On Analyzing Program Behavior Under Fault Injection Attacks

Jakub Breier
Physical Analysis and Cryptographic Engineering
Nanyang Technological University,
Singapore
jbreier@ntu.edu.sg

Abstract—Fault attacks pose a serious threat to crypto-
graphic algorithm implementations. It is a non-trivial task
to design a code that minimizes the risk of exploiting the
incorrect output that was produced by inducing faults in the
algorithm execution process.

In this paper we propose a design of an instruction set
simulator capable of analyzing the code behavior under fault
attack conditions. Our simulator is easy to use and provides a
valuable insights for the designers that could help to harden
the code they implement.

Keywords-fault attacks, fault simulator, instruction set
simulator, code analysis

I. INTRODUCTION

Fault attacks on integrated circuits, first proposed in
1997 by Boneh et al. [1], are a subset of physical attacks.
Usually, they exploit properties of the cryptographic al-
gorithm that is implemented in the device, allowing the
attacker to distinguish the secret key used for encryption.
There are various ways of determining the key, each with
different properties and suitable for different fault models
and ciphers. The most popular method is Differential Fault
Analysis (DFA) [2], used mostly for symmetric block
ciphers. In DFA, the attacker tries to inject one or more
faults in the last rounds of encryption process and then
compares faulty and original ciphertexts. This process is
depicted in Figure 1. Other methods include Collision
Fault Analysis (CFA), Ineffective Fault Analysis (IFA),
Safe-Error Analysis (SEA), and Fault Sensitivity Analysis
(FSA) [3].

In order to be able to use these methods, the attacker
needs to disturb the device during the computation. This
can be done in various ways, by different fault injection
techniques. These range from very basic, inexpensive
ones, such as varying the supply voltage, to advanced
techniques, requiring device de-packaging and significant
funds, such as laser fault injection.

Designing the experiment and getting plausible results is
usually a long-term process, depending on the device, the
equipment, and the fault model. Therefore, it is beneficial
to model the fault behavior of the implemented algorithm
to distinguish what fault models are possible and what is
the probability of a particular fault occurrence.

The same holds for the other side — when designing a
protection against these attacks, the security analyst needs
to test the implementation for vulnerabilities. When it
comes to countermeasures, there are two possible ways
to protect the implementation. Either we try to protect

the device itself, by adding sensor or employing circuit-
level countermeasures or by checking the software code
for vulnerable points that can be exploited and fixing these
points.

Plaintext

! !

Original Faulty
Ciphertext Ciphertext

Compare

Figure 1. Schematic of the Differential Fault Analysis.

In this paper, we propose a novel instruction set simu-
lator (ISS), based on Java programming language, able to
simulate a fault behavior of software implementations for
microcontrollers. Our simulator takes an assembly code as
the input and checks all the possible fault models that may
occur in the device. Based on this checking, it outputs an
information about vulnerable instructions.

The rest of the paper is structured as follows. Section II
provides an overview of the related work in this field and
proposes requirements for our simulator. Section III details
the design of the ISS. Fault simulation capabilities and
methodology are described in Section IV. Our method is
then explained on a case study, presented in Section V.
Finally, Section VI concludes this paper and provides
motivation for the future work.

II. RELATED WORK

In this section, we will provide an overview of works
aiming at instruction set simulators. By inspecting these
works, we will state the requirements for our simulator.

In [4], the authors adjust SID1 instruction set simulator
to simulate effects of time-domain electromagnetic (EM)
interference in a microcontroller. They used PIC C and
PIC assembly to write their code. From the component

point of view, simulator consisted of CPU with interrupt
controller and external oscillator, bus component and ex-
ternal memory. They estimated the EM emanation caused
by particular instructions and fed the simulator with these
values. As a result, they could predict different program
behavior with respect to EM interference.

Authors of [5] created a high performance software
framework based on multi-level hash table to enable
development of more efficient ISS. They classified the
instructions in the instruction set to construct a hash table
and used a preprocessor to map relationships between
instructions and hash table elements.

In [6], the authors use their own ISS in order to
simulate source code of various cryptographic algorithms
implementations on 8-bit microcontroller, allowing them
an easy analysis and debugging. Based on these results,
they could make the implementations more efficient by
utilizing various extended instruction sets.

Simulating the fault behavior of instructions was pre-
viously used in [7], where authors implemented and ana-
lyzed 19 different strategies for fault attack countermea-
sures. They created their custom ISS for simulating ARM
Cortex M-3 and performed benchmarking allowing them
to quantitatively compare the countermeasures. However,
they did not provide any details about their simulator.

Based on analysis of previous works and our goals, we
have stated the requirements for our fault ISS. It has to be
able to:

o simulate execution of assembly code for various
microcontrollers with different instruction sets and
register sizes,

o inject one or multiple bit faults in the execution of
chosen instruction,

« inject random byte faults and stuck-at faults in reg-
isters,

« inject single and multiple instruction skip and instruc-
tion change faults

« cvaluate the faulty behavior by using all the possible
inputs and all the possible faults with respect to given
assembly code and indicate vulnerable instructions in
the code,

« provide an easy-to-understand output that can be used
for improving the code.

III. ISS DESIGN

Before implementing fault injection capabilities, we
have to design the instruction set simulator for a general-
purpose microcontroller. This section provides overview
on mapping of particular hardware components to object
model in software. Design of our solution is depicted in
Figure 2. Black components on the left side are the basic
components of the Harvard architecture microcontroller
[8]. On the right side, we can see a high-level class
diagram of the simulator. In the following, we will explain
each entity in the diagram:

¢ MuC: Microcontroller class encapsulates all the other

entities constituting the device. It acts as a microcon-
troller itself, containing the instruction set, registers,

data memory and allowing performing operations on
these.

« Instruction: It is an abstract class, defining execute()
method that is further specified by its subclasses.
MuC contains a list of Instruction classes, loaded
from a text file this file acts as a program memory.

o Instruction subclasses (MOV, ADD....): Our de-
sign makes it easy to add new instructions simply by
adding new subclasses of the Instruction class. This
allows to simulate different architectures by using the
same ISS.

o Registers: Registers are simulated as an array of
integers. Since the majority of IoT devices contain
chips with constrained hardware, register sizes are
either 8 or 16 bits, therefore integer variables are
enough for this purpose.

o Memory: Memory is simulated as a map, so that an
instruction can define a variable name that serves as
a key and links the value together with this key.

Text file contains the assembly code for the microcon-
troller and it is read and analyzed by the MuC class in
order to assemble a program. The same class allows to
run this code as well. An example of such file can be seen
in Table I. The first instruction is LDI (load immediate)
and loads the value of ’a’ into register r0. The second
instruction does the same with a different value and a
different register. The third instruction computes an Xxor
of the values in those two registers and store the result in
register r0. The last instruction stores the value in register
r0 in the memory, using the key "X’ as a variable name.

Table 1
ASEMBLY TEXT FILE EXAMPLE.

Mnemonics Operand 1 Operand 2
IDI r0 a

LDI rl b

EOR r0 rl

ST X r0

IV. FAULT BEHAVIOR SIMULATION

In order to add fault simulation capabilities to our ISS,
first we have to analyze, what types of faults we want
to simulate. Not all the faults are interesting for the fault
analysis and also, we should only include fault models
that are feasible to obtain by standard fault injection
techniques.

Our fault injection methodology is depicted in Figure 3.
We will further explain each component of the picture in
the following:

o Input: In assembly programs, variables are usually
loaded either from the memory or as a constants (e.g.,
using LDI instruction as in Table I). For testing the
vulnerability against faults, we often have to try all
the possible inputs. Therefore, the simulator allows to
pre-load the inputs automatically in chosen registers
without having to change the assembly code.

o Faulty Output: After every testing iteration, the
faulty output is tested by the Comparator. The tester

Class

MuC
) 1 1/ 1
.txt File
S TR | n
: Flash b ! Data Bus Class
rogram |i
Program |-e—| - i
I
: Memory Counter : A 1 Instruction
e | General | — |—| Array
I | ;=== Purpose |--> .
H ; Registers
! I . Registers
: Instruction| | _E
, | Register :- : Class|Class|Class
' : vV —
: : ; ALU MOV | LDI |ADD
! I '
I . | ! |—> 1
i |Instruction| | :
| | Decoder : - Map
| ' teee.y| Data |2 >
________ ! RAM Memory

Y

Figure 2. Microcontroller architecture mapped to an object oriented computer program. Black parts indicate physical parts of the microcontroller,

red parts constitute a class diagram of the program.

can set-up this component to check for certain types
of faults, depending on is he aiming for. For example,
in parity check countermeasure, it can be set-up to
check only the even number of bit flips in the output
in order to keep the parity scheme working, however,
with a faulty result.

o Target Assembly Code: The ultimate goal of the
simulator is to test the assembly code. This code is
fed to the program as a text file and can be first
checked line by line if it works properly before it
is tested.

o Fault Position: Our simulator checks all the possible
position for the fault to be injected. We check every
instruction and every bit in the destination register
that ensures that all the bits used in the code will be
tested.

o Fault Model: For every input and every position
in the code, several fault models are tested. We
have identified following fault models as the most
commonly used in literature [9]:

— Bit flip — this is, together with the random byte
fault, the most commonly used fault model when
it comes to attacking cryptographic algorithms.
The simulator tests every bit in the destination
register of an instruction, using single and mul-
tiple bit flips, up to the number of bits used by
the register.

— Random byte fault — this fault model expects flip-
ping of random number of bits in the destination
register. Because in the previous we already test
all the possible combinations, we do not have to
use both tests at the same time. However, random
byte fault is a weaker assumption for fault attacks

(it is easier to achieve in a real device and it is
harder to design an attack that recovers the secret
key just from a random byte flip), therefore, if
an attacker only needs this fault model, he can
skip the bit flip testing in order to save time.

— Instruction skip — this fault model is not that
popular in theoretical works, since they usually
do not analyze concrete implementations of al-
gorithms. However, as it was shown in [10], it
is relatively easy to achieve this type of fault
in microcontrollers and if used properly, this
attack is very powerful. We test both single
and multiple instruction skips, depending on the
settings required by the tester.

— Instruction change — for this fault model, one
has to define the opcodes of used instructions.
It is then possible to set a bit flip model on the
opcode that changes one instruction to a different
one. Again, this can be either single or multiple
bit flip. For example, let the opcode of AND
instruction be 001000 and the opcode of EOR
instruction be 001001 (these are the opcodes
used by Atmel 8-bit AVR devices). One can eas-
ily see, that if the last bit of the opcode is flipped
(in other words, the fault mask is 000001), one
instruction will change to another and vice versa.
Again, this can provide the attacker a powerful,
yet implementation specific, fault model.

— Stuck-at fault — this fault model changes the
value in register to some specific value. Authors
of [11] have shown that with different laser
energy, it is possible to force certain memory bits
either to ’0’, or to ’I’, allowing precise stuck-at

faults. Again, we test all the destination registers
in the target code for stuck-at faults specified by
the tester.

Input

- Target
Fault Position | —> Assembly Code

- every instruction of the code
- every bit in intruction operand

-~ Fault Model

- random byte fault
- instruction skip

- instruction change
- stuck-at fault

Faulty Output

N

Figure 3. Fault injection methodology for ISS.

The Comparator provides a human-readable output as a
result of the code analysis. This output is in two forms
overview and a detailed view.

Overview shows the total number of faults and this
number is then further divided by the tester’s requirements.
Usually, it is desired to have the output in some special
form, e.g. specific encoding or some fault mask. The tester
can then specify the output to be divided in two subsets
one that fulfils the requirement and the other that does not.

Detailed view provides insight on all the successful
faults, i.e. only on those in the subset that fills the tester’s
requirements. Table II shows all the fields that are provided
by the detailed view for each fault model. Please note that
the output from faulty execution is always provided in any
fault model that is selected.

Table II
FIELDS FOR DIFFERENT FAULT MODELS PROVIDED IN THE DETAILED
VIEW.
Fault Model Fields

Bit flip Instruction number, Instruction mnemonics,
Fault mask, Number of plaintexts affected
Instruction number, Instruction mnemonics,
Fault mask, Number of plaintexts affected
Instruction number, Instruction mnemonics,
Number of plaintexts affected

Instruction number, Instruction mnemonics,
Instruction opcode, Fault mask, New in-
struction mnemonics, New instruction op-
code, Number of plaintexts affected
Instruction number, Instruction mnemonics,
Stuck-at mask, Number of plaintexts af-
fected

Random byte fault

Instruction skip

Instruction change

Stuck-at fault

Activity diagram for the whole process of code analysis
is stated in Figure 4. After writing the code it is necessary
to check if the instruction set used is also implemented
in the fault simulator. If not, the tester has to implement
missing instructions. Because of the modular architecture
of our framework, it is easy to add new instructions.
Afterwards, he defines which fault models he want to
test the code against and prepares a set of inputs, since
in some cases it is not necessary to test all the possible
inputs. Before running the simulator, he has to specify the

- bit flip (single/multiple)

output format and in some cases also a set of outputs that
constitute a security risk so that the Comparator could
classify the outputs correctly. After getting the results, the
tester should analyze the vulnerable instructions and pro-
pose changes in the code before re-running the simulations
again.

Write assembly code

Determine instruction set
for the simulator

[instructions are present]

[instructions are missing]

Implement missing
instructions

Define fault models

Define possible inputs

Define output format
and vulnerable outputs
Run the simulation

%

Analyze vulnerable
instructions and
implement changes
Analyze the results

X [code contains vulnerabilities]
goode is secure]

Figure 4. Activity diagram for particular steps in the code design and
analysis.

V. CASE STUDY

In this section, we will present a simple test case that
shows how our simulator works.

Let us assume we are using an 8-bit microcontroller
and in order to prevent the side-channel leakage, we
decided to use only the codewords with Hamming weight
2. For the sake of simplicity, let us assume we only use
the last four bits of the word, which gives us six pos-
sible values (00000011, 00000101, 00000110,
00001001, 00001010, 00001100). Therefore, if

the attacker wants to perform a successful attack, he has
to change the original output in a way that still preserves
the encoding, otherwise the output checker would discard
the value.

The code for performing a binary operation e on code-
words is stated in Table III. It uses a look-up table to get
the result of the operation from the memory. First, it loads
values ’a’ and ’b’, then it shifts ’b’ four bits left and joins
these two values together with OR. Finally, LDD is used
to load the value at the memory address specified by r0
and to put the value in r2. Look-up table returns all-zero
output in case of an invalid address. The full table for e
operation is listed in Table IV. One can easily see that it
is actually a cyclic group Z .

Table III
ASSEMBLY CODE FOR OUR EXAMPLE.

Instruction
LDI r0 a
IDI rl b
LSL rl 4
OR r0 rl
LDD r2 r0

g W Ol

Table IV
RESULTS FOR BINARY OPERATION . FIRST FOUR ZERO BITS ARE
OMITTED TO SAVE THE SPACE.

° 0011 0101 0110 1001 1010 1100
0011 | 0011 0101 0110 1001 1010 1100
0101 | 0101 0110 1001 1010 1100 0011
0110 | 0110 1001 1010 1100 0011 0101
1001 | 1001 1010 1100 0011 0101 0110
1010 | 1010 1100 0011 0101 0110 1001
1100 | 1100 0011 0101 0110 1001 1010

We analyzed the code in the fault simulator against
following fault models: single and double instruction skip,
single and double bit flip, stuck-at 00000000 fault, and
stuck-at 11111111 fault. Because of the properties of
the look-up table, most of the faults will force the output
to zero, excluding a few special cases. One can easily
see this implementation is vulnerable against even bit flip
attacks. We have tested double bit flips that are a subset of
these attacks, and the results show that every instruction of
the code is vulnerable to this fault model. From the total
of 5040 faults (number of possible plaintexts X number
of instructions x bit combinations), 17.14% resulted into
correct encoding with a different value than the original
result.

After the result, the analyst has to decide how to
deal with the vulnerabilities. For example, one of the
common techniques is a modular redundancy — using more
space to store the values and perform some operations
multiple times. The most naive approach would be to
use two more registers where the original data would
be copied, double instructions 3-5 and use AND to join
the values in the end. This countermeasure would lower
the chance of a successful attack to 8.57%. In case we
even load all the data twice, the chance lowers to 2.86%.
Other techniques would include using more sophisticated
algebraic operations or different look-up tables.

VI. CONCLUSION

In this paper we presented an instruction set simulator
capable of analyzing code vulnerabilities with respect
to fault attacks. We designed a modular framework that
allows adding new intruction sets easily and also allows
specifying fault models to be tested. Assembly code is
fed to the simulator in a text file in order to provide a
detailed analysis of each instruction. This output can help
the designer to improve the code and minimize the risk of
successful fault attack.

In its current state, the simulator supports execution of
the most used instructions of assembly language for 8-bit
Atmel AVR microcontrollers. We were able to successfully
simulate software encoding schemes that provide side-
channel resistance for cryptographic implementations and
harden these schemes against fault injection attacks [12].

For the future work, we would like to enhance our
simulator to provide a deeper analysis that would suggest
improvements based on used instructions and valid format
of inputs and outputs. The simulator would be able to de-
cide which instructions can be replaced with safer variants
and whether some parts of a code can be interchanged
with look-up tables. Also, the simulator would estimate
the overhead of such changes.

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Impor-
tance of Checking Cryptographic Protocols for Faults,” in
Proceedings of the 16th Annual International Conference
on Theory and Application of Cryptographic Techniques,
ser. EUROCRYPT’97. Berlin, Heidelberg: Springer-
Verlag, 1997, pp. 37-51.

[2] E. Biham and A. Shamir, “Differential fault analysis of
secret key cryptosystems,” in Advances in Cryptology -
CRYPTO °’97, ser. Lecture Notes in Computer Science,
J. Kaliski, BurtonS., Ed. Springer Berlin Heidelberg, 1997,
vol. 1294, pp. 513-525.

[3] J. Breier and D. Jap, “A survey of the state-of-the-art
fault attacks,” in Integrated Circuits (ISIC), 2014 14th
International Symposium on, Dec 2014, pp. 152-155.

[4] S.Y. Yuan, H. E. Chung, and S. S. Liao, “A microcontroller
instruction set simulator for emi prediction,” IEEE Trans-
actions on Electromagnetic Compatibility, vol. 51, no. 3,
pp- 692-699, Aug 2009.

[5] Z.Hao, P. Chu, T. Zhang, D. Wang, and C. Hou, Recent Ad-
vances in Computer Science and Information Engineering:
Volume 5. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, ch. A High-Performance Framework for Instruction-
Set Simulator, pp. 9-14.

[6] H. GroB and T. Plos, Radio Frequency Identification.
Security and Privacy Issues: 8th International Workshop,
RFIDSec 2012, Nijmegen, The Netherlands, July 2-3, 2012,
Revised Selected Papers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, ch. On Using Instruction-Set
Extensions for Minimizing the Hardware-Implementation
Costs of Symmetric-Key Algorithms on a Low-Resource
Microcontroller, pp. 149-164.

(71

(8]

(9]

(10]

N. Theissing, D. Merli, M. Smola, F. Stumpf, and G. Sigl,
“Comprehensive analysis of software countermeasures
against fault attacks,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, March 2013, pp.
404-409.

I. Yasui and Y. Shimazu, “Microprocessor with harvard
architecture,” Jul. 23 1991, uS Patent 5,034,887. [Online].
Available: https://www.google.com/patents/US5034887

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache,
“Fault injection attacks on cryptographic devices: Theory,
practice, and countermeasures,” Proceedings of the IEEE,
vol. 100, no. 11, pp. 3056-3076, Nov 2012.

J. Breier, D. Jap, and C.-N. Chen, “Laser Profiling for
the Back-Side Fault Attacks: With a Practical Laser Skip

(11]

(12]

Instruction Attack on AES,” in Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, ser. CPSS
’15. New York, NY, USA: ACM, 2015, pp. 99-103.

F. Courbon, P. Loubet-Moundi, J. Fournier, and A. Tria,
“Adjusting laser injections for fully controlled faults,” in
Constructive Side-Channel Analysis and Secure Design,
ser. Lecture Notes in Computer Science, E. Prouff, Ed.
Springer International Publishing, 2014, pp. 229-242.

J. Breier, D. Jap, and S. Bhasin, “The other side of the coin:
Analyzing software encoding schemes against fault injec-
tion attacks (to appear),” in Hardware Oriented Security
and Trust (HOST), 2016 IEEE International Symposium
on, May 2016, pp. 1-8.

