
Concurrently Composable Security With
Shielded Super-polynomial Simulators

Brandon Broadnax1, Nico Döttling2 ⋆⋆, Gunnar Hartung1, Jörn Müller-Quade1,
and Matthias Nagel1

1 Karlsruhe Institute of Technology, Germany
({brandon.broadnax,gunnar.hartung,joern.mueller-quade,matthias.nagel}@kit.edu)

2 University of California Berkeley (nico.doettling@gmail.com)

Abstract. We propose a new framework for concurrently composable
security that relaxes the security notion of UC security. As in previous
frameworks, our notion is based on the idea of providing the simulator with
super-polynomial resources. However, in our new framework simulators are
only given restricted access to the results computed in super-polynomial
time. This is done by modeling the super-polynomial resource as a stateful
oracle that may directly interact with a functionality without the simulator
seeing the communication. We call these oracles “shielded oracles”.
Our notion is fully compatible with the UC framework, i. e., protocols
proven secure in the UC framework remain secure in our framework. Fur-
thermore, our notion lies strictly between SPS and Angel-based security,
while being closed under protocol composition.
Shielding away super-polynomial resources allows us to apply new proof
techniques where we can replace super-polynomial entities by indistin-
guishable polynomially bounded entities. This allows us to construct
secure protocols in the plain model using weaker primitives than in
previous composable frameworks involving simulators with super-poly
resources. In particular, we only use non-adaptive-CCA-secure commit-
ments as a building block in our constructions. As a feasibility result, we
present a constant-round general MPC protocol in the plain model based
on standard assumptions that is secure in our framework.

1 Introduction

Cryptographic protocols typically run in a network where multiple protocols
interact with each other. Some of them may even act in an adversarial manner.
This makes designing protocols that are secure in such a general setting a com-
plicated task. The universal composability (UC) framework [Can01] provides
means for designing and analyzing cryptographic protocols in this concurrent
setting. More specifically, it captures a security notion that implies two major
properties: general concurrent security and modular analysis. The former means
that a protocol remains secure even when run in an environment with multiple
⋆⋆ Supported by a DAAD (Deutscher Akademischer Auslandsdienst) postdoctoral

fellowship

2 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

instances of arbitrary protocols. The latter implies that one can deduce the
security of a protocol from its components. Unfortunately, there exist strong im-
possibility results [CF01; CKL03; Lin03; PR08; KL11] regarding the realizability
of cryptographic tasks in the UC framework. As it turns out, one requires trusted
setup assumptions in order to design UC-secure protocols for many cryptographic
tasks. UC-secure protocols have thus been constructed based on various trusted
setup assumptions [Can+02; Bar+04; Can+07; KLP07; Kat07; CPS07; LPV09;
Dac+13]. However, if the trusted setup is compromised, all security guarantees
are lost. In general, one would like to base the security of cryptographic protocols
on as little trust as possible.

In order to drop the requirement for trusted setup, relaxed notions of security
have been developed. One of the most prominent solutions is “UC security with
super-polynomial time simulators” (SPS), introduced in [Pas03]. In this model,
the simulator is allowed to run in super-polynomial time, thereby overcoming the
impossibility results. Various multi-party computation protocols without trusted
setup that satisfy this notion have been constructed, e. g., [Pas03; BS05; LPV09;
LPV12; Gar+12; Dac+13; Ven14]. SPS security weakens the security of the UC
framework because the simulator, being able to run in super-polynomial time,
may now be able to carry out stronger attacks in the ideal setting. Still, this
security notion is meaningful, since for many cryptographic tasks the ideal setting
has an information-theoretic nature. Contrary to UC security, however, security
in this model is not closed under protocol composition. As a consequence, this
notion neither supports general concurrent security nor modular analysis.

“Angel-based security”, introduced by [PS04], overcomes these issues. In
this model, both the adversary and the simulator have access to an oracle
called “(Imaginary) Angel” that provides super-polynomial resources for specific
computational problems. Many general MPC protocols without setup have been
constructed in the Angel-based framework [PS04; MMY06; CLP10; LP12; KMO14;
Kiy14; Goy+15; HV16]. Like UC-security, this notion is closed under protocol
composition. Furthermore, Angel-based security implies SPS security. In fact,
it provides a stronger security notion since the simulator has only access to
specific super-polynomial computations. [CLP10] later recast the Angel-based
security model in the extended UC (EUC) framework [Can+07] and dubbed their
notion “UC with super-polynomial helpers”. In contrast to the non-interactive
and stateless Angels in previous works, the “helpers” in [CLP10] are highly
interactive and stateful.

In this work, we take this framework a step further. In our new framework,
simulators only have restricted access to the results computed in super-polynomial
time. More specifially, we model the super-polynomial resources as stateful oracles
that are “glued” to an ideal functionality. These oracles may directly interact
with the functionality without the simulator observing the communication. The
outputs of these oracles are therefore “shielded away” from the simulator. As
with Angel-based security, our notion implies SPS security. Moreover, it can
be shown that our notion is in fact strictly weaker than Angel-based security.
Furthermore, our notion comes with a composition theorem guaranteeing general

Concurrently composable security with shielded super-polynomial simulators 3

concurrent security. For technical reasons, modular analysis is not directly implied,
however. Still, using our composition theorem one can achieve modular analysis
by constructing protocols with strong composition features. Protocols with such
composition features can be “plugged” into (large) classes of UC-secure protocols
in a way such that the composed protocol is secure in our framework. As a proof
of concept, we will construct a (constant-round) commitment scheme with such
features.

In order to obtain a composable security notion, environments are “aug-
mented” in our framework, i. e., they may invoke additional (ideal) protocols that
include shielded oracles. Since the super-poly computations in these protocols
are hidden away, these augmented environments have the unique property that
they do not “hurt” protocols proven secure in the UC framework. Therefore,
our notion is in fact fully compatible with the UC framework. Moreover, our
concept of “shielding away” super-polynomial resources allows us to apply new
proof techniques not possible in previous frameworks. More specifically, we are
able to replace entities involving super-polynomial resources in our proofs by
indistinguishable polynomially bounded entities. This allows us to construct
(constant-round) protocols using weaker primitives than in previous Angel-based
protocols.

1.1 Our results

We propose a new framework that is based on the idea of granting simulators
only restricted access to the results of a super-polynomial oracle. We have the
following results:

– New Composable Security Notion: Our notion of security is closed under
general composition, it implies SPS security and is strictly weaker than
Angel-based security. (Theorem 9, Proposition 8, Theorem 17)

– UC-compatibility: Protocols proven secure in the UC framework are also
secure in the new framework. (Theorem 12, Corollary 13)

– Modular Composition: As a proof of concept, we present a constant-round
commitment scheme in the plain model based on OWPs that is secure in our
framework and can be “plugged” into a large class of UC-secure protocols,
such that the composite protocol is secure in our framework. To our best
knowledge, this is the first constant-round commitment scheme (in the plain
model and based on standard assumptions) with such a property. (Theorem 26,
Corollary 28, Corollary 30)

– Constant-round MPC : We present a modular construction of a constant-round
general MPC protocol without trusted setup based on standard hardness
assumptions that is secure in our framework. (Theorem 31)

– Building on non-adaptive CCA-commitments: Our constructions require
weaker primitives than previous Angel-based protocols. Specifically, it suffices
to use non-adaptive CCA-secure commitment schemes as a building block in
our constructions instead of CCA-secure commitment schemes used previously.
(Theorem 21, Theorem 26)

4 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

2 Related Work

The frameworks most related to ours are SPS and Angel-based security.
SPS security, introduced by [Pas03], provides a meaningful security notion

for many cryptographic tasks such as commitment schemes or oblivious transfer.
However, SPS security does not come with a composition theorem. There exist
many constructions (in the plain model) satisfying this notion, e.g., [Pas03; BS05;
LPV09; LPV12; Gar+12; Dac+13; Ven14]. Notably, the protocols in [LPV12;
Gar+12] are constant-round and based on standard assumptions.

Angel-based security, introduced by [PS04] implies SPS security and comes
with a composition theorem. Various general MPC protocols without setup have
been constructed in the Angel-based setting [PS04; MMY06; CLP10; LP12;
KMO14; Kiy14; Goy+15; HV16]. Some rely on non-standard or super-polynomial
time assumptions [PS04; MMY06; KMO14]. The construction in [CLP10] is the
first one to rely on standard polynomial time assumptions. The round-complexity
of this protocol is not constant, however. Later works [Goy+15; Kiy14] have
improved the round-complexity, while also relying on standard assumptions. The
most round-efficient construction (based on standard asumptions) is [Kiy14]
which requires Õ(log2 n) rounds. Some Angels in the literature, e. g., [CLP10;
KMO14; Kiy14; Goy+15] come with a feature called “robustness” which guaran-
tees that any attack mounted on a constant-round protocol using this angel can
be carried out by a polytime adversary with no angels. Protocols proven secure
for robust Angels can be “plugged” into UC-secure protocols, resulting in Angel-
secure protocols. All known constructions for robust Angels (based on standard
assumptions) require a super-constant number of rounds. Moreover, [CLP13]
construct a (super-constant-round) protocol that is secure in the Angel-based
setting and additionally preserves certain security properties of other protocols
running in the system. They call such protocols “environmentally friendly”.

We want to note that other security notions in the concurrent setting have
been proposed that are not based on the idea of simulators with super-polynomial
resources. The “multiple ideal query model” [GJO10; GJ13; GGJ13; CGJ15]
considers simulators that are allowed to make more than one output query per
session to the ideal functionality. Another (not simulation-based) notion is “input
indistinguishability” [MPR06] which guarantees that an adversary cannot decide
which inputs have been used by the honest protocol parties.

3 Shielded Oracles

3.1 Definition of the Framework

Our model is based on the universal composability framework (UC). In this model,
a protocol π carrying out a given task is defined to be secure by comparing it
to an ideal functionality F . An ideal functionality is a trusted and incorruptible
party that carries out a given task in an ideally secure way. π is said to be secure
if it “emulates” F . For a more detailed description of the UC framework, see
Appendix A.

Concurrently composable security with shielded super-polynomial simulators 5

Although the plain UC model leaves open how session identifiers and corrup-
tions are organized we follow the convention that both must be consistent with
the hierarchical order of the protocols. More specifically, the session identifier
(sid) of a sub-protocol must be an extension of the session identifier of the calling
protocol. Likewise, in order to corrupt a sub-party, an adversary must corrupt
all parties that are above that sub-party in the protocol hierarchy. Again, see
Appendix A for more details.

We relax the UC security notion by introducing a super-polynomial time
machine that may aid the simulator. This machine is modeled as a stateful oracle
O that is “glued” to an the ideal functionality F . O may freely interact with
the simulator and F . However, the simulator does not “see” the communication
between between O and F . Since the output of the oracle is partially hidden
from the simulator, we call O a shielded oracle.

Definition 1 (Shielded oracles). A shielded oracle is a stateful oracle O that
can be implemented in super-polynomial time.

Convention: The outputs of a shielded oracle O are required to be of the form
(output-to-fnct, y) or (output-to-adv, y).

The simulator is allowed to communicate with the functionality only via the
shielded oracle. This way, the shielded oracle serves as an interface that carries out
specific tasks the simulator could not do otherwise. The communication between
the shielded oracle and the functionality is hidden away from the simulator. The
actions of the shielded oracle may depend on the session identifier (sid) of the
protocol session as well as the party identifiers of the corrupted parties.

Definition 2 (O-adjoined functionalities). Given a functionality F and a
shielded oracle O, define the interaction of the O-adjoined functionality FO in
an ideal protocol execution with session identifier sid as follows (See Fig. 1, p. 41
for a graphical depiction):

– FO internally runs an instance of F with session identifier sid
– When receiving the first message x from the adversary, FO internally invokes

O with input (sid, x).
All subsequent messages from the adversary are passed to O.

– Messages between the honest parties and F are forwarded.
– Corruption messages are forwarded to F and O.
– When F sends a message y to the adversary, FO passes y to O.
– The external write operations of O are treated as follows:

• If O sends (output-to-fnct, y), FO sends y to F .
• If O sends (output-to-adv, y), FO sends y to the adversary.

Define IDEAL(FO) to be the ideal protocol with functionality FO as defined
in [Can01].

In order to obtain a composable security notion, we introduce the notion of
augmented environments. Augmented environments are UC environments that
may invoke, apart form the challenge protocol, polynomially many instances of

6 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

IDEAL(FO) for a given functionality FO. The only restriction is that the session
identifiers of these instances as well as the session identifier of the challenge
protocol are not extensions of one another.

Augmented environments may send inputs to and receive outputs from any
invoked instance of IDEAL(FO). In addition, augmented environments can play
the role of any adversary via the adversary’s interface of the functionality. In par-
ticular, augmented environments may corrupt parties sending the corresponding
corruption message as input to the functionality.

In what follows we give a definition of an execution experiment with an FO-
augmented environment. For simplicity and due to space constraints, thedescrip-
tion is kept informal.

Definition 3 (The FO-execution experiment). An execution of a protocol
σ with adversary A and an FO-augmented environment Z on input a ∈ {0, 1}∗

and with security parameter n ∈ N is a run of a system of interactive Turing
machines (ITMs) with the following restrictions (See Fig. 2, p. 41 for a graphical
depiction):

– First, Z is activated on input a ∈ {0, 1}∗.
– The first ITM to be invoked by Z is the adversary A.
– Z may invoke a single instance of a challenge protocol, which is set to be

σ by the experiment. The session identifier of σ is determined by Z upon
invocation.

– Z may pass inputs to the adversary or the protocol parties of σ.
– Z may invoke, send inputs to and receive outputs from instances of IDEAL(FO)

as long as the session identifiers of these instances as well as the session
identifier of the instance of σ are not extensions of one another.

– The adversary A may send messages to protocol parties of σ as well as to
the environment.

– The protocol parties of σ may send messages to A, pass inputs to and receive
outputs from subparties and give outputs to Z.

Denote by Exec
(
σ, A, Z[FO]

)
(n, a) the output of the FO-augmented environ-

ment Z on input a ∈ {0, 1}∗ and with security parameter n ∈ N when interacting
with σ and A according to the above definition.

Define Exec
(
σ, A, Z[FO]

)
=

{
Exec

(
σ, A, Z[FO])(n, a)

}
n∈N,a∈{0,1}∗

We will now define security in our framework in total analogy to the UC
framework:

Definition 4 (FO-emulation). Let π and ϕ be protocols. π is said to emulate
ϕ in the presence of FO-augmented environments, denoted by π ≥FO ϕ, if for
any PPT adversary A there exists a PPT adversary (called “simulator”) S such
that for every FO-augmented PPT environment Z it holds that

Exec
(
π, A, Z[FO]

) c≡ Exec
(
ϕ, S, Z[FO]

)
(1)

Concurrently composable security with shielded super-polynomial simulators 7

3.2 Basic Properties and Justification

In this section, we show that that our security notion is transitive and that the
dummy adversary is complete within this notion.

As a justification for our security notion, we show that it implies super-
polynomial time simulator (SPS) security.

Definition 5 (FO-emulation with respect to the dummy adversary).
The dummy adversary D is an adversary that when receiving a message (sid, pid, m)
from the environment, sends m to the party with party identifier pid and session
identifier sid, and that, when receiving m from the party with party identifier pid
and session identifier sid, sends (sid, pid, m) to the environment.

Let π and ϕ be protocols. π is said to emulate ϕ in the presence of FO-
augmented environments with respect to the dummy adversary, if

∃ SD ∀ Z : Exec
(
π, D, Z[FO]

) c≡ Exec
(
ϕ, SD, Z[FO]

)
. (2)

Proposition 6 (Completeness of the dummy adversary). Let π and ϕ be
protocols. Then, π emulates ϕ in the presence of FO-augmented environments if
and only if π emulates ϕ in the presence of FO-augmented environments with
respect to the dummy adversary.

The proof is almost exactly the same as in [Can01], and therefore omitted
from the main body of this work. The proof can be found in Appendix B.1.

The proof for transitivity is straightforward and can be found in Appendix B.2.

Proposition 7 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥FO π2 and
π2 ≥FO π3 then it holds that π1 ≥FO π3.

In order to justify our new notion, we prove that security with respect to FO-
emulation implies security with respect to SPS-emulation which we will denote by
≥SPS. For a formal definition of π ≥SPS ϕ see Definition 32 in Appendix B.3. The
proof is straightforward: View the oracle as part of the simulator. This simulator
runs in super-polynomial time, hence can be simulated by an SPS-simulator (cf.
Fig. 4, p. 42).

Proposition 8 (FO-emulation implies SPS-emulation). Let O be a shielded
oracle. Assume π ≥FO FO. Then it holds that π ≥SPS F

3.3 Universal Composition

A central property of the UC framework is the universal composition theorem.
This theorem guarantees that the security of a protocol is closed under protocol
composition. This means that security guarantees can be given for a UC-secure
protocol even if multiple other protocols interact with this protocol in a poten-
tially adversarial manner. We prove a similar theorem in our framework. More
specifically, we generalize the universal composition theorem to also include
FO-hybrid protocols.

8 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

Theorem 9 (Composition theorem). Let O be a shielded oracle, F and G
functionalities.

1. (Polynomial hybrid protocols) Let π, ρG be protocols. Assume π ≥FO G. Then
it holds that ρπ ≥FO ρG.

2. (FO-hybrid protocols) Let π be a protocol, ρFO a protocol in the FO-hybrid
model. Assume π ≥FO FO. Then it holds that ρπ ≥FO ρFO

Proof (of the second statement).

Single instance composition (ρ calls only a single instance of π) Treat ρ as part
of the environment and use the premise that π ≥FO FO.

The general case (See Fig. 3, p. 42 for a graphical depiction.) Iteratively apply
the single instance composition theorem. In each iteration a new instance of
IDEAL(FO) is replaced by an instance of π and the remaining instances of π,
IDEAL(FO) and ρ are treated as part of the augmented environment. By the
transitivity of FO-emulation it then follows that ρπ ≥FO ρFO . ⊓⊔

The universal composition theorem in the UC framework has two important
implications: general concurrent security and modular analysis. The former means
that a protocol remains secure even when run in an environment with multiple
instances of arbitrary protocols. The latter implies that one can deduce the
security of a protocol from its components.

Theorem 9 directly implies general concurrent security (with super-polynomial
time simulators). However, modular analysis is not directly implied by Theorem 9.
This is because the oracle O may contain all “complexity” of the protocol π, i. e.,
proving security of ρFO may be as complex as proving security of ρπ.

Still, one can use Theorem 9 to achieve modular analysis by constructing secure
protocols with strong composition features. A protocol π with such composition
features allows analyzing the security of a (large) class of protocols ρF in the
UC framework and achieve security in our framework when replacing F with
π. As a proof of concept, we will show, using Theorem 9, that a large a class
of protocols in the Fcom-hybrid model can be composed with a commitment
protocol presented in this paper (Theorem 26).

The following is a useful extension of Theorem 9 for multiple oracles. (See
Appendix B.4 for a proof.)

Corollary 10 (Composition theorem for multiple oracles). Let O, O′

be shielded oracles. Assume that π ≥FO FO and ρFO ≥FO,GO′ GO′ . Then there
exists a shielded oracle O′′ such that ρπ ≥GO′′ GO′′ .

3.4 Polynomial Simulatability

We show a unique feature of our framework: For appropriate oracles to be defined
below, augmented environments do not “hurt” UC-secure protocols. This means

Concurrently composable security with shielded super-polynomial simulators 9

that a protocol that was proven secure in the UC framework is secure in our
framework, too. This makes our security notion fully compatible with UC security.

Definition 11 (Polynomial simulatability). Let O be a shielded oracle, F
a functionality. Say that O adjoined to F is polynomially simulatable if there
exists a (PPT) functionality M such that for all FO-augmented environments Z
it holds that

FO ≥
FO

M (3)

If a functionality FO is polynomially simulatable then the super-polynomial
power of the oracle O is totally “shielded away” from the environment. Note that
in Definition 11, indistinguishability must hold for augmented environments not
only for polynomial environments.

As a consequence, FO-augmented environments can be replaced by efficient
environments if FO is polynomially simulatable.

Theorem 12 (Reduction to polynomial time environments). Let O be a
shielded oracle and F a functionality such that FO is polynomially simulatable.
Let π, ϕ be protocols that are PPT or in the FO-hybrid model.

It holds that
π ≥

FO
ϕ ⇐⇒ π ≥

poly
ϕ (4)

where the right-hand side means that π emulates ϕ in the presence of all FO-
augmented environments that never invoke an instance of IDEAL(FO).

Proof. Poly-emulation implies FO-emulation: Replace all instances of IDEAL(FO)
with instances of M using the fact that FO is polynomially simulatable. Treat
all instances of M as part of the environment. This new environment runs in
polynomial time. Substitute π by ϕ using the premise. Replace all instances of
M with instances of IDEAL(FO) again. The statement follows.

The converse is trivial. ⊓⊔

As augmented environment that never invoke instances of IDEAL(FO) are
identical to an UC-environment, the following corollary immediately follows.

Corollary 13 (Compatibility with the UC framework). Let O be a shielded
oracle and F a functionality such that FO is polynomially simulatable.

It holds that
π ≥

FO
ϕ ⇐⇒ π ≥

UC
ϕ (5)

Note that this does not contradict the classical impossibility results for the plain
UC framework (cp. [CF01]): If π ≥FO FO for a polynomially simulatable FO,
then this only means that π ≥UC FO, but it does not follow that π ≥UC F .
Although the super-polynomial power of O is shielded away from the outside, it
is indeed necessary.

10 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

Replacing augmented environments with efficient environments will be a key
property in various proofs later in this paper. In particular, it will allow us to
prove the security of protocols in our framework using relatively weak primitives
such as non-adaptively-secure-CCA commitmens as opposed to CCA-secure
commitments, which are commonly used in Angel-based protocols.

Next, we show that by suitably tweaking a given oracle O one can make FO

polynomially simulatable while preserving the security relation.
Lemma 14 (Derived oracle). Let O be a shielded oracle such that π ≥FO FO.
Then there exists a shielded oracle O′ such that π ≥FO′ FO′ and additionally O′

adjoined to F is polynomially simulatable.

Proof. (See Fig. 5, p. 43 for a graphical depiction of the proof.) Since π emulates
FO, there exists a simulator SD for the dummy adversary D. Define the shielded
oracle O′′ as follows: O′′ internally simulates SD and O′, passes each message
SD sends to F to O′, sends each output-to-fnct output from O′ to F and each
output-to-adv output from O to SD, and forwards the communication between
SD and the environment. By construction, for all FO-augmented environments
Z it holds that

Exec(π, D, Z[FO]) c≡ Exec(FO, SD, Z[FO]) ≡ Exec(FO′
, D, Z[FO]) (6)

It follows from Proposition 6 that π ≥FO FO′ and FO′ ≥FO π. Since SD runs
in polynomial time, FO-augmented environments can simulate FO′-augmented
environments. Therefore, it holds that π ≥FO′ FO′ and FO′ ≥FO′ π. The
theorem follows by defining M to be the functionality that internally simulates
the protocol π. ⊓⊔

The following corollary shows that UC-secure protocols can be used as sub-
protocols in protocols proven secure in our framework, while preserving security.

Corollary 15 (Composition with UC-secure protocols). Let π, ρF be pro-
tocols such that π ≥UC F and ρF ≥GO GO. Then there exists a shielded oracle
O′ such that

ρπ ≥
GO′

GO′
(7)

Proof. Since ρF is PPT there exists a shielded oracle O′ such that GO′ is polyno-
mially simulatable and ρF ≥GO′ GO′ by Lemma 14. From Corollary 13 it follows
that π ≥GO′ F . The statement then follows from the composition theorem and
the transitivity of GO′ -emulation. ⊓⊔

The last result demonstrates the compatability of our framework with the UC
framework again. Note that while it is much more desireable to “plug” a protocol
proven secure in our framework into a UC secure framework—in order to obtain a
secure protocol in the plain model (this will be addressed in Theorem 26)—doing
it the other way around is still a convenient property. For instance, it will allow
us to instantiate “auxiliary” functionalities such as authenticated channels Fauth
or secure channels FSMT, while preserving security.

Concurrently composable security with shielded super-polynomial simulators 11

3.5 Relation with Angel-based Security

A natural question that arises is how does our security notion compare to Angel-
based security. We will prove that for a large class of Angels (which to our best
knowledge includes all Angels that can be found in the literature), Angel-based
security implies our security notion. However, under the assumption that one-way
functions exist, the converse does not hold. This means that our notions is strictly
weaker than Angel-based security.

In the following, we denote by π ≥Γ -Angel ϕ if π securely realizes ϕ with
respect to an angel Γ . Note that the the following results also hold for “UC with
super-polynomial helpers” put forward by [CLP10].

Definition 16 (Session-respecting Angel (informal)). (See Appendix B.6,
Definition 34 for a formal treatment.) An Angel is called session-respecting if its
internal state can be regarded as a vector with independent components for each
session the Angel is queried for.

Theorem 17 (Relation between angels and shielded oracles).

1. Assume π ≥Γ -Angel F for an imaginary Angel Γ . If Γ is session-respecting,
then there exists a shielded oracle O such that π ≥FO FO.

2. Assume the existence of one-way functions. Then there exists a protocol ρ,
a functionality G and a shielded oracle O s. t. ρ ≥GO GO but no imaginary
angel Γ can be found such that ρ ≥Γ -Angel G holds.

The proof is also informal; for a more formal treatment see again Appendix B.6.

Proof (Idea of proof).

1. We consider the dummy adversary D only. From the assumption π ≥Γ -Angel F
we have

∃ SΓ
1 ∀ ZΓ : Exec(π, DΓ , ZΓ) ≡ Exec(F , SΓ

1 , ZΓ) (8)

We define the shielded oracle as O = SΓ
1 , the ideal functionality FO as

usual and a new simulator SΓ
2 . As Γ is assumed to be session-respecting

the operation of Angel is split between O, that internally runs a copy of the
Angel for all queries within the challenge session, and the simulator SΓ

2 , that
handles all remaining queries. It follows

Exec(F , SΓ
1 , ZΓ) ≡ Exec(FO, SΓ

2 , ZΓ) (9)

In order to prove π ≥FO FO we need to show

∃ SΓ ∀ ZΓ : Exec(π, D, Z[FO]) ≡ Exec(FO, S, Z[FO]) (10)

and we claim that S = S2 suffices. Assume that (10) does not hold, i. e. there
is a Z that can distinguish between interacting with π and D or with FO

and S2. Then the same environment Z could also distinguish given direct
access to Γ instead of being augmented by FO and thus contradicts (9).

12 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

2. Let ρ̃ be a commitment protocol such that ρ̃ ≥FO
com

FO
com and O adjoined

to Fcom is poly-simulatable. One can find such a protocol using part 1 and
Lemma 14. Define the protocol ρ to be identical to ρ̃ except for the following
instruction:
Before the actual commit phase begins, the receiver chooses a1, . . . , an uni-
formly at random (n is the security parameter) and sends Commit(ai)
(i = 1, . . . , n) to the sender (by running the program of the honest sender in ρ̃
with the pid of the sender). The sender replies with (1, . . . , 1) ∈ {0, 1}n. The
receiver then checks if the values he received from the sender equal (a1, . . . , an).
If yes, the receiver outputs “11” (2-bit string). Otherwise, the protocol parties
execute the protocol ρ̃.
By construction, it holds that ρ ≥FO

com
FO

com. This follows from the fact that
every FO-augmented environment can be replaced by an efficient environment
(since O attached to F is polynomially simulatable) and efficient environments
can guess the correct ai only with negligible probability (otherwise ρ̃ would
be insecure, contradicting ρ̃ ≥FO

com
FO

com).
Assume for the sake of contradiction that there exists an imaginary angel Γ
s. t. ρ ≥Γ -Angel Fcom holds. Let the sender be corrupted. Since the adversary
has access to Γ , he can run the program of the simulator. The simulator has to
be able to extract commitments (because ρ ≥Γ -Angel Fcom holds). This makes
it possible for the adversary to extract all ai (by relaying the commitments
from the receiver each to a different internal copy of the simulator), forcing
the receiver to output “11” in the real model experiment. This cannot be
simulated in the ideal model experiment, however. We have thus reached a
contradiction. ⊓⊔
Theorem 17 raises the question if it is possible to construct secure protocols

with “interesting properties” in our framework that are not (known to be) secure
in the Angel-based setting. We will answer this question in the affirmative,
presenting a modular construction of a general MPC protocol in the plain model
that is constant-round and only based on standard assumptions (Theorem 31).

We would like to briefly note that by Theorem 17 we can already conclude that
we can realize every (well-formed) functionality in our framework by importing
the results of [CLP10].
Proposition 18 (General MPC without setup). Assume the existence of
enhanced trapdoor permutations. For every (well-formed)3 functionality F , there
exists an extraction oracle O and a protocol ρ (in the plain model) such that

ρ ≥
FO

FO (11)

4 A Constant-Round Commitment Scheme
In this section we will construct a constant-round bit commitment scheme that
is secure in our framework. We note that we assume authenticated channels and
implicitly work in the Fauth-hybrid model.
3 See [Can+02] for a definition of well-formed functionalities.

Concurrently composable security with shielded super-polynomial simulators 13

Let ⟨C, R⟩ be a bit commitment scheme that we will use a building block
for our bit commitment scheme Π later. We require ⟨C, R⟩ to be tag-based. In
a tag-based commitment scheme the committer and receiver additionally use a
“tag”—or identity—as part of the protocol [PR05; DDN00]. Moreover we require
⟨C, R⟩ to be “immediately committing” as in the following definition.

Definition 19 (Immediately committing). A commitment scheme ⟨C, R⟩ is
called immediately committing if the first message in the protocol comes from
the sender and already perfectly determines the value committed to.

The above definition implies that the commitment scheme is perfectly binding
and super-polynomial extractable, i. e. given the transcript an extractor can find
the unique message of the commitment by exhaustive search.

For the discussion of our commitment scheme, we settle the following notation.
Let s = ((si,b)) ∈ {0, 1}2n for i ∈ [n] and b ∈ {0, 1} be a 2n-tuple of bits. For
an n-bit string I = b1 · · · bn, we define sI := (s1,b1 , . . . , sn,bn

). Thus I specifies a
selection of n of the si,b, where one of these is selected from each pair si,0, si,1.

Construction 1. The bit commitment scheme Π is defined as follows. Whenever
the basic commitment scheme ⟨C, R⟩ is used, the committing party uses its pid
and sid as its tag. Let m ∈ {0, 1}

– Commit(m):
• R: Choose a random n-bit string I and commit to I using ⟨C, R⟩
• S: Pick n random bits si,0 and compute si,1 = si,0 ⊕ m for all i ∈ [n].
• S and R run 2n sessions of ⟨C, R⟩ in parallel in which S commits to the

si,b (i ∈ [n], b ∈ {0, 1}).
– Unveil:

• S: Send all si,b ∈ {0, 1} (i ∈ [n], b ∈ {0, 1}) to R.
• R: Check if s1,0 ⊕ s1,1 = . . . = sn,0 ⊕ sn,1. If this holds, unveil the string

I to S.
• S: If R unveiled the string correctly, then unveil all sI .
• R: Check if S unveiled correctly. If yes, let s′

1, . . . , s′
n be the unveiled

values. Check if s′
i = si,bi

for all i ∈ [n]. If so, output m := s1,0 ⊕ s1,1.

The above construction is reminiscent of [DS13] who presented a compiler
that transforms any ideal straight-line extractable commitment scheme into an
extractable and equivocal commitment scheme.

Note that if an attacker is able to learn the index set I in the commit phase
then he can easily open the commitment to an arbitrary message m′ by sending
“fake” shares ti,b, such that tI = sI , and t¬I = sI ⊕ (m′, . . . , m′). (Here ⊕ is
interpreted element-wise.) Hence Π is equivocal for super-polynomial machines.

We claim that this protocol securely realizes FO
com for a certain shielded oracle

O. We first describe O, before we move to the concrete theorem.

Construction 2. We define the actions of the shielded oracle O as follows.4

If the sender is corrupted
4 For ease of notation, we drop the prefixes output-to-fnct and output-to-adv in the

messages output by O.

14 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

– O chooses a random n-bit string I, and commits to the string I to the
adversary A using ⟨C, R⟩.

– O acts as honest receiver in 2n sessions of ⟨C, R⟩ in parallel. After these
sessions have completed, O extracts each instance of ⟨C, R⟩, obtaining the
shares (si,b for i ∈ [n]) and b ∈ {0, 1}. (If a commitment cannot be extracted,
the corresponding share is set to ⊥)

– O computes mi := si,0 ⊕ si,1 for all i ∈ [n]. (Indices i where one or both of
the si,b is ⊥ are ignored.) Let m ∈ {0, 1} be the most frequently occurring
mi. (If there are multiple mi occurring with the highest frequency, m chooses
m = 0). O relays (Commit, m) to Fcom

– When A sends shares s′
1,0, s′

1,1, . . . , s′
n,0, s′

n,1 in the unveil phase of Π, O acts
as an honest receiver, unveiling I.

– Finally, if A’s unveil is accepting, O instructs Fcom to unveil the message.

If the receiver is corrupted

– O acts as the sender in an execution of Π, engaging in a commit session
of ⟨C, R⟩ with the adversary. If the adversary’s commitment is accepting, O
extracts this instance of ⟨C, R⟩ obtaining a string I (If parts of this string
cannot be extracted they are set to ⊥).

– O picks n random bits si,0, and lets si,1 = si,0 for all i ∈ [n], as if it were
honestly committing to m = 0. Next, it runs 2n instances of Π in parallel,
committing to the si,b.

– In the unveil phase, when O learns the message m, it computes “fake” shares
ti,b as follows: tI = sI and t¬I = s¬I ⊕ (m, . . . , m) (⊕ is interpreted element-
wise.). O sends these shares ti,b to the adversary.

– O acts as the honest sender in the unveil phase of Π. If A’s unveil of I
is accepting, then O honestly executes the unveil phase for all bit shares tI .
(Otherwise, O outputs nothing and ignores all further inputs.)

If no parties are corrupted, O simulates an honest execution of protocol
Π on input 0, forwarding all messages to the adversary. Since O knows the index
string I (because O has created it itself) it can create fake shares just like in the
case of a corrupted receiver.

If both parties are corrupted, O simply simulates an honest execution of
protocol Π on input m ∈ {0, 1} from the adversary, forwarding all messages to
the adversary.

This concludes the description of the shielded oracle O. Observe that O can be
implemented in super-polynomial time. Also note that in the case of both or no
party being corrupted, O can be implemented in polynomial time.

Before we can state our theorem, we need another assumption about the
commitment scheme ⟨C, R⟩.

Definition 20 (pCCA-secure commitment schemes). Let ⟨C, R⟩ be a tag-
based commitment scheme and E a pCCA-decommitment oracle for it. A pCCA-
oracle E is a decommitment oracle that together with an adversary A participates
once in polynomial many sessions of ⟨C, R⟩ parallelly as an honest receiver with

Concurrently composable security with shielded super-polynomial simulators 15

tags chosen by the adversary. After all commit phases have been completed E
simultaneously reveals all decommitments to A.

Consider the probabilistic experiment INDb(⟨C, R⟩, AE , 1n, z) with b ∈ {0, 1}:
On input 1n and and auxiliary input z, the adversary A adaptively chooses a

pair of challenge values v0, v1 ∈ {0, 1} together with a tag and sends them to the
challenger. The challenger commits to vb using ⟨C, R⟩ with that tag. The output
of the experiment is the output of AE . If any of the tags used by A for queries
to the decommitment oracle equals the tag of the challenge, the output of the
experiment is replaced by ⊥.

⟨C, R⟩ is said to be parallel-CCA-secure if there exists an E s. t. for all PPT
adversaries A

IND0(⟨C, R⟩, AE , 1n, z) c≡ IND1(⟨C, R⟩, AE , 1n, z)

holds.5

Note that previous protocols proven secure in the Angel-based framework required
(adaptive) CCA-secure commitments schemes [CLP10; Goy+15; Kiy14]. For our
notion it suffices to assume parallel-CCA-secure (i. e. non-adaptive) commitment
schemes as a building block.

Theorem 21. Assume that ⟨C, R⟩ is parallel-CCA-secure and immediately com-
mitting. Then Π ≥FO

com
FO

com, where Π is as defined in Construction 1 and O is
the shielded oracle as defined in Construction 2.

Proof. By Proposition 6 it suffices to find a simulator for the dummy adversary.
By construction of O the simulator in the ideal experiment can be chosen to be
identical to the dummy adversary.

The main idea of the proof is to consider a sequence of hybrid experiments
for a PPT environment Z that may externally invoke polynomially many FO

com-
sessions and iteratively replace those sessions by the real protocol Π in a specific
order utilizing the fact that the super-polynomial computations of O are hidden
away and thus the replacements are unnoticeable by Z, or otherwise we would
obtain a PPT adversary against the hiding property of ⟨C, R⟩.

Step 1: Let Z be a PPT environment that may externally invoke polynomial
many FO

com-sessions. We denote the output of this experiment by the random
variable Exec

(
FO

com, Z
)
. Let Exec

(
Π, Z

)
be the output of Z if all instances of

FO
com sessions are replaced by the instances of the protocol Π. We show that for

all environments Z it holds that

Exec
(
FO

com, Z
) c≡ Exec

(
Π, Z

)
(12)

Let Z be an environment. By a standard averaging argument we can fix some
random coins r for Z. Thus we can assume henceforth that Z is deterministic.
5 In our special case the decommitment oracle E is unique since we assume an immedi-

ately committing commitment scheme

16 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

We call instances of FO
com (or Π) where the sender or receiver is corrupted

sender sessions or receiver sessions, respectively. Since in the cases where both or
no party is corrupted, O can be implemented in polynomial time, the O-adjoinded
functionalities in this case can be treated as part of the environment. We therefore
only need to consider FO-augmented environments that only invoke either sender
sessions or receiver sessions.

We say a discrepancy occurred, if in any ideal sender session of FO
com O

extracts a value m, but later Z correctly unveils a value m′ ̸= m. First notice
that unless a discrepancy happens, the output of an ideal sender session is
identically distributed to the output of the real protocol Π.

We will now distinguish two cases.

1. The probability that Z causes a discrepancy is negligible.
2. The probability that Z causes a discrepancy is non-negligible.

Case 1: In case 1, we can replace all sender sessions with instances of Π, incurring
only a negligible statistical distance. We are left with a hybrid experiment in
which only the receiver sessions are still ideal. We will now iteratively replace
ideal receiver sessions with the real protocol, beginning with the last session that
is started.

Assume that there are at most q receiver sessions. Define hybrids H0, . . . , Hq

as follows. Hybrid Hi is the experiment where the first i receiver sessions are
ideal and the remaining q − i receiver sessions are replaced by instances of Π
(in which the receiver is corrupted). Clearly, Hq is identical to the experiment
where all receiver sessions are ideal, whereas H0 is the experiment where all
receiver sessions are real. The experiment Hi outputs whatever Z outputs. Let
Pi = Pr[Hi = 1] denote the probability that Z outputs 1 in the hybrid game
Hi. Assume now that ϵ := |P0 − Pq| is non-negligible, i. e., Z has non-negligible
advantage ϵ in distinguishing between the experiment H0 and the experiment Hq.
We will now construct an adversary AΠ that breaks the hiding property of Π
with advantage ϵ/q.

By the averaging principle, there must exist an index i∗ ∈ [q] such that
|Pi∗−1 − Pi∗ | ≥ ϵ/q.

By a standard coin-fixing argument, we can fix the coins r selected by the
O instances inside the first i∗ − 1 (ideal) receiver sessions. Fixing these coins
maintains Z’s distinguishing advantage. Since we fixed the coins of Z before, the
experiment is now deterministic until the start of receiver session i∗.

Since Z is fully deterministic up until this point, the first message of Z
in session i∗, which is a commitment on the bit string I, is also computed
deterministically.

We can now construct the non-uniform adversary A against the hiding
property of ⟨C, R⟩. (We note that we do not construct an adversary A for the
standard hiding game but for a multi-instance variant.) As a non-uniform advice,
A receives a complete trace of all messages sent until this point. This includes all
bit strings I1, . . . , Ii∗ to which Z committed to in all receiver sessions 1, . . . , i∗

(it also includes Z’s input). Note that all messages come from a deterministic

Concurrently composable security with shielded super-polynomial simulators 17

process, and the corresponding Ii are uniquely determined by the first messages
of each session i since ⟨C, R⟩ is immediately committing.

A now proceeds as follows. A internally simulates Z and all sessions invoked
by Z. This simulation can be done in polynomial time, since all sender sessions
and the subsequent receiver sessions i∗ + 1 through q have been replaced by
instances of Π, and A knows the index strings Ii that are used in the (ideal)
receiver sessions 1 through i∗.

Let m∗ be the message that Z chooses as input for the sender in session i∗. A
reads I

def= Ii∗ from its non-uniform advice and samples a tuple sI of n random
strings. It then computes s¬I = sI ⊕ (m∗, . . . , m∗) and s′

¬I = sI for all i ∈ [n].
A sends the messages (s¬I , s′

¬I) to the hiding experiment. It now forwards all
the messages between the hiding experiment and Z and simultaneously commits
honestly on all values sI to Z. When Z requires that the commitments for all sI

be opened, A honestly unveils these. When Z terminates, A outputs whatever Z
output in the experiment. This concludes the description of A.

We will now analyze A’s advantage. If the challenger of the hiding game
picks the messages s′

¬I , Z obtains a commitment on the all-zero string in A’s
simulation. Therefore, in this case the view of Z is distributed identically to
the view inside the hybrid Hi∗ . If the challenger of the hiding game picks the
messages s¬I , Z obtains a commitment to the message m which is identical to
the view of Z inside the hybrid Hi∗−1. It follows

Adv(A) =
∣∣Pr[Hi∗ = 1] − Pr[Hi∗−1 = 1]

∣∣ = |Pi∗ − Pi∗−1| ≥ ϵ/q, (13)

i.e. A breaks the hiding property of protocol ⟨C, R⟩ with advantage ϵ/q, which
concludes case 1 (Note that in this case A does not need to query the pCCA
oracle).

Case 2: We will now turn to case 2. A first observation is that we only need
to consider augmented environments that invoke exactly one external session
where the sender is corrupted. This is because if a (general) environment Z
causes a discrepancy with non-negligible probability, then there exists a session
j∗ in which a discrepancy happens for the first time. An environment Z ′ that
invokes only one session where the sender is corrupted can then simulate Z,
guess j∗ and simulate all the other sessions where the sender is corrupted with
the real protocol. It holds that Z ′ also causes a discrepancy with non-negligible
probability.

So we henceforth assume that Z invokes at most q sessions and only one
session where the sender is corrupted. In what follows, we will replace all ideal
sessions where the receiver is corrupted with real protocols using the same strategy
as in case 1. Define the hybrids H0, . . . , Hq as in case 1 except that now Z can
additionally invoke exactly one sender session in all these hybrids.

Clearly, Hq is identical to the experiment where all sessions are ideal, whereas
H0 is the experiment where all receiver sessions are real. Define Pi = Pr[Hi = 1]
as in case 1.

Assume now that Z can distinguish between H0 and Hq with non-negligible
advantage ϵ. Then there exists an index i∗ ∈ [q] such that |Pi∗−1 − Pi∗ | ≥ ϵ/q.

18 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

We can again fix the coins that are used in the first i∗ − 1 ideal sessions, while
maintaining Z’s distinguishing advantage.

We will construct a non-uniform adversary A′ that breaks the parallel-cca-
security of ⟨C, R⟩ with advantage ϵ/q. As in case 1, A′ receives as a non-uniform
advice a trace of a run of Z which also includes all index sets Ii to which Z
committed in all sessions until session i∗ and possibly the shares to which Z
committed in the only sender-session (again, it also includes Z ′s input).

A′ now proceeds the same way as in case 1. It internally runs Z and simulates
either hybrid Hi∗−1 or Hi∗ for Z by embedding the challenge of the hiding game
into the simulated session i∗. The adversary A′ simulates all ideal receiver sessions
for i ≤ i∗ with the help of its advice while all subsequent receiver sessions for
i > i∗ have already been replaced by Π. If Z has already started to commit to
the shares in the only sender session then (by definition) these shares are also
part of A′’s advice and A′ can simulate the sender session. (Note that ⟨C, R⟩ is
immediately committing, hence the first message of (the parallel executions of)
⟨C, R⟩ uniquely determines the shares). If Z has not yet started to commit to
the shares in the sender session then A′ can use its parallel-cca oracle to extract
them by forwarding the corresponding messages between the oracle and Z. After
the experiment terminates, A′ outputs whatever Z outputs.

The analysis of A′ is the same as in case 1 and we end up with the conclusion
that A′ breaks the parallel-cca-security of protocol ⟨C, R⟩ with advantage ϵ/q.

Hence, it remains to consider environments that invoke exactly one sender-
session (all receiver sessions are real and hence can be treated as part of the
environment). Assume that such an environment Z causes a discrepancy with
non-negligible probability ϵ′.

We will now construct a non-uniform adversary A′′ that breaks the hiding
property of the commitment scheme ⟨C, R⟩. A′′ takes part in a partial one-
way hiding experiment where the challenger picks a random (choice) string
I = b1 · · · bn and commits to this string using the commitment scheme ⟨C, R⟩.
A′′ then sends a vector (a1, . . . , an) to the experiment where al ∈ {0, 1, ⊥}. Let
M = {l | al ≠ ⊥}. A′′ wins if card(M) ≥ n/2 and al = bl for all l ∈ M . It
holds that since ⟨C, R⟩ is hiding, A′′ can win this experiment only with negligible
probability.

A′′ receives as non-uniform advice the input of Z. A′′ now proceeds as
follows: A′′ forwards the commitment it receives in the experiment to Z as in the
commit phase of the one sender session that Z can invoke. When Z sends the
commitments on the shares sl,b, A′′ forwards them to its parallel-CCA-oracle,
thus learning the values sl,b that Z committed to. A can now simulate the oracle
O and reconstruct the message m defined by these shares (by defining m to be
the most frequent value that occurs in {si,0 ⊕ si,1}i∈[n] just like O). When Z
sends the shares s′

l,b in the unveil phase of the sender session, A′′ compares them
to the originally extracted shares sl,b and defines the vector (a1, . . . , an) as

al :=
{

bl if ∃ bl ∈ {0, 1} : sl,bl
= s′

l,bl
∧ sl,¬bl

̸= s′
l,¬bl

(⋆)
⊥ else (if no such bi exists)

(14)

Concurrently composable security with shielded super-polynomial simulators 19

and sends (a1, . . . , an) to the experiment.
We will now analyze A′′’s success probability. Let M be the set of indices l

for that condition (⋆) holds. If Z causes a discrepancy, it holds that all tuples of
shares (s′

l,0, s′
l,1) define the same but different message m′ ̸= m than the majority

of the original shares (sl,0, sl,1), i. e. card(M) ≥ n/2. Moreover, for each l ∈ M
bl equals the lth bit of I. Hence, by construction, A′′ wins with non-negligible
probability if Z causes a discrepancy with non-negligible probability.

Step 2: We will now proof that for every FO-augmented environment it holds
that

Exec
(
Π, D, Z[FO

com]
) c≡ Exec

(
FO

com, D, Z[FO
com]

)
,

If the sender is corrupted then nothing needs to be shown, as in this case the
real and ideal experiment are statistically close. This follows from the fact that
by step 1, case 2, an FO

com-augmented environment can cause a discrepancy only
with negligible probability.

If the receiver is corrupted then by step 1 the real and ideal experiment are
both indistinguishable to an experiment where all instances of FO

com invoked by
the environment have been replace by the real prototol. Hence the outputs of
the real and ideal experiment are indistinguishable.

If no party is corrupted then one can first replace all sender sessions and
receiver sessions with the real protocol using step 1, obtaining a polynomial time
environment. Then one can prove indistinguishability by using a very similar
reduction to the hiding property as in step 1, case 1.

If both parties are corrupted then the real and ideal experiment are identically
distributed. ⊓⊔

The premise of Theorem 21 can be further relaxed by using only a weakly
pCCA oracle instead of a standard pCCA oracle. A weakly pCCA oracle returns
⊥ everywhere in case that at least one commitment is not accepting. Weakly
pCCA suffices because a shielded oracle in a sender session (acting as the honest
receiver) aborts if at least one commitment is not accepting in the commit phase.

The underlying commitment scheme ⟨C, R⟩ can be instantiated with the
(8-round) commitment scheme by [Goy+14]. It is straightforward to see that
this scheme is pCCA secure by using the extractor in the security proof. The
Zero-Knowledge Argument of Knowledge inside [Goy+14] is instantiated with
the Feige-Shamir protocol [FS90] and—deviating from the original work—the
elementary commitment scheme is instantiated by the Blum commitment [Blu81]
because we require an immediately committing protocol. Since this scheme is
constant-round, we obtain the following result:

Corollary 22. Assume the existence of one-way permutations. Then there exists
a constant-round protocol Πcom and a shielded oracle O such that Πcom ≥FO

com

FO
com

Concluding this section, we briefly want to note that by combining Corollary 22
with the constant-round unconditionally secure zero-knowledge protocol in [CF01]

20 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

(using Corollary 10 for composition) one obtains a constant-round zero-knowledge
protocol that is secure in our framework assuming only the existence of OWPs.

Corollary 23. Assume the existence of one-way permutations. Then there exists
a constant-round protocol ΠZK and a shielded oracle O′ such that ΠZK ≥FO′

ZK
FO′

ZK

5 A Modular Composition Theorem for Π

We show that we can plug the protocol Π from Construction 1 into a large
class of UC-secure protocols in the Fcom-hybrid model in such a way that the
composite protocol is secure in our framework. We first define “Commit-Compute
protocols” protcols.

Definition 24 (Commit-Compute protocols). Let ρFcom be a protocol in the
Fcom-hybrid model. We call ρFcom a commit-compute protocol or CC protocol
if it can be broken down into two phases: An intial commit phase, where the
only communication allowed is sending messages to instances of Fcom. After
the commit phase is over, a subsequent compute phase begins where sending
messages to instances of Fcom except for unveil-messages is prohibited, but all
other communication is allowed.

For our theorem we will need the following definition:

Definition 25 (pCCA-UC-emulation). We write ρ ≥E-pCCA ϕ if a protocol ρ
UC-emulates a protocol ϕ in the presence of (non-uniform) environments that may
make a single call to a pCCA-decommitment oracle E as defined in Definition 20
for tags that are not extensions of the session identifier of the challenge protocol.

In the following, let Π be the protocol as in Construction 1 with an immediately
committing and parallel-CCA secure commitment scheme ⟨C, R⟩. Let E be the
(uniquely defined) pCCA-decommitment oracle of ⟨C, R⟩.

We are now ready to state the main result of this chapter:

Theorem 26. Let ρFcom be a CC protocol and G a functionality. If ρFcom ≥E-pCCA
G then there exists a shielded oracle O′ such that

ρΠ ≥
GO′

GO′

Proof. Since ρFcom ≥E-pCCA G there exists a dummy adversary simulator SD. Let
O be the shielded oracle from Construction 2, s. t. Π ≥FO

com
FO

com. We define the
shielded oracle O′ as follows. (For a graphical depiction see Fig. 6, p. 44). O′

internally simulates multiple instances of O (one for each instance of Fcom in ρ)
and SD, and forwards messages as follows.

– Messages from the adversary addressed to an instance of Fcom are forwarded
to the corresponding internal instance of O.

– Messages from an internal instance of O to an instance of Fcom are forwarded
to the dummy adversary simulator SD.

Concurrently composable security with shielded super-polynomial simulators 21

– Messages between SD and the functionality G are forwarded.
– Messages from the dummy adversary simulator SD addressed as coming from

an instance of Fcom are forwarded to the respective instance of O.
– Messages from the dummy adversary simulator SD not addressed as coming

from an instance of Fcom environment are output to the adversary for ρFcom

(without forwarding them to an internal instance of O).
We claim that for this oracle ρΠ ≥GO′ GO′ holds. By Proposition 6 it is

sufficient to find a simulator for the dummy adversary. The simulator will be the
dummy adversary in the ideal world.

Recall that we call instances of FO
com (or Π) where the sender or receiver is

corrupted sender sessions or receiver sessions, respectively.
We denote by ρΠS,FO

com the protocol ρFO
com where all ideal sender sessions have

been replace by the real protocol. Let Exec(ρΠS,FO
com , Z) denote an execution of

an environment Z with (polynomially many) instances of ρΠS,FO
com . Furthermore,

denote by Exec(GO′
, Z) an execution of an environment Z where all instances of

ρΠS,FO
com have been replaced by instances of GO′ .

Let Z be an environment in the experiment Exec(ρΠS,FO
com , Z). By a standard

averaging argument we can fix some random coins r for Z. Thus we can assume
henceforth that Z is deterministic.

In the following hybrid argument, we will have to globally order the main
sessions by the ending of their commit-phase and (adaptively) invoke instances
of ρΠS,FO

com , ρFO
com or GO′ based on this order. Since the message scheduling may

be random, however, this order is not determined a-priori.
In the following, we will therefore have the experiment in the hybrids im-

plement the commit phases of all invoked protocols “obliviously”, i. e., interact
with the adversary by running the programs of the shielded oracles and store
the inputs of the honest parties without following their instructions. Note that
the only communication that is visible to the adversary in the commit-phase is
his interaction with the shielded oracles or the sender in an instance of ΠS. The
latter interaction is identical to an interaction with the shielded oracle in a sender
session. Each time the adversary commits to a value, this value is extracted
(by a super-polynomial computation) and stored. Note that the inputs to the
honest parties have no effect on the messages the shielded oracles output to the
adversary in the commit phase.

Once the commit phases of an instance of ρΠS,FO
com has ended,6 the experiment

in the hybrids will invoke an instance of ρΠS,FO
com , ρFO

com or GO′ depending on
6 Note that the commit phase between the adversary and each shielded oracle must

be over when the commit phase of ρΠS,FO
com has ended. The protocol parties must

somehow be notified that the commit phases between the adversary and the shielded
oracles are over. One possible way to do this is by redefining the Fcom functionality
as follows: Fcom first outputs “ok” to the receiver and after receiving a notification
from the receiver also sends “ok” to the sender. This way, the shielded oracles can
notify the honest parties that the commit phase with the adversary has ended. The
(honest) protocol parties will not start the compute phase before they have received
all “ok” messages. Note that one can trivially redefine Π to realizes FO

com with this

22 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

the position within the global order of sessions. The experiment will then invoke
the honest parties with their respective inputs and follow their instructions (it
will also invoke the simulator SD with the extracted values if this session is
GO′). Messages from FO

com or SD to instances of O (which are “ok” messages)
are suppressed. This way, the emulation is consistent with the messages in the
commit phase and distributed identically as if one of the protocols GO′ , ρΠS,FO

com ,
or ρFO

com was executed from the beginning.

Step 1. We show that

Exec(ρΠS,FO
com , Z) c≡ Exec(GO′

, Z) (15)

Let q(n) be an upper bound on the number of instances of ρΠS,FO
com that Z

invokes. Consider the 2q(n) + 1 hybrids H00, H01, H10, H11, H20, . . . , Hq(n)0 which
are constructed as follows:

Definition of hybrid Hij:
Execute the commit phases of each session “without running the code of the

parties” by invoking instances of O (according to the deterministic order of the
commit messages in the commit phase and the corruption messages). Follow the
instruction of each instance of O. Parties are only there as placeholders for the
environment in the commit phase. Their instructions will be execute after the
commit phase of the respective session is over. Note that this can be done since
the actions of the parties in the commit phase have no effect on the view of the
environment in this phase. Messages output from an instance of O are stored as
well. After the commit phase of a session is over do the following:

(See Fig. 7, p. 45 for an illustration of the sequence of the hybrid games.)

1. If this is the kth session in which the commit phase has ended and k ≤ i then
invoke an instance of the dummy adverary simulator and the functionality G.
Hand the dummy parties their respective inputs and the dummy adversary
simulator the messages output by the instances of O. Follow the instructions
of the dummy adversary simulator and G. Ignore messages of the dummy
adversary simulator to the environment if these messages are coming from
an instance of Fcom in the commit phase (i. e. an “ok” message). In the
unveil phase, messages from the dummy adversary simulator mimicking
an interaction with Fcom (which are messages of the form (unveil, b)) are
forwarded to the respective instance of O (with the same SID). Messages
from the dummy adversary simulator not mimicking an interaction with an
instance of Fcom are output (without forwarding them to an internal instance
of O)

2. If k = i + 1 and j = 0 or k > i + 1 then run the protocol parties of ρFcom

with their inputs and follow their instructions. For all subsessions where the
sender has been corrupted invoke instances ΠS and execute the commit phase
of ΠS using the same randomness for the receiver as the respective oracle

modified shielded oracle by adding a single (dummy) message from the receiver to
the sender at the end of the commit phase.

Concurrently composable security with shielded super-polynomial simulators 23

(do not pass the massages to the environment). For all subsessions where the
receiver or both or no party has been corrupted invoke instances of Fcom
and apdjoin the respective oracle. Send the outputs of the instances of O to
the respective instances of Fcom. Ignore “ok” messages from the instances of
Fcom.

3. If k = i + 1 and j = 1 then run the protocol parties of ρFcom with their inputs
in the commit phase and follow their instructions. For all subsessions where
the receiver or both or no party has been corrupted invoke instances of Fcom
and adjoin the respective oracle. Send the outputs of the instances of O to
the respective instances of Fcom. Ignore “ok” messages from the instances of
Fcom.

Observe that H00 = Exec(ρΠS,FO
com , Z) and Hq(n)0 = Exec(GO′

, Z).
Let Pij denote the probability that Z outputs 1 in hybrid Hij . Assume∣∣P00 − Pq(n)0

∣∣ is non-negligible. Then there exists an index i∗ such that either∣∣Pi∗1 − P(i∗+1)0
∣∣ or |Pi∗0 − Pi∗1| is also non-negligible.

Case 1∣∣Pi∗1 − P(i∗+1)0
∣∣ is non-negligible. In this case, these neighboring hybrids are

equal except that in the (i∗ + 1)th session ρFO
com is replaced by GO′ .

We fix the coins used by each instance of O and the protocol parties in all
sessions until the point where the (i∗ + 1)th commit phase has ended, while
maintaining Z’s distinguishing advantage.

We can now construct an environment Z ′ that distinguishes ρFcom from G. As
a non-uniform advice, Z ′ receives a complete trace of all messages sent until this
point, including all shares si and strings I to which Z commited to until the point
where the (i∗ + 1)th commit phase has ended. The environment Z ′ proceeds as
follows: It internally simulates the execution experiment with Z using its advice.
Messages to the (i∗ + 1)th session are sent to the challenge protocol. Z ′ may
(tentatively) also invoke instances of FO

com in order to simulate the instances of
FO

com that are invoked after the point where the (i∗ + 1)th commit phase has
ended.

Observe that the real execution corresponds to hybrid Hi∗1 and the ideal
execution to hybrid H(i∗+1)0. By construction, Z ′ distinguishes ρFcom from G.
Since FO

com is polynomially simulatable, it follows from Theorem 12 that this
environment can be replaced by a polynomial time environment that also distin-
guishes ρFcom from G. This is a contradiction (to the definition of the dummy
adversary simulator).

Case 2
|Pi∗0 − Pi∗1| is non-negligible. In this case, these neighboring hybrids are

equal except that in the (i∗ + 1)th session ρΠS,FO
com is replaced by ρFO

com .
Since Z distinguishes these hybrids it holds that with non-negligible proba-

bility Z causes a discrepancy in hybrid Hi∗1 as otherwise these hybrids would be
indistinguishable (even statistically close).

24 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

Let Z̃ be the environment that internally runs Z and outputs 1 as soon as a
discrepancy occurs.7 By construction, Z̃ outputs 1 with non-negligible probability
in Hi∗1.

We will now consider i∗ + 1 new hybrids h0, . . . , hi∗ .
Definition of hybrid hj:
(See Fig. 8, p. 46 for a graphical explanation of the hybrids hj .) Execute

the commit phases of each session “without running the code of the parties” as
described in the description of the hybrids Hij . After the commit phase of a
session is over do the following (for a fixed j ∈ {0, . . . , i∗}):

1. If k ≤ i∗ − j then invoke an instance of the dummy adverary simulator and
the functionality G. (Marked as range (I) in Fig. 8.) Hand the dummy parties
their respective inputs and the dummy adversary simulator the messages
output by the instances of O. Follow the instructions of the dummy adversary
simulator and G. Ignore messages of the dummy adversary simulator to the
environment if these messages are coming from an instance of Fcom in the
commit phase (i. e. an “ok” message). In the unveil phase, messages from the
dummy adversary simulator mimicking an interaction with Fcom (which are
messages of the form (unveil, b)) are forwarded to the respective instance
of O (with the same SID). Messages from the dummy adversary simulator
not mimicking an interaction with an instance of Fcom are output (without
forwarding them to an internal instance of O)

2. If this is the kth session in which the commit phase has ended and i∗ −j +1 ≤
k ≤ i∗ + 1 then run the protocol parties of ρFcom with their inputs in the
commit phase and follow their instructions. (Marked as range (II) in Fig. 8.)
For all subsessions where the receiver or both or no party has been corrupted
invoke instances of Fcom and adjoin the respective oracle. Send the outputs of
the instances of O to the respective instances of Fcom. Ignore “ok” messages
from the instances of Fcom.

3. If k ≥ i∗ + 2 then run the protocol parties of ρFcom with their inputs in the
commit phase and follow their instructions. (Marked as range (III) in Fig. 8.)
For all subsessions where the receiver or both or no party has been corrupted
invoke instances of Fcom and adjoin the respective oracle. Send the outputs of
the instances of O to the respective instances of Fcom. Ignore “ok” messages
from the instances of Fcom.

Observe that h0 = Hi∗1.
Let j∗ be the largest index such that Z̃ causes a discrepancy in hybrid hj∗ with

non-negligible probability. It holds that j∗ is well-defined, since there is an index
7 To make the environment able to learn the committed value, we redefine the shielded

oracle O for the case of a corrupted sender as follows: After the unveil phase is over,
the oracle first outputs the committed value to the simulator and after receiving a
notification from the simulator sends an unveil message to the functionality. This
way, the environment is be able to notice a discrepancy. Note that Π still realizes
FO

com with this modified shielded oracle. Also note that this modified O adjoined to
Fcom is still polynomially simulatable.

Concurrently composable security with shielded super-polynomial simulators 25

for which this property holds (namely 0). Furthermore, j∗ ≤ i∗ − 1. This follows
from the following argument. Observe that the last hybrid hi∗ only contains
instances of ρFcom (since all instance of G have been replaced). Since it holds that
Π emulates FO

com it follows from the composition theorem that Exec(ρΠ , Z) is
indistinguishable from hi∗ . Since no discrepancy occurs in Exec(ρΠ , Z) it follows
that a discrepancy can occur in hi∗ only with negligible probability.

By construction, Z̃ distinguishes the hybrids hj∗ and hj∗+1 (in the first hybrid
Z̃ outputs 1 with non-negligible probability and in the second hybrid only with
negligible probability)

We will now modify these hybrids. For k ∈ {j∗, j∗ + 1} define the hybrid
hybk−j∗ to be identical to hk except for the following: At the beginning of the
experiment, the experiment randomly selects the index of a sender session. In all
commit phases that end after the (i∗ − j∗)th commit phase the real protocol ΠS
is invoked instead of FOS in all sender sessions that have not been selected at
the beginning. The one sender session that has been selected at the beginning
always remains ideal.

It holds that Z̃ also distinguishes hyb0 from hyb1. This is because Z̃ still
causes a discrepancy in hyb0 with non-negligible probability because with high
probability (1/poly) the first session in which Z̃ causes a discrepancy is selected.
Furthermore, Z̃ causes a discrepancy in hyb1 only with negligible probability.

We fix the coins used by each instance of O and the protocol parties in
all sessions until the point where (i∗ − j∗)th commit phase has ended, while
maintaining Z̃ distinguishing advantage.

We can now construct an environment Z ′′ that distinguishes ρFcom from G.
As a non-uniform advice, Z ′′ receives a complete trace of all messages sent until
this point, including all shares si and index sets I to which Z̃ commited to until
the point where the (i∗ − j∗)th commit phase has ended. The environment Z ′′

proceeds as follows: It internally simulates the execution experiment with Z̃ using
its advice, randomly picking a sender session at the beginning. Messages to the
(i∗ − j∗)th session are sent to the challenge protocol. Z ′′ can simulate the only
instance of FOS that may occur in a commit phase with its pCCA-oracle E . Z ′′

may (tentatively) also invoke ideal receiver sessions in order to simulate ideal
receiver sessions that are invoked after the point where the (i∗ − j∗)th commit
phase has ended.

Observe that the real execution corresponds to hybrid hyb1 and the ideal
execution to hybrid hyb0. By construction, Z ′′ distinguishes ρFcom from G. With
the same argument as in the proof of Theorem 21, step 1, case 2, one can replace
all ideal receiver sessions that Z ′′ invokes with instances of the real protocol. By
construction, an environment Z ′′ was found that can query a pCCA-oracle and
distinguish ρFcom from G. We have thus reached a contradiction.

Step 2. We show that ρΠ ≥GO′ GO′ , completing the proof.
Let Z be a GO′-augmented environments. By step 1, we can replace all

instances of GO′ with instances of ρΠS,FO
com . Since Π emulates FO

com, it follows
from the composition theorem that we can replace (the challenge protocol) ρΠ

26 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

also with ρΠS,FO
com . Again by step 1, we can replace all instances of ρΠS,FO

com back
with instances of GO′ . The theorem follows. ⊓⊔

If the following property holds for the commitment scheme ⟨C, R⟩, the premise
ρFcom ≥pCCA G is automatically fulfilled.
Definition 27 (r-non-adaptive robustness). Let ⟨C, R⟩ be a tag-based com-
mitment scheme and E a pCCA-decommitment oracle for it as in Definition 20.
For r ∈ N, we say that ⟨C, R⟩ is r-non-adaptively-robust w. r. t. E if for ev-
ery PPT adversary A, there exists a PPT simulator S, such that for every
PPT r-round interactive Turing machine B, the following two ensembles are
computationally indistinguishable:

– {⟨B(y), AE(z)⟩(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

– {⟨B(y), S(z)⟩(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

The above definition is a weakening of the (adaptive) robustness property put
forward by [CLP10].
Corollary 28. If additionally the commitment scheme ⟨C, R⟩ in Π is r-non-
adaptively-robust, then for every r-round CC protocol ρFcom it holds that if
ρFcom ≥UC G then there exists shielded oracle O′ such that

ρΠ ≥
GO′

GO′

Up to now we could instantiate ⟨C, R⟩ with a modified version of [Goy+14]
as described above of Corollary 22. To additionally make this scheme r-non-
adaptively-robust w. r. t. E one can add “redundant slots” using the idea of [LP09]
(the scheme needs to have at least r + 1 slots to be r-non-adaptively-robust).

In the following lemma we show that every secure protocol ρFcom can be
transformed into a secure CC protocol.
Lemma 29 (CC compiler). Let ρFcom be a protocol in the Fcom-hybrid model.
Then there exists a CC protocol Comp(ρ)Fcom such that Comp(ρ)Fcom ≥UC ρFcom .
Furthermore, if ρFcom is constant-round then so is Comp(ρ)Fcom .
Proof (Idea of proof). Replace each instance of Fcom with a randomized com-
mitment where the sender commits to a bit b by sending a random value a to
Fcom and a ⊕ b to the receiver. Note that since the protocol is PPT the number
of commitments of each party is polynomially bounded. Put all randomized calls
to Fcom in a single commit phase. ⊓⊔
Let Πr be the constant-round protocol as in Construction 1 where ⟨C, R⟩ is
instantiated with the immediately committing, parallel-CCA secure and r-non-
adaptively-robust modified version of [Goy+14] as described above. Applying
Lemma 29 to Corollary 28 one obtains the following:
Corollary 30. Assume the existence of one-way permutations. Let ρFcom be a
constant-round protocol and G a functionality. If ρFcom ≥UC G then there exists a
shielded oracle O′ such that for sufficiently large r it holds that

Comp(ρ)Πr ≥
GO′

GO′

Concurrently composable security with shielded super-polynomial simulators 27

6 A Constant-Round General MPC Protocol

We can now construct a secure constant-round general MPC protocol without
setup based on standard assumptions:

Theorem 31. Assume the existence of enhanced trapdoor permutations. Then
for every well-formed functionality F , there exists a constant-round protocols πF
(in the plain model) and a shielded oracle O such that

πF ≥
FO

FO (16)

Proof. This theorem follows by plugging the constant-round protocol Πr (for
a sufficiently large r) into an appropriate UC-secure general MPC protocol.
By previous results [Can+02; IPS08], for every well-formed functionality F
there exists a constant-round protocol ρFcom that UC-emulates F , assuming
the existence of enhanced trapdoor permutations. The theorem now follows by
applying Corollary 30. ⊓⊔

7 Conclusion

Shielded super-polynomial resources allow for general concurrent composition
without trusted setup while being compatible with UC security. As an application
a secure constant-round general MPC protocol was modularly designed and
future work will be needed to make this proof of concept a general principle.

Bibliography

[Bar+04] Boaz Barak et al. “Universally Composable Protocols with Relaxed
Set-Up Assumptions”. In: 45th Annual IEEE Symposium on Founda-
tions of Computer Science. FOCS ’04. IEEE. 2004, pp. 186–195.

[Blu81] Manuel Blum. “Coin Flipping by Telephone”. In: Advances in Cryptol-
ogy – CRYPTO 1981: IEEE Workshop on Communications Security.
University of California, Santa Barbara, Deptartment of Elecrical
and Computer Engineering, 1981, pp. 11–15.

[BS05] Boaz Barak and Amit Sahai. “How to play almost any mental game
over the net – concurrent composition via super-polynomial simula-
tion”. In: 46st Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’05. IEEE. 2005, pp. 543–552.

[Can+02] Ran Canetti et al. “Universally Composable Two-party and Multi-
party Secure Computation”. In: Proceedings of the 34th Annual ACM
Symposium on Theory of Computing. STOC ’02. ACM, 2002, pp. 494–
503.

[Can+07] Ran Canetti et al. “Universally Composable Security with Global
Setup”. In: Theory of Cryptography: 4th Theory of Cryptography
Conference, TCC 2007, Proceedings. Springer, 2007, pp. 61–85.

28 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm
for Cryptographic Protocols”. In: 42th Annual IEEE Symposium on
Foundations of Computer Science. FOCS ’01. IEEE. 2001, pp. 136–
145.

[CF01] Ran Canetti and Marc Fischlin. “Universally composable commit-
ments”. In: Advances in Cryptology – CRYPTO 2001: 21st Annual
International Cryptology Conference, Proceedings. Springer, 2001,
pp. 19–40.

[CGJ15] Ran Canetti, Vipul Goyal, and Abhishek Jain. “Concurrent Secure
Computation with Optimal Query Complexity”. In: Advances in
Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference,
Proceedings. Springer, 2015, pp. 43–62.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. “On the Limita-
tions of Universally Composable Two-Party Computation without
Set-up Assumptions”. In: Advances in Cryptology – EUROCRYPT
2003: 22nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Proceedings. Springer, 2003,
pp. 68–86.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. “Adaptive hardness and
composable security in the plain model from standard assumptions”.
In: 51st Annual IEEE Symposium on Foundations of Computer Sci-
ence. FOCS ’10. IEEE. 2010, pp. 541–550.

[CLP13] Ran Canetti, Huijia Lin, and Rafael Pass. “From Unprovability to
Environmentally Friendly Protocols”. In: 54th Annual IEEE Sympo-
sium on Foundations of Computer Science. FOCS ’13. IEEE. 2013,
pp. 70–79.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. “Cryptography from
Sunspots: How to Use an Imperfect Reference String”. In: 48th Annual
IEEE Symposium on Foundations of Computer Science. FOCS ’07.
IEEE. 2007, pp. 249–259.

[Dac+13] Dana Dachman-Soled et al. “Adaptive and Concurrent Secure Com-
putation from New Adaptive, Non-malleable Commitments”. In:
Advances in Cryptology – ASIACRYPT 2013: 19th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, Proceedings. Springer, 2013, pp. 316–336.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable Cryp-
tography”. In: SIAM Journal on Computing 30.2 (2000), pp. 391–
437.

[DS13] Ivan Damgård and Alessandra Scafuro. “Unconditionally secure and
universally composable commitments from physical assumptions”. In:
Advances in Cryptology – ASIACRYPT 2013: 19th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Proceedings. Springer, 2013, pp. 100–119.

[FS90] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness
Hiding Protocols”. In: Proceedings of the 22nd Annual ACM Sym-

Concurrently composable security with shielded super-polynomial simulators 29

posium on Theory of Computing. STOC ’90. ACM, 1990, pp. 416–
426.

[Gar+12] Sanjam Garg et al. “Concurrently Secure Computation in Constant
Rounds”. In: Advances in Cryptology – EUROCRYPT 2012: 31st
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Proceedings. Springer, 2012, pp. 99–116.

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. “What Information Is
Leaked under Concurrent Composition?” In: Advances in Cryptology
– CRYPTO 2013: 33rd Annual Cryptology Conference, Proceedings.
Springer, 2013, pp. 220–238.

[GJ13] Vipul Goyal and Abhishek Jain. “On Concurrently Secure Computa-
tion in the Multiple Ideal Query Model”. In: Advances in Cryptology
– EUROCRYPT 2013: 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings.
Springer, 2013, pp. 684–701.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. “Password-Authen-
ticated Session-Key Generation on the Internet in the Plain Model”.
In: Advances in Cryptology – CRYPTO 2010: 30th Annual Cryptology
Conference, Proceedings. Springer, 2010, pp. 277–294.

[Goy+14] Vipul Goyal et al. “An Algebraic Approach to Non-malleability”. In:
55th Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’14. IEEE. 2014, pp. 41–50.

[Goy+15] Vipul Goyal et al. “Round-Efficient Concurrently Composable Se-
cure Computation via a Robust Extraction Lemma”. In: Theory of
Cryptography: 12th Theory of Cryptography Conference, TCC 2015,
Proceedings. Springer, 2015, pp. 260–289.

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Com-
posable Adaptive Secure Protocols without Setup under Polytime
Assumptions”. In: Theory of Cryptography: 14th Theory of Cryptog-
raphy Conference, TCC 2016-B, Proceedings. Printed version not yet
published. 2016.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding Cryp-
tography on Oblivious Transfer – Efficiently”. In: Advances in Cryp-
tology – CRYPTO 2008: 28th Annual International Cryptology Con-
ference, Proceedings. Springer, 2008, pp. 572–591.

[Kat07] Jonathan Katz. “Universally Composable Multi-party Computation
Using Tamper-Proof Hardware”. In: Advances in Cryptology – EURO-
CRYPT 2007: 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings. Springer,
2007, pp. 115–128.

[Kiy14] Susumu Kiyoshima. “Round-Efficient Black-Box Construction of
Composable Multi-Party Computation”. In: Advances in Cryptology
– CRYPTO 2014: 34th Annual Cryptology Conference, Proceedings.
Springer, 2014, pp. 351–368.

30 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

[KL11] Dafna Kidron and Yehuda Lindell. “Impossibility Results for Univer-
sal Composability in Public-Key Models and with Fixed Inputs”. In:
Journal of Cryptology 24.3 (2011), pp. 517–544. Cryptology ePrint
Archive (IACR): Report 2007/478. Version 2010-06-06.

[KLP07] Tauman Yael Kalai, Yehuda Lindell, and Manoj Prabhakaran. “Con-
current Composition of Secure Protocols in the Timing Model”. In:
Journal of Cryptology 20.4 (Oct. 2007), pp. 431–492.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto.
“Constant-Round Black-Box Construction of Composable Multi-Party
Computation Protocol”. In: Theory of Cryptography: 11th Theory
of Cryptography Conference, TCC 2014, Proceedings. Springer, 2014,
pp. 343–367.

[Lin03] Yehuda Lindell. “General Composition and Universal Composability
in Secure Multi-party Computation”. In: 44th Annual IEEE Sympo-
sium on Foundations of Computer Science. FOCS ’03. IEEE. 2003,
pp. 394–403.

[LP09] Huijia Lin and Rafael Pass. “Non-malleability Amplification”. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting. STOC ’09. ACM, 2009, pp. 189–198.

[LP12] Huijia Lin and Rafael Pass. “Black-Box Constructions of Composable
Protocols without Set-Up”. In: Advances in Cryptology – CRYPTO
2012: 32nd Annual Cryptology Conference, Proceedings. Springer,
2012, pp. 461–478.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubrama-
niam. “A Unified Framework for Concurrent Security: Universal
Composability from Stand-alone Non-malleability”. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing. STOC
’09. ACM, 2009, pp. 179–188.

[LPV12] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubrama-
niam. “A Unified Framework for UC from Only OT”. In: Advances in
Cryptology – ASIACRYPT 2012: 18th International Conference on
the Theory and Application of Cryptology and Information Security,
Proceedings. Springer, 2012, pp. 699–717.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. “Generalized
Environmental Security from Number Theoretic Assumptions”. In:
Theory of Cryptography: 3rd Theory of Cryptography Conference,
TCC 2006, Proceedings. Springer, 2006, pp. 343–359.

[MPR06] Silvio Micali, Rafael Pass, and Alon Rosen. “Input-Indistinguishable
Computation”. In: 47th Annual IEEE Symposium on Foundations of
Computer Science. FOCS ’06. IEEE. 2006, pp. 367–378.

[Pas03] Rafael Pass. “Simulation in Quasi-Polynomial Time, and Its Ap-
plication to Protocol Composition”. In: Advances in Cryptology –
EUROCRYPT 2003: 22nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings.
Springer, 2003, pp. 160–176.

http://eprint.iacr.org/2007/478

Concurrently composable security with shielded super-polynomial simulators 31

[PR05] Rafael Pass and Alon Rosen. “Concurrent non-malleable commit-
ments”. In: 46st Annual IEEE Symposium on Foundations of Com-
puter Science. FOCS ’05. IEEE. 2005, pp. 563–572.

[PR08] Manoj Prabhakaran and Mike Rosulek. “Cryptographic complexity of
multi-party computation problems: Classifications and separations”.
In: Advances in Cryptology – CRYPTO 2008: 28th Annual Interna-
tional Cryptology Conference, Proceedings. Springer, 2008, pp. 262–
279.

[PS04] Manoj Prabhakaran and Amit Sahai. “New Notions of Security:
Achieving Universal Composability Without Trusted Setup”. In: Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing.
STOC ’04. ACM, 2004, pp. 242–251.

[Ven14] Muthuramakrishnan Venkitasubramaniam. “On Adaptively Secure
Protocols”. In: Security and Cryptography for Networks: 9th Interna-
tional Conference, SCN 2014, Proceedings. Springer, 2014, pp. 455–
475.

32 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

A Short Introduction into UC Security

The framework we built our security notion upon is the universal composability
model as originally defined by [Can01]. For self-containment we give a brief
overview over the framework.

The essential idea is to define security by means of the indistinguishability
between an experiment in which the task at hand is carried out by dummy parties
with the help of an ideal incorruptible entity and an experiment in which the
parties must conduct the task themselves. In contrast to previous attempts to
define security by simulation the indistinguishability must not only hold after the
protocol execution has completed, but the distinguisher—called the environment
Z—takes part in the experiment, orchestrates all adversarial attacks, supplies
the inputs to the parties running the challenge protocol and can observe the
parties’ output as well as communication during the whole protocol execution.

The basic model of computation The basic model of computation consists of a set
of (possibly polynomial many) instances (ITIs) of interactive Turing machines
(ITMs). An interactive Turing machine (ITM) is the description of a Turing
machine with additional tapes, namely the identity tape, tapes for subroutine
input and output as well as tapes for incoming and outgoing network messages.
The tangible instantiation of an ITM—the ITI—is identified by the content of its
identity tape which consists of an session and a party identifier (SID/PID). The
order of activation of the ITIs is completely asynchronous and message-driven.
An ITI gets activated if either subroutine input or an incoming message is written
onto its respective tape. If the ITI provides subroutine output or writes an
outgoing message, the activation of the ITI completes and the ITI to whom the
message has been delivered to gets activated next. Each experiment comprises
two special ITIs the environment Z and the adversary A (in the real experiment)
or the simulator S (in the ideal experiment). The environment is the ITI that
is initially activated. If during the execution any ITI completes its activation
without giving any output, the environment is activated again as a fall-back. If
the environment Z conducts a subroutine output, the whole experiments stops.
The output of the experiment is the output of Z.

The adversary The adversary A has the following capabilities. If any ITI writes
an outgoing message the message is not directly delivered to the incoming
tape of designated receiver but the adversary is responsible for all message
transfers. To this end every message is implicitly copied to the incoming message
tape of the adversary. The adversary can process the message arbitrarily. The
adversary may decide to deliver to message (by writing the message on its own
outgoing tape), the adversary may postpone or completely suppress the message,
inject new messages or alter messages in any way including the recipient and/or
alleged sender. This modeling reflects the idea of an unreliable and untrusted
network. Please note twofold: (a) Only incoming/otgoing messages are under
the control of the adversary, subroutine input/output between ITIs is immediate
and trustworthy as long as the ITIs are uncorrupted. (b) As the sequence of

Concurrently composable security with shielded super-polynomial simulators 33

activations is message-driven the adversary also controls the scheduling and
order of execution. Moreover the adversary can corrupt an ITI. In this case the
adversary learns the complete entire state of the corrupted ITI and takes over its
execution. This means whenever the corrupted ITI would have been activated
(even due to subroutine input) the adversary gets activated with the same input.

The real experiment In the real experiment for a challenge protocol π, denoted
by Exec(π, A, Z), the environment Z is activated first. After the invocation
of the adversary A the environment Z requests the creation of the challenge
protocol. The main parties of π become subroutines of the environment and the
environment freely choses their input and the SID of the challenge protocol. The
experiment is executed as outlined above.

The ideal experiment In the ideal experiment, denoted by Exec(F , S, Z), the
challenge protocol is silently replaced by an instance of F together with dummy
parties. The dummy parties obtain a common session identifier (SID) and individ-
ual party identifiers (PIDs) from the environment as if they were the actual main
parties of the protocol π in the real experiment, however they merely forward
the subroutine input/output between the instance of the functionality F and
the environment. The ideal functionality F is simultaneously a subroutine for
each dummy party, holds the same SID but no PID, and conducts the prescribed
task without the necessity to exchange any network messages. Moreover, in the
ideal experiment the adversary is replaced by a simulator S that mimics the
adversarial behavior to the environment as if this was the real experiment with
real parties carrying out the real protocol with real π-messages.

Definition of Security A real protocol π is said to securely UC-realize and ideal
functionality F , denoted by π ≥UC F , iff

∀A ∃S ∀Z : Exec(π, A, Z) c≡ Exec(F , S, Z) (17)

holds whereby the randomness on the left and on the right is taken over the
initial input of Z and all random tapes of all PPT machines.

This concludes the brief overview over the UC framework, but some final
remarks are in order.

To prove security it suffices to consider only the so-called dummy adversary
D and to provide an simulator SD for that. The dummy adversary is merely
an adversarial interface for the environment such that the environment remains
agnostic if it runs in the real or ideal experiment but otherwise the dummy
adversary D is under complete control of the environment. If the environment
requests D to corrupt a party, D does so and returns the state of the corrupted
party to Z, if the adversary needs to schedule a message, D just forwards the
message to Z and leaves the decision how to proceed to the environment, and so
on. This completeness of the dummy adversary allows to perceive the environment
as the only adversarial entity.

The plain UC model does not pose any restriction on how session iden-
tifiers are generated. A very natural and often found convention is demand

34 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

that the session identifiers reflect the hierarchy of the ITIs. We also adhere to
this restriction. More specifically, let the session identifier of a protocol be of
the form (string1∥ . . . ∥stringm). Then the session identifier of a sub-protocol
is required to be of the form (string1∥ . . . ∥stringl+1). For a session identifier
sid = (string1∥ . . . ∥stringk), a session identifier of the form

sid ′ = (string1∥ . . . ∥stringk∥ . . . ∥stringm) (18)

for k ≥ m is called an extension of sid.
Similar to the convention on session identifiers the order of corruptions must

follow the hierarchy. In order to corrupt a sub-party, an adversary must corrupt
all parties that are above that sub-party in the protocol hierarchy.

Concurrently composable security with shielded super-polynomial simulators 35

B Some Definitions and Proofs

This section contains definitions and proofs that were omitted in the main body
of this work due to space restrictions.

B.1 Proof of Proposition 6

We prove Proposition 6, which shows that the dummy adversary is complete.
The proof is almost exactly the same as in [Can01, Section 4.4.1]. Let us first
repeat the exact statement.

Proposition 6 (Completeness of the dummy adversary). Let π and ϕ be
protocols. Then, π emulates ϕ in the presence of FO-augmented environments if
and only if π emulates ϕ in the presence of FO-augmented environments with
respect to the dummy adversary.

Proof. Clearly, if π emulates ϕ in the presence of FO-augmented environments
then π also emulates ϕ in the presence of FO-augmented environments with
respect to the dummy adversary.

We now show the converse. Let π emulate ϕ in the presence of FO-augmented
environments with respect to the dummy adversary. Let A be an adversary
interacting with a protocol π and an environment Z. Define the simulator S
as follows: S internally runs simulated copies of A and the dummy adversary
simulator SD. S relays the communication between A and Z and between SD
and ϕ. When A delivers a message m to a party with party identifier pid and
session identifier sid, S sends (sid, pid, m) to SD. When SD outputs (sid, pid, m),
S copies m to the incoming communication tape of A as a message coming from
the party with party identifier pid and session identifier sid.

Next define the environment ZD as follows: ZD internally runs simulated
copies of Z and A. ZD relays the communication between A and Z and between
Z and the protocol parties. When A delivers a message m the party with party
identifier pid and session identifier sid, ZD sends (sid, pid, m) to the adversary.
Likewise, when ZD receives a message (sid, pid, m) from the attacker, ZD copies
m to the incoming communication tape of A as a message coming from the party
with party identifier pid and session identifier sid. ZD invokes the same instances
of IDEAL(FO) the environment Z invokes. ZD outputs whatever Z outputs. We
have that

Exec
(
π, A, Z[FO]

)
≡ Exec

(
π, D, ZD[FO]

)
c≡ Exec

(
ϕ, SD, ZD[FO]

)
≡ Exec

(
ϕ, S, Z[FO]

)
,

(19)

where the second step used the premise. The claim follows immediately. ⊓⊔

36 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

B.2 Proof of Proposition 7

Proposition 7 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥FO π2 and
π2 ≥FO π3 then it holds that π1 ≥FO π3.

Proof. Let A be an ITM. Since π1 ≥FO π2, there exists a simulator S1 such
that Exec(π1, A, Z[FO]) c≡ Exec(π2, S1, Z[FO]), and since π2 ≥FO π3, there is
S2 such that Exec(π2, S1, Z[FO]) c≡ Exec(π3, S2, Z[FO]) for all Z.

Thus, Exec(π1, A, Z[FO]) c≡ Exec(π3, S2, Z[FO]), qed.
Note that by since the SID mechanism is hierarchical, the class of FO-

augmented environments that try to distinguish between π1 and π2 is the same
as the class of FO-augmented environments that try to distinguish between π2
and π3. ⊓⊔

B.3 Definition of SPS Security

Definition 32 (Restatement of super-polynomial time simulator secu-
rity). Let π and ϕ be protocols. π is said to emulate ϕ with superpolynomial
time simulator security, denoted by π ≥SPS ϕ, if

∀ A ∃ (SPS)S ∀ Z : Exec
(
π, A, Z

) c≡ Exec
(
ϕ, S, Z

)
(20)

B.4 Proof of Corollary 10

Corollary 10 (Composition theorem for multiple oracles). Let O, O′ be
shielded oracles. Assume that π ≥FO FO and ρFO ≥FO,GO′ GO′ . Then there
exists a shielded oracle O′′ such that ρπ ≥GO′′ GO′′ .

Proof. Since ρFO emulates GO′ , there exists a simulator SD for the dummy
adversary.

Define O′′ as follows: O′′ internally simulates SD and O′, passes each message
SD sends to G to O′, sends each output-to-fnct output from O′ to G and each
output-to-adv output to SD, and forwards the communication between SD and
the environment. By construction, it holds that

Exec
(
ρFO

, D, Z[FO, GO′
]
) c≡ Exec

(
GO′

, SD, Z[FO, GO′
]
)

≡ Exec
(
GO′′

, D, Z[FO, GO′′
]
) (21)

Since SD runs in polynomial time, (FO, GO′)-augmented environments can simu-
late (FO, GO′′)-augmented environments. Therefore, it follows from Proposition 6
that ρFO ≥FO,GO′′ GO′′ and GO′′ ≥FO,GO′′ ρFO . By the composition theorem
we have that ρπ ≥FO ρFO . Hence

ρπ ≥
FO,GO′′

GO′′
(22)

Concurrently composable security with shielded super-polynomial simulators 37

Since it holds that GO′′ ≥FO,GO′′ ρFO one can iteratively replace all instances
of IDEAL(GO′′) by instances of IDEAL(ρFO) in a GO′′ -augmented environment,
obtaining an FO-augmented. Therefore, it holds that ρπ ≥GO′′ ρFO . The state-
ment follows from the transitivity of GO′′-emulation. ⊓⊔

B.5 Definition of Angel-based Security

Definition 33 (Restatement of Angel-based security). Let π and ϕ be
protocols, Γ an imaginary angel. π is said to emulate ϕ with Γ -angel-based
security, denoted by π ≥Γ -Angel ϕ, if

∀ AΓ ∃ SΓ ∀ ZΓ : Exec(π, AΓ , ZΓ) c≡ Exec(ϕ, SΓ , ZΓ) (23)

B.6 Restatement of Session-respecting Angels (Definition 16) and
Detailed Proof of Theorem 17

Definition 34 (Session-respecting Angel (formal)). Let Γ be an Angel and
{id1, id2, . . . } the set of all identifiers of all ITIs. We assume the identifiers to be
of the form idi = (pidi, sidi). For the formulation of this definition we explicitly
spell out the internal state of the Angel and consider the Angel to be a function

Γ : (X, state, id, µ) 7→ (state′, σ) (24)

with

state′ = Γs(X, state, id, µ) σ = Γσ(X, state, id, µ) (25)

whereby X ⊆ {id1, id2, . . . } denotes the set of identifiers of corrupted ITIs,
µ ∈ {0, 1}∗ the inquiry, σ ∈ {0, 1}∗ the answer, state ∈ {0, 1}∗ the previous state
before and state′ ∈ {0, 1}∗ the new state after invocation.

An Angel is called session-respecting if the following conditions hold:

1. The state is of the form state = (statesid1 , statesid2 , . . .)
2. ∀ X ⊆ {id1, id2, . . . }, ∀ state ∈ {0, 1}∗, ∀ id /∈ X, ∀ µ ∈ {0, 1}∗ :

Γ (X, state, id, µ) = (state, ⊥)
3. Let idi ∈ X be the identifier of a corrupted ITI and sidi the corresponding ses-

sion identifier, i. e. idi = (pidi, sidi). Then there exists (possibly unbounded)
TMs Γ ′

s and Γ ′
σ not depending on i nor sidi such that

state′ =
(
statesid1 , statesid2 , . . . , Γ ′

s(X|sidi
, statesidi

, id, µ), . . .
)

(26)
σ = Γ ′

σ(X|sidi
, statesidi

, id, µ) (27)

whereby X|sidi
⊆ X denotes the subset of corrupted ITIs with session identifier

sidi.

38 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

The definition basically ensures that the global state of an session-respecting
Angel can be split into independent components for each session. Especially, the
Angel is still allowed to share some state between invocations as long as the state
is only shared within the boundaries of the same session. This enables us to run
the same code of the Angel on different, independent ITIs—one for each session.

Before we give the formal proof of the first part of Theorem 17 we repeat the
statement here:

Theorem 17 (Relation between angels and shielded oracles).

1. Assume π ≥Γ -Angel F for an imaginary Angel Γ . If Γ is session-respecting,
then there exists a shielded oracle O such that π ≥FO FO.

2. Assume the existence of one-way functions. Then there exists a protocol ρ,
a functionality G and a shielded oracle O s. t. ρ ≥GO GO but no imaginary
angel Γ can be found such that ρ ≥Γ -Angel G holds.

Proof (Formal proof of claim 1). We consider the dummy adversary D only.
From the assumption π ≥Γ -Angel F we have

∃ SΓ
1 ∀ ZΓ : Exec(π, DΓ , ZΓ) ≡ Exec(F , SΓ

1 , ZΓ) (28)

We define the shielded oracle O and and a new simulator SΓ
2 that both internally

run an independent copy of SΓ
1 . The functionality FO is defined as usual. If S1

that is internal to O queries Γ , O runs the code of Γ itself, if S1 that is internal
to SΓ

2 queries Γ , S2 relays the messages between S1 and the Angel that is given
to S2.

The routing of messages between the ITIs Z, S2 and FO is as follows:

– If SΓ
2 receives a message m from the environment that SΓ

2 is supposed to sent
on behalf of a corrupted party and the sid does not belong to the challenge
protocol, then SΓ

2 runs its internal SΓ
1 on m and outputs whatever S1 would

output.
– If SΓ

2 receives a subroutine output m from an ideal functionality that is not
a subsidiary of the challenge session for an corrupted party and, then SΓ

2
runs its internal SΓ

1 on m and outputs whatever S1 would output.
– If SΓ

2 receives a message m from the environment that SΓ
2 is supposed to

sent on behalf of a corrupted party that is part of the challenge session, then
SΓ

2 forwards m to FO unmodified.
– If SΓ

2 receives a simulated message m from FO on behalf of a corrupted
party, then SΓ

2 forwards m to the environment unmodified.
– If FO receives a forwarded message m from SΓ

2 in the name a corrupted
party, then FO internally routes the input to O as usual, O runs its internal
copy of the original simulator SΓ

1 and outputs whatever S1 would output.
The internal output of O is handled by FO as usual.

– If FO internally receives a subroutine output of F that is intended for a
corrupted party, FO internally routes the output to O, O runs its internal
copy of the original simulator SΓ

1 and outputs whatever S1 would output.
The internal output of O is handled by FO as usual.

Concurrently composable security with shielded super-polynomial simulators 39

The principle idea is that O internally runs a copy of Γ for all queries that
are related to the SID of the challenge protocol, while the simulator SΓ

2 handles
all remaining queries in virtue of the global Angel.

We now have to argue that

Exec(F , SΓ
1 , ZΓ) ≡ Exec(FO, SΓ

2 , ZΓ) (29)

holds. The only difference between the both experiments is that in the left
experiment only one ITI exists that runs the code of the Angel Γ while in the
right experiment there are two ITIs that run Γ . Let µ(i), σ(i), state(i) for i ∈ N
denote the sequence of queries, responses and states of the Angel in the left
experiment such that

σ(i) = Γσ(state(i−1), µ(i)) (30)
state(i) = Γs(state(i−1), µ(i)) (31)

holds. W. l. o. g we do not explicitly spell out X and id here (cp. Eqs. (24)
and (25)).

Likewise let µ̃(i) and σ̃(i) denote the sequence of all queries and responses in
the right experiment. However, in the right experiment there are two Angels that
mutually answers the queries, hence we have distinct state vectors. Let s̃tate

(sid)

denote the state vector of the Angel inside the ITI that handles the session
sid. Accordingly s̃tate

(sid)
sid denotes the sid’th component of the state vector. We

denote by i(sid, j) the subsequence of query-response pairs for each SID and
henceforth call i the global index and j the local index with respect to session
sid. We stress that for every i there is exactly one unique pair (sid, j) such that
i = i(sid, j) and i(sid, j) is monotone in j.

We show by induction that the sequences of queries and responses in both
experiments are the same, i.e. that µ(i) = µ̃(i) and σ(i) = σ̃(i) holds for all i. To
this end we fix the random coins and assume that Z is determinstic. Along the
way, we also show

s̃tate
(sid,j)
sid = state(i)

sid (32)

for all i, j, sid under the restriction that i = i(sid, j). Please note that we do
not claim that the state vectors are completely equal but only on the relevant
(“diagonal”) component. In general s̃tate

(sid,j)
̸= state(i) holds but the state

vector is purely internal to the Angel and is never a part of the view of the
environment.

Base clause of induction (i = 1): Until the first query both experiments are
exactly identical. Hence, µ(1) = µ̃(1) and s̃tate

(sid,0)
sid = state(0)

sid holds for all sid.
The first claim of the base clause

σ(1) = Γ ′
σ(state(0)

sid , µ(1)) = Γ ′
σ(s̃tate

(sid,0)
sid , µ̃(1)) = σ̃(1) (33)

immediately follows. Let j, sid such that 1 = i = i(sid, j). Due to uniqueness
and monotonicity of the subsequences j = 1 follows. This shows the second part

40 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

of the base clause

state(1)
sid = Γ ′

s(state(0)
sid , µ(1)) = Γ ′

s(s̃tate
(sid,0)
sid , µ̃(1)) = s̃tate

(sid,1)
sid (34)

Induction step (i−1⇝ i): For all i′ < i the base clause of the induction holds,
hence both experiments are identical up to query i. Hence, we have µ(i) = µ̃(i).
Let i = i(sid, j) hold and define ı̄ := i(sid, j − 1), i. e. ı̄ is the global index of the
previous query for the same SID. Obviously ı̄ < i holds. Let i′ ∈ {ı̄, . . . , i}. Due
to the definition of a session-respecting Angel we know that in the left experiment
state(ı̄)

sid = state(ı̄+1)
sid = . . . = state(i)

sid follows, because the sid’th component of
the state vector is never updated in between. Moreover, we have the equality
s̃tate

(sid,j−1)
sid = state(ı̄)

sid between the left and the right experiment. By putting
everything together, we obtain

σ(i) = Γ ′
σ(state(i−1)

sid , µ(i)) = Γ ′
σ(state(ı̄)

sid , µ(i))

= Γ ′
σ(s̃tate

(sid,j−1)
sid , µ̃(i)) = σ̃(i) (35)

and

state(i)
sid = Γ ′

s(state(i−1)
sid , µ(i)) = Γ ′

s(state(ı̄)
sid , µ(i))

= Γ ′
s(s̃tate

(sid,j−1)
sid , µ̃(i)) = s̃tate

(sid,j)
sid (36)

This completes the induction proof and we have shown (29).
Please note, that we are still in an Angel-based setting but SΓ

2 does not need
Γ for the challenge protocol. In order to prove π ≥FO FO we need to show

∃ SΓ ∀ ZΓ : Exec(π, D, Z[FO]) ≡ Exec(FO, S, Z[FO]) (37)

and we claim that S = S2 suffices. Assume that (37) does not hold, i. e. there is
a Z that can distinguish between interacting with π and D or with FO and S2.
Then the same environment Z could also distinguish given direct access to Γ
instead of being augmented by FO and thus contradicts (29). ⊓⊔

Concurrently composable security with shielded super-polynomial simulators 41

C Illustrations

F

O
FO

honest
parties

adversary

Fig. 1. Appended functionality FO internally runs F and O and enforces the correct
routing of messages (cp. Definition 2)

Z

SP1 P2 P3

P′
1 P′

2 P′
3

FO

σ
challenge

protocol

augmented

protocol

Fig. 2. Execution of the real experiment with challenge protocol and one additionally
invoked FO-protocol (cp. Definition 3)

42 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

Z

ρ

FO FO

FO

FO

FO

challenge
session

(a) The challenge protocol ρ runs in
the FO-hybrid model

Z

ρ

Z ′

FO FO

FO

FO

FO

challenge
session

(b) Z ′ runs ρ internally

Z

ρ

Z ′

FO FO

π

π

π

(c) Successive replacement of
FO by π

Z

ρ

FO FO

π

π

π

(d) Final composition

Fig. 3. The composition operation of FO-hybrid protocols in presence of FO-augmented
environments (cp. proof of Theorem 9)

Z

SP1 P2 P3

F O
FO

(a) The super-polynomial power of O is
encapsulated inside of FO

Z

SP1 P2 P3

F O

S ′

(b) The super-polynomial simulator S ′ in-
ternally runs the code of O itself

Fig. 4. Oracle-security implies SPS-security (cp. Proposition 8)

Concurrently composable security with shielded super-polynomial simulators 43

Z[FO] resp. Z[FO′
]

DP1 P2 P3

π

Z[FO] resp. Z[FO′
]

SP1 P2 P3

F O
FO

Z[FO] resp. Z[FO′
]

ŜP′
1 P′

2 P′
3

DP1 P2 P3

M

π

Z[FO] resp. Z[FO′
]

DP1 P2 P3

F SO
O′FO′

c≡

≡

≡

Fig. 5. Derived oracle (cp. Lemma 14)

44 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

Z[GO′
]

DP1 P2 P3

GO′

SD

O O

O′G

Fig. 6. The functionality G with composed oracle O′

Concurrently composable security with shielded super-polynomial simulators 45

ΠS

FO
com

ΠS

FO
com

ΠS

FO
com

ΠS

FO
com

ΠS

FO
com

ρ
ρ

ρ
ρ

ρ

. . .

. . .

. . .

. . .

1 q(n)

(a) Hybrid H00: All sessions are ρΠS,FO
com

GO′

|com
GO′

|com
FO

com

FO
com

ΠS

FO
com

ΠS

FO
com

GO′

|comp
GO′

|comp ρ
ρ

ρ

. . .

. . .

. . .

. . .

1 i i + 1 i + 2 q(n)

(b) Hybrid Hi1: All sessions up to and including
i are ideal sessions, session i + 1 has a completely
ideal commit phase but still a real compute phase,
all session from i + 2 and above are ρΠS,FO

com

GO′

|com
GO′

|com GO′

|com ΠS

FO
com

ΠS

FO
com

GO′

|comp
GO′

|comp GO′

|comp
ρ

ρ

. . .

. . .

. . .

. . .

1 i i + 1 i + 2 q(n)

(c) Hybrid H(i+1)0: All sessions up to and includ-
ing i + 1 are ideal sessions, all session from i + 2
and above are ρΠS,FO

com

GO′

|com
GO′

|com GO′

|com
GO′

|com

GO′

|com

GO′

|comp
GO′

|comp GO′

|comp
GO′

|comp

GO′

|comp

. . .

. . .

. . .

. . .

1 q(n)

(d) Hybrid Hq(n)0: All sessions are ideal sessions

Fig. 7. The sequence of hybrids Hib (see proof of Theorem 26): The notation GO′

|comp

denotes the “compute phase” of an ideal G-session and GO′

|com denotes the “commit
phase” of an ideal G-session

46 B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, M. Nagel

GO′

|com
GO′

|com
FO

com

FO
com

ΠS

FO
com

ΠS

FO
com

GO′

|comp
GO′

|comp ρ
ρ

ρ

. . .

. . .

. . .

. . .

1 i∗ i∗ + 1 i∗ + 2 q(n)

(I) (II) (III)

(a) Hybrid h0: The hybrid h0 is identical to Hi∗1
(cp. Fig. 7b)

GO′

|com
GO′

|com
FO

com

FO
com

FO
com

FO
com

ΠS

FO
com

ΠS

FO
com

GO′

|comp
GO′

|comp ρ
ρ

ρ

ρ

. . .

. . .

. . .

. . .

. . .

. . .

1 i∗ − j∗
i∗ −

j∗ + 1 i∗ + 1 i∗ + 2 q(n)

(I) (II) (III)

(b) Hybrid hj∗ : The substitution of ρ by G has been reverted
for sessions k ∈ {i∗ − j∗ + 1, . . . , i∗ + 1} (marked as range
(II))

Fig. 8. The sequence of hybrids hj (see proof of Theorem 26): The substitution conducted
by the hybrids H00 through Hi∗,1 is partially reverted starting at session i∗ and going
j∗ sessions backward. This results in three ranges: (I) These session remain purely ideal,
(II) sessions that have been idealized before and are now reverted, (III) sessions that
are still real and never have been modified

	Concurrently Composable Security With Shielded Super-polynomial Simulators

