tape ri for Party Pi, and then
executes Ti(1λ, xi, fi(x⃗), ri) to obtain the remaining part of a simulated view of Party Pi.

Let ⟨ri, Vi⟩, where Vi = Ti(1λ, xi, fi(x⃗), ri), denote the simulated view for Party Pi consisting of the random
tape ri and the remaining part Vi (we suppose that the components in ⟨ri, Vi⟩ are appropriately reordered
to keep consistency with the syntax in Definition 3).

Intuitively, the definition means that, for the random tape part of the simulated view, the simulator just
outputs an ideally sampled random tape as is (which is then used for simulating the transcript), rather
than using an artificially adjusted random tape generated from a simulated transcript. For example, the
simulator S2 constructed in the proof of Proposition 4 is in fact with raw random tape in this sense, while
the simulator S1 in the proof of Proposition 1 is not.

From now, we give a result as mentioned above. Before stating the result, we recall that the min-entropy
of a random variable X is defined by H∞(X) = −maxx log2 Pr[X = x]. Then we have the following result:

Theorem 3. Let π be a two-party protocol, i ∈ {1, 2}, and let R be a PRG with stretch function ℓ to generate
the random tape for Party Pi. Suppose that the following three conditions are satisfied:

1. π is secure against semi-honest Party Pi with statistical simulator Si.

2. The simulator Si above is with raw random tape.

3. For uniformly random seed for R, we have ℓ(λ)−H∞(R(1λ)) = O(log λ).

Then the protocol π ◦i R is also secure against semi-honest Pi with statistical simulator with raw random
tape.

Proof. By Condition 2 in the statement, there is a PPT algorithm Ti inside the simulator Si as in Definition
4. Let Jdom = {0, 1}λ and Jran = {0, 1}ℓ(λ) denote the domain and the range of the PRG R, respectively.

Given 1λ, an input pair x⃗ = (x1, x2), a local output oi of Party Pi, and a random tape ri ∈ Jran for Pi

in the protocol π, the simulated view for Pi in π is given by ⟨ri, Ti(1λ, xi, oi, ri)⟩ (see Definition 4 for the
notation ⟨ri, ·⟩). On the other hand, let Vreal(1

λ, x⃗, ri) denote the random variable of the part of the view
for Pi except for the random tape ri in a real execution of protocol π with input pair x⃗ and random tape ri
for Pi. Then the view for Pi in a real execution of π is given by ⟨ri, Vreal(1

λ, x⃗, ri)⟩.
We define a simulator S̃i for Pi in the protocol π ◦i R as follows: S̃i chooses r̃i ↢ U [Jdom], computes

ri = R(1λ, r̃i), and outputs ⟨r̃i, Ti(1λ, xi, oi, ri)⟩. This simulator is with raw random tape by the construction.

19

Note that the view for Pi in a real execution of π ◦i R is given by ⟨r̃i, Vreal(1
λ, x⃗, ri)⟩. Now let ∆ and ∆̃

denote the statistical distances between the real and simulated views for Pi in π and in π ◦iR, respectively,
for given 1λ, x⃗ = (x1, x2), and oi. Then we have

∆̃ =
1

2

∑
s̃i∈Jdom,Vi

∣∣Pr[⟨r̃i, Ti(1λ, xi, oi,R(1λ, r̃i))⟩ = ⟨s̃i, Vi⟩]− Pr[⟨r̃i, Vreal(1
λ, x⃗,R(1λ, r̃i))⟩ = ⟨s̃i, Vi⟩]

∣∣
=

1

2

∑
s̃i∈Jdom,Vi

∣∣∣∣ 1

|Jdom|
Pr[Ti(1λ, xi, oi,R(1λ, s̃i)) = Vi]−

1

|Jdom|
Pr[Vreal(1

λ, x⃗,R(1λ, s̃i)) = Vi]

∣∣∣∣
=

1

2|Jdom|
∑

si∈Jran,Vi

∑
s̃i∈Jdom

R(1λ,s̃i)=si

∣∣Pr[Ti(1λ, xi, oi, si) = Vi]− Pr[Vreal(1
λ, x⃗, si) = Vi]

∣∣ .

For the second sum in the right-hand side, given si ∈ Jran, the number of s̃i ∈ Jdom satisfying R(1λ, s̃i) = si
is at most |Jdom| · 2−H∞(R(1λ)) where the min-entropy of R(1λ) is with respect to a uniformly random seed.
This implies that

∆̃ ≤ 1

2|Jdom|
· |Jdom| · 2−H∞(R(1λ))

∑
si∈Jran,Vi

∣∣Pr[Ti(1λ, xi, oi, si) = Vi]− Pr[Vreal(1
λ, x⃗, si) = Vi]

∣∣
=

1

2
· 2−H∞(R(1λ))

∑
si∈Jran,Vi

∣∣Pr[Ti(1λ, xi, oi, si) = Vi]− Pr[Vreal(1
λ, x⃗, si) = Vi]

∣∣ .

On the other hand, we have

∆ =
1

2

∑
si∈Jran,Vi

∣∣Pr[⟨ri, Ti(1λ, xi, oi, ri)⟩ = ⟨si, Vi⟩]− Pr[⟨ri, Vreal(1
λ, x⃗, ri)⟩ = ⟨si, Vi⟩]

∣∣
=

1

2

∑
si∈Jran,Vi

∣∣∣∣ 1

|Jran|
Pr[Ti(1λ, xi, oi, si) = Vi]−

1

|Jran|
Pr[Vreal(1

λ, x⃗, si) = Vi]

∣∣∣∣
=

1

2|Jran|
∑

si∈Jran,Vi

∣∣Pr[Ti(1λ, xi, oi, si) = Vi]− Pr[Vreal(1
λ, x⃗, si) = Vi]

∣∣ .

Hence we have

∆̃ ≤ 1

2
· 2−H∞(R(1λ)) · 2|Jran| ·∆ = 2log2 |Jran|−H∞(R(1λ)) ·∆ .

By Condition 1 in the statement, ∆ is bounded by a common negligible function negl(λ). On the other hand,

we have |Jran| = 2ℓ(λ) and log2 |Jran| = ℓ(λ), and by Condition 3 in the statement, 2ℓ(λ)−H∞(R(1λ)) = 2O(log λ)

is polynomially bounded. This implies that ∆̃ is also negligible, therefore the output of S̃i is statistically
close to the view in the real protocol execution. This completes the proof of Theorem 3.

We give some remarks on the conditions in Theorem 3. First, for Condition 3, if the PRG R is injective
as a map from Jdom = {0, 1}λ to Jran = {0, 1}ℓ(λ), then we have H∞(R(1λ)) = λ and hence the condition
says that the PRG has logarithmic stretch ℓ(λ) − λ = O(log λ). On the other hand, for the remaining two
conditions, we note that the insecure example in Section 5 does not satisfy Condition 1 (while satisfying
Condition 2), and the insecure example in Section 4 does not satisfy Condition 2 (while satisfying Condition
1). This suggests that, if we want to generalize Theorem 3 by relaxing Condition 1 or Condition 2, then we
would require some alternative condition for structures of the protocol and the PRG6.

6Although these counterexamples in Sections 4 and 5 do not satisfy Condition 3 about the stretch function of the PRG,
this is not an essential point for the failure of the conclusion of Theorem 3. Namely, the PRGs for both of the examples were
constructed by first defining a pseudorandom function with statistically close to uniform output distribution, which has a longer
input, and then generating the longer input by using another secure PRG with short seed. The seed length was set to λ, which is
much shorter than the original random tape for the party, purely due to the consistency with our syntax for PRGs in Definition
2. In the construction of those PRGs, we may adjust the seed length to be just 1-bit shorter than the original random tape,
and the insecurity result on the protocol obtained by applying the PRG still holds even for such a PRG with 1-bit stretch.

20

Acknowledgments. The author thanks all the members of a study group “Shin-Akarui-Angou-Benkyoukai”
for fruitful discussions on the results of this paper. Among them, the author is most grateful to Shota Ya-
mada and Tadanori Teruya for his smart advice on this study, and the author also specially thanks Kazumasa
Shinagawa, Takashi Yamakawa, Takahiro Matsuda, Yusuke Sakai, Keita Emura, and Goichiro Hanaoka for
their precious comments. Most of this work was supported by JST PRESTO Grant Number JPMJPR14E8,
Japan.

References

[1] G. Asharov, Y. Lindell, T. Schneider, M. Zohner: More Efficient Oblivious Transfer and Extensions for
Faster Secure Computation. In: Proceedings of ACM CCS 2013, pp.535–548, 2013. Full version available
at IACR Cryptology ePrint Archive 2013/552 (https://eprint.iacr.org/2013/552), 2013 (Version
20130904:141912).

[2] J. P. Degabriele, K. G. Paterson, J. C. N. Schuldt, J. Woodage: Backdoors in Pseudorandom Number
Generators: Possibility and Impossibility Results. In: Proceedings of CRYPTO 2016 (Part I), LNCS
vol.9814, pp.403–432, 2016.

[3] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, T. Ristenpart: A Formal Treatment of Backdoored Pseu-
dorandom Generators. In: Proceedings of EUROCRYPT 2015 (Part I), LNCS vol.9056, pp.101–126,
2015.

[4] Y. Dodis, S. J. Ong, M. Prabhakaran, A. Sahai: On the (Im)possibility of Cryptography with Imperfect
Randomness. In: Proceedings of FOCS 2004, pp.196–205, 2004.

[5] Y. Dodis, Y. Yao: Privacy with Imperfect Randomness. In: Proceedings of CRYPTO 2015 (Part II),
LNCS vol.9216, pp.463–482, 2015.

[6] O. Goldreich: Foundations of Cryptography, Volume I. Cambridge University Press, 2001.

[7] O. Goldreich: Foundations of Cryptography, Volume II. Cambridge University Press, 2004.

[8] C. Hazai, H. Zarosim: The Feasibility of Outsourced Database Search in the Plain Model. In: Proceed-
ings of SCN 2016, LNCS vol.9841, pp.313–332, 2016.

[9] N. Heninger, Z. Durumeric, E. Wustrow, J. A. Halderman: Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices. In: Proceedings of USENIX Security Symposium 2012,
pp.205–220, 2012.

[10] P. Hubácek, D. Wichs: On the Communication Complexity of Secure Function Evaluation with Long
Output. In: Proceedings of ITCS 2015, pp.163–172, 2015. Full version available at IACR Cryptology
ePrint Archive 2014/669 (http://eprint.iacr.org/2014/669), 2014 (Version 20140828:224736).

[11] Y. Lindell: How To Simulate It – A Tutorial on the Simulation Proof Technique. IACR Cryptology
ePrint Archive 2016/046 (http://eprint.iacr.org/2016/046), 2016 (Version 20160524:061302).

[12] Y Lindell, K. Nissim, C. Orlandi: Hiding the Input-Size in Secure Two-Party Computation. In: Pro-
ceedings of ASIACRYPT 2013 (Part II), LNCS vol.8270, 421–440, 2013.

[13] Y Lindell, K. Nissim, C. Orlandi: Hiding the Input-Size in Secure Two-Party Computation.
IACR Cryptology ePrint Archive 2012/679 (http://eprint.iacr.org/2012/679), 2012 (Version
20160401:113657).

[14] M. O. Rabin: Digitalized Signatures and Public-Key Functions as Intractable as Factorization. MIT
Laboratory for Computer Science Technical Report, 1979.

21

[15] K. Shinagawa, K. Nuida, T. Nishide, G. Hanaoka, E. Okamoto: Size-Hiding Computation for Multiple
Parties. In: ASIACRYPT 2016 (Part II), LNCS 10032, pp.937–966, 2016.

22

