
Utrecht University

Cryptographic decoding of the Leech
lattice

Master of Science thesis

Alex van Poppelen

Supervised by

Dr. Léo Ducas
Dr. Gerard Tel

September 20, 2016

Contents

1 Introduction 3
1.1 Post-quantum cryptography . 3
1.2 Lattice-based cryptography . 4
1.3 Applying coding theory . 5

2 Preliminaries 7
2.1 Notation . 7
2.2 Error-correcting codes . 7

2.2.1 Definitions . 7
2.2.2 Examples . 8

2.3 Lattices . 8
2.3.1 Definitions . 9
2.3.2 Examples . 11
2.3.3 Lattice constructions . 12
2.3.4 Computational problems . 13

2.4 Lattice decoding . 14
2.4.1 Decoding direct sums . 14
2.4.2 Decoding unions of cosets . 15
2.4.3 Decoding glue with parity . 16
2.4.4 Applying decoding strategies to BDD 17

2.5 Public key cryptography . 18

3 The Leech lattice 20
3.1 Construction . 20
3.2 Properties . 21

3.2.1 Sphere packing . 21
3.2.2 Relationship to the Golay Code . 21
3.2.3 Shape . 22
3.2.4 Symmetries . 22
3.2.5 The Niemeier lattices . 23

3.3 Integer Leech lattice . 24

1

4 Decoding the Leech lattice 26
4.1 Advanced construction . 26

4.1.1 Technical construction . 27
4.1.2 Glue theory construction . 27

4.2 Maximum likelihood decoding . 29
4.2.1 Technical description . 30
4.2.2 Glue theory description . 31

4.3 Bounded distance decoding . 32

5 Learning with errors 34
5.1 Foundations . 34
5.2 Cryptosystem . 35
5.3 Security . 36
5.4 Encoding . 37

5.4.1 Current approach . 37
5.4.2 Our Leech lattice approach . 39

5.5 Attacks . 42
5.6 Parameter selection . 43

5.6.1 Encryption schemes . 44
5.6.2 Key exchange . 45
5.6.3 Key exchange for 240 bits . 46

6 Implementation 48
6.1 Requirements . 48

6.1.1 Assumptions . 49
6.2 Making the algorithm constant-time . 50
6.3 Constant-time sorting and minimization . 51
6.4 Implementations . 52
6.5 Correctness . 53
6.6 Performance . 54

7 Conclusion 56
7.1 Results . 56
7.2 Further research . 57

2

Chapter 1

Introduction

Lattice-based cryptography is an exciting field of research that promises to be the solution
to the quantum crisis facing modern cryptography. It is no secret that quantum computing
threatens the cryptographic building blocks in widespread use today, through quantum al-
gorithms that are much faster than their classical counterparts. While the field of quantum
computing has existed since the 1980s, the practical realization of quantum computation has
remained firmly beyond technical reach.

However, small computers utilizing quantum effects have been built in recent years.
Research carries on, and advances continue to be made. It is still unclear if or when large-
scale quantum computers will become a reality. For many, this isn’t a major concern. For
others, who have bet large amounts on the difficulty of certain problems, it is a very pressing
concern.

1.1 Post-quantum cryptography

The effects of quantum computing on the various cryptographic primitives in use today
varies. For symmetric encryption algorithms and message authentication codes (MACs), the
effects are moderate and well understood. Grover’s algorithm [Gro96] is a probabilistic search
algorithm that finds the unique input to a black box function using only O(

√
n) evaluations

of the function. This result was proven to be asymptotically optimal in [BBBV97]. It is
therefore believed that doubling the size of the secret key will be sufficient to protect against
quantum attacks. Many popular primitives in use today like AES already support these
larger key sizes.

For asymmetric primitives, the effects are more dire. It is well known that Shor’s algo-
rithm [Sho94] solves the integer factorization and discrete logarithm problems in polynomial
time. For discrete logarithms over elliptic curve groups, the algorithm has also been shown
to run in polynomial time [PZ03]. The primitives in widespread use today, like RSA and
Diffie-Hellman, are based on these number-theoretic problems. They are therefore essentially
broken when faced with a quantum adversary.

As asymmetric primitives are crucial building blocks in any cryptosystem, the need for

3

mathematical problems that are hard in both the classical and quantum sense arises. Cryp-
tographers have found several interesting candidates, including some based on lattices. The
advent of a real, large-scale quantum computer may seem far away to some. However, even
if this is the case, there are several reasons why rapid deployment of post-quantum cryptog-
raphy is crucial, and pressing.

Maturity of cryptanalysis. The cryptanalysis of post-quantum cryptographic schemes
(including lattice-based schemes) is far less mature than that of those currently in use, based
on the hardness of integer factorization and the discrete logarithm. Even if the theoretical
foundations are strong, only time will tell whether weaknesses exist and can be exploited.
Similarly, the implementation of such a scheme needs time to mature. There are many ways
to break a system, and weak cryptography is only one of them. Implementations need time
and testing to reveal potentional side channels and incorrect application of the theory.

Forward secrecy. The notion of forward secrecy is an important aspect in secure commu-
nication such as TLS. It is designed to protect against an adversary who records and stores
encrypted communications, intending to compromise the long-term secret key or password
at a later date. By using forward secrecy (realized through the use of ephemeral keys),
past communications are protected against future compromises. However, it does not and
cannot protect against cryptographic protocols that are broken on a future date. Therefore,
deployment of post-quantum key exchange primitives today is crucial, in order for long-term
security of documents and communications.

These concerns have prompted government and industry alike to take notice [Dir15, Ces15].
Many government agencies and standards bodies have announced their plans for a transition
to post-quantum cryptography [Dir15, CJL+16, ABB+15].

1.2 Lattice-based cryptography

Lattice-based cryptography is one of the most promising candidates for post-quantum cryp-
tography. Besides the conjectured security against quantum attacks, lattice-based schemes
tend to be algorithmically simple and highly parallelizable. Additionally, hard lattice prob-
lems offer a much broader diversity of cryptographic primitives. Examples of this include
fully homomorphic encryption [Gen09], which allows computations to be carried out on
encrypted data. When decrypted, the plaintext matches the results as if they had been
performed directly on the plaintext.

Lastly, schemes constructed from lattices typically enjoy a worst-case hardness guarantee
[Ajt96, Reg09, BLP+13]. This means, informally, that they can be proven to be infeasible
to break—provided that at least some instances of an underlying problem are intractable.
This is a very strong security guarantee. The combination of all of these properties make
lattice-based cryptography very attractive for adoption.

4

Of the many different theoretical primitives available, this thesis focuses on encryption
and key exchange schemes based on the Learning With Errors (LWE) problem, and a more
efficient variant called Ring Learning With Errors (R-LWE). The previously mentioned prob-
lem of forward secrecy has prompted the recent proposal and implementation of a number
of key exchange schemes based on R-LWE [Pei14, ZZD+15, BCNS15, ADPS15] and LWE
[DXL12, BCD+16].

The implementation of R-LWE schemes conservatively reaching acceptable and even de-
manding security requirements have been shown to achieve performance comparable to clas-
sical ECDHE software [BCNS15]. Although less efficient, the LWE scheme described in
[BCD+16] is not far behind. In terms of bandwidth, however, the proposed schemes perform
more poorly. The handshake size for R-LWE schemes is approximately 4× (and up) that of
ECDHE, while the LWE scheme is more than 18× as large (all authenticated by ECDSA)
[BCD+16].

While this is acceptable in most circumstances, especially considering the increased se-
curity guarantees afforded by these schemes, it is not ideal. When considering a protocol
such as TLS, a large handshake size increases the latency observed when establishing a con-
nection. This thesis looks at the possibility of reducing the size of the exchange, without
compromising the security guarantees.

1.3 Applying coding theory

In an LWE key exchange or encryption scheme, the relevant bits are encoded and hidden
in the ciphertext being transferred. This hiding is done by applying error to each element.
When the ciphertext is reconciled or decrypted, there is still error masking the encoded bits.
The decoding algorithm must decode correctly, despite this error, which is only possible
if the error is small enough. Typically, this is the case with overwhelming probability, and
controlled by the parameters of the problem. Note that the manner of encoding and decoding
has no influence on the security of the scheme. The security of LWE is determined exclusively
by the problem parameters.

In most schemes so far (e.g. [BCD+16]), the encoding and decoding is done on a per
coordinate basis. For the recommended parameters, four bits are extracted from each co-
ordinate in Zq by rounding to specific intervals. This is equivalent to decoding the trivial
kZk/4 lattice, where 4k is the number of bits required by the key exchange. The integer
lattice Zn decreases in density as the dimension increases. Even for very small dimensions,
there exist much denser lattices that maintain the same minimal distance between points.
It is clear that this encoding is far from optimal, and it should be possible to pack more bits
into a smaller number of coordinates, thereby decreasing the size of the ciphertext.

This thesis examines one such lattice, the 24-dimensional Leech lattice. We review the
properties of the Leech lattice, and consider the bandwidth improvements it could offer over
the current solution. By implementing a cryptographically secure decoder for the Leech
lattice, we also investigate the feasibility of such an implementation, and the effects on
efficiency in the context of an encryption scheme.

5

Chapter 2 recalls the necessary coding theory and lattice background. The third chapter
describes the Leech lattice, its place among lattices, and the properties that make it inter-
esting for our application. Chapter 4 discusses the construction of the Leech lattice and
the resulting types of decoders available. Chapter 5 describes the LWE problem, a simple
encryption scheme and its security, and compares the standard integer lattice encoding to
the Leech lattice encoding. It also compares parameter sets for both types of encoding,
under similar security guarantees. Chapter 6 documents the timing safe implementation of
a Leech lattice decoder, compares it to an unsafe version, and gives benchmarks. Finally,
Chapter 7 concludes with a discussion on the practicality and efficacy of the use of Leech
lattice encoding for LWE key exchange and encryption schemes.

6

Chapter 2

Preliminaries

2.1 Notation

In this document, we use bold lower-case letters such as x to denote column vectors, and the
transpose xt for row vectors. The symbol 0 will refer to the zero vector in the context-defined
dimension. Bold upper-case letters denote matrices. Typically, the letter will associate the
matrix with its ordered set of column vectors, e.g. A and aj.

For each non-negative integer n, we let Rn denote the Euclidean vector space with the
canonical inner product defined by

〈x,y〉 =
n∑
i=0

xiyi

where x,y ∈ Rn. For z ∈ Rn, we write the Euclidean norm ‖z‖ =
√
〈z, z〉.

For a distribution χ over a set S, x
χ← S denotes sampling x ∈ S according to χ.

Similarly, vectors and matrices can be generated by sampling each coordinate individually,
in an independent manner. This is denoted for vectors as x

χ← Sn where x ∈ Sn, and for
matrices as X

χ← Sn×m where X ∈ Sn×m. The uniform distribution is denoted by U .

2.2 Error-correcting codes

Error-correcting codes are closely related to lattices. Codes are discrete inside a discrete
space, while lattices are discrete inside a continuous space—a natural generalization. Algo-
rithmic advances in relation to codes often lead to similar advances in their lattice counter-
parts. A basic understanding of coding theory is summarized here for the reader.

2.2.1 Definitions

Error-correcting codes solve the problem of data transmission over noisy or unreliable com-
munication channels. The sender will use redundancy to encode messages, allowing the

7

receiver to detect and/or correct a limited number of errors. We begin with the definition
of a code, as given in [CS93].

Definition 2.1 (Q-ary code). A q-ary code is a subset of Fnq , where Fq is the Galois field of
order q and q is a prime or prime-power.

Typically, we will refer to a binary code, for which q = 2. A code is only useful if
its codewords are easily distinguished from each other. In other words, they must be well
separated by some metric. For two vectors u,v ∈ Fnq , we define the Hamming distance to be
the number of coordinates for which they differ. The minimal distance denotes the minimal
Hamming distance between any two codewords in a code.

Definition 2.2 (Linear code). A code C is linear if 0 ∈ C, and −c1, c1 + c2 ∈ C for every
c1, c2 ∈ C.

In other words, the linear code C is a linear subspace of Fnq . The dimension k of the linear
code is equal to the dimension of this subspace. Trivially, it can be seen that there are qk

codewords in C.
A linear code of length n, dimension k, and minimal distance d is referred to as a [n, k, d]

code.
For efficiency reasons, it is desirable to find error-correcting codes with maximal k, given

n and d. This is called the error-correcting code problem for linear codes, and is in general
unsolved.

2.2.2 Examples

The following are simple examples of codes that exist for every n ≥ 2 and prime or prime-
power q.

• The trivial zero code [n, 0, n] of length n contains only the codeword 0.

• The universe code [n, n, 1] is equal to Fnq .

• The repetition code [n, 1, n] contains all codewords c = (a, . . . , a) where a ∈ Fq.

• The zero-sum code [n, n−1, 2] contains codewords c = (c1, . . . , cn) such that
∑

i ci = 0.
In the context of q = 2, this is more commonly referred to as the even weight or even
parity code, since the last bit essentially acts as a parity bit.

2.3 Lattices

Some basic knowledge of lattices, associated properties, and computational problems is re-
quired before proceeding to specific algorithms and integration into cryptosystems. This
theory is refreshed here.

8

2.3.1 Definitions

Before we can proceed to the definitions of a lattice and its properties, it is first necessary
to formalize the concept of a discrete subset.

Definition 2.3 (Discrete subset). A subset S of Rn is discrete if for each x ∈ S there exists
a positive real number ε such that the only vector y ∈ S with ‖x− y‖ < ε is given by y = x.

We can now formally define a lattice.

Definition 2.4 (Lattice). A lattice is an additive subgroup L of a finite dimensional Eu-
clidean vector space Rn such that L is discrete as a subset of Rn.

It can be shown that a subset L of a Euclidean vector space is a lattice if and only if
there exists a basis of linearly independent vectors b1, . . . ,bn ∈ Rn such that

L = L(B) = B · Zn =

{
n∑
i=1

zibi : zi ∈ Z

}
. (2.1)

The integer n is called the rank of L. Note that the basis B is not unique. This can be
shown by noting that for any unimodular matrix U ∈ Zn×n, U · Zn = Zn. Therefore B ·U
is also a basis of L(B), using (2.1).

The region defined by

P(B) = θ1b1 + · · ·+ θnbn (0 ≤ θi < 1)

is called a fundamental parallelotope for L, or a building block that when tiled, fills the
entire space with one lattice point per copy. Since the choice of basis is free, there are many
different fundamental parallelotopes. However, the volume of this region is constant for L.
This volume is the called the determinant of L, and is easily calculated as

detL =
√
| det BtB|.

Since lattices can be scaled arbitrarily by multiplying them by a constant, it is helpful
to define some kind of standard representative of a lattice. We begin with a measure of how
close together the points of a lattice are.

Definition 2.5 (Minimal distance). A shortest nonzero lattice vector defines the minimal
distance of a lattice L:

λ1(L) := min
v∈L\{0}

‖v‖.

The minimal distance is also often referred to as the minimal norm. We can use this
measure to define a density on the lattice, combined with the volume of a fundamental
parallelotope (recall that the fundamental parallelotope contains exactly one lattice point).
A suitably scaled n dimensional lattice L of minimal distance 2 (e.g. the set of largest
identical non-overlapping spheres centered on each lattice point have radius 1) has density
Vn/ detL, where Vn is the volume of an n-dimensional sphere of radius 1. This value is not
normalized, meaning it is not preserved under scalar multiplication of L. This leads us to
the definition of center density.

9

Definition 2.6 (Center density). The center density δ of a lattice L is given by

δ =

(
λ1
2

)2
1

detL
.

If λ1 = 2, the center density can be interpreted as the average number of lattice points
per unit volume, since it is simply the inverse of the volume of a fundamental parallelotope.
The center density makes it easy to compare densities of lattices. We will now define several
more properties and associated lattices that will be useful in future sections.

Definition 2.7 (Dual lattice). Given an n-dimensional lattice L, the dual lattice L∗ is
defined as

L∗ = {x ∈ Rn : 〈x,u〉 ∈ Z for all u ∈ L} .

An integral lattice is one for which the inner product of any two lattice vectors is integral.
Trivially, it can be seen that a lattice L is integral if and only if L ⊆ L∗. When L = L∗
(equivalently detL = 1), it is termed self-dual or unimodular.

If one lattice L1 can be obtained from another L2 by a rotation, reflection, and/or scaling,
we say that the lattices are equivalent, and write L1

∼= L2.

Along with fundamental parallelotopes, there is another important way to partition the
space spanned by an n dimensional lattice L. Consider a point p ∈ L. The set of all points
of the underlying space that are closer to p than any other point in L is called the Voronoi
cell of p.

Definition 2.8 (Voronoi cell). For any lattice L ⊂ Rn, the Voronoi cell V associated with
a point p ∈ L is defined to be the closed set

V (p) =
{
x ∈ Rn : ‖x− p‖ ≤ ‖x− q‖ ∀q ∈ L \ {p}

}
.

Only finitely many points contribute to the shape of the Voronoi cell. These points are
called Voronoi relevant vectors.

Lattices are often studied for their packing properties. The sphere packing problem tries
to find a packing in n dimensions that achieves the highest possible density ∆, defined as
the proportion of space taken up by spheres. If the spheres have a radius of 1 (e.g. λ1 = 2),
then

δ = (detL)−1.

Aptly named, the center density can therefore be interpreted as the number of centers per
unit volume, and is therefore ideally suited to comparing different sphere packings.

The sphere packing problem remains unsolved in general, and optimal solutions have
been proven in only the first three dimensions. Optimal packings are not necessarily lattice

10

packings. Nonetheless, many lattices are conjectured (or proven, as for n = 1, 2 and most
likely 3, see [Hal05]) to give optimal packings in their respective dimensions.

The best lattice packings often have surprising connections to other areas in mathematics,
see [CS93] for a comprehensive summary.

2.3.2 Examples

The most trivial example of a lattice is the set of integers in one dimension, Z. This can
be extended to the n-dimensional unimodular integer lattice Zn. The center density is
δ = 2−n, so the integer lattice becomes an increasingly less efficient sphere packing in higher
dimensions. Besides Zn, there are several other important sequences of lattices, called the
root lattices.

The root lattice An is defined for n ≥ 1 as

An =
{

(x0, x1, . . . , xn) ∈ Zn+1 : x0 + · · ·+ xn = 0
}
.

Obviously, A1
∼= Z. A2 is equivalent to the well-known unimodular hexagonal lattice,

and A3 is equivalent to the face-centered cubic lattice, the best packings possible in 2 and 3
dimensions respectively.

The root lattice Dn is known as the checkerboard lattice, and is defined for n ≥ 2 as

Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn ≡ 0 mod 2} .

D2 is simply a scaled rotation of Z2. D3
∼= A3 is the face-centered cubic lattice.

The deep holes of a lattice are defined as the points in space furthest away from any
lattice point, and this distance is called the covering radius. For Dn, the covering radius
increases with n. For n = 8, the covering radius happens to equal the minimal distance,
meaning we can actually slide another copy of D8 into space to coincide with the deep holes.
This doubles the density of the lattice without reducing the minimal distance! This concept
can be generalized for n ≥ 8, and is defined as follows:

D+
n = Dn ∪

(
1

2
, . . . ,

1

2

)
+Dn.

However, the 8 dimensional case is especially important because of the equality between
the covering radius and minimal distance. D+

8 is known as E8, another root lattice.
E8 is a very remarkable even unimodular lattice in 8 dimensions, with unique density

and minimal norm [CS93]. Its existance has been known since the 1800s, and cross-sections
of E8 give rise to the other root lattices E7 and E6.

Together, the root lattices A1, A2, D3, D4, D5, E6, E7, and E8 give the densest packings
known in the first 8 dimensions. They are also proven to be optimal among lattice packings.
All root lattices have the property that the minimal vectors are the only Voronoi relevant
vectors [CS82c]. This is not necessarily the case for other lattices.

11

2.3.3 Lattice constructions

Glue theory. An n-dimensional integral lattice L can sometimes be described in terms of
component integral lattices L1, . . . ,Lk of total dimension n, that have been “glued” together.
Consider such a lattice L containing the sublattice L′ which is the direct sum

L′ = L1 ⊕ · · · ⊕ Lk.

where the operator ⊕ denotes the direct sum.
Any vector y ∈ L can be written as

⊕
i yi where each yi is in the subspace spanned by

Li. Note that yi may or may not be in Li. We call yi a glue vector of Li. Since the inner
product of y with any vector in Li is integral (because L is integral), it follows that the inner
product of yi with that vector is integral. Thus yi is in the dual lattice L∗i . Since adding any
vector in Li to yi results in a vector in L, it is helpful to choose a standard representative
glue vector gi for each coset. Therefore L∗i /Li is referred to as the glue group for Li, with
order equal to (detLi)2 [CS93].

The lattice L can be obtained from L′ and a subset of vectors from the group

G =

{
g : g =

∑
i

gi,gi ∈ L∗i /Li
}

with the additional restrictions that each g ∈ G has an integral inner product with every
other vector in G, and that G is closed under addition modulo L′.

Glue theory is an incredibly powerful tool for lattices with a high degree of structure.
Being able to formulate lattices using lower dimensional component lattices forms the ba-
sis for efficient decoding algorithms and greatly contributes to the understanding of large
structured lattices.

Constructions from codes. Lattices are closely related to error-correcting codes. An
efficient error-correcting code can be used to construct a dense sphere packing. The following
constructions have been shown to give valid sphere packings [LS71, Slo77, CS93]. They have
been specified here over linear codes, to guarantee the construction of a lattice as opposed
to a general sphere packing.

Definition 2.9 (Construction A). Let C be a [n, k, d] linear binary code. A vector y =
(y1, . . . , yn) is a lattice vector if and only if y is congruent (modulo 2) to a codeword of C.

Definition 2.10 (Construction B). Let C be a [n, k, d] linear binary code with the property
that the weight of each codeword is even. A vector y = (y1, . . . , yn) is a lattice vector if and
only if y is congruent (modulo 2) to a codeword of C, and

∑
i yi ≡ 0 mod 4.

The center density of the resulting packings can be shown to be bounded by some function
of n (see [CS93]). Conway and Sloane remark that much denser packings have been found
for large n, meaning these constructions are not useful for finding dense sphere packings in
higher dimensions, regardless of the codes used.

12

2.3.4 Computational problems

Of the large number of computational problems on lattices, there are several of particular
relevance to this thesis. We will define them now.

Definition 2.11 (Shortest Vector Problem (SVP)). Given an arbitrary basis B and norm
‖ · ‖ for an n-dimensional lattice L = L(B), find a shortest non-zero vector v ∈ L, as defined
by the norm. In other words, ‖v‖ = λ1(L).

The Shortest Vector Problem has been studied intensively, and appears to be intractable
in general, even including quantum algorithms. A lot of attention has been given to the
approximation version of SVP, which is particularly applicable to cryptography. In the γ-
approximation Shortest Vector Problem (SVPγ, this means finding a lattice vector at distance
of at most γλ1(L). Variants of this approximate problem are typically used to prove the
security of cryptosystems.

Next we define two problems more typically used in coding theory.

Definition 2.12 (Closest Vector Problem (CVP)). Given an arbitrary basis B, norm ‖ · ‖
for an n-dimensional lattice L = L(B) and some target point t ∈ Rn, find a lattice vector v
such that v := miny∈L ‖y − t‖.

In the context of coding, the Closest Vector Problem is often referred to as maximum
likelihood decoding. If we consider the points in a lattice L as codewords, an algorithm that
solves CVP for L can be used as a decoder. This algorithm guarantees to decode every point
in the Voronoi cell (excluding the border) of a codeword to the codeword itself. Points on the
border between one or more Voronoi cells may be decoded to any one of those codewords.

Definition 2.13 (Bounded Distance Decoding Problem (BDD)). Given an arbitrary basis
B for an n-dimensional lattice L = L(B) and a target point t ∈ Rn with the guarantee that
∃v ∈ L such that ‖v − t‖ < d = λ1(L)/2, find v.

Note that v is, by definition, unique. An algorithm that solves BDD on a lattice L
can also be used as a decoder. However, it is only guaranteed to send points within an
n-dimensional sphere of radius λ1/2 (excluding the border) of a codeword to that codeword.
Depending on the center density of L, this may leave a lot of space for which correct decoding
cannot be guaranteed.

Obviously, CVP is at least as hard as BDD. A reduction from BDD to CVP is trivial,
by passing valid t and B for BDD to an algorithm for CVP. This algorithm will necessarily
decode to the unique lattice vector within distance d of t, since it is uniquely closest to t.

Like SVP, the above two problems are hard in general. However, for some select small,
well known lattices with a high degree of structure, fast algorithms exist. While for coding
purposes CVP algorithms are most desirable, their BDD counterparts may be significantly
more efficient (e.g. compare [Var95] to [VB93]). In some settings, a small loss in coding gain
is acceptable in order to drastically increase efficiency.

13

2.4 Lattice decoding

Remark. We have given two different definitions of decoding, and have shown the stronger
properties of CVP decoding. From now on, ”decoding“ will therefore refer to CVP (or max-
imum likelihood decoding), unless otherwise specified. The following strategies are specified
on the CVP problem, but can be applied to BDD problems as well (see subsection 2.4.4).

The more trivial lattices are very easy to decode. For example, let us take the integer
lattice Zn. Decoding a point t ∈ Rn to Zn is simply a matter of rounding each coordinate in-
dividually, meaning any point t can be decoded in linear time. Efficient decoding algorithms
exist for all the root lattices and their duals [CS82a, MCSQ08].

Larger lattices are more difficult, and no general, efficient algorithm is known. However,
the various constructions given in section 2.3.3 can provide the basis for a general decoding
strategy. In general, one tries to find a sublattice (often a direct sum of root lattices or their
duals) of smallest index for which a fast algorithm exists [CS86]. Sometimes, the specific
structure of the glue group can also be exploited, as will be demonstrated in this section.

In the remainder of this section, it is assumed we are decoding a point t ∈ Rn. Before
describing the strategies, it is helpful to first define the closest vector more generally, on
discrete sets instead of only lattices.

Definition 2.14 (Closest vector). For any discrete set S ⊂ Rn we denote CVt(S) a closest
point p ∈ S from the target t ∈ Rn. In the case of equality, CVt(S) is chosen arbitrarily
from the closest points.

Since every lattice is a discrete set, this definition can be used for both sublattices and
their cosets. The definition of the closest vector admits the following identity on discrete
sets, called the union identity.

Lemma 2.1 (Union identity). For any discrete set S ∈ Rn, we have that

CVt(S) = CVt({CVt(Si) : i = 1, . . . , k}) where S =
k⋃
i=1

Si.

The proof follows easily by noting that a closest vector in S must lie in some subset Si,
and is by definition as close or closer than the closest vectors from all the other subsets. We
are now in a position to describe some general decoding strategies for lattices.

2.4.1 Decoding direct sums

Direct sums are trivially decoded when efficient algorithms exist for each of the component
lattices. To decode a direct sum decomposition L = L1 ⊕ · · · ⊕ Lk one simply decodes each
orthogonal projection of t onto the space spanned by each component lattice, and sums the
results. Formally,

CVt(L) =
k⊕
i=1

CVπi(t)(Li) (2.2)

14

where πi denotes the orthogonal projection onto the space spanned by Li. This algorithm
admits the following bound on the cost of decoding.

Lemma 2.2 (Direct sum). For a direct sum decomposition L = L1⊕· · ·⊕Lk, the cost C(L)
of calculating CVt(L) is bounded by

∑
iC(Li) + ci, where ci is the cost of the projection πi.

In general, we choose the basis of L such that the spaces spanned by the component
lattices split along the coordinates. In this case, the cost of a projection is essentially free.

2.4.2 Decoding unions of cosets

An efficient decoding algorithm for a lattice L′ can easily be applied to a coset g + L′. If
CVt(L′) is the closest point of L′ to t, then

CVt(g + L′) = g + CVt−g(L′). (2.3)

For a lattice L with glue group G = L/L′, decoding t is therefore a matter of computing the
closest vector in each coset using a decoder for L′, and applying the union identity. Formally,

CVt(L) = CVt({g + CVt−g(L′) : g ∈ G}). (2.4)

Lemma 2.3 (Sublattice). For a lattice L with sublattice L′ of index |G|, the cost C(L) of
calculating CVt(L) is bounded by |G|(1 + C(L′)).

This strategy is frequently combined with the previous approach, where the sublattice
L′ in question is a direct sum of component lattices. We get

CVt(L) = CVt({g +
k⊕
i=1

CVπi(t−g)(Li) : g ∈ G}). (2.5)

There is often redundancy when decoding a component lattice Li for different glue vectors ga
and gb. If πi(ga) = πi(gb), the decoding needs only be done once. In this way, the complexity
of the overall decoder can be greatly reduced.

Lemma 2.4 (Direct sum sublattice). For a lattice L, with a sublattice L′ = L1 ⊕ · · · ⊕ Lk,
the cost C(L) of calculating CVt(L) is bounded by

∑
i |G|+|Gi|C(Li)+ci, where Gi is defined

as πi(G).

The term |G| is inside the sum due to the need to perform i − 1 additions to construct
the distance metric for every glue vector in G, combined with |G| − 1 comparisons in order
to minimize over the glue group. With additional structure in G, it is sometimes possible to
optimize this further.

15

2.4.3 Decoding glue with parity

We now describe a technique to decode lattices consisting of a sublattice with glue groups of
a specific parity structure. While this technique is not new, and is already used in existing
lattice decoders (e.g. [VB93]), to our knowledge this is the first time it has been described
in the context of glue theory.

We write the lattice L as
L = G+ (L1 ⊕ · · · ⊕ Lk)

with projected glue groups G1, . . . , Gk. The component lattices Li may be decoded efficiently.
We assume that we have a parity group P , and that each Gi admits an injection in P : Gi '
Pi ⊂ P . We will use the isomorphism µi : Gi 7→ Pi.

We assume the group G is the direct sum of the component glue groups, along with a
parity condition. Formally,

G =
{

(g1, . . . ,gk) ∈ G1 ⊕ · · · ⊕Gk such that
∑
i

µi(gi) = 0
}
.

This parity condition can be exploited, drastically reducing the amount of decoding to be
done.

First, πi(t) is decoded in g +Li for each i and g ∈ Gi. This can be done easily using the
strategy in Section 2.4.2. Let ĝi be the closest vector to πi(t) in Gi+Li. By direct summing
all ĝi, one obtains the closest vector ĝ in the superlattice L̂ = (G1⊕· · ·⊕Gk)+(L1⊕· · ·⊕Lk).

Lemma 2.5 (Superlattice). For the lattice L, with a sublattice L′ = L1 ⊕ · · · ⊕ Lk and glue
group G = G1⊕· · ·⊕Gk, the cost C(L) of calculating CVt(L) is bounded by

∑
i |Gi|C(Li)+ci.

We call the parity of the closest vector in L̂ the syndrome s ∈ P . If s is equal to zero,
then the closest vector in L̂ satisfies the parity condition. It is therefore also in L, and is
obviously the closest vector to t. If s 6= 0, one has to explore the variation around the
solution and force it into L. Since every g + Li for g ∈ Gi has already been decoded, most
of the work has been done. What remains is finding the best combination of alternative
cosets for some set of Li, effecting a change of s to the parity, that minimizes the increase
in distance to t.

The number of combinations of alternative cosets effecting a change equal to the syndrome
s may be very large. However, it is generally possible to restrict oneself to a set of minimal
combinations that are guaranteed to be better than any combinations outside this set. The
strategies to do this vary with the nature of P , and are beyond the scope of this thesis. We
will instead assume some number n of combinations of cosets leading to a change of s, which
is always smaller than |P |k.

Having such a combination of alternative cosets, it remains to find the optimal set of
coordinates i to apply these alternative cosets. First, a penalty is calculated for each gi ∈
Gi \ {ĝi}, where the penalty is the increase in distance to πi(t), compared to the distance of
ĝi to πi(t). The set of all penalties can be partitioned according to the change q ∈ P they
effect on the parity, as compared to ĝ.

16

Finding the optimal coordinates for these penalties is equivalent to the assignment prob-
lem, or alternatively finding a minimum weight perfect matching in a weighted complete
bipartite graph (the graph is made complete by using dummy vertices). This problem is
well known, and can be solved in polynomial time using the Hungarian algorithm [Mun57].
However, for small orders of P , it is generally faster to sort each list of penalties correspond-
ing to a particular change on the parity, and enumerate the combinations of best available
penalties in unique coordinates. It is this sorting and enumeration method that is used in
the decoder described in Section 3.3.

Having minimized the cumulative penalty in distance to t, while changing the parity to
that of a vector in L, we have forced the closest vector in L̂ into the lattice L. This is
necessarily the closest vector to t in L.

Lemma 2.6 (Glue with parity). Consider the lattice L, with a sublattice L′ = L1⊕· · ·⊕Lk
and glue group G = {(g1, . . . ,gk) ∈ G1 ⊕ · · · ⊕ Gk such that

∑
µi(gi) = p} where each

Gi admits an injection in a parity group P , such that µi : Gi 7→ Pi, and p ∈ P . Let n
be the maximal number of minimal constructions of an element p. Then the cost C(L) of
calculating CVt(L) is bounded by

C(L) ≤ nk4Chun +
∑
i

|Gi|C(Li) + ci

where Chun is defined as the overhead of the Hungarian algorithm.

The first term comes from the number of ways to combine cosets to effect a change in
parity of s, and the use of the Hungarian algorithm (running in O(k3) to solve the optimal
assignment of penalties to coordinates. The extra k comes from the need to sum the penalties
before being able compare different combinations. The last term corresponds to lemma 2.5.

This technique is heavily dependent on the order of P . For small |P |, it can be very
efficient, especially if it eliminates the need for the Hungarian algorithm. However, increasing
the order of P drastically increases the number of ways to construct s, thereby greatly
increasing the number of penalty combinations that need to be compared.

2.4.4 Applying decoding strategies to BDD

The BDD problem is essentially the same as the CVP problem, with an extra guarantee on
the solution. We will now examine whether BDD algorithms can be broken down in the
same manner as CVP algorithms in the previous section.

Let BDDt(L) be the vector in L returned by a BDD algorithm given t. For t sufficiently
close to L, we have that BDDt(L) = CVt(L). Otherwise, we assume that the algorithm
returns an arbitrary vector in L.

Lemma 2.7 (Bounded distance direct sum). Let L = L1 ⊕ · · · ⊕ Lk. Given BDD decoders
for all Li, it holds that

BDDt(L) =
k⊕
i=1

BDDπi(t)(Li).

17

Proof. The direct sum L = L1 ⊕ · · · ⊕ Lk necessarily admits the following relation:

λ1(L) = min{λ1(Li)}.

Therefore, given a target t for which ∃v ∈ L such that ‖v − t‖ < λ1(L)/2, we have that

‖πi(v)− πi(t)‖ < λ1(L)/2 ≤ λ1(Li)/2.

A BDD algorithm for Li and target πi(t) will necessarily yield πi(v), indicating that the
algorithm is valid for BDD decoders.

Lemma 2.8 (Bounded distance sublattice). Let L have glue group G = L/L′. Given a BDD
decoder for L′, it holds that

BDDt(L) = BDDt({g + BDDt−g(L′) : g ∈ G}).

Proof. We can show a similar bound on the minimal vector of L. Trivially, λ1(L) ≤ λ1(L′).
We are guaranteed that there is a unique v ∈ L such that ‖v− t‖ < λ1(L)/2. The bounded
distance vector v is in one of the cosets of L′. Call this coset g + L′.

A BDD algorithm for L′ applied to this coset using 2.3 will output v, since

‖v − t‖ < λ1(L)/2 ≤ λ1(L′),

meaning BDDt(g +L′) = CVt(g +L′). Since v is closer to t than any other vector in L, the
union identity will preserve this solution.

The two algorithms aboved can be combined to produce a similar algorithm for direct
sum sublattices, as in 2.5. They are also the building blocks for a similar algorithm using the
decoding strategy for glue with parity, described in the previous section. The exact details
will not be discussed here.

2.5 Public key cryptography

As described briefly in the introduction, cryptography is concerned with many different kinds
of primitives, and the kinds of security they can offer through their properties. There are a
few definitions that will be relevant to this thesis, and they are described here.

Public key encryption is also known as asymmetric encryption. It consists of the following
three algorithms that depend on some overall parameters set by the scheme.

Key generator. The key generator takes a security parameter (defined later in this sec-
tion), and produces a valid public key p ∈ P and a valid private key s ∈ S, where (p, s) is
called a keypair.

KeyGen : N→ P × S.
The objects p and s have a mathematical relation specific to the scheme that allows the
following two algorithms to work correctly.

18

Encryption. The encryption algorithm uses the public key to hide a message m from some
set of valid messages M in an outputted ciphertext, c ∈ C.

Enc : P ×M → C.

Decryption. The decryption algorithm uses the private key to recover the message from
the ciphertext. If the ciphertext is invalid, it may also return some kind of error, denoted ⊥.

Dec : S × C →M ∪ {⊥}.

The scheme is considered to be correct if the decryption algorithm yields the same valid
message that was input to the encryption algorithm, for every private and public keypair
output of the key generator. Sometimes, a very small probability of incorrect decryption is
permissible.

The notion of security is more difficult to define. We regulate the running times of the
algorithms above, and those of an attacker, sub-exponentially by a security parameter λ. The
typically accepted definition of security is called semantic security in [GM84], also known as
indistinguishability under chosen plaintext attack (IND-CPA).

Definition 2.15 (IND-CPA security). The concept of IND-CPA security is defined by the
following experiment, using a uniformly random secret bit b ∈ {0, 1}.

1. The challenger generates a keypair (p, s) based on a security parameter λ, and gives p
to the attacker.

2. The attacker responds with two valid messages, m0 and m1, in 2o(λ) time.

3. The challenger encrypts mb using p, and gives the resulting challenge ciphertext c to
the attacker.

4. The attacker outputs a guess g ∈ {0, 1} for the value of b in 2o(λ) time.

The encryption scheme is considered IND-CPA secure if an attacker guesses correctly with
probability

Pr[g = b] =
1

2
+ ε(λ)

where |ε(λ)| ≤ 2−o(λ).

Informally, this means that at best, the attacker has only a negligible advantage over
random guessing.

It is important to note that IND-CPA security only models passive adversaries. Active
adversaries are modeled using IND-CCA security, or indistinguishability under chosen ci-
phertext attack, which is beyond the scope of this thesis. There are efficient and generic
techniques to upgrade IND-CPA schemes to IND-CCA security. Therefore, we are only
concerned with IND-CPA security and passive attackers.

19

Chapter 3

The Leech lattice

The 24-dimensional Leech lattice Λ24 is one of the most important and remarkable lattices
known. It was discovered in 1965 by Leech [Lee67], who was looking for solutions to the
sphere packing problem in higher dimensions. It turned out to be an unexpectedly good and
symmetrical packing. Λ24 has so many exceptional properties and intimate relationships to
other branches of mathematics, that an entire book is essentially dedicated to this lattice
(see [CS93]).

3.1 Construction

There are a huge amount of constructions for Λ24 available in literature, where it is con-
structed from specific vector formulas, the different Golay codes, cyclotomic fields, sim-
pler lattices such as D24, A

24
1 , and other sublattices (see the Niemeier constructions), as a

Lorentzian lattice, and many more (all of these constructions and more are given in [CS93]).
However, one of the most remarkable properties of the Leech lattice is that it is the unique
laminated lattice in 24 dimensions. Regarding the Leech lattice as a laminated lattice is
particularly interesting, as it is a “no-input” kind of construction.

We will begin with the definition of a laminated lattice by induction.

Definition 3.1 (Laminated lattice). Let Λ0 be the single point lattice in 0 dimensions. Take
all n-dimensional lattices for n ≥ 1 with minimal norm 4 containing at least one sublattice
Λn−1, and select those with minimal determinant. Any such lattice Λn is a laminated lattice.

This inductive construction is a very natural way to construct a lattice packing. We start
with the trivially maximal lattice packing in one dimension, Λ1 = 2Z. Drawing a row of
circles with a radius of 1 centered around these points, we can obtain the hexagonal lattice
Λ2 = A2 by packing rows as close to each other as possible. Layering the hexagonal lattice
in 3 dimensions gives us the face-centered cubic lattice Λ3 = D3. Repeating this process,
we eventually arrive at the unique Λ24 known as the Leech lattice. That Λ24 is the unique
laminated lattice in its dimension is remarkable, as this is not generally the case.

20

3.2 Properties

The laminated lattices for n ≤ 24 can be thought of as the main sequence of cross-sections of
the Leech lattice. Interestingly, Leech showed in [Lee64, Lee67, LS71] that there is another
important sequence of cross-sections, denoted K0, . . . , K24. This sequence is identical to the
laminated sequence for n ≤ 6 and n ≥ 18, but differs in the middle.

3.2.1 Sphere packing

A natural question raised by this inductive construction is the density of these laminated
lattices. We already know that the laminated lattice packings in the first two and possibly
three dimensions are proven to give optimal packings. But how do higher dimensional Λn

fare? It turns out that for n ≤ 10 and 14 ≤ n ≤ 29, the laminated lattices do indeed give
the densest lattice packings known [CS93]. Notably, K11, K12 (the Coxeter-Todd lattice),
and K13 have higher densities than their laminated counterparts, and are indeed the densest
known lattices for their respective dimensions [Lee67, LS71]. Thus Λ24 contains the densest
lattices in all lower dimensions.

For completeness, it’s interesting to note that while some densest lattice packings known
are also the densest packings known, for some dimensions denser non-lattice packings ex-
ist. For n = 10, 11, 13, 18, 20, 22 there exist denser non-lattice packings than the densest
laminated and K lattices in those dimensions.

While these sequences are interesting in their own right, they fail to highlight the ex-
traordinary density of the Leech lattice. The center density of Λ24 is 1, the highest of any
packing of dimension less than 30 (excepting in zero dimensions, trivially 1). Compare this
to 0.5 for A1 and Λ23, 0.29 for A2 and Λ22, and much lower for every lattice in between (0.06
for E8). Interestingly, δn = δn−24 for the laminated (and K-lattices) where n ≤ 24.

The remarkable density of the Leech lattice makes it very interesting for coding theory.
Before getting into the bulk of this document, we take the time to become more familiar
with the general properties, shape and symmetries of the Leech lattice.

3.2.2 Relationship to the Golay Code

The Golay code C23 was discovered by M.J.E. Golay in 1949 [Gol49]. It is a [23, 12, 7] binary
code that is the quadratic residue code of length 23. In other words, it is a cyclic code over
F2 whose generator polynomial has roots {αi : i 6= 0 is a square modulo n}.

The much more commonly used extended Golay code C24 was obtained by appending a
parity bit to C23. It is the unique [24, 12, 8] binary code, and therefore has 4096 codewords
with weight distribution 01872912257616759241.

The Leech lattice is intimately connected to C24, as illustrated by the following con-
struction of Λ24 taken from [CS93]. It should be noted that this is only one of very many
constructions using C24.

21

Definition 3.2 (Leech lattice). The Leech lattice Λ24 consists of all the vectors

1√
8

(0 + 2c + 4x), (3.1)

1√
8

(1 + 2c + 4y), (3.2)

where c ∈ C24 and the elements of F2 are regarded as real 0’s and 1’s, and x,y ∈ Z24 such
that

∑
i xi ≡ 0 mod 2,

∑
i yi ≡ 1 mod 2.

In essence, the Leech lattice is constructed by lifting C24 to Z24, restricting the sum of
the coordinates to zero modulo 4, and sliding another copy of this lattice (called the Leech
half-lattice) into the resulting deep holes. The vectors given by (3.1) are called the even
vectors of Λ24, while (3.2) are called the odd vectors of Λ24.

3.2.3 Shape

Using the above construction, we can get a feel for the shape of the Leech lattice by ex-
amining the minimal vectors, which have length 2. For convenience, we will say a vector
v = (v1, . . . , vn) has shape (aj, . . .) if vi = a for j coordinates, etc.

Minimal length vectors of Λ24 have three different shapes, and can be easily generated
using the equations above. For the first, we can use (3.1), and combine the 729 C24 codewords
of weight 8 with x to invert the signs of the coordinates containing a 2. This gives 27 ·
729 = 97152 vectors of shape (016,±28), since there must be an even number of nonzero x
coordinates. Second, we use (3.2), all 212 codewords of C24, and an odd number of coordinates
with ±1 in y. This gives 212 · 24 = 98304 vectors of shape (±123,±3). Lastly, using (3.1)
and no codewords at all, we have 22 ·

(
24
2

)
= 1104 minimal vectors of shape (022,±42).

In total, we have 196560 minimal vectors of length 2. This number is also by definition
the kissing number of the Leech lattice, or the maximal number of nonoverlapping unit
spheres that can simultaneously touch exactly one point of the boundary of the unit sphere
centered at the origin. This result was proven optimal in 24 dimensions by E. Bannai and
N. J. A. Sloane in 1981 [BS81].

The minimal vectors alone are not sufficient to define the Voronoi regions of Λ24. However,
the minimal vectors combined with the second layer of norm

√
6 are sufficient to determine

this region for the Leech lattice [CS82c]. The Voronoi region of Λ24 centered around the
origin therefore has 196560 + 16773120 = 16969680 faces.

3.2.4 Symmetries

All lattices give rise to groups, due to their symmetry. We will begin with a definition.

Definition 3.3 (Automorphism group). The automorphism group of a lattice L denoted
Aut(L), is the set of distance-preserving linear transformations of the space that fix the
origin and take the lattice to itself.

22

The automorphism group of Λ24 is the group Co0, which has order 22239547211 · 13 · 23.
This group was discovered in 1968 by J. H. Conway [Con68]. Co0 is particularly interesting
due to its connection with the classification of finite groups. Co0 led to the discovery of
three new sporadic simple groups known as the Conway groups (Co1, Co2, and Co3). Many
of the 26 sporadic simple groups are found within Co0, and it was also instrumental in the
construction of another, the Monster simple group M .

3.2.5 The Niemeier lattices

While the Leech lattice is unique in many ways, it is not the only even unimodular lattice
in 24 dimensions. Niemeier enumerated 24 such lattices, and showed that this enumeration
is complete [Nie73]. Of these lattices, 23 have minimal norm

√
2, while just one, Λ24,

has minimal norm
√

4. Each Niemeier lattice is generated by gluing several component
root lattices together. The component lattice with highest dimension uniquely identifies a
Niemeier lattice [CS82b].

While this is interesting in and of itself, a much more remarkable result is the relationship
between the deep holes of Λ24 and the Niemeier lattices. There are 23 inequivalent types of
deep holes in Λ24, and there is a one-to-one correspondence between these holes and the 23
Niemeier lattices [CPS82]. This led to the 23 constructions of the Leech lattice from each
of the Niemeier lattices, in the form of the “holy construction” given in [CS82b]. For each
of the 23 Niemeier lattices, we can define a set of fundamental vectors vi and a set of glue
vectors gj. Then the Niemeier lattice is the set of all integer combinations∑

i

mivi +
∑
j

njgj such that
∑
j

nj = 0.

In turn, the Leech lattice is the set of all integer combinations∑
i

mivi +
∑
j

njgj such that
∑
i

mi +
∑
j

nj = 0.

For example, one Niemeier lattice is generated by the component lattice A24
1 . The glue

code for this lattice is the Golay code C24, of order 4096. This is equivalent to applying
Construction A to C24. Another Niemeier lattice is characterized by the component lattices
D6

4. Here, the desired glue code is the hexacode H6, which will be defined in the following
section.

The different constructions of Λ24 from the other Niemeier lattices provides insight into
the relationships between Λ24 and the root lattices. These relationships form the basis for
many efficient decoding algorithms that have been discovered. In particular, the construction
from D6

4 will form the basis of the decoder described in the following chapter.

23

1√
8

8 0
4 4 0
4 0 4 0
4 0 0 4 0

4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0
2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0

0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
−3 1

Figure 3.1: Generator matrix for the Leech lattice in standard MOG coordinates, as given
in [CS93]. The vectors are given as rows.

3.3 Integer Leech lattice

Cryptographic schemes based on lattices are typically defined over the integers, modulo some
number n. In this context, it becomes important to find scaling factors that allow the Leech
lattice to exist in discrete space.

The typical generator matrix for the Leech lattice is shown in Figure 3.1. Trivially, by
multiplying the Leech lattice by a factor of

√
8, we obtain an integer Leech lattice scaling.

Since det Λ24 = 1, the determinant of this scaling is (
√

8)24 = 236. Similarly, since λ1(Λ24) =
2, the minimal distance of this scaling is 2

√
8. Multiplying further by arbitrary positive

integers, we achieve a sequence of integer Leech lattice scalings, with volumes of 224k+36,
where k is a positive integer.

24

There is, however, another sequence of integer scalings possible. We define a two dimen-
sional transformation that rotates two dimensions through π/4 radians, and scales it by a
factor of

√
2:

R =

[
1 −1
1 1

]
. (3.3)

By tensoring this rotation matrix with the 12 dimensional identity matrix, and multiply-
ing the result by another factor of

√
2, we obtain a transformation T over 24 dimensions.

T =
√

2 I12 ⊗R.

When this transformation is applied to the generator matrix for the Leech lattice in Figure
3.1 (noting that the generator matrix represents vectors as rows), the resulting generator
matrix is also integer. This scaling of the Leech lattice has determinant 224 and minimal
distance 4. This yields another sequence of integer Leech lattice scalings.

Combined, the two sequences defined above give Leech lattice scalings with volumes of
212j and minimal distances 2(j/2+1), for integer j ≥ 2. The associated transformations are
defined as

T(j) =
√

2 I12 ⊗Rj. (3.4)

Note that the first sequence is included, since when In/2 ⊗ R2 is applied to a lattice
of even dimension n, it is equivalent to scaling this lattice by a factor of two. Thus the
transformation family T(j) contains both sequences described above.

In terms of notation, it would make sense to define a transformation Y such that T(j) =
Yj. However, the extra scale factor of

√
2 makes this difficult, unless we rotate the generator

matrix for Λ24. Rather than redefine this familiar basis, we leave T as is.

25

Chapter 4

Decoding the Leech lattice

Having demonstrated the remarkable properties of the Leech lattice, it becomes apparent
that its unique density and high degree of structure make it particularly useful for coding
purposes. Indeed, a lot of attention has been given to the decoding of the Leech lattice,
using the general decoding strategies described in Section 2.4.

Early focus was primarily on maximum likelihood decoding, with bounded distance de-
coders arising from the constructions used for the maximum likelihood decoders. In 1984,
Conway and Sloane proprosed a decoding algorithm for Λ24 based on the occurance of D24

as a sublattice of index 8192, resulting in a particularly slow algorithm [CS84]. Two years
later, they improved on this by a factor of 14, noting that Λ24 could also be constructed from
three glued copies of E8, with index of 4096 [CS86]. In 1989, Be’ery et al constructed the
Leech half-lattice using the Golay code and a parity check, resulting in a much more efficient
decoder [BSS89]. Subsequent improvements split the Leech lattice into four cosets, allowing
for an even better decoder based on the quaternary hexacode and two parity checks [VB93].

4.1 Advanced construction

The most efficient decoders (both maximum likelihood and bounded distance) use a con-
struction of the Leech lattice based on the unique [6, 3, 4] code over the Galois field F4 =
{0,1, ω, ω̄}, called the hexacode, H6. This code has 64 codewords, a minimal distance of 4,
and is described in detail in [CS93], where its relationship to the Leech lattice and relatively
simple decoding algorithms are also discussed.

The construction given in [VB93] is very technical and written from an engineering point
of view. We will first briefly restate this technical construction, as given in the paper. Then
we will try to adopt a higher level overview, and describe the Leech lattice construction in
terms of component lattices, cosets, and glue theory.

26

4.1.1 Technical construction

This technical construction used in the paper is difficult to understand from a lattice per-
spective. Nevertheless, we restate it first, and then attempt to motivate this construction in
the following section.

We first define what it means to project onto the hexacode. A binary 4-tuple a =
(a1, a2, a3, a4) ∈ {0, 1}4 may be regarded as an interpretation of a character x ∈ F4 by
setting (0,1, ω, ω̄) · a = x. Conversely, the character x is a projection of a. The specific
construction of Λ24 is aided by the following notation.

The two-dimensional lattice D2 is partitioned into 16 subsets, each labeled with a Aijk
or Bijk as according to the diagrams in [VB93, ABV+94] (these papers also discuss the
construction in greater detail). The subscripts i, j, k are binary variables. Each point of
Λ24 is represented by a 2 × 6 array whose entries are points of D2. An array has only Aijk
points (type-A) or only Bijk points (type-B). For each two-element column (Ai1j1k1 , Ai2j2k2)

t

or (Bi1j1k1 , Bi2j2k1)
t, i1 is called the h-parity, k1 ⊕ k2 is called the k-parity, and the 4-tuple

(i1, j1, i2, j2) is interpreted as a character x ∈ F4. The column is denoted even or odd as
according to the parity of (i1, j1, i2, j2). Then the Leech lattice is defined as follows.

Definition 4.1 (Leech lattice). The Leech lattice Λ24 consists of all 2 × 6 arrays of points
of D2 such that:

1. The array is either type-A or type-B.

2. It consists of only even columns, or only odd columns.

3. If the array is type-A, the overall k-parity is even. Otherwise, it is odd.

4. If the array consists of even columns, the overall h-parity is even. Otherwise, it is odd.

5. The projection of the six columns is a codeword of H6.

The distinction between type-A and type-B is equivalent to the distinction between the
Leech half-lattice or its coset. The columns being even or odd further split the half-lattice
cosets into the Leech quarter-lattice and its cosets. The hexacode and two parity checks
complete the construction (note the dependency of the parity checks on the specific Leech
quarter-lattice being investigated).

4.1.2 Glue theory construction

Remark. This description of the decoder assumes an integer Leech lattice, with minimal
distance 4

√
2.

We begin with the definition of several lattices. We will make extensive use of a par-
ticular transformation, an extension of the transformation defined in Equation 3.3 to four
dimensions. From now on, R will refer to Equation 3.3 tensored with I2.

The root lattice D4 is defined as D4 = {(x1, x2, x3, x4) : x1 + x2 + x3 + x4 ≡ 0 mod 2}.
Applying the transformation R, it is apparent that RD4 is equivalent to {(x1, x2, x3, x4) :

27

x1, x2, x3, x4 ≡ 0 mod 2 or x1, x2, x3, x4 ≡ 1 mod 2}. Generator matrices for these lattices
can be defined as

D4 =

1 1 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , RD4 =

2 0 0 0
0 2 0 0
0 0 2 0
1 1 1 1

 .
It is easy to verify that RD4 is a sublattice of D4, of index 4. Similarly, we can verify

that R2D4 = 2D4 is a sublattice of RD4, also of index 4. We obtain an infinite chain of
sublattices RjD4, where each sublattice has index 4 in the previous. We are particularly
interested in the subchain RD4, 2D4,R

3D4 and 4D4. These lattices are the building blocks
for this construction of the Leech lattice. The construction can be described in terms of
three “levels”, each corresponding to one partition in this subchain. Additionally, there is a
small dependency between the first and third levels.

Level 1. The construction begins with the direct sum of six copies of 4D4, yielding the
lattice

(4D4)
6 = 4D4 ⊕ 4D4 ⊕ 4D4 ⊕ 4D4 ⊕ 4D4 ⊕ 4D4.

This is a sublattice of Λ24, of index 218. Now we take coset representatives for each coset of
4D4 in R3D4. We call these coset representatives 0, g1, g2 and g1+g2, forming the glue group
G1,2. This glue group is isomorphic to Z2

2. We will use the isomorphism µZ2
2

: G1,2 7→ Z2
2.

Define the parity set S6 for an element z ∈ Z2
2 as follows:

S6(z) =
{

(g1, . . . ,g6) ∈ G1,2 ⊕ · · · ⊕G1,2 such that
∑
i

µZ2
2
(gi) = z

}
.

Note that if z = (0, 0), S6 is a group. We can now define the lattice

L′ =
⋃
z∈Z2

2

S6(z) + (4D4)
6.

Note that L′ = (R3D4)
6. If we fix the parity z = (0, 0), the resulting sublattice is also a

sublattice of the Leech lattice, of index 28. The parity set S6 is essentially a double parity
check over the cosets of the six orthogonal copies of 4D4. They are equivalent to the h and
k parities defined in the previous section.

Level 2. Similar to the first level, we let the four coset representatives of R3D4 in 2D4 be
0,g3,g4, and g3 + g4. This forms a glue group we will call G3,4, which is also isomorphic to
Z2

2. This time, we choose a slightly different isomorphism. We define the group isomorphism
µF4 : G3,4 7→ F4 (ignoring the multiplication operation of F4). This places us in a position
to define the hexacode group GH6 .

GH6 =
{

(g1, . . . ,g6) ∈ G3,4 ⊕ · · · ⊕G3,4 such that (µF4(g1), . . . , µF4(g6)) ∈ H6

}
.

28

We can define the lattice

L′′ =
⋃
z∈Z2

2

(
GH6 × S6(z)

)
+ (4D4)

6.

As before, we obtain a sublattice of Λ24 if we fix the parity z = (0, 0). Since the hexacode
contains 26 codewords, the index of this sublattice is 22. This sublattice has a name, as it
is known as the Leech quarter-lattice Q24. Obviously, Q24 is a sublattice of (2D4)

6. It also
happens to be equal to the intersection (2D4)

6 ∩ Λ24.

Level 3. Lastly, we follow the same routine and let the four coset representatives of 2D4

in RD4 be 0,g5,g6, and g5 + g6. We call the resulting glue group G5,6. Again, we define an
isomorphism µ′Z2

2
: G5,6 7→ Z2

2. Next we define the repetition set S⊥6 as

S⊥6 (z) =
{

(g, . . . ,g) ∈ G5,6 ⊕ · · · ⊕G5,6 such that µ′Z2
2
(g) = z

}
.

For a given z ∈ Z2
2, the size of this set is one. We can now define the Leech lattice.

Λ24 =
⋃
z∈Z2

2

(
S⊥6 (z)×GH6 × S6(z)

)
+ (4D4)

6.

The Leech lattice is therefore a sublattice of (RD4)
6, of index 218. To verify this, we note

that the third level glue S⊥6 “loses” density in the order of (22)5 due to its repetition. The
complement of the second level hexacode glue is size 26, while the first level glue loses density
in the order of 22, due to the parity conditions set by the third level. Combined, we obtain
a loss of 218 cosets. This leaves 218 cosets of (4D4)

6 in Λ24.

The relationship to the previous technical construction now becomes apparent. One col-
umn of the array given in Definition 4.1 can therefore be interpreted as the particular coset
of 4D4 in RD4, out of the 64 possibilities. The requirements one through five restrict the
ways that these columns, or cosets, are glued together.

The first two requirements of Definition 4.1 correspond to the coset of Q24, which is level
3 of our construction using glue theory. For example, type-A and even columns define Q24,
while other combinations describe its cosets. The fifth requirement is fulfilled by the coset
representatives and glue group defined in level 2. Finally, the third and fourth requirements
correspond to level 1 of the construction, and show the dependency between the first and
third levels. In other words, the coset of Q24 being examined determines the value of the
parity of the first level.

4.2 Maximum likelihood decoding

The following maximum likelihood decoding algorithm was given by Vardy and Be’ery in
[VB93]. It appears to be the fastest maximum likelihood decoder known for the Leech lattice.

29

As the construction showed, a decoder for Λ24 may be regarded as four decoders for Q24 and
its cosets. By choosing the most likely of the four outputs, the final decision is reached. The
following therefore describes only a decoder for Q24.

As in the previous section, the decoder given in the paper is very technical. We will restate
this algorithm first, and then attempt to explain it in terms of the strategies discussed in
Section 2.4.

4.2.1 Technical description

The decoder assumes that the channel output consists of 12 two-dimensional symbols {r(n)}12n=1,
where r(n) ∈ R2 for n = 1, . . . , 12. For each r(n), the decoder finds in each Aijk subset a

point Âijk closest to r(n). During the precomputation step, we calculate the following two
values for each r(n).

dij(n) = min
{
‖Âij0 − r(n)‖, ‖Âij1 − r(n)‖

}
for n = 1, . . . , 12

δij(n) = ‖Âij1 − r(n)‖ − ‖Âij0 − r(n)‖ for n = 1, . . . , 12

These values need only be calculated once for each Aijk, and are the input to the Q24

decoder and its coset in the Leech half-lattice (the Bijk values are input to the other two
cosets). The decoding algorithm consists of five steps, described briefly here. See [VB93] for
a more detailed explanation.

1. Computing the confidence values, preferable representations, and penalties.
This step involves calculating the metrics for the representatives of the 16 cosets of 4D4

in 2D4. These metrics are categorized as a preferred metric (the closest representative)
and three penalties for each character in F4.

2. Sorting the penalties. This step sorts all the penalties with the same alternate
(h, k)-parities relative to the preferable representation. This results in three ordered
sets of 24 penalties. These will be used to later to resolve the total (h, k)-parity as
according to the definition of Λ24.

3. Computing the confidence values of the blocks. The vectors x = (x1, . . . , x6) ∈
F6
4 are split up into three blocks of two coordinates. For each {xi, xi+1}, the confidence

values of the preferable representations are summed.

4. Finding the images of the hexacodewords. Each hexacodeword x ∈ H6 may be
regarded as the projection of exactly 218 points in Λ24, of which 216 are points of Q24.
The decoder determines for each x ∈ H6 which of these points is closest to the received
signal. The decoder can use the previously sorted penalties to resolve any disparities
in the (h, k)-parity.

30

5. Computing the metrics of the hexacodewords and final minimization. The
metric for each hexacodeword is calculated using the confidence values of the blocks
in step 3, with appropriate penalties added to resolve (h, k)-parities. The point of Q24

that projects on the hexacodeword with minimum metric, and is closest to the received
signal among these points is the output of the Q24 decoder.

The decoder described above decodes the component lattices 4D4 as according to Section
2.4. This decoding is trivial, and very inexpensive computationally. Earlier work [CS86]
advised looking for sublattices of small index. The index for (4D4)

6 is large, but the decoder
exploits the relationships between the glue vector components to a great degree. In essence,
the algorithm comprises of repetitive maximum likelihood decoding of the codes representing
the glue vectors, as opposed to delegating the bulk of the computation to the component
lattice decoders.

In total, Vardy et al. calculate the complexity to be 2955 operations on average (not
including the precomputation, memory addressing, negation, and absolute value), and 3595
in the worst case.

4.2.2 Glue theory description

We follow the previous technical description of the decoder with an explanation in terms of
glue theory. Recall the three different levels of the Leech lattice construction, as given in
Section 4.1.2.

The decoder given by Vardy and Be’ery only decodes a total of 224 Leech lattice points.
This includes the glue group described in the construction, whose order is 218. This leaves a
very small subset of points in the cosets of 4D4. Extending the decoder to a larger number
of points is not discussed explicitly in the paper; instead it is assumed that the distance of
the target point to the closest vector of each of the 64 cosets of 4D4 is given. In practice,
this is not an issue, since Dn can be decoded linearly in the number of coordinates [CS93].

Third level decoding. The third level of the construction is decoded using Algorithm
2.4. This splits the Leech lattice into four cosets of Q24, and chooses the closest of the four
as output. Each is decoded independently, meaning the repetition glue S⊥6 is known. This
leaves only 16 cosets of 4D4 in 2D4 to be considered. Additionally, the parities required in
the first level are known.

Second level decoding. Similarly, the second level of the construction is decoded using
a variant of Algorithm 2.5. The hexacode glue group GH6 is enumerated entirely, and the
metrics of the glue corresponding to each hexacodeword are compared. There is significant
redundancy here due to the six component lattices, since the cosets of R3D4 in 2D4 for each
block are reused for many hexacodewords. These need only be calculated once, resulting in
cost savings according to Lemma 2.4. The hexacodeword with the best metric is returned
as output of the Leech quarter-lattice decoder.

31

First level decoding. The first level is where it gets interesting, and also where the
decoder’s efficiency comes from. The parity glue S6 is decoded in this level, using the
strategy described in Section 2.4.3. As stated in the strategy, if the parities are already
correct, then the decoder is done. Otherwise, due to the small parity group (isomorphic to
Z2

2), the use of the Hungarian algorithm is unecessary, as it requires too much overhead.
Instead, the penalties corresponding to a given change in parity across each block are sorted,
and the ways to fix the parities are enumerated, and the best is chosen.

The enumeration of the second and third levels make a lot of the above calculations
redundant. The decoder makes efficient use of this redundency, greatly reducing the num-
ber of coset calculations that need to be done. In addition to the cost savings previously
mentioned for the second level, some of the calculations associated with each coset of Q24

in each Leech half-lattice can be reused. Additionally, the sorting of the penalties can be
amortized over all of the hexacodewords, resulting in a single sort of 24 elements for each
parity syndrome (4 cosets of R3D4 in 2D4, in 6 blocks), as opposed to 64 sorts of 6 elements
per parity syndrome. The preferable representations and associated penalties obviously also
need only be calculated once per coset of R3D4 in 2D4, as opposed to being recalculated for
each hexacodeword.

In short, the multi-level construction of the glue group for the Leech lattice, along with
a small and very simple sublattice allows for very efficient decoding.

4.3 Bounded distance decoding

The maximum likelihood decoding algorithm described in the previous two sections spurred
the development of similar bounded distance decoders, using an identical or nearly identical
construction of the Leech lattice. In 1994 Amrani et al. [ABV+94] developed a bounded
distance decoder of Q24 using the same maximum likelihood decoder of the hexacode H6 as
in [VB93]. It should be noted that their multilevel construction of Λ24 is slightly different
to eliminate the dependency between the first and last levels. They note that this difference
does not have an effect on the complexity of the algorithm. This result was further improved
in [AB96] to include a bounded distance hexadecoder. Finally in 1995 Vardy improved the
bounded distance hexadecoder to achieve a bounded distance Leech lattice decoder using
331 real operations in the worst case, an order of magnitude faster than the corresponding
maximum likelihood decoder.

An important result for all these decoders is that the error-correction radius achieved is
equal to that of a maximum likelihood decoder.

Overview. The main speedup exploited in the bounded distance decoders is the removal
of the hexacode enumeration. Due to the guarantee that the target point lies within the
error-correction radius of a lattice point, we are given the guarantee that the confidence
values for each hexacodeword character will decode to the correct hexacodeword, even if the
resulting parities are not valid. This allows the application of a decoder to the hexacode,
using only the metrics of the preferable representation in each direct sum block. Not only

32

do we not have to enumerate the hexacode, instead letting a decoder do that work for us,
we only need to resolve penalties for one hexacodeword instead of 64. This results in a large
reduction in complexity.

While the bounded distance decoder is much more time efficient, we have no guarantee on
the output given a point outside the error-correction radius. Depending on the application,
this may or may not be acceptable.

In our case, we wish to use the efficient encoding of the Leech lattice to improve the
bandwidth of an encryption scheme. We are less concerned with time efficiency, as long
as it remains acceptable. Therefore, we focus on maximum likelihood (CVP) decoders, as
opposed to bounded distance decoders.

33

Chapter 5

Learning with errors

In this section we formalize the learning with errors problem (LWE). We then describe a
typical encryption scheme based on this problem, and provide a proof of security. We examine
the theoretical implications of the use of the Leech lattice for encoding and decoding. By
comparing the resulting parameter sets to those of the current approach, which is integer
lattice encoding and decoding, we observe that the Leech lattice can be used to significantly
decrease the bandwidth of an LWE encryption or key exchange scheme.

5.1 Foundations

We will begin with the definition of the original LWE problem, and then some equivalent
versions more closely related to the encryption scheme.

Definition 5.1 (Decision LWE problem). Let n and q be positive integers, and χ an error
distribution over Z. Let s be a uniformly random vector in Znq . Define two oracles:

As,χ : a
U← Znq , e

χ← Zq; return (a, 〈a, s〉+ e).

U : a
U← Znq , u

U← Zq; return (a, u).

The decision LWE problem for n, q, and χ is to distinguish As,χ from U .

Regev introduced the LWE problem in [Reg09], along with a quantum reduction from
the decision version of LWE to the GapSVP and SIVP problems on arbitrary n-dimensional
lattices. The GapSVP problem (decisional approximate SVP) is a decision variant of SVP,
while SIVP (approximate shortest independent vectors problem) is a variant of SVP that
attempts to find an entire short basis instead of a single short vector. Subsequent work
[Pei09, BLP+13] showed that for q = poly(n), LWE classically reduces to the same standard
worst-case lattice problems. These worst-case hardness guarantees form a strong foundation
on which to construct cryptographic primitives.

In a variant of the original LWE problem, the secret s is sampled from χ instead of U ,
called a short secret. This alteration enjoys a polynomial reduction to the original decision
LWE problem [ACPS09].

34

Definition 5.2 (Matrix decision LWE problem with short secrets). Let m,n and q be
positive integers, and χ an error distribution over Z. Let k be a positive integer, and let
S

χ← Zn×kq . Define two oracles:

AS,χ : A
U← Zm×nq ,E

χ← Zm×kq ; return (A,AS + E).

U : A
U← Zm×nq ,U

U← Zm×kq ; return (A,U).

The matrix decision LWE problem with short secrets is to distinguish AS,χ from U .

A standard hybrid argument shows that using any adversary that can distinguish be-
tween the two distributions with advantage ε, one can construct an efficient adversary that
distinguishes the original decision LWE problem with an advantage of minimally ε/(mk).

5.2 Cryptosystem

The LWE problem is parameterized by the modulus q, the dimension n, and an error dis-
tribution χ. We choose χ to be a continuous Gaussian distribution on Z, with a mean of 0
and standard deviation of σ. These parameters determine the security of the scheme.

Remark. Note that the following assumes the values drawn from χ are integer. Indeed, in
a real application of an LWE based cryptosystem, χ would be a discrete distribution that
approximates Gaussian as closely as possible. However, to facilitate our analysis, it is easier
to model χ as a continuous Gaussian. Since our purpose is to compare the efficiency of
two different types of encoding, rather than examine specific parameter sets, we deem this
acceptable.

Key generation. A uniformly random matrix A ∈ Zn×nq is set, and shared by all users.
This matrix is generated by a trusted source, and used by all parties in the system. If such
a source is not available, then A may be generated as part of the key generation algorithm,
and distributed along with the public key.

To generate a secret and public keypair, two matrices are sampled from the error distri-
bution as S,E

χ← Zn×k. S is the secret key, while the public key is defined as B := AS+E ∈
Zn×kq .

Encryption. The matrix A and public key B are concatenated into a matrix

A′ =

[
At

Bt

]
∈ Z(n+k)×n

q .

Two vectors are sampled from the distribution: s′
χ← Zn, e′ χ← Zn+k. To encrypt a binary

message m ∈ {0, 1}l using the public key B, one generates the ciphertext

c = A′s′ + e′ + (0, enc(m)) ∈ Zn+kq ,

35

where the function enc(·) outputs a vector of length k. Typically, the encoding used
is the lattice code q

2
Zk mod q, which is isomorphic to {0, 1}k. This makes encoding very

easy; enc(·) is defined as enc(m) :=
⌊
q
2

⌉
·m, where l = k. Similarly, decoding is a simple

rounding function. However, a more complicated but also more efficient lattice code (such
as the Leech lattice) may allow for smaller failure rates and/or parameters.

Decryption. To decrypt c given the secret key S, one computes[
−St Ik

]
· c =

[
−St Ik

]
· (A′s′ + e′) + enc(m)

= −StAts′ + Bts′ +
[
−St Ik

]
· e′ + enc(m)

= −StAts′ + (AS)ts′ + Ets′ +
[
−St Ik

]
· e′ + enc(m)

= Ets′ +
[
−St Ik

]
· e′︸ ︷︷ ︸

error term

+ enc(m)

≈ enc(m) mod q

(5.1)

where the approximation relies on the small size of S, E, s′, and e′ which were all drawn
independently, coordinate-wise from χ. For the typical definition of enc(·), this amounts to
testing whether each of the k coordinates is closer to 0 or

⌊
q
2

⌉
modulo q.

5.3 Security

The cryptosystem above is very similar to two separate instances of the LWE problem. One
is the public key, while the other is the ciphertext.

Theorem 5.1. The cryptosystem described in Section 5.2 is IND-CPA secure assuming the
hardness of matrix decision-LWE with short secrets with modulus q, dimension n, and error
distribution χ.

Proof. To prove theorem 5.1, we only need to show that the entire view of an efficient, passive
(eavesdropping) adversary is indistinguishable from uniformly random, for any plaintext
m ∈ {0, 1}l. The adversary’s view consists of (A,B, c). The tuple (A,B) is computationally
indistinguishable from (A,U), where U ∈ Zn×kq is uniformly random, under the assumption
in the theorem. This can be verified by noting that A is uniformly random and that B
is constructed by sampling χ as in definition 5.2. Similarly, (A,U, c) is computationally
indistinguishable from (A,U,u) where u ∈ Zn+kq is uniformly random, under the same
assumption (but for slightly different dimensions; there are n+ k LWE samples). Therefore,
the passive adversary’s view (A,B, c) is indistinguishable from (A,U,u).

It is important to note that the security of the scheme relies only on the dimensions n, k,
the modulus q, and the error distribution χ. The type of encoding function used has no
effect, meaning we are free to modify this function as we see fit (keeping in mind that the
decoding function must still work correctly, in the presence of errors).

36

5.4 Encoding

The encoding used determines how many bits are extracted from each of the k coordinates.
However, it also has implications for the size of the error tolerated. For decryption to be
correct, the accumulated errors must be small enough that the dec(·) function can correctly
decode the computed ciphertexts to the message m. The failure rate is therefore dependent
on the error distribution and the encoding used.

5.4.1 Current approach

We assume any distribution χ, and an encoding function defined as

enc(m) :=
⌊q

2

⌉
·m where m ∈ {0, 1}k. (5.2)

After the addition of errors, recovering m is done bitwise, each coordinate being independent
of the others. This is akin to decoding the lattice q

2
Zkq . Thus for each coordinate, the

accumulated error (calculated in equation 5.1) must be bounded by some value. For the
correct decoding of coordinate i, where 0 < i ≤ k, we require that∣∣(Ets′ +

[
−St Ik

]
e′)i
∣∣ < L

where L is the upper bound on the error that the decoder can tolerate. For the above
definition of enc(·), it follows that L = q

4
.

Since the coordinates of each vector and each matrix involved are all independently drawn
from the same distribution, the distribution of the accumulated error is identical for each
coordinate. We can therefore drop i from our calculations. For clarity, we now redefine some
vectors. Let e refer to the i-th row of Et, and s refer to the i-th row of St. Let e′′ refer to the
first n coordinates of e′, and let e′′′ be the (n+ i)-th coordinate of e′. Then the accumulated
error is equal to

〈e, s′〉+ 〈s, e′′〉+ e′′′

= 〈(e, s, e′′′), (s′, e′′, 1)〉.
(5.3)

Each coordinate in the vectors (e, s, e′′′) and (s′, e′′) were independently drawn from the same
distribution, χ.

The distribution of this error depends on χ. In typical schemes, χ is taken to be a discrete
distribution that very closely approximates the continuous Gaussian of a certain variance
(see [BCD+16] for such a scheme). The Rényi divergence between this distribution and the
continuous Gaussian is used in the security reduction. The failure rates are then calculated
by means of a computationally intensive analysis.

We are interested in comparing the current method of integer lattice encoding to our
proposed Leech lattice encoding, and not the specific nature of the error distribution, which
can differ between schemes and implementations. Therefore, we will calculate the failure
rates by modeling χ as a continuous Gaussian. Since both encoding methods deal with the

37

same accumulated errors in each coordinate, we expect that this approximation in the exact
nature of χ will have little impact on our comparisons.

By taking χ to be Gaussian, we obtain the following lemma.

Lemma 5.1 (Failure rate for integer encoding). Assuming χ to be a Gaussian of mean 0
and variance σ2, and an encoding function defined as in 5.2, the probability Pr[F] that a
ciphertext generated by the cryptosystem in Section 5.2 is decoded incorrectly is bounded by

Pr
[
F
]
≤ k

[
2− erf

(
L√

2B σ

)
−
γ
(
n, B−1

2σ2

)
Γ(n)

]
,

where Γ is the ordinary gamma function, γ is the lower incomplete gamma function, and B
is any real number greater than 1.

To obtain the tightest possible bound on the failure rate, B should be tuned numerically
for each set of parameters.

Proof. Each coordinate in the vector (e, s, e′′′) is independently drawn from χ, so we may
conclude it has a spherically symmetric distribution (since χ is Gaussian with mean 0). As
such, the distribution of the inner product in 5.3 depends only on ‖(s′, e′′, 1)‖, and not the
direction of this vector. It is therefore normally distributed, with a mean of 0 and a variance
of σ2‖(s′, e′′, 1)‖2. The quantity ‖(s′, e′′, 1)‖2 is distributed according to

‖(s′, e′′, 1)‖2 = ‖(s′, e′′)‖2 + 1

∼ σ2χ2
2n + 1

∼ Γn(2σ2) + 1

where χ2
2n is the chi-squared distribution with 2n degrees of freedom, and Γn(2σ2) is the

gamma distribution with shape parameter n and scale parameter 2σ2. Let F1 be the event
that ‖(s′, e′′, 1)‖2 is larger or equal to some bound B. The probability of this happening is
equal to the complementary cumulative distribution function of Γn evaluated at B− 1. This
is equal to

Pr
[
F1

]
= 1−

γ
(
n, B−1

2σ2

)
Γ(n)

where Γ(n) is the ordinary gamma function, and γ(·, ·) is the lower incomplete gamma
function, defined as

γ(s, x) =

∫ x

0

ts−1e−tdt.

Let F2 be the event that ‖(s′, e′′, 1)‖2 < B, and that |N(0, σ2B)| is larger or equal to the
upper bound L tolerated by the decoder. Then

Pr
[
F2

]
= 2

[
1− Φ

(L

σ
√
B

)]
= 2

[
1− 1

2

[
1 + erf

(
L√

2σ
√
B

)]]
= 1− erf

(
L√

2B σ

)
38

where Φ is defined as the cumulative density function of the standard normal distribution,
and erf is the Gauss error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Then the probability of the event F0 that |〈(e, s, e′′′), (s′, e′′, 1)〉| ≥ L, or equivalently, that
one bit is incorrectly decoded, is upper bounded by

Pr
[
F0

]
≤ Pr

[
F1

]
+ Pr

[
F2

]
.

This holds in any single coordinate. By applying the union bound, we can calculate an upper
bound on the failure rate of the entire decryption algorithm.

Pr
[
F
]
≤ k

[
2− erf

(
L√

2B σ

)
−
γ
(
n, B−1

2σ2

)
Γ(n)

]
.

Remark. The above describes the failure rate for the encoding function enc(m) :=
⌊
q
2

⌉
·m.

In practice, the encoding function is easily modified to extract multiple bits from each
coordinate. This allows k to be made smaller, or alternatively allows for more bits to be
encrypted in a single ciphertext. However, it also decreases the allowable L exponentially,
and therefore drastically increases the failure rate, all else being equal. In any case, the
calculations for the failure rate remain the same, and only k and L need to be adjusted.

5.4.2 Our Leech lattice approach

To improve the efficiency of the encoding, we can apply a suitably scaled and possibly rotated
version of the Leech lattice, such that

qZ24 ⊂ TΛ24 ⊂ Z24.

In order for the encoding to fit into the cryptosystem, T must be chosen such that the Leech
lattice remains integer. See Equation 3.4 for a family of transformations that fulfill this
requirement. We can encode and decode binary data by defining a bijective function

f : {0, 1}l 7→ TΛ24/qZ24,

that maps bit strings to points in the Leech lattice modulo qZ24. One way to do this is given
by the decoder described in Chapter 4, where the binary subscripts of the arrays defining
Leech lattice points can be interpreted as a bit string. The choice of q and T will determine
how many bits l are encoded in every 24 coordinates. However, it will also affect the failure
probability for the decoder.

The correctness of the decoding is now dependent on the accumulated error vector in
blocks of 24 coordinates. More specifically, assuming we have a CVP algorithm for Λ24,

39

correct decoding requires the error vector in each block to lie within the Voronoi cell of
the encoded point (excluding the border). The Voronoi cell of the Leech lattice is bounded
by hyperplanes corresponding to the first two layers of the lattice [CS93]. This includes
N1 = 196560 minimal vectors, and N2 = 16773120 vectors in the second layer,

√
3/2 times

the size of the first. This gives a total of 16969680 faces.
As in the integer lattice encoding approach, we assume χ is Gaussian. We obtain the

following lemma.

Lemma 5.2 (Failure rate for Leech lattice encoding). Assuming χ to be a Gaussian of mean
0 and variance σ2, and RΛ24 encoding, the probability Pr[F] that a ciphertext generated by
the cryptosystem in Section 5.2 is decoded incorrectly is bounded by

Pr
[
F
]
≤ mN1

2

[
1− erf

(
λ1(RΛ24)

2
√

2B σ

)]
+
mN2

2

[
1− erf

(√
3 λ1(RΛ24)

4
√
B σ

)]
+ 1−

γ
(
n, B−1

2σ2

)
Γ(n)

,

where B is a real number greater than 1.

Proof. Recall that the accumulated error is equal to[
Et −St Ik

]
· (s′, e′)t.

This value follows directly from equation 5.1, and is not influenced by the type of encoding
used. If we let e be the i-th row of Et, s the i-th row of St, e′′ the first n coordinates of
e′, and e′′′ the (n + i)-th coordinate of e′, we can write the accumulated error in the i-th
coordinate as

〈(e, s, e′′′), (s′, e′′, 1)〉. (5.4)

Note that the first vector (e, s, e′′′) of the inner product is unique for each coordinate, while
the second vector (s′, e′′, 1) is the same for each i. The accumulated errors in each coordinate
are therefore dependent, but only on the second vector in the inner product.

We follow the proof for 5.1, and “fix” the quantity ‖(s′, e′′, 1)‖. This squared norm is
distributed according to Γn(2σ2) + 1. Again, we let F1 be the event that ‖(s′, e′′, 1)‖2 is
larger or equal to some bound B, which has probability

Pr
[
F1

]
=
γ
(
n, B−1

2σ2

)
Γ(n)

.

Due to the spherically symmetric nature of the vector (e, s, e′′′), the distribution of the inner
product in equation 5.4 is Gaussian with mean 0 and a variance of σ2‖(s′, e′′, 1)‖2.

We define a random variable X = (X1, . . . , X24) as the accumulated error in a block of
24 coordinates, subject to the restriction that ‖(s′, e′′, 1)‖2 = B′ for some B′ ≤ B. Then the
Xi are normally distributed, with mean 0 and variance σ2B′. Since (e, s, e′′′) is unique for
each i, and B′ is fixed, the Xi variables are independent. The variable X therefore follows a
multivariate normal distribution. More formally, X ∼ N24(0,Σ), where Σ is the covariance
matrix. Due to the independence of the coordinates, Σ is a diagonal matrix with entries
equal to σ2B′.

40

For X to lie within the Voronoi cell associated with the encoded point (excluding the
border), we need that

〈X,v〉
‖v‖2

<
1

2
∀v ∈ V

where V refers to the set of all Voronoi relevant vectors for the Leech lattice. For a given
v ∈ V ,

〈X,v〉
‖v‖2

=
1

‖v‖2
24∑
i=1

viXi

∼ 1

‖v‖2
N(0, ‖v‖2σ2B′)

∼ N

(
0,
σ2B′

‖v‖2

)
.

The probability of X lying on the border of, or on the wrong side of the Voronoi cell face
corresponding to the lattice vector v is

Pr

[
N

(
0,
σ2B′

‖v‖2

)
≥ 1

2

]
=

1

2

[
1− erf

(
‖v‖

2
√

2B′ σ

)]
≤ 1

2

[
1− erf

(
‖v‖

2
√

2B σ

)]
.

Recall the shape of the Voronoi cell for Λ24. The quantities ‖v‖ only have two possible
values, corresponding to the norms of first two layers of the Leech lattice. These values are
λ1(RΛ24) and

√
3/2 λ1(RΛ24).

We apply the union bound to all of the Voronoi relevant vectors, giving a bound on the
probability that the accumulated error in a block of 24 coordinates lies outside the Voronoi
cell. By applying the union bound yet again to the number m of Leech lattices needed to
encode the desired number of points, we obtain an upper bound for the probability of F2, or
incorrect decryption, given ‖(s′, e′′, 1)‖2 < B:

Pr
[
F2

]
≤ mN1

2

[
1− erf

(
λ1(RΛ24)

2
√

2B σ

)]
+
mN2

2

[
1− erf

(√
3 λ1(RΛ24)

4
√
B σ

)]
.

For the decryption to fail, one of F1 (the event that ‖(s′, e′′, 1)‖2 ≥ B) and F2 (given
¬F1, the event of incorrect decryption) must occur. Therefore, using the probabilities for
these events, we can obtain an upper bound on the failure rate.

The upper bound on the failure rate for decryption becomes

Pr
[
F
]
≤ mN1

2

[
1− erf

(
λ1(RΛ24)

2
√

2B σ

)]
+
mN2

2

[
1− erf

(√
3 λ1(RΛ24)

4
√
B σ

)]
+ 1−

γ
(
n, B−1

2σ2

)
Γ(n)

.

41

5.5 Attacks

In this section, we very briefly outline the main attacks against LWE schemes similar to the
one above, and explain the different security estimates used in our comparisons, and the
reasoning behind their values.

The number of LWE samples revealed to an attacker is small (n for the public key, and
n+k for the ciphertext). This rules out several possible strategies to break the scheme, based
on large amounts of LWE samples. Instead, we are concerned with two practical attacks,
typically referred to as primal and dual attacks. Both attacks use the BKZ algorithm, and
rely on finding short vectors in a certain lattice.

SVP hardness. The Blockwise Korkine-Zolotarev (BKZ) algorithm [SE94] is used to solve
for the desired short vectors. BKZ takes a blocksize parameter b as input, and involves
approximately linear many calls to an SVP oracle in dimension b [CN11]. To account for
possible future advancements and/or amortization in certain attacks, we lower bound this
cost by the running time of a single SVP call in dimension b.

The exact cost of such a call is difficult to determine, but for large enough b (b ≥ 200) we
can bound the cost by b2cb operations (see [ADPS15, BCD+16] for details). The constant
c is provided by the best sieving algorithms available. In the classical case, it is given
by cC = log2

√
3/2 ≈ 0.292. Including quantum algorithms, this constant is lowered to

cQ = log2

√
13/9 ≈ 0.265. Lastly, it is plausible to lower bound this constant by noting that

all sieving algorithms require a list of a certain number of vectors to be built. This lower
bound is given by cP = log2

√
4/3 ≈ 0.2075.

These constants therefore imply different security estimates under classical and quantum
assumptions. The constants cC and cQ can be used to calculate security estimates corre-
sponding to state of the art classical and quantum adversaries. The value cP can be used
to calculate estimates for long term security allowing that significant advancements in SVP
algorithms could be made.

Primal attack. The primal attack takes the LWE samples (A,b = As+e) ∈ Zm×nq ×Zm×1q

and builds the lattice

Λ = {x ∈ Zm+n+1 : (A | Im | −b)x = 0 mod q}.

This lattice can be regarded as a unique-SVP instance, where the solution yields the vector
v = (s, e, 1). By sufficiently reducing the basis using BKZ, this vector can be found with a
high degree of probability.

Dual attack. The dual attack constructs the lattice

Λ̂ = {(x,y) ∈ Zn × Zn : Atx = y mod q}

and uses BKZ to find many short vectors of the form (v,w). By computing z = 〈vt,b〉 and
analyzing its distribution, the attacker can distinguish between LWE samples and uniform
samples.

42

The runtimes of these attacks determine the security estimate given to a parameter set.
The number of LWE samples m that are used in BKZ can be chosen to be anywhere from
0 to n + k (for the ciphertext, maximally n for the public key). For the dual attack, the
optimal m is given in [MR09] as

m =
√
n log q/ log δ

where δ refers to the root-Hermite factor (a measure of how short the smallest vector in a
lattice basis is). It is estimated to be the same for the primal attack [LP11]. This indicates
it is easier to attack the ciphertext than the public key, due to the increased number of
samples.

In [LP11], the running time of BKZ for large blocksize b (required by the two attacks
above) is analyzed. We lower bound our estimates by assuming the attacker is attacking
the ciphertext, and has access to an optimal number of samples. The analysis by Lindner
and Peikert found the running time of BKZ to be primarily governed by δ, the root-Hermite
factor. By computing a bound β on the length of a nonzero vector in the lattice Λ or Λ̂ that
would yield the desired results, the root-Hermite factor was computed to be

δ = 2(log2 β)/(4n log q)

where β is proportional to q/σ. This gives us a rough idea of how the parameters n, q, and σ
influence the security of the scheme. Additionally, it is apparent that k only influences the
security insofar as to provide enough LWE samples for an optimal value of m.

Briefly, increasing q will decrease the security, while increasing σ or n increases the
security (n much faster than σ). Increasing q and σ while keeping the ratio between them
constant will increase the security.

5.6 Parameter selection

As shown in the previous section, the choices of n, q, k and σ have differing impacts on
the security of the scheme. However, as long as the desired security estimate is met, their
specific values can be shuffled around almost indefinitely to make the scheme more practical.
We do, however, impose a lower bound on the size of σ. As a general rule, σ should not be
smaller than 1. Under this bound, combinatorial attacks on the cryptosystem may become
feasible.

In this section we compare parameter sets using our Leech lattice encoding approach to
those using the encoding in use today, the more simple integer lattice encoding. We are
particularly interested in parameter sets that minimize the bandwidth, while maintaining
a certain level of security. We will consider two use cases. The first is as an encryption
scheme, where it is assumed that public keys have already been distributed. The second is
as a key exchange algorithm, where the size of the public key is as important as the size of
the ciphertext. In practice, application in the latter would probably be more important.

43

encoding q n σ2 k bits failure bandwidth CT

Zkq 212 568 1.75 128 256 2−38 1044 B
213 568 3.50 128 256 2−38 1131 B
214 572 7.00 128 256 2−37 1225 B

Λ24 210 500 1.15 192 288 2−37 865 B
211 552 1.10 120 300 2−38 924 B
212 574 1.55 96 288 2−38 1005 B
213 576 3.10 96 288 2−37 1092 B
214 556 8.90 120 300 2−37 1183 B

Table 5.1: Encryption schemes. Parameter sets achieving 128 bit post-quantum security
estimates. The column bandwidth CT refers to the size in bytes of one ciphertext. The
failure column denotes the probability of unsuccessful decryption.

5.6.1 Encryption schemes

For an encryption scheme, it is desirable to minimize the size of the ciphertext. It is assumed
that the public keys have already been distributed, and do not need to be renewed per session.
The size of the public key, therefore, is of secondary concern. Typically, the ciphertext
will encrypt 256 uniformly random bits (to account for Grover’s algorithm, discussed in
Section 1.1), which will later be used to derive a session key for symmetric encryption.
Table 5.1 shows some parameter sets for both integer and Leech lattice encoding. All sets
achieve 128 bits of post-quantum security (as per the cQ constant defined in the previous
section), and admit approximately equal failure rates.

The best parameter set for integer encoding requires a ciphertext of 1044 bytes to encrypt
256 bits. By contrast, the best parameter set for Leech lattice encoding requires a ciphertext
of size only 865. This corresponds to a reduction of 17.1% in the size of the ciphertext. The
reason for this gain is primarily due to the lower bound we set on σ. One of the most efficient
ways to reduce the size is by reducing q. However, this increases the effect of σ. For large
relative error (e.g. q as small as possible, and σ close to our bound), the use of the Leech
lattice gives greater control over k. We can extract an average of 1, 1.5, or 2 bits from each
coordinate. Contrast this to integer encoding, for which we can choose to extract 1 or 2 bits
from each coordinate, meaning k = 256 or k = 128! Combined with the fact that the Leech
lattice can simply better tolerate large errors, we can decrease q further than normal.

If we compare parameter sets for similar q, the gains are much less. Taking q = 212,
the reduction in ciphertext size is only 3.7%. This is similar for other values of q that are
available for both encodings, given the bound on σ.

Note also the differences in bits of plaintext being encrypted. For integer encoding, it is
straightforward to encrypt exactly 256 bits, by finetuning k. For Leech lattice encoding, this
is not so simple. The value k must be a multiple of 24, since the Leech lattice exists in 24
dimensions. Similarly, the amount of bits that can be encoded in one copy of the Leech lattice
is restricted to multiples of 12 (this is an artifact of the requirement that the Leech lattice

44

encoding q n σ k n̄ m̄ bits failure bandwidth

Zkq 212 568 1.75 128 12 11 256 2−38 19.1 KB
213 618 1.70 86 10 9 258 2−38 18.6 KB
214 664 1.65 64 8 8 256 2−38 18.2 KB

Λ24 210 500 1.15 192 16 12 288 2−37 17.1 KB
211 552 1.10 120 12 10 300 2−38 16.3 KB
212 574 1.55 96 12 8 288 2−37 16.8 KB
213 626 1.50 72 9 8 288 2−37 16.9 KB
214 700 1.00 48 8 6 264 2−38 16.7 KB

Table 5.2: Parameter sets achieving 128 bit post-quantum security estimates. The bandwidth
column refers to the size of the matrices sent by both parties, as in [BCD+16]. The failure
column denotes the probability of unsuccessful decryption.

must be integer, see Section 3.3). This makes it difficult to find efficient combinations of σ
and k that encrypt 256 bits with little overhead, resulting in the desired security parameter
and failure rate bound.

If we fix q, and compare the ratios of ciphertext bits per plaintext bit for both types
of encoding, we get a much more significant improvement. For example, for q = 214, the
reduction in ciphertext size is only 3.4%. However, Leech lattice encoding is able to encrypt
300 bits per ciphertext, while integer encoding is limited to 256. In terms of ciphertext bits
per plaintext bit, the gain is 17.6%. In practice, this gain is useless as an asymmetric scheme
will only ever be used to agree on symmetric keys. However, it indicates the dimension of
the Leech lattice is causing a significant loss in coding gain, when applied to keys of 256 bits.

5.6.2 Key exchange

In the context of key exchange algorithms, minimizing the size of the entire handshake is
most important. In this case, the ciphertext becomes a matrix instead of a vector. In
calculating the size of a handshake, we follow [BCD+16]. We split k into two factors, n̄ and
m̄. The matrix sent by the first party is of dimension n× n̄, while the second party sends a
matrix of size m̄× n (we ignore the seed for A, and the reconciliation matrix, as their sizes
are negligible). This construction allows both parties to obtain a matrix of size n̄×m̄, which
can be reconciled to reveal 256 bits of shared secret data. Table 5.2 shows some parameter
sets optimized for minimal handshake size. As before, all sets achieve 128 bit post-quantum
security, and admit approximately equal failure rates.

Interestingly, this table is much different. Minimizing the total handshake size relies less
heavily on the values of q and n. Instead, it is most beneficial to minimize n̄ and m̄, which
have a much greater impact on the size of the handshake. This is done by decreasing the
value of σ, allowing more bits to be encoded in every matrix coordinate.

The best parameter set using integer lattice encoding achieves a handshake size of 18.2

45

kilobytes. This set encodes four bits in every coordinate, meaning we can set n̄ = m̄ = 8.
This results in room for 4×82 = 256 encoded bits. Encoding more bits would necessitate an
increase in q, due to the lower bound we require on σ. This increase offsets any gains made
by the smaller n̄ or m̄.

For Leech lattice encoding, the best parameter sets for each value of q are quite similar.
The best has a handshake size of 16.3 kilobytes, which is a reduction of 10.2% compared to
integer lattice encoding. This set makes use of very small q, and relatively large n̄ and m̄,
resulting in 8 copies of the Leech lattice, encoding 36 bits each. However, it is also possible
to use only 2 copies of the Leech lattice, encoding 144 bits each. This handshake is 16.7 KB,
a reduction of 7.8% relative to integer lattice encoding.

For higher failure rates, in the order of 2−256, the difference between integer and Leech
lattice encodings is approximately the same.

Again, the obligation to agree on exactly 256 bits, combined with the unwieldy dimensions
of the Leech lattice, causes a significant loss in coding gain. The best Leech lattice parameter
set has room for 300 encoded bits, compared to exactly 256 for integer lattice encoding. While
it is clear the Leech lattice is a superior method of encoding than the integer lattice and that
this is applicable to LWE cryptosystems, the specifics of the Leech lattice do not mesh well
with established conventions in security, which define security measures in powers of two.

5.6.3 Key exchange for 240 bits

As an experiment, we consider a scenario for which we only require the exchange of 240 bits
of key material. This number fits the dimensions of the Leech lattice better, while it should
have only a small impact on the efficiency of integer lattice encoding. This may result in a
much smaller bandwidth for Leech lattice encoding, relative to current practices.

The requirement for 256 bits comes from Grover’s algorithm [Gro96], which searches
for input to a black box function in O(

√
n) time. Grover’s algorithm is probabilistic, and

sequential—each iteration uses the output of the previous iteration as input. The number
of iterations determines the probability of success, and decreasing this number more than
linearly decreases the success probability. In other words, there is no easy way to parallelize
this algorithm. In practice, this may make the requirement for 256 bits unecessarily large.

We take the best parameter set for integer lattice encoding, for which

(q, n, σ) = (214, 664, 1.65)

and four bits are extracted from each coordinate. For 240 bits, we only need k = 60
coordinates. Unfortunately, the best matrix sizes n × n̄ and m̄ × n are still n̄, m̄ = 8,
meaning there are some unused coordinates (four of them). This means the overal size of
the key exchange is still 18.2 kilobytes.

For Leech lattice encoding, we examine the parameter set (211, 552, 1.10). For the 256
bit case, this set utilized five copies of the Leech lattice, each encoding 60 bits. Since we
now only require 240 bits, we can reduce the number of Leech lattice copies down to 4.
This gives k = 96, and therefore n̄ = 10 and m̄ = 10. Note that there are some redundant

46

coordinates here, too (also four). The resulting overall size of the key exchange is reduced
to 14.8 kilobytes.

The improvement to the bandwidth by using Leech lattice encoding, compared to integer
lattice encoding, is now 18.4%, rather than 10.2%. We have almost doubled this improve-
ment, by adopting a security parameter that is more friendly to the Leech lattice, and a
little less friendly to the integer lattice encoding four bits in each coordinate.

These results may vary somewhat given different parameters and error distributions.
However, it seems reasonable to suggest that the 256 bit requirement significantly limits the
encoding efficiency of the Leech lattice.

47

Chapter 6

Implementation

This chapter describes the cryptographic implementation of Vardy and Be’ery’s maximum
likelihood decoding algorithm [VB93], described in Chapter 4. The decoder was implemented
in the language C, and this chapter is written from this point of view. Higher level languages
may introduce a whole new set of considerations. The primary concern of the implementation
is the adherence to cryptographic requirements. The speed of the implementation is of
secondary concern, but remains important to ensure the practicality of the application of
the Leech lattice.

6.1 Requirements

In any cryptographic system, care must be taken not to leak information which can be
exploited in a side-channel attack. A side-channel attack uses information gained from the
physical implementation of a system in order to break it, rather than a weakness in the actual
cryptography used. Some examples of side-channels include the timing of computations,
error messages thrown, and the power consumption of particular instructions. Most of these
side-channels are outside the scope of this thesis, and need to be dealt with on a per-system
basis. However, preventing timing and cache attacks is crucial to the implementation of the
decoding algorithm. This chapter therefore deals exclusively with these considerations.

It is essential that the Leech lattice decoder decodes in constant time with respect to
the input, where constant time refers to the actual execution time of the program (not
asymptotic time complexity). Non-constant time decoding could leak information on the
values being transferred. This could have devastating effects on the security of the system.

Similarly, it is important that the decoder does not leak information through its use of
caches. A second process on the same CPU should not be able to extract information from
the decoder’s use of the cache.

Making software timing and cache attack resistant is a non-trivial problem, and not solved
in general. The multitude of chip architectures and unpredictability of modern compilers
makes it very difficult to reliably write portable, cryptographically safe software. With this
in mind, there are several issues we need to address in any implementation.

48

Constant time algorithm. The algorithm itself must terminate in a constant number of
steps, regardless of the input. For example, a sorting algorithm like insertion sort applies
a different number of operations depending on how well the input was sorted. This leaks
information on the array being sorted.

Data-dependant branching. Modern CPUs implement a pipeline architecture. This
means that there are multiple sequential instructions being executed simultaneously. In
order to realize this, a branch predictor is used. This is a digital circuit that tries to guess
which way a branch will go before the actual branch instruction is reached. If this circuit
guesses incorrectly, the processor needs to start over with the correct branch, incurring a
delay called a branch misprediction. This means that even if the exact same number of
instructions are executed, branch mispredictions could be detected. If these are dependent
on the input to the decoder, the branch predictor can leak information.

Data-dependent memory access. Accessing memory is orders of magnitudes slower
than accessing a register, which is why modern CPUs store frequently accessed memory
values in a cache, closer to the CPU. If the processor requests to read data that is not in the
cache (known as a cache miss), it has to wait for the data to be transferred from memory,
which is much slower than reading directly from cache. Besides the resulting inconsistent
timing of the decoder, this can potentially be exploited in several ways, as described in
[CLS06].

Briefly, a potential attack could work as follows. A second process running on the same
CPU as the decoder would necessarily share the cache. By measuring the timing of its own
memory access calls, the second process can determine when it has experienced a cache miss
for certain addresses, and thus determine whether the decoder has tried to access memory
previously stored at that cache address. Data dependent memory access can therefore leak
information to a second process, in a manner that is more specific and useful than the overall
execution time of the algorithm. By implementing memory access patterns that are the same
for all inputs, this type of side channel attack can be avoided.

These are the most important considerations. However, it is not an exhaustive list of
oversights that could break a crypto implementation on a specific compiler and architecture
combination. We make several assumptions that may not be valid for all scenarios.

6.1.1 Assumptions

It is assumed that the addition, subtraction, and multiplication instructions for up to 64 bit
integer values are constant time operations. Additionally, we assume that a bitshift operation
on a 64 bit integer is constant time, regardless of the size of the shift. These assumptions
may not be valid for all computer architectures.

In any case, discrepencies between the timing of individual arithmetic instructions are
orders of magnitude smaller than algorithmic considerations, branch mispredictions, and

49

cache misses. As any cryptographic algorithm will need to deal with these issues, these
assumptions are assumed reasonable and will be ignored during the rest of this thesis. The
implementation designed in this thesis is intended as a proof of concept, and not for use in
any production code.

6.2 Making the algorithm constant-time

The Leech lattice decoder consists of a precomputation step, followed by five different stages.

Precomputation. This step calculates the squared Euclidean distance (SED) between
twelve two-dimensional inputs, and the closest Âijk in eachAijk subsets. The number of Leech
lattice points being decoded (alternatively, the size of the constellation used) determine how
large the subset Aijk is, minimally 1. This results in |Aijk| SED calculations and |Aijk| − 1
comparisons in order to choose the smallest (for large constellations, this step could be
optimized to only consider points within a certain distance of the input). From these SEDs,
the dij and δij values are computed. The precomputation is therefore a constant time step.

Computing the Confidence Values, Preferable Representations, and Penalties.
This step computes the preferable representation and its confidence value for each x ∈ F4

and each coordinate of H6, along with the three penalties for each differing (h, k)-parity.
This is also a constant number of operations.

Sorting the Penalties. This step sorts the 24 penalties for each differing (h, k)-parity.
While the sorting could be made constant time by using a special type of sort, the subsequent
steps need to choose the best penalty for varying combinations of block coordinate and
hexacode character x. Queries into the sorted list of penalties may need to visit a data-
dependent number of penalties before finding the best one matching the required coordinate
and character. Therefore, the sorting should be done individually for each hexacodeword.
This increases the complexity of the algorithm, from 3 sorts of size 24, to 192 sorts of size
6. However, the sorts of 6 do not need to be entirely sorted, as only the lowest 2 values are
required. Queries into the sorted lists now need only one operation, instead of potentially
many. As we are sorting the same 24 values many different times, it may be possible to
optimize this in a constant-time fashion. This is an open question; in the interest of keeping
the algorithm simple, partial sorts of size 6 were used in later steps.

Computing the Confidence Values of the Blocks. This step computes the confidence
values for each of the three blocks for each hexacodeword. This is a constant number of
operations.

Finding the Images of the Hexacodewords. For each of the 64 hexacodewords, this
step finds the closest Leech lattice point by resolving the (h, k)-parity of the preferable

50

representation. The sorting is therefore moved to this step, to find the relevant penalties.
After the sorting, there are three possible cases. One is that the parity already matches the
coset of Q24, in which no penalties need be applied. The second is that one penalty must be
applied, and the third is that two penalties in non-conflicting coordinates must be applied
to resolve the parities. To make this step constant time, the penalties are sorted for each
parity regardless of the correctness of the parities. The three different cases are calculated
according to the parity discrepency, minimized, and the best case is applied. For example,
in the case the parities were already correct, all calculated cases are dummies, and there is
no effective change.

Computing the metrics of the Hexacodewords and Final Minimization. In this
step, the metric of the preferable representation along with any necessary penalties is calcu-
lated for each hexacodeword. The minimum of these metrics is chosen as our output, along
with the corresponding Leech lattice point. The metrics are calculated in constant time.
The Leech lattice point is stored internally using a single 64-bit integer. This 36 bit array is
combined with the information gained from the Aijk or Bijk subsets, to output a bit string
whose size is dependent on the number of Leech lattice points being used in the encoding.
This point can easily be generated and returned in constant time, meaning this last step is
constant time.

6.3 Constant-time sorting and minimization

While most of the algorithm is straightforward computation, there are numerous steps which
involve sorting and/or minimization of values. These require the comparison of values, and
a choice based upon the result of the comparison. The natural implementation is a branch,
but this is not allowed due to the requirements stated above. However, there are some tricks
we can apply.

Consider the need to find the minimum and maximum of two values, say a and b. Let s
be the sign of a− b, where s = 1 if a− b is negative, and 0 otherwise. For integers, the s can
be extracted using a clever bitshift (this is also possible for floating point values, but not
required in our implementation). Then the minimum and maximum can be reconstructed
using the following formulas.

min = as+ b(s XOR 1),

max = bs+ a(s XOR 1).

By setting a equal to min, and b equal to max, we obtain a swap function that uses
the same amount of instructions regardless of the comparison result. To swap objects, or
structures associated with the values a and b, the same formulas can be applied. It is not
sufficient to simply swap associated pointers since this will result in inconsistent memory
access patterns. By rebuilding values and associated data in this manner, we ensure that
the same cache lines are touched for any input.

51

Armed with a timing-safe swap operation, we can now easily design minimization and
sorting algorithms. It is important to apply swaps in a manner that is independent of the
values themselves.

Minimization. Minimization is typically done in n − 1 comparisons, which is constant
time. Our swap operation allows a similar O(n) implementation. We apply swap with
element n − 1 as a and element n as b. Next we apply swap to elements n − 2 and n − 1,
and continue until we’ve done elements 1 and 2. At this point, we are guaranteed to find
the minimum value in the first position of the array.

If we are not interested in preserving the integrity of the array, and are only concerned
with the minimal value, it is possible to optimize this algorithm. In this case, we only
construct min as above, and set a to this value. The value b is left untouched, meaning
values in the array may be lost. However, we are guaranteed to find the minimum value at
the first index in the array, which is all we required.

Sorting. Typical sorts such as quicksort or mergesort are largely concerned with mini-
mizing the amount of comparisons, and have little to no regard for the movement of the
underlying data. Since we must maintain consistent memory access, these sorts are not an
option. Instead, a sort with a consistent access pattern must be used. The sort must have
a fixed “plan”, which does not change depending on comparisons made during the sort. In
[Knu98] this is called a homogeneous decision structure, and gives sorting networks as the
solution. Sorting networks can be constructed using general algorithms giving O(n log2 n)
complexity.

However, with the previous algorithmic changes to the algorithm, it turns out that sorting
networks are not necessary. We only require the smallest two values in an array of size 6,
meaning we can simply use an extension of the minimization technique described above.
Nevertheless, sorting networks are a powerful technique for constant-time software.

6.4 Implementations

All of the following software was implemented in C. The implementation was compiled on a
4.4.9-300.f23.x86 64 linux kernel with GCC 5.3.1, and run on a 2.4GHz Intel Core i3 M370
processor. The maximum likelihood decoder by Vardy and Be’ery [VB93] was implemented
twice.

The first implementation is a cryptographically safe version, conforming to the require-
ments laid out in Section 6.1. It also makes use of the algorithmic adjustments described
in Section 6.2. Using the patterns defined in the previous section, the algorithm was im-
plemented without any input-dependent branches or memory access. Unless the compiler
optimizes these in, the implementation should therefore resist timing and cache attacks.

The second implementation of Vardy and Be’ery’s decoder is an unsafe version. This
implementation follows the algorithm as described in the paper, and makes no timing con-
siderations. The sorting of the penalties is done using an insertion sort. While there are

52

asymptotically faster sorts available, insertion sort is typically used as a subroutine for more
complex sorts. It has a very simple implementation with minimal overhead. Since the sorts
are of small size (n = 24), it is assumed the use of insertion sort is close to optimal.

6.5 Correctness

In this section we review several tests that give us confidence that the implementation is
correct and conforms to the requirements laid out in Section 6.1.

The correctness of a CVP algorithm is difficult to verify, without another algorithm that
is known to be correct. The timing safety of an implementation is also difficult to establish.
However, there are several tests we can run.

Error-correction radius. This test generates random Leech lattice points, by generating
random bits and constructing a valid 2 × 6 array of Aijk or Bijk points (see Chapter 4).
This points are converted to vectors using a lookup table. For each Leech lattice point, a
random error within the error-correction radius of the Leech lattice (λ1(Λ24)/2) is added. The
resulting point is decoded, and verified against the starting point. The outputted distance
is also verified, between the starting point plus error and the outputted closest vector. Then
a different random error is added to the starting point, and the process starts anew.

Both the safe and unsafe versions of the decoder decoded hundreds of thousands of these
lattice points plus error, with a 100% success rate. This gives us confidence that both decoder
implementations are correct, at least within the error-correction radius of Λ24.

Consistency. This test generates uniformly random points in the space spanned by the
Leech lattice. For each generated point, both the safe and unsafe decoders are applied, and
the points are compared. This test was run on hundreds of thousands of random points. For
a very small percentage, the two decoders returned different closest vectors. However, the
distance between the random point and each of the two returned closest vectors was equal
in every such case, indicating the random point happened to lie exactly in between two (or
possibly more) Leech lattice points.

This means the two decoders are consistent when decoding points in all space, excepting
the boundaries of the Voronoi cells. This is compatible with the definition of CVP.

Timing safety. Like the previous test, we generate a set of uniformly random points in
the space spanned by the Leech lattice. For each of these points, the decoder is applied
10000 times. These decoder executions are interleaved, meaning the decoder cycles through
the set of random points 10000 times. The start and end times for each decoder execution
are measured, and the times for each random point are summed and averaged.

For the timing safe implementation of the decoder, the average time of execution for each
uniformly random point was 55.4± 0.1 microseconds (note that the resolution of the timing
mechanism used was limited to microseconds).

53

For the unsafe implementation, the average time of execution for each random point was
41.2± 2.3 microseconds.

Exactly measuring execution time is difficult, as the program has no control over its
scheduling on the CPU. The system scheduler may choose to interrupt the program at any
time to run another task. By decoding each random point a very large number of times, and
interleaving these executions, we can average out the effects of the scheduler on our timing.
If there are data dependent timing issues with the implementation, these should become
visible.

In the unsafe implementation, this is indeed very visible. The average times varied over
a range of well over 10% of the average execution time. This could be due to coincidentally
presorted penalties, or a lack of penalties to apply for a large number of hexacodewords. In
any case, there is clearly a distinction to be made between certain points. By contrast, the
safe implementation shows no such variance.

As a result, we have some confidence that this implementation will not leak information
to an attacker.

6.6 Performance

As mentioned previously, the cryptographically safe implementation runs in an average of
55.4 microseconds, while the unsafe implementation runs in an average of 41.2 microseconds.
The timing considerations therefore add 34.5% of overhead to the algorithm. Significant
overhead is to be expected for any cryptographic software, so this is not out of the ordinary.

At the very least, we expect a timing safe implementation of an algorithm to have a worst-
case running time. In order to avoid data dependent cache misses and branch mispredictions,
a lot more data needs to be examined and moved in memory than normal. With these
considerations, 34.5% seems very reasonable, especially considering that the algorithm, as
described by Vardy and Be’ery, has a worst case complexity 21.7% more than its average
case complexity.

The algorithm was described as requiring 3595 “real” operations in the worst case, and
2955 on average. They describe real operations as including addition, subtraction, or com-
parisons, and specifically ignore memory addressing, negation, and absolute value calls.

The unsafe implementation, averaging 41.2 microseconds, takes almost 100,000 clock
cycles to complete. While this implementation can probably be optimized to some extent,
it does not account for this massive difference in running times. Clearly, the complexity
measures used in [VB93] and others are far from realistic for CPUs. We note nevertheless
that the cost model of [VB93] could very well be realistic for dedicated circuits.

Further optimizations. The cryptographically secure implementation has been opti-
mized to a large extent. There may be small gains to be made in certain steps of the
algorithm. Larger gains might be possible by implementing hardware specific optimizations,
such as fast integer types and the use of subword parallel instruction set architectures.

54

The greatest gains, however, can be made by parallelizing the implementation. The
decoder is highly parallelizable, and also vectorizable. Trivially, the four decoders for the
cosets of Q24 can run concurrently. Using SIMD (single instruction, multiple data), these
decoders could also easily be vectorized. In most cases, this will be sufficient, and will
cleanly decrease the running time by a factor of four. It is also easily possible to parallelize
the algorithm to an even greater degree.

The bulk of the algorithm is spent minimizing the penalties, calculating metrics and
applying the relevant penalties for each hexacodeword. There are 64 hexacodewords, and
these could all be implemented in a vector, if supported by the hardware. More probably,
the hexacodewords would be split into several groups, each run on a separate vector. The
information associated with a penalty (or any other arithmetic in the decoder) could be
reduced to 64 bits, or even 32 bits, if q is sufficiently small. Assuming 256 bit vectorization,
which has been widely available for some time, it could be possible to decrease the most
computationally intensive steps of the decoding algorithm by a factor of 4, or possibly even
8. With 512 bit vectorization not far away, this could be doubled again.

The alterations made to the algorithm to make it timing safe (particularly, the penalty
sorting step) are very useful for vectorization. Since the computations done for each hexa-
codeword are not dependent on data used for other codewords, vectorization is exceedingly
simple.

Suitability for LWE. In [BCD+16], the authors state the running times of the key ex-
change to be in the order of 1.3 milliseconds for both parties. For [ADPS15], the running
times are nearly 10 times as fast, at approximately 150 microseconds per party.

While the best parameter set in Chapter 5 requires 8 copies of the Leech lattice, and
thus 8 decoders, a slightly suboptimal set needs only 2. Assuming the implementation has
been vectorized using 256 bit SIMD, a single decoder would run in under 14 microseconds,
or 7 for small enough q. While this is significant compared to the running time of R-LWE
(NewHope), it is negligible compared to LWE (Frodo). The running times for 3072 bit
RSA and elliptic curve Diffie-Hellman using the same hardware are approximately 4.6 and
1.4 milliseconds respectively, indicating that it is much faster than conventional crypto.
Additionally, these comparisons does not even take into account the difference in hardware,
as the CPU yielding a running time of 55 microseconds for the decoder is vastly inferior
compared to the hardware used in [BCD+16].

In summary, the decoder of Vardy and Be’ery appears to be suitable for cryptographic
applications, provided the implemention takes advantage of vectorization, and the number
of decoders required is small.

55

Chapter 7

Conclusion

Lattice based asymmetric primitives have many properties that make them attractive choices
for post-quantum security. However, while the key exchanges based on LWE and R-LWE are
computationally efficient, they still lag behind in terms of the amount of data exchanged.
This thesis examined the possible application of the Leech lattice in order to reduce the
bandwidth of such a scheme.

7.1 Results

We first examined the properties of the Leech lattice that make it suitable for coding appli-
cations. We investigated the maximum likelihood decoding algorithm for the Leech lattice
by Vardy and Be’ery, and generalized several concepts used by this algorithm to lattice de-
coding in general. We took these complex techniques from an engineer’s perspective, and
placed them in the framework of lattice and glue theory.

We applied Leech lattice encoding to an encryption scheme based on the LWE problem,
and compared it to the integer encoding used in existing schemes. While we found marginal
improvements, in the order of 17% for the encryption scheme, and 10% for the key exchange,
the true encoding efficiency of the Leech lattice was stunted by the cumbersome nature of
its dimension, and the resulting densities. When we are required to exchange 256 bits of key
material, the Leech lattice simply doesn’t fit nicely, and a significant amount of coding gain
is lost. As noted in Section 5.6.3, the efficiency of the key exchange could be improved by
more than 18% if we only require 240 bits of key material.

In any case, we confirmed that the Leech lattice is better at tolerating larger errors than
the more simple integer lattice encoding. In the context of LWE, this can allow for a larger
reduction in q in some scenarios, when compared to the use of integer lattice encoding, all
the while maintaining the same security estimates.

On the implementation side of things, we found that the decoding algorithm can indeed be
made timing and cache attack safe, with several algorithmic adjustments. We implementated
a proof of concept in C, and demonstrated the desired effects of the changes made in order to
make the implementation cryptographically secure. Lastly, we also showed that the algorithm

56

can be made fast enough to be practical for use in the real world. With some parallelization
and/or vectorization, the algorithm would have only a very small effect on the latency of a
handshake, as compared to the computations involved in LWE. For R-LWE, the impact is
more noticeable, but still manageable.

7.2 Further research

While the Leech lattice failed to make very significant improvements to the bandwidth of
existing LWE schemes, we did demonstrate that improved coding is possible. We may be
able to apply other efficient lattice codes with more agreeable dimensions, in order to realize
a practically useful reduction in bandwidth.

It is also worth looking at whether the efficient coding properties of the Leech lattice can
be used in an R-LWE scheme. The Leech lattice is an ideal in the cyclotomic ring Z[ζ35],
which could be used in R-LWE. In this context, the dimensions of the Leech lattice may be
a more natural fit. If the maximum coding gain of the Leech lattice can be realized, the
reduction in bandwidth could be significant.

57

Bibliography

[AB96] Ofer Amrani and Yair Be’ery. Efficient bounded-distance decoding of the hexa-
code and associated decoders for the leech lattice and the golay code. Commu-
nications, IEEE Transactions on, 44(5):534–537, 1996.

[ABB+15] Daniel Augot, Lejla Batina, Daniel J Bernstein, Joppe Bos, Johannes Buchmann,
Wouter Castryck, O Dunkelmann, Tim Güneysu, Shay Gueron, Andreas Hülsing,
T Lange, MSE Mohamed, C Rechberger, P Schwabe, N Sendrier, F Vercauteren,
and BY Yang. Initial recommendations of long-term secure post-quantum systems
(2015), 2015. https://pqcrypto.eu.org/docs/initial-recommendations.

pdf.

[ABV+94] Ofer Amrani, Yair Be’ery, Alexander Vardy, Feng Wen Sun, and Henk CA
Van Tilborg. The leech lattice and the golay code: bounded-distance decod-
ing and multilevel constructions. Information Theory, IEEE Transactions on,
40(4):1030–1043, 1994.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning prob-
lems. In Advances in Cryptology-CRYPTO 2009, pages 595–618. Springer, 2009.

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. Technical report, Cryptology ePrint Archive,
2015. http://eprint.iacr.org/2015/1092.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 99–108.
ACM, 1996.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Comput-
ing, 26(5):1510–1523, 1997.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from lwe. Technical report, Cryptology
ePinrt Archive, 2016. http://eprint.iacr.org/2016/659.

58

https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2016/659

[BCNS15] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the tls protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy, pages 553–570.
IEEE, 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 575–584. ACM, 2013.

[BS81] Eiichi Bannai and Neil JA Sloane. Uniqueness of certain spherical codes. Canad.
J. Math, 33(2):437–449, 1981.

[BSS89] Yair Be’ery, Boaz Shahar, and Jakov Snyders. Fast decoding of the leech lattice.
IEEE Journal on Selected Areas in Communications, 7(6):959–967, 1989.

[Ces15] Chris Cesare. Online security braces for quantum revolu-
tion. Nature, 525:167–168, 2015. http://www.nature.com/news/

online-security-braces-for-quantum-revolution-1.18332.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perl-
ner, and Daniel Smith-Tone. Report on post-quantum cryptography. National
Institute of Standards and Technology Internal Report, 8105, 2016.

[CLS06] Anne Canteaut, Cedric Lauradoux, and Andre Seznec. Understanding cache
attacks. PhD thesis, INRIA, 2006.

[CN11] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 1–20. Springer, 2011.

[Con68] John H Conway. A perfect group of order 8,315,553,613,086,720,000 and the spo-
radic simple groups. Proceedings of the National Academy of Sciences, 61(2):398–
400, 1968.

[CPS82] JH Conway, RA Parker, and NJA Sloane. The covering radius of the leech lattice.
In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 380, pages 261–290. The Royal Society, 1982.

[CS82a] John H Conway and NJA Sloane. Fast quantizing and decoding and algorithms
for lattice quantizers and codes. Information Theory, IEEE Transactions on,
28(2):227–232, 1982. http://neilsloane.com/doc/Me83.pdf.

[CS82b] John H Conway and NJA Sloane. Twenty-three constructions for the leech lattice.
In Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, volume 381, pages 275–283. The Royal Society, 1982.

59

http://www.nature.com/news/online-security-braces-for-quantum-revolution-1.18332
http://www.nature.com/news/online-security-braces-for-quantum-revolution-1.18332
http://neilsloane.com/doc/Me83.pdf

[CS82c] John H Conway and NJA Sloane. Voronoi regions of lattices, second moments
of polytopes, and quantization. Information Theory, IEEE Transactions on,
28(2):211–226, 1982.

[CS84] John H Conway and NJA Sloane. On the voronoi regions of certain lattices.
SIAM Journal on Algebraic Discrete Methods, 5(3):294–305, 1984.

[CS86] John H Conway and NJA Sloane. Soft decoding techniques for codes and lat-
tices, including the golay code and the leech lattice. Information Theory, IEEE
Transactions on, 32(1):41 – 50, 1986.

[CS93] John H Conway and NJA Sloane. Sphere packings, lattices, and groups. Springer-
Verlag, New York, 1993.

[Dir15] Information Assurance Directorate. Commercial national security algo-
rithm suite, 2015. https://www.iad.gov/iad/programs/iad-initiatives/

cnsa-suite.cfm.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange
scheme based on the learning with errors problem. IACR Cryptology ePrint
Archive, 2012:688, 2012.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[Gol49] Marcel JE Golay. Notes on digital coding, 1949.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212–219. ACM, 1996.

[Hal05] Thomas C Hales. A proof of the kepler conjecture. Annals of mathematics,
162(3):1065–1185, 2005.

[Knu98] Donald Ervin Knuth. The art of computer programming: sorting and searching,
volume 3. Pearson Education, 1998.

[Lee64] John Leech. Some sphere packings in higher space. Canad. J. Math, 16:657–682,
1964.

[Lee67] John Leech. Notes on sphere packings. Canad. J. Math, 19(251):267, 1967.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based
encryption. In Cryptographers’ Track at the RSA Conference, pages 319–339.
Springer, 2011.

60

https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

[LS71] John Leech and NJA Sloane. Sphere packings and error-correcting codes. Canad.
J. Math, 23(4):718–745, 1971.

[MCSQ08] Robby G McKilliam, I Vaughan L Clarkson, Warren D Smith, and Barry G
Quinn. A linear-time nearest point algorithm for the lattice A∗n. In Information
Theory and Its Applications, 2008. ISITA 2008. International Symposium on,
pages 1–5. IEEE, 2008. https://www.itr.unisa.edu.au/itrusers/mckillrg/
public_html/papers/ISITA_Anstar.pdf.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-
quantum cryptography, pages 147–191. Springer, 2009.

[Mun57] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, 5(1):32–38, 1957.

[Nie73] Hans-Volker Niemeier. Definite quadratische formen der dimension 24 und
diskriminante 1. Journal of Number Theory, 5(2):142–178, 1973.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem. In Proceedings of the forty-first annual ACM symposium on Theory of com-
puting, pages 333–342. ACM, 2009.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In International Workshop
on Post-Quantum Cryptography, pages 197–219. Springer, 2014.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. arXiv preprint quant-ph/0301141, 2003.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56(6):34, 2009.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Mathematical programming,
66(1-3):181–199, 1994.

[Sho94] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 124–134. IEEE, 1994.

[Slo77] NJA Sloane. Binary codes, lattices and sphere packings. Combinatorial surveys,
pages 117–164, 1977.

[Var95] Alexander Vardy. Even more efficient bounded-distance decoding of the hexacode,
the golay code, and the leech lattice. Information Theory, IEEE Transactions
on, 41(5):1495–1499, 1995.

61

https://www.itr.unisa.edu.au/itrusers/mckillrg/public_html/papers/ISITA_Anstar.pdf
https://www.itr.unisa.edu.au/itrusers/mckillrg/public_html/papers/ISITA_Anstar.pdf

[VB93] Alexander Vardy and Yair Be’ery. Maximum likelihood decoding of the leech
lattice. Information Theory, IEEE Transactions on, 39(4):1435–1444, 1993.

[ZZD+15] Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and Özgür Dagde-
len. Authenticated key exchange from ideal lattices. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
719–751. Springer, 2015.

62

	Introduction
	Post-quantum cryptography
	Lattice-based cryptography
	Applying coding theory

	Preliminaries
	Notation
	Error-correcting codes
	Definitions
	Examples

	Lattices
	Definitions
	Examples
	Lattice constructions
	Computational problems

	Lattice decoding
	Decoding direct sums
	Decoding unions of cosets
	Decoding glue with parity
	Applying decoding strategies to BDD

	Public key cryptography

	The Leech lattice
	Construction
	Properties
	Sphere packing
	Relationship to the Golay Code
	Shape
	Symmetries
	The Niemeier lattices

	Integer Leech lattice

	Decoding the Leech lattice
	Advanced construction
	Technical construction
	Glue theory construction

	Maximum likelihood decoding
	Technical description
	Glue theory description

	Bounded distance decoding

	Learning with errors
	Foundations
	Cryptosystem
	Security
	Encoding
	Current approach
	Our Leech lattice approach

	Attacks
	Parameter selection
	Encryption schemes
	Key exchange
	Key exchange for 240 bits

	Implementation
	Requirements
	Assumptions

	Making the algorithm constant-time
	Constant-time sorting and minimization
	Implementations
	Correctness
	Performance

	Conclusion
	Results
	Further research

