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Abstract. Since they were first proposed as a countermeasure against differential power analysis
(DPA) in 2006, threshold schemes have attracted a lot of attention from the community concentrating
on cryptographic implementations. What makes threshold schemes so attractive from an academic
point of view is that they come with an information-theoretic proof of resistance against a specific
subset of side-channel attacks: first-order DPA. From an industrial point of view they are attractive as
a careful threshold implementation forces adversaries to DPA of higher order, with all its problems such
a noise amplification. A threshold scheme that offers the mentioned provable security must exhibit three
properties: correctness, incompleteness and uniformity. A threshold scheme becomes more expensive
with the number of shares that must be implemented and the required number of shares is lower bound
by the algebraic degree of the function being shared plus 1. Defining a correct and incomplete sharing
of a function of degree d in d + 1 shares is straightforward. However, up to now there is no generic
method to achieve uniformity and finding uniform sharings of degree-d functions with d + 1 shares has
been an active research area. In this paper we present a simple and relatively cheap method to find a
correct, incomplete and uniform d + 1-share threshold scheme of any S-box layer consisting of degree-d
invertible S-boxes. The uniformity is not implemented in the sharings of the individual S-boxes but
rather at the S-box layer level by the use of feedforward and some expansion of shares. When applied
to the Keccak-p nonlinear step χ, its cost is very small.
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1 Introduction

Systems such as digital rights management (DRM) or banking cards try to offer protection against
adversaries that have physical access to platforms performing cryptographic computations, allowing
them to measure computation time, power consumption or electromagnetic radiation. Adversaries
can use this side channel information to retrieve cryptographic keys. A particularly powerful at-
tack against implementations of cryptographic algorithms is differential power analysis (DPA) [7].
This attack can exploit even the weakest dependence of the power consumption (or electromag-
netic radiation) on the value of the manipulated data by combining the measurements of many
computations to improve the signal-to-noise ratio. The simplest form of DPA is first-order DPA,
that exploits the correlation between the data and the power consumption. To make side channel
attacks impractical, system builders implement countermeasures, often multiple at the same time.

In threshold schemes [10,8,9] one represents each sensitive variable by a number of shares (typi-
cally denoted by d + 1) such that their (usually) bitwise sum equals that variable. These shares are
initially generated in such a way that any subset of d shares gives no information about the sen-
sitive variable. Functions (S-boxes, mixing layers, round functions …) are computed on the shares
of the inputs resulting in the output as a number of shares. An essential property of a threshold
implementation of a function is that each output share is computed from at most d input shares.
This is called incompleteness and guarantees that that computation cannot leak information about
sensitive variables. The resulting output is then typically subject to some further computation,



again in the form of separate, incomplete, computation on shares. For these subsequent computa-
tions to not leak information about the sensitive variables, the output of the previous stage must
still be uniform. Therefore, in an iterative cryptographic primitive such as a block cipher, we need
a threshold implementation of the round function that yields a uniformly shared output if its input
is uniformly shared. This property of the threshold implementation is called uniformity.

Threshold schemes form a good protection mechanism against DPA. In particular, using it
allows building cryptographic hardware that is guaranteed to be unattackable with first-order
DPA, assuming certain leakage models of the cryptographic hardware at hand and for a plausible
definition of “first order”.

Constructing an incomplete threshold implementation of a non-linear function is rather straight-
forward. To offer resistance against first-order DPA, the number of shares equals the algebraic degree
of the function plus one. However, constructing one that is at the same time incomplete and uni-
form is perceived as a challenge. For instance, for the Keccak S-box, incomplete 3-share threshold
implementations are easy to generate but no uniform one is known. Exhaustive investigations have
been performed on all small S-boxes (3 to 5 bits) and there are many S-boxes for which it is not
known to build uniform threshold implementations with d + 1 shares if their algebraic degree is d.

Given a non-uniform threshold implementation, it is not immediate how to exploit its non-
uniformity in an attack. A paper that makes a start in explorations in that direction is [6]. How-
ever, uniformity of a threshold implementation is essential in its information-theoretical proof of
resistance against first-order DPA. In short, if one has a uniform sharing, one does not have to give
additional arguments why the implementation would be secure against first-order DPA.

In this paper we present a simple and efficient technique for building a threshold implementation
with d + 1 shares of any invertible S-box layer of degree d that is correct, incomplete and uniform.
When applied to the nonlinear layer in Keccak, χ, it can be seen as the next logical step of the
methods discussed in Section 3 of [5].

1.1 The Changing of the Guards idea in a nutshell

The basic method can be summarized as follows:

– The shared S-boxes are arranged in a linear array. These sharings must be correct and incom-
plete.

– Each share at the output of S-box i is made uniform by bitwise adding to it one or two shares
from the input of S-box i − 1.

– The state is augmented with d dummy components, called guards, to be added to the output
of the first S-box in the array.

– The new value of the guards are taken from the input of the last S-box in the array.
– Uniformity is proven by giving an algorithm that computes the shared input from the shared

output of this mapping.

For threshold sharings that have a so-called multi-permutation property, the guards can be reduced
in size and so does the amount of bits fed forward.

1.2 Notation

Assume we have a nonlinear mapping that consists of a layer of invertible S-boxes. We denote the
width of the S-boxes by n and their total number by m. So the layer operates on an array of n × m
bits. We denote the input as x = (x1, x2, x3, . . . xm) and the output as X = (X1, X2, X3, . . . Xm),
with each of the xi and Xi an n-bit array.
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In general the S-boxes can differ per position. We denote the S-box at position i by Si, so
Xi = Si(xi).

We denote addition in GF(2) by +.

1.3 Overview of the paper

In Section 2 we explain and prove the soundness of the method applied to the simplest possible
case. In Section 3 we formulate the method for a more general case and in Section 4 we apply it to
the nonlinear layer used in Keccak, Keyak and Ketje.

2 The basic method applied to 3-share threshold schemes

Assume the same S-box is used for all positions and its algebraic degree is 2 over GF(2), that we
denote by S. In that case it is trivial to find a correct and incomplete threshold scheme with 3 shares
S by substituting the terms in the algebraic expression of the S-box by their sum as components
and appropriately distributing the monomials over the three shares of the S-box sharing. We denote
the three shares that represent xi by ai, bi and ci, with xi = ai + bi + ci. Likewise, we denote the
three shares that represent Xi by Ai, Bi and Ci, with Xi = Ai + Bi + Ci. The sharing of S consists
of three functions from 2n to n bits, that we denote as (Sa, Sb, Sc). Correctness is satisfied if:

Sa(b, c) + Sb(a, c) + Sc(a, b) = S(a + b + c) .

Incompleteness is implied by the fact that each of the three elements of (Sa, Sb, Sc) take only two
shares as inputs. In this scheme our m-component input x is represented by triplet (a, b, c) with
three shares.

At the basis of our Changing of the Guards technique for achieving uniformity is the expansion
of the shared representation. In particular, for the input we expand share b with an additional
dummy component that we denote as b0 and do the same for c. In this sharing x is represented by
(a, b, c) where a has m components and both b and c have m + 1 components. A triplet (a, b, c) is
a uniform sharing of x if all possible values (a, b, c) compliant with x are equiprobable. As there
are 2(3m+2)n possible triplets (a, b, c) and being compliant with x requires the satisfaction of mn
independent linear binary equations, there are exactly 2(3m+2)n−mn = 22(m+1)n encodings (a, b, c) of
any particular value x. The same holds for the sharing (A, B, C) of the output X.

Definition 1. The Changing the of Guards sharing of an S-box layer where (Sa, Sb, Sc) is a sharing
of S, mapping (a, b, c) to (A, B, C), is given by:

Ai = Sa(bi, ci) + bi−1 + ci−1 for i > 0
Bi = Sb(ai, ci) + ci−1 for i > 0
Ci = Sc(ai, bi) + bi−1 for i > 0
B0 = cm

C0 = bm

The sharing is depicted in Figure 1.
We can now prove the following theorem.

Theorem 1. If S is an invertible S-box and (Sa, Sb, Sc) is a correct and incomplete sharing of S,
the sharing of Definition 1 is a correct, incomplete and uniform sharing of an S-box layer with S
as component.
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Fig. 1. Changing of the Guards sharing applied to simple S-box layer.

Proof. Correctness follows from the fact that each input components that is fed forward to the
output of its neigboring components is added twice. We have for all i > 0:

Ai + Bi + Ci = Sa(bi, ci) + bi−1 + ci−1 + Sb(ai, ci) + ci−1 + Sc(ai, bi) + bi−1

= Sa(bi, ci) + Sb(ai, ci) + Sc(ai, bi)

= S(ai + bi + ci) .

For incompleteness, we see in Definition 1 that the computation of Ai does not involve components
of a, the one of Bi does not involve components of b and the one of Ci does not involve components
of c.

For uniformity, we observe that for each input x or each output X there are exactly 22(m+1)n

valid sharings. If the mapping of Definition 1 is an invertible mapping from (a, b, c) to (A, B, C),
it implies that if (a, b, c) is a uniform sharing of x, then (A, B, C) is a uniform sharing of X. It is
therefore sufficient to show that the mapping of Definition 1 is invertible. We will do that by giving
a method to compute (a, b, c) from (A, B, C).

We compute the components of (a, b, c) starting from index m down to 0. First we have bm = C0
and cm = B0. Then we can iterate the following loop for i going from m down to 1:

ai = S−1(Ai + Bi + Ci) + bi + ci

bi−1 = Sc(ai, bi) + Ci

ci−1 = Sb(ai, ci) + Bi .

⊓⊔

The term “guards” refers to the dummy components b0 and c0 that are there to guard uniformity
and that are “changed” to B0 and C0 by the shared implementation of the S-box layer.

The cost of this method is the addition of 4 XOR gates per bit of x and the expansion of
the representation by 2n bits. The cost of additional XOR gates is typically not negligible but
still relatively modest compared to the gates in the S-box sharing. For a typical S-box layer the
expansion of the state is very small.

When applying this method to an iterated cipher that has a round function consisting of an
S-box layer and a linear layer, one can do the following. The sharing of the S-box layer maps (a, b, c)
to (A, B, C) and the linear layer is applied to the shares separately. In the linear mapping the guard
components B0 and C0 are simply mapped to the components b0 and c0 of the next round by the
identity.
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3 Generalization to any invertible S-box layer

Here we give a method for an S-box layer with only restriction that the component S-boxes have
the same width and are all invertible. We assume the S-boxes have maximum degree d and so we
can produce a correct and incomplete threshold scheme with d + 1 shares. We denote the shares
by x0 to xd and component j of share i by xj

i .
We now introduce d guard components: all but the first share get a guard component xd

0.

Definition 2. The changing the guards sharing of an S-box layer where (S0
i , S1

i , . . . , Sd
i ) is a sharing

of Si, mapping (x0, x1, x2, . . . , xd) to (X0, X1, X2, . . . , Xd), is given by (with xi \ xj
i denoting the vector

of d elements xj′

i for j′ ̸= j):

X0
i = S0

i (xi \ x0
i ) + xd−1

i−1 + xd
i−1 for i > 0

X1
i = S1

i (xi \ x1
i ) + xd

i−1 for i > 0

X2
i = S2

i (xi \ x2
i ) + x1

i−1 for i > 0
· · ·

X j
i = Sj

i(xi \ xj
i) + xj−2

i−1 + xj−1
i−1 for i > 0

· · ·
Xd

i = Sd
i (xi \ xd

i ) + xd−2
i−1 + xd−1

i−1 for i > 0

X j
0 = xj+1

m for j > 0

Xd
0 = x1

m

We can now prove the following theorem.

Theorem 2. If Si are invertible S-boxes and (S0
i , S1

i , . . . Sd
i ) are correct and incomplete sharing of

Si, the sharing of Definition 2 is a correct, incomplete and uniform sharing of the S-box layer with
Si as component.

This theorem can be proven in a similar way as Theorem 1.

4 Application to the sharing χ′ for Keccak

Keccak-p is the permutation underlying Keccak [11,2], Keyak [4] and Ketje [3] and is defined
in [11,2]. Its nonlinear layer is called χ and has algebraic degree 2 over GF(2). In [1] a correct
and incomplete sharing with 3 shares was proposed, denoted as χ′. The mapping χ operates inde-
pendently on 5-bit rows and consequently χ′ operates in parallel on 15-bit units. If we denote the
elements of a row by s0 to s4 and the three shares by a, b and c: χ′ is defined as (with concatenation
denoting multiplication in GF(2), or equivalently, the binary AND operation):

Ax = bx + (bx+1 + 1)bx+2 + bx+1cx+2 + bx+2cx+1, (1)
Bx = cx + (cx+1 + 1)cx+2 + cx+1ax+2 + cx+2ax+1, (2)
Cx = ax + (ax+1 + 1)ax+2 + ax+1bx+2 + ax+2bx+1, (3)

with indexing taken modulo 5. Note that the state of Keccak-p is a three-dimensional array and
we omit the y and z indices for clarity as we look here at a single row.
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The mapping χ′ has a remarkable property that we can exploit to reduce the overhead due to
the “changing the guards” method. We call this a multi-permutation property inspired by [12].

We first need to introduce some notation. For a 5-bit vector s, let L(s) , (s0, s1, s2) and
and R(s) , (s3, s4). Similarly, we define L(a, b, c) , (a0, b0, c0, a1, b1, c1, a2, b2, c2) and R(a, b, c) ,
(a3, b3, c3, a4, b4, c4).

Lemma 1. For any choice of L(A, B, C), R(a, b, c) there is exactly one solution L(a, b, c), R(A, B, C)
such that (A, B, C) = χ′(a, b, c).

Proof. We describe how to compute L(a, b, c), R(A, B, C) from L(A, B, C), R(a, b, c). We rewrite each
of the Equations (1) by switching lefthand term and first terms on the righthand from side:

ax = Bx + (bx+1 + 1)bx+2 + bx+1cx+2 + bx+2cx+1,

bx = Cx + (cx+1 + 1)cx+2 + cx+1ax+2 + cx+2ax+1,

cx = Ax + (ax+1 + 1)ax+2 + ax+1bx+2 + ax+2bx+1,

We can use these equations for computing (a2, b2, c2) by taking i = 2. Clearly the first term on
the righthand side is part of L(A, B, C) and the remaining terms are expressed in terms of bits in
R(a, b, c). We can now use this equation with x = 1 to compute (a1, b1, c1) using the acquired value
of (a2, b2, c2). This can be repeated for x = 0 giving us the full knowledge of (a, b, c). From (a, b, c)
we can compute (A, B, C) using Equations (1) and hence we also know R(A, B, C). ⊓⊔

We can use Lemma 1 to apply a variant of the changing the guards method to χ′ that requires
less state expansion and XOR gates due to the feedforward. We call it χ′′.

Definition 3. The χ′′ sharing of χ is given by:

R(Ai) = R(χ′
a(bi, ci)) + R(bi−1) + R(ci−1) for i > 0

R(Bi) = R(χ′
b(ai, ci)) + R(ci−1) for i > 0

R(Ci) = R(χ′
c(ai, bi)) + R(bi−1) for i > 0

L(Ai) = L(χ′
a(bi, ci)) for i > 0

L(Bi) = L(χ′
b(ai, ci)) for i > 0

L(Ci) = L(χ′
c(ai, bi)) for i > 0

R(B0) = R(cm)

R(C0) = R(bm) .

Here the indexing i assumes the rows are arranged in a one-dimensional array. In Keccak-p this
is a two-dimensional array indexed by y and z. It is however simple to adopt a convention for
converting this to a single-dimensional one, e.g. i = y + 5z.

Note that L(b0), L(c0), L(B0) and L(C0) do not occur in the computations. We can therefore reduce
the guards to their 2-bit right parts: R(b0), R(c0), R(B0) and R(C0).

The total expansion of the state reduces from 2 times the S-box width (totalling to 10 bits) to 4
bits. Moreover, there are only 8 XOR gates per S-box, i.e. 1.6 per native bit instead of 4 additional
XOR gates per native bit. In the context of the χ′ sharing the computational overhead is very
small, as implementing Equation (1) requires 9 XOR gates and 9 (N)AND gates per native bit.
Note that the multi-permutation technique can be applied to other primitives that use a variant of
χ as nonlinear layer.

We can now prove the following theorem.
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Theorem 3. χ′′ as defined in Definition 3 is a correct, incomplete and uniform sharing of χ.

Proof. Correctness and incompleteness is immediate. For proving uniformity we describe how to
compute (a, b, c) from (A, B, C). We compute the components of (a, b, c) starting from index m
down to 0. First we have R(bm) = R(C0) and R(cm) = R(B0). Then we can iterate the following
loop going from m down to 1, computing ai, L(bi), L(ci) and R(bi−1), R(ci−1):

– R(ai) = R(S−1(Ai + Bi + Ci)) + R(bi) + R(ci)
– compute L(ai, bi, ci) from L(Ai, Bi, Ci), R(ai, bi, ci) using Lemma 1
– R(bi−1) = R(Sc(ai, bi)) + R(Ci)
– R(ci−1) = R(Sb(ai, ci)) + R(Bi).

⊓⊔

5 Conclusions

In this paper we introduce a simple and low-cost technique for achieving a d + 1-share correct,
incomplete and uniform threshold implementation of any S-box layer of invertible S-boxes that
have degree at most d. Looking for S-boxes with uniform threshold implementations with the
minimum (d + 1) number of shares has therefore lost much, if not all, of its relevance. However, it
may become interesting now to look for S-boxes that have d + 1-share implementations with the
multi-permutation property.
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