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ABSTRACT
Some lattice-based public key cryptosystems allow one to
transform ciphertext from one lattice or ring representation
to another efficiently and without knowledge of public and
private keys. In this work we explore this lattice transforma-
tion property from cryptographic engineering viewpoint. We
apply it to compress Ring-LWE ciphertexts and to enable
efficient decryption on an ultra-lightweight implementation
target. Significantly, this can be done without the modifying
the original encryption procedure or its security parameters.

Ciphertext compression can significantly increase the prob-
ability of decryption errors. We show that the frequency of
such errors can be analyzed, measured and used to derive
precise failure bounds for n-bit error correction. We intro-
duce XECC, a fast multi-error correcting code that allows
constant time implementation in software.

We use these tools to construct and explore trunc8, a
concrete Ring-LWE encryption and authentication system.
We analyze its implementation, security, and performance.
We show that our lattice compression technique reduces ci-
phertext size by more than 40% at equivalent security level,
while also enabling public key cryptography on previously
unreachable ultra-lightweight platforms.

The experimental public key encryption and authentica-
tion system has been implemented on an 8-bit AVR target,
where it easily outperforms Elliptic Curve and RSA-based
proposals at similar security level. The new decryption code
requires only a fraction of the software footprint of previous
Ring-LWE implementations with the same encryption pa-
rameters, and is well suited for hardware implementation.

Ciphertext transformation can be applied by a protocol or
application while maintaining compatibility with the origi-
nal scheme. Such flexibility is unique to lattice-based cryp-
tography and may find unique real-life applications.
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1. INTRODUCTION
Polynomial-time Quantum algorithms for attacking cryp-

tographic standards based on RSA [19] and Elliptic Curve
Discrete Logarithms [15] have been known for many years
[31, 35]. However, the continuing progress of quantum com-
puting has only recently prompted the National Security
Agency (NSA) to express an intention to transition to new,
post-quantum algorithms [10, 27]. These algorithms run
on classical computers but are expected to be resistant to
cryptanalysis by quantum methods. U.K. CESG has also
expressed their preference for post-quantum algorithms over
“quantum technologies” such as Quantum Key Distribution
to counter the threat of quantum computing [8].
We observe that the new post-quantum threat model ap-

plies equally to RFID, Smart Cards, Internet-of-Things, and
to other common lightweight cryptography applications. New
lightweight proposals should be designed to be resistant to
Quantum Adversaries in addition to side channels and other
implementation attacks. Current public key standards do
not generally meet these criteria.

To meet the future asymmetric requirement, National In-
stitute of Standards and Technology (NIST) has initiated an
effort to standardize Post-Quantum Cryptography (PQC)
[9]. The minimal acceptability requirements in NIST’s call
state that any submitted algorithm should be publicly dis-
closed and available with no intellectual property restric-
tions, implementable on a wide range of platforms, and
should provide at least one of: signature, encryption, or
key exchange / encapsulation (KEM) [26]. Furthermore,
established theoretical and empirical evidence should exist
providing justification for security claims [25].

In this work we show how ciphertext compression and er-
ror correcting codes can be used with the basic Lindert-
Peikert Ring-LWE algorithm to build a robust, and quantum
resistant public key encryption, KEM, and authentication
mechanism for RFID, smart cards, and other lightweight tar-
gets. Our construct uses many of the same building blocks
as previous well-studied encryption [11, 22, 29, 30, 33], sig-
nature [12, 34], and key exchange algorithms [2], and can be
used in conjunction with them.

Structure of this paper and our contributions. We
describe the basic “Lindner-Peikert” Ring-LWE public key
encryption scheme in Section 2. A ciphertext compression
technique is introduced in Section 3. Its lightweight imple-
mentation, application to authentication, and novel auxil-
iary algorithms such as a constant-time error correction are
described in Section 4. This is followed by conclusions and
further discussion in Section 5.
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2. RING-LWE PUBLIC KEY ENCRYPTION
We use a variant of the well-established “Lindner-Peikert”

Ring-LWE encryption algorithm first given in [20] and in
the extended version of [24]. This algorithm has been imple-
mented on numerous lightweight targets in both hardware
and software in recent years [3, 11, 16, 28, 29, 33]. Our
implemented scheme – comprising of a certain set of param-
eters and algorithms – is referred to as trunc8.

2.1 Notation and Conventions
Arithmetic is performed in the“anti-cyclic” ring formed of

polynomials modulo f(x) = xn + 1 with coefficients defined
in the field Zq, where q is a (small) prime. Coefficient of
degree i of ring element (polynomial) v is denoted v[i]; we
have v =

∑n−1
i=0 v[i]xi. The ring element polynomials are

algorithmically handled as zero-indexed vectors.
Let Un be a source of uniform random polynomials in

Zn
q and Bn ∈ {0, 1}n a source of random polynomials with

binary coefficients.
Let Dσ be a source of integers with discrete Gaussian dis-

tribution defined by deviation parameter σ. Dn
σ is a source

of polynomials with coefficients randomly sampled from that
distribution. The probability mass of Dσ at x ∈ Z is

fσ(x) ∝ e
− x2

2σ2 with
∑

fσ(x) = 1. (1)

We typically have a very close approximation

fσ(x) ≈
1

σ
√
2π

e
− x2

2σ2 . (2)

We use e0, e1, e2, e3 ← Dn
σ to denote random Gaussian

noise parameters that are newly sampled from the distribu-
tion every time the corresponding algorithms are invoked.

2.2 Key Generation
Public key is (a, p) and the private key is the n-bit binary

string s.1 The a parameter may be “global” and shared
between a large number of public keys.

s = Bn Binary private key.
a = Un Public parameter (shared).
p = e0 − a ∗ s Public key.

2.3 Encryption
When encoding an n-bit message z ∈ {0, 1}n, we add ei-

ther 0 or q−1
2

to each vi coefficient, depending corresponding
on bit zi. Ciphertext message consists of the pair (u, v).

m = ⌊q/2⌋ ∗ z Message encoding.
u = a ∗ e1 + e2 Ciphertext part 1.
v = p∗e1+e3+m Ciphertext part 2.

2.4 Decryption
Decrypting (u, v) with secret key s can be done via

m′ = u ∗ s+ v. (3)

Decoding the message z can be achieved by normalizing m
into zero-centered range − q+1

2
≤ m′

i ≤ q−1
2

and outputting
zi = 1 if abs(m′

i) >
q
4
and zi = 0 otherwise.

1This is equivalent to the CHES 2014 variant of Roy et al.
[33] (Section 6). Some variants sample the private key s
from Dn

σ . See [7] for analysis of the binary case.

Algorithm 1 Simple ring multiplication for decryption.

Input: Ciphertext (u, v) and private key s.
1: m← v
2: for i = 0, 1, . . . n− 1 do
3: if si = 1 then
4: for j = 0, 1, . . . , n− i− 1 do
5: m[i+ j]← m[i+ j] + u[j]
6: end for
7: for j = n− i, . . . , n− 1 do
8: m[i+ j − n]← m[i+ j − n]− u[j]
9: end for
10: end if
11: end for
Output: Undecoded plaintext vector m.

2.5 Parameter Selection
Göttert et al. has suggested (n, q, σ) = (512, 12289, 4.8591)

as a“high-security”Ring-LWE encryption parameter set [16].
We adopt these parameters for our work. This parameter
set has been used in many subsequent Ring-LWE Encryp-
tion studies [11, 22, 29, 30, 33] and therefore works as a
suitable benchmark when comparing implementations. We
refer to these earlier works for detailed analysis of the given
parameters. We further note recent work by Buchmann et
al. on the “binary secret” case of Ring-LWE [5, 7].

Following the methodology adopted by Alkim et al. in [2],
we can compare the security of this parameter set to other
lattice-based encryption and key exchange proposals2. Table
1 offers estimates for the best known classical and quantum
attacks against trunc8 and some other contemporary Lattice-
based cryptosystems. For a recent survey of LWE hardness,
see [1].

3. USING CIPHERTEXT COMPRESSION
Decryption operation (Equation 3) involves multiplication

of u by the secret binary vector s in the anti-cyclic ring. This
is often done using Number Theoretic Transforms (NTT),
but can also be implemented with Algorithm 1. This sim-
pler method has a higher (quadratic) complexity than the
NTT method, but it is still very fast as it requires no field
multiplications, just additions and subtractions.

Observation 1. Any ciphertext produced with common
Ring-LWE encryption parameters (Section 2.5) can be sig-
nificantly compressed in a way that still allows correct de-
cryption with high probability. Since the transformation is
“public” (uses no secret information) and only removes re-
dundancy, it cannot negatively affect the confidentiality of
the message against attacks.

The arithmetic for decryption is performed in Zq by de-
fault, with q = 12289 chosen in Section 2.5. We show that
decryption operations can be approximated by arithmetic in
group Zp=256 which corresponds to fast byte operations.

Modulus reduction techniques have been considered in a
theoretical setting in works such as [5]. However, our angle
is simply to analyze the rounding artifacts that occur in
our concrete trunc8 proposal to guarantee that approximate
decryption works with sufficient probability.
2The script used in [2] for finding optimal attack param-
eters: https://github.com/tpoeppelmann/newhope/blob/
master/scripts/PQsecurity.py

https://github.com/tpoeppelmann/newhope/blob/master/scripts/PQsecurity.py
https://github.com/tpoeppelmann/newhope/blob/master/scripts/PQsecurity.py


Table 1: Comparing the hardness of our scheme against some other recent Lattice-based encryption and key
exchange proposals using the methodology from [2]. trunc8 (and other proposals using the “high-security”
parameter set from [16]) exceeds 128-bit security against all known Quantum attacks; attack improvements
beyond 2102 are not plausibly expected.

Attack Parameters Known Known Plausible
type (m, b) Classical Quantum Quantum

trunc8 [this work] q = 12289, n = 512, σ = 4.859
Primal (660, 496) 144 131 102
Dual (674, 494) 144 131 102

Medium-Security LWE [16] q = 7681, n = 256, σ = 4.512
Primal (345, 222) 64 58 46
Dual (360, 222) 64 58 46

NTRU-743 [17] q = 212, n = 743, σ = 0.8164
Primal (613, 603) 176 159 125
Dual (635, 600) 175 159 124

BCNS [4] q = 232, n = 1024, σ = 3.192
Primal (1062, 296) 86 78 61
Dual (1055, 296) 86 78 61

NewHope [2] q = 12289, n = 1024, σ = 2.828
Primal (1100, 967) 282 256 200
Dual (1100, 962) 281 255 199

JarJar [2] q = 12289, n = 512, σ = 3.464
Primal (623, 449) 131 119 93
Dual (602, 448) 130 118 92

We choose the group of integers mod p = 256 as a natural
“compressed ideal lattice” base. For q = 12289 we define a
rounding truncation of 0 ≤ x < q:

T(x) =

⌊
(x mod q) + 23

48

⌋
mod 256. (4)

Observation 2. Group Zq addition (x+y) for q = 12289,
when approximated mod p = 256 by byte addition ⊞ via
mapping T(x) is characterized by

T(x)⊞ T(y) ≡

 T(x+ y)⊞ 1 with P = 18877440/q2,
T(x+ y) with P = 113264641/q2,

T(x+ y)⊟ 1 with P = 18877440/q2

(5)

Proof. Result was obtained via exhaustive computation
of all q2 cases. The three cases sum up to 1; the approxima-
tion is never off by more than one.

The probabilities are very close to 1/8, 3/4, and 1/8, re-
spectively – accurate to 8 decimal places as these are the
closest fractions with denominator q2.

Observation 3. Let m′ be the output of Algorithm 1 when
run in original group Zq and m when input is truncated to
(T(u),T(v)) and byte arithmetic in mod p = 256 is used
throughout. For random keys and inputs, the distance of
compressed decoding in Zp to decoding in Zq for individual
values of m[i]−T(m′[i]) is closely approximated by Discrete
Gaussian distribution Dσ=8.

Proof. Let a = 18877440
q2

(from Equation 5) be the proba-

bility that an off-by-one error is introduced in each addition.
Combinatorial analysis of a random n = 512 - bit secret key,
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Figure 1: Probability distribution of the approxi-
mation error given by Equation 6. Approximation
error does not have to be 0 for successful decryption;
generally |x| < q/4 still works with our scheme.

of weight w, with b nonzero steps, of which c are positive
gives the total probability of error of exactly x ∈ Z steps as

f(x) =
∑

x = 2c − b,

0 ≤ c ≤b ≤ w ≤ n

ab(1− 2a)w−b

2n

(
n

w

)(
w

b

)(
b

c

)
. (6)

The statistical distance (total variation distance) between
the exact combinatorial f(x) of Equation 6 and the discrete
Gaussian distribution of Equation 1 with deviation σ = 8 is
less than 0.0006. Figure 1 illustrates Equation 6.

Combinatorial analysis can be made for any approxima-
tion. However, one generally prefers to have an easy-to-
analyze characterization such as the one in Equation 5.



3.1 Rough Statistical Analysis of Decryption
Expanding Equation 3 we obtain:

m′ = (a ∗ e1 + e2) ∗ s+ (e0 − a ∗ s) ∗ e1 − e3 +m

= e2 ∗ s+ e0 ∗ e1 + e3 +m. (7)

We see that the a ∗ s ∗ e1 term cancels out. Decryption can
work correctly only if |m′

i−mi| < q/4 in the original mod q
operation. We first analyze this case.

Each ring multiplication x ∗ y = z evaluates n inner prod-
ucts zi =

∑n−1
j=0 xjyi−j (we interpret indexes in anti-cyclic

wrap-around fashion: vi = −vi+n = −vi−n.) Recall that the
variance σ2 of independent zero-centered variables is both
additive and multiplicative: Var(X+Y ) = Var(X)+Var(Y )
and Var(XY ) = Var(X)Var(Y ) when E[X] = E[Y ] = 0.
Furthermore, the sum of n equal-variance independent vari-
ables approaches a Gaussian distribution when n grows. We
may therefore estimate the coefficients of the polynomial
ring product z = x ∗ y by Gaussian Dn

σz
with deviation

σz ≈
√

nσ2
xσ2

y. (8)

In the case where both x and y in ring multiplication
z = x ∗ y come from discrete Gaussian Dn

σ with example
parameters σ = 4.8591 and n = 512, the corresponding
approximate Gaussian has σz =

√
512σ2 ≈ 534.3. The total

variation distance of this Dσz approximation to the true
product distribution of zi is approximately 0.0007.

We further write the binary distribution s ∈ Bn as a zero-
centered distribution with variance 1

2
. This allows us to

bound the error vector m′ −m with Gaussian Dn
σe

where

σe =

√
n

(
1

2
σ2 + σ4

)
+ σ2 ≈ 539.9. (9)

To estimate the error in the truncated mod 256 case, we
must scale the “intrinsic” error σe of Zq rings to our target
group and add the approximation error of Observation 3.
The scaled intrinsic error component σe

48
≈ 11.25 dominates

over the approximation deviation 8.000, bringing the total
deviation to 13.80. Scaling the q/4 bound we obtain the
condition −64 < mi − m′

i < 64 for the error. From cu-
mulative Gaussian distribution we obtain failure probability
P = 0.000004194 for each bit and 1− (1−P )512 = 0.002145
for at least one-bit failure in the n-bit vector. However, ex-
perimentally the failure probability was found to be smaller:

Observation 4. Approximate decryption (Equation 3) in
Zp=256 produces, on average, less than 10−4 single-bit errors
per decrypted message in experiments.

Hundreds of millions of key pair generations, encryptions,
and decryptions were performed to verify Observation 4.
The actual failure probability is roughly 0.94 ∗ 10−4 per
message, or 2−22.4 per bit. These measurements allow us
to estimate failure bounds when error correction is used, as
explained in Section 4.2.

We observe that even when truncated, not all bits of ci-
phertext are required for reasonably successful decryption.
For example, we may choose to transmit only four bits of
v[i]; this corresponds to ciphertext vector of 512 + 256 = 768

bytes, consisting of (u[i], ⌊ v[i]+8
16
⌋) pairs. We found an aver-

age of 0.00040 bit errors per decrypted message. However,
we do not use this method in our current proposal.

4. APPLICATION TO LIGHTWEIGHT AU-
THENTICATION TOKENS

While there has been steady progress in proofs and the-
oretical constructs in this field, long-term experience has
shown us that when cryptosystems fail, they often fail on
implementation level. Therefore, all aspects of practical, ef-
ficient, and secure quantum-safe implementations must re-
ceive the same – or higher – level of attention that is the
norm for more established algorithms. This includes proto-
cols and auxiliary algorithms such as error correcting codes.

We designed trunc8 as a lightweight and quantum-resistant
public key authentication scheme. The system may be used
to authenticate users in physical access control systems, or as
an upper layer (TLS [32] “post-handshake”) authentication
protocol to Internet services; here the server (once authen-
ticated) interrogates the user’s terminal-connected token or
smart card to grant access.

4.1 One-Way Authentication Protocol
One of the main advantages of a public key authentica-

tion scheme over any symmetric scheme is that (public) key
retrieval and validation can be performed using certificate-
based Public Key Infrastructure (PKI) methods over un-
trusted channels, as is commonly done in various Internet
security protocols such as TLS. Keys can be revoked with
CRLs. Naturally the PKI itself must be based on post-
quantum signatures if quantum resistance is required.

For simple authentication tokens (such as smart cards and
RFID key fobs), only the private key operation (Section 2.4)
needs to be implemented. trunc8 decryption does not require
non-uniform random sampling; such heavier lifting can be
performed by the interrogator (“server”). The token must
just be able use its secret key to decrypt a challenge mes-
sage and to generate an appropriate response. The ultra-
lightweight public key authentication problem has been pre-
viously addressed with Elliptic Curves in works such as [36].

In our basic one-way authentication protocol Alice (the
token) authenticates herself to Bob (the interrogator) by
proving possession of private key K−1

a . Bob must be able
to derive the public key Ka using A. The protocol itself is
a one-sided variant Needham–Schroeder (Lowe’s fix is not
needed in this case [23]).

Alice’s identity and nonce.
1. A→ B : A,Na

Kab is a random symmetric key.
2. B → A : {Kab, {Na}Kab}Ka

Symmetric response to challenge.
3. A→ B : {−1}Kab , {−2}Kab

Here the symmetric random “session” key chosen by Bob,
Kab, plays the role of Bob’s nonce (“Nb”). Message 1 may
contain additional information such as a certificate chain for
A. We encrypt the 128-bit nonce Na in step 2 to serve as
an “integrity check” for the message. The ciphertext length
for trunc8 is 1024 bytes. For symmetric encryption AES-
256 [14] is used; Kab is 256 bits, as is the step 3 response
AESKab(0xF..FF) | AESKab(0xF..FE). These constants were
chosen to not overlap with CTR or AES-GCM constants [13]
in case Kab is used to protect further communication from
Bob, such as his authentication.



Code Excerpt 1 Constant-time implementation of
XECC4

32. This function computes the code from data.

void xecc compute ( u i n t 32 t v [ 1 6 ] )
{

int i ;
u i n t 32 t r32 , r31 , r29 , r27 , t ;

r32 = r31 = r29 = r27 = 0 ;

for ( i = 0 ; i < 8 ; i++) {
t = v [ i ] ;
r32 ˆ= t ;
r31 ˆ= t ˆ ( t >> 31 ) ;
r31 &= 0x7FFFFFFF ;
r31 = ( r31 >> 1) | ( r31 << 30 ) ;
r29 ˆ= t ˆ ( t >> 29 ) ;
r29 &= 0x1FFFFFFF ;
r29 = ( r29 >> 3) | ( r29 << 26 ) ;
r27 ˆ= t ˆ ( t >> 27 ) ;
r27 &= 0x07FFFFFF ;
r27 = ( r27 >> 5) | ( r27 << 22 ) ;

}
v [ 8 ] ˆ= r32 ; // XOR code with o r i g i na l .
v [ 9 ] ˆ= r31 ;
v [ 1 0 ] ˆ= r29 ;
v [ 1 1 ] ˆ= r27 ;

}

4.2 A Constant-time Error Correcting Code
As indicated by Observation 4, the decryption procedure

can be expected to produce an erroneous bit in one of 10000
messages. However, the 512-bit payload has sufficient re-
dundancy to accommodate an Error Correcting Code.

Since error correction operates on confidential payload
data, it must be constant-time to deter side-channel attacks.
Our design focus is to accommodate this requirement with
a lightweight algorithm that is easily implemented in both
hardware and software. The algorithm is named XECC4

32.
Code Excerpts 1 and 2 contain functions xecc_compute()

and xecc_fixerr() that are used to compute the error cor-
recting code and then to fix possible bit errors. They oper-
ate on arrays of 32-bit words v[16], where v[0..7] contains
the 256-bit payload and v[8..11] the code itself. The last
part v[12..15] is for a cryptographic integrity check in our
application – see Section 4.1.

We view the payload as a binary polynomial of deg(256).
It is reduced modulo four different redundancy polynomials,
x32−1, x31−1, x29−1, and x27−1. This can be done with
some fast shifts and XOR operations, as can be observed
from the listings. A three-of-four Boolean rule is used to
find congruent positions with at least three parity errors
and to fix them in each word.

It is easy to verify that the code can correct all single-
and double-bit errors in the payload and the code itself. It
can also correct all but 718972 out of 384∗383∗382

3!
= 22238720

possible three-bit errors, a failure rate of 0.07678 in this case.

4.3 Side-Channel Security
Like all cryptographic algorithms, lattice cryptosystems

may be breached via side-channel attacks [6]. This was the
main design criteria the for XECC4

32 code (Section 4.2). Gen-
eral blinding countermeasures for NTT-based LWE imple-
mentations have been proposed in [34], but these are not
directly applicable to trunc8 due to its different multiplica-
tion strategy.

In order to achieve constant time decryption, the secret

Code Excerpt 2 Constant-time implementation of
XECC4

32. This function corrects data using the code.

void x e c c f i x e r r ( u i n t 32 t v [ 1 6 ] )
{

int i ;
u i n t 32 t r32 , r31 , r29 , r27 ;

xecc compute (v ) ; // recompute

r32 = v [ 8 ] ; // get codes
r31 = v [ 9 ] ; // (now ”d i f f s ”)
r29 = v [ 1 0 ] ;
r27 = v [ 1 1 ] ;

for ( i = 7 ; i >= 0 ; i−−) {
r31 &= 0x7FFFFFFF ;
r31 = ( r31 << 1) | ( r31 >> 30 ) ;
r29 &= 0x1FFFFFFF ;
r29 = ( r29 << 3) | ( r29 >> 26 ) ;
r27 &= 0x07FFFFFF ;
r27 = ( r27 << 5) | ( r27 >> 22 ) ;

// 3−of−4 ru le for correc t ing
v [ i ] ˆ= ( r32 & r31 & ( r29 | r27 ) )

| ( ( r32 | r31 ) & r29 & r27 ) ;
}

}

key s (Section 2.2) is chosen so that it has exactly n
4
= 128

ones in even bit positions and at odd bit positions. This

choice drops secret key entropy to log2
(
256
128

)2 ≈ 503.3 bits,
but analysis of our decryption algorithm shows guaranteed
constant-time operation. An alternative would be to balance
the implementations’ “zero” cases but that would essentially
make the algorithm always run at its worst-case speed.

Another countermeasure is to store the secret key inter-
nally as a randomly shuffled list of 2× 128 index bytes indi-
cating positions of ones (at both even and odd positions). By
avoiding “scanning” the secret key bit-by-bit, and by oper-
ating in random order, this greatly helps to mask emissions.

4.4 Security and Failure Rate Estimates
Since the basic encryption scheme and parameters are the

same as in [11, 16, 29, 33], the proposed system should have
equivalent, or better, security than these schemes. We sim-
ply compress the ciphertext after encryption. See Observa-
tion 1 for a more precise security argument.

We ignore up to four-bit errors in the 128-bit integrity
check AESKab(Na), leading to 2−128∑4

i=1

(
128
i

)
≈ 2−104.6

probability of failure caused by that. The XECC4
32 code (Sec-

tion 4.2) is able to catch all single- and double bit errors in
Kab and the code itself. From Observation 4 and related dis-
cussion we know that the single-bit failure rate is P = 2−22.4,
leading to triple-bit failed-correction failure rate in first 384
bits of roughly 0.07678 ∗ (1− (1− p)384)3 ≈ 2−45.1.
We claim that this is tolerable bound for a user authenti-

cation mechanism, especially since failures are detected and
unauthorized access is not granted upon failure. Authenti-
cation may be simply repeated upon protocol failure as it is
randomized.

4.5 Related Hardware Considerations
In CHES 2014 Roy et al. [33] published a design for a

Ring-LWE cryptoprocessor that implements essentially the
same Ring-LWE scheme as our proposal using a number
of dedicated optimizations, but without compressed decryp-



Table 2: Comparison of trunc8 AVR private key operation. We are not aware of RSA implementations
beyond 1024-bit modulus size for AVR. For Elliptic Curves we use the Curve25519 scalar multiplication from
AVR NaCl [18] for comparison. Two Ring-LWE implementations with comparable security parameters were
reported in [22]; one optimized for high speed (HS-512) and another for memory efficiency (ME-512). We
assume that Zq elements are transmitted as 16-bit words and that shared parameter a is used for RLWE
encryption; otherwise the public key would be two times longer. Plaintext payload is n = 512 bits in all
RLWE cases.

Scheme /
Implementation

Cipher-
text

Public
Key

Work
RAM

Flash
ROM

Processor
Cycles

RSA-1024 [21] 128 128 N/A N/A 75,680,000
Curve25519 HS [18] 32+32 32 681 N/A 22,954,657

RLWEenc [30] 2,048 1,024 2,144 9,258 600,351
RLWE n = 512 HS [22] 2,048 1,024 3,121 7,506 700,099
RLWE n = 512 ME [22] 2,048 1,024 2,737 8,500 1,450,713

trunc8 [this work] 1,024 1,024 1,088 282 1,387,824

tion. The implementation of [33] uses NTT for ring arith-
metic, and therefore requires the use of field multipliers,
which are expensive in hardware. Our simpler decryption
scheme has the same security parameters but does not need
modular multiplication. Furthermore, it has about half of
their RAM requirement.

It is easy to see that hardware implementation of the
XECC4

32 parity-based Error-Correcting Code (Section 4.2)
needs only few hundred gates. Based on these observations,
we expect hardware implementation of trunc8 to be smaller
and more energy-efficient than NTT-based decryption cores
by about an order of magnitude. This is for future work.

4.6 8-Bit AVR Implementation
We implemented the authenticator (decryption) code on

Atmel ATmega 328P, which is a popular and inexpensive 8-
bit microcontroller implementing the AVR instruction set.
The chip has only 2 kB of SRAM and 32 kB of Flash.3 The
platform was chosen due to its popularity and availability of
benchmark data.

Highly optimized AVR implementations of Ring-LWE en-
cryption schemes have been published by Liu et al. in CHES
2015 [22] and by Pöppelmann et. al in LATINCRYPT 2015
[30]. Prior work (e.g. [3]) has clearly inferior performance
when compare to these. The [22, 30] “high security” imple-
mentations have essentially the same security parameters as
trunc8, but use NTT for ring arithmetic. The private key
and ciphertext are stored in the NTT domain, and there-
fore the private key multiplication of Equation 3 requires
only one NTT transform instead of three for these imple-
mentations. Our ciphertext and implementation footprint
are much smaller, however.

Examining Table 2 we note that even their “memory effi-
cient” implementations would not be able to run on our AT-
mega 328P target as not enough SRAM is available. Only
decryption code was included in these figures; the very large
difference in implementation size between trunc8 and [22, 30]
is mainly due to their complexity and need for NTT-related
tables. We further observe that our method does not require

3Atmel ATmega 328P (http://www.atmel.com/devices/
atmega328p.aspx) has under $2 unit price in 2016. We used
the widely available “stock”Arduino Uno (R3) board (https:
//www.arduino.cc/en/Main/ArduinoBoardUno) for our ex-
periments.

multiplications and is therefore efficiently implementable on
architectures (such as 8051) that do not have a multiplier.

5. CONCLUSIONS
We have described a method for compressing Ring-LWE

ciphertexts and the related decryption algorithm. The new
algorithm enables realization on hardware and microcon-
troller targets which previously have not allowed implemen-
tation of private key operations.

The lattice compression technique reduces ciphertext size
to about half (one kilobyte) when compared to previous im-
plementations. Since neither the encryption process or the
plaintext payload size needs to be changed, the compressed
scheme has the same, or better, confidentiality properties as
numerous previous Ring-LWE public key implementations
with the same security parameters.

We have also proposed a full padding method that incor-
porates a fast, constant-time error correcting code, which
allows us to tolerate increased decryption errors.

We view smart cards and RFID tags as an ideal applica-
tion area for the compression method. For this purpose, we
have proposed a concrete authenticator algorithm and pro-
tocol, trunc8. It is intended for both physical access control
and network user authentication. In addition to an error cor-
rection code, the proposed message format also has a crypto-
graphic integrity check, which we assume to be requirements
for any future real-life Ring-LWE padding schemes.

The new scheme has been implemented on an 8-bit AVR
microcontroller target, and shows comparable decryption
speed to previous highly optimized implementations that
use the Number Theoretic Transform. However, our im-
plementation is much simpler and requires only a fraction
of their implementation footprint. We have also discussed
how to make the private key operation itself run in constant
time by slightly reducing key space, and how to mask other
key-dependent emissions.

Our work demonstrates that the ciphertext transforma-
tion property of Lattice-based cryptosystems may have sig-
nificant applications in cryptographic engineering. When
faced with an application that has severe performance or
bandwidth constraints, one can examine whether ciphertext
transformation can help to overcome those limitations.

http://www.atmel.com/devices/atmega328p.aspx
http://www.atmel.com/devices/atmega328p.aspx
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardUno
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F. Rodŕıguez-Henŕıquez, editors, LATINCRYPT 2015,
volume 9230 of LNCS, pages 346–365. Springer, 2015.
URL: http://eprint.iacr.org/2015/382,
doi:10.1007/978-3-319-22174-8_19.

[31] J. Proos and C. Zalka. Shor’s discrete logarithm
quantum algorithm for elliptic curves. Quantum
Information & Computation, 3(4):317–344, July 2003.
Updated version available on arXiv. URL:
https://arxiv.org/abs/quant-ph/9508027.

[32] E. Rescorla. The Transport Layer Security (TLS)
protocol version 1.3. IETF Internet Draft, September
2016. URL: https://tlswg.github.io/tls13-spec/.

[33] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen,
and I. Verbauwhede. Compact Ring-LWE
cryptoprocessor. In L. Batina and M. Robshaw,
editors, CHES 2014, volume 8731 of LNCS, pages
371–391. Springer, 2014. URL:
https://eprint.iacr.org/2013/866,
doi:10.1007/978-3-662-44709-3_21.

[34] M.-J. O. Saarinen. Arithmetic coding and blinding
countermeasures for lattice signatures: Engineering a
side-channel resistant post-quantum signature scheme
with compact signatures. IACR ePrint 2016/276,
March 2016. Being edited for publication in Journal of

Cryptographic Engineering, Springer. URL:
https://eprint.iacr.org/2016/276.

[35] P. W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In Proc. FOCS ’94,
pages 124–134. IEEE, 1994. Updated version available
on arXiv. URL:
https://arxiv.org/abs/quant-ph/9508027,
doi:10.1109/SFCS.1994.365700.

[36] P. Tuyls and L. Batina. RFID-tags for
anti-counterfeiting. In D. Pointcheval, editor, CT-RSA
2006, volume 3860 of LNCS, pages 115–131. Springer,
2006. doi:10.1007/11605805_8.

Document version 20161122041600.

http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-draft-aug-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-draft-aug-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-draft-aug-2016.pdf
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1109/ISCAS.2014.6865754
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://eprint.iacr.org/2015/382
http://dx.doi.org/10.1007/978-3-319-22174-8_19
https://arxiv.org/abs/quant-ph/9508027
https://tlswg.github.io/tls13-spec/
https://eprint.iacr.org/2013/866
http://dx.doi.org/10.1007/978-3-662-44709-3_21
https://eprint.iacr.org/2016/276
https://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1007/11605805_8

	Introduction
	Ring-LWE Public Key Encryption
	Notation and Conventions
	Key Generation
	Encryption
	Decryption
	Parameter Selection

	Using Ciphertext Compression
	Rough Statistical Analysis of Decryption

	Application to Lightweight Authentication Tokens
	One-Way Authentication Protocol
	A Constant-time Error Correcting Code
	Side-Channel Security
	Security and Failure Rate Estimates
	Related Hardware Considerations
	8-Bit AVR Implementation

	Conclusions
	References

