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Abstract

With the advent of commercial trusted execution envi-
ronments (e.g., Intel Software Guard eXtension or SGX),
an important research task is building trustworthy soft-
ware systems based on the TEE, which will enable a wide
range of security applications on the third-party cloud.

This work aims at building secure and high-
performance storage systems for safe data outsourc-
ing. It considers as storage substrate modern key-value
stores, such as Google LevelDB, that adopt the design
of log-structured merge trees (LSM). We propose Log-
structured Persistent Authenticated Dictionary (LPAD),
a security protocol that specifies the workflow of an
LSM tree for the Intel SGX architecture. We build a
secure storage system following the LPAD protocol and
based on Google LevelDB. When building the system,
we study a range of software-partitioning strategies that
make the tradeoff between performance overhead and the
size of trusted computing base.

We evaluate the LPAD storage for three salient fea-
tures: formal security in terms of strong data authentic-
ity, low performance overhead and small trusted comput-
ing base (TCB). On the latter two aspects, our evaluation
shows that 1) the LPAD-based system has a small trusted
program. 2) The performance overhead is low with a
typical 12% ∼ 40% slowdown.

1 Introduction

Hosting applications on a third-party platform becomes
an increasingly popular computing paradigm in the age
of cloud. Due to the lack of trust (to the cloud), sup-
porting security-sensitive applications poses challenges.
The commercial trusted execution environments (TEE)
such as recently released Intel Software Guard eXten-
sion or SGX [12] and ARM TrustZone [4, 1] allows
for setting up an enclave for running applications on
a remote host and are promising to solve the lack-of-
trust problem. With the availability of new hardware,

it is an important research problem to build trustwor-
thy and secure software systems leveraging the TEE fea-
tures [75, 22, 64, 52, 39, 60, 22].

This work focuses on building an important class of
software systems on Intel SGX — Secure and high-
performance key-value stores. Concretely, the target
data systems include Google BigTable [31]/LevelDB [9],
Apache HBase [3], Apache Cassandra [2], Facebook
RocksDB [6], and many others. These storage sys-
tems are designed based on Log-structured Merge Tree
(LSM) [53], which is an external memory data struc-
ture that supports append-only writes and random-access
reads, with balanced performance (§ 2.1). The LSM-
based key-value stores have been or can be used in many
emerging security-sensitive application scenarios (See
§ 3.1 for a list of such applications).

When building a TEE-based system, the key design
problem is “software partitioning.” That is, the soft-
ware system needs to be partitioned into two pieces,
run respectively in the trusted world (i.e., enclave) and
the untrusted world of TEE. To partition an LSM-based
key-value store, the first baseline (B1) is to do so at
the storage API level. That is, the trusted enclave runs
an application program sending storage read/write re-
quests and the untrusted host runs the LSM key-value
store that serves the requests. To secure the trust-
boundary crossing (between the enclave and host), secu-
rity protocols, such as Authenticated Data Structures or
ADS [74, 68, 54, 20], are applicable. Existing ADS pro-
tocols entail maintaining an update-in-place structure of
digests on the untrusted host, which has very different
performance characteristic than LSM trees and causes
high overhead (See § 3.4 for a detailed explanation). The
second baseline (B2) is to do the partitioning at the sys-
tems level (e.g., system calls). That is, the trusted en-
clave runs an unmodified storage system using Library
operating-system supports [26, 70, 65], and the untrusted
host runs the native operating systems to serve the sys-
tem calls. This partitioning scheme may result in a large



trusted computing base (TCB) at the application level1,
which renders it hard for verifying the program security.

In this work, we propose a low-overhead and small-
TCB partitioning scheme tailored to an LSM-based stor-
age system. The key idea is to partition the key-value
stores, not as high as the API level (i.e., in B1) or as
low as system calls (i.e., in B2), but rather at a mid-
dle level with awareness of the LSM-tree abstraction.
This middle-ground solution is advantageous in saving
the TCB by placing only necessary computation inside
enclave, as well as in low overhead by closely matching
the security-layer structure with underlying storage sys-
tems. Note that existing work for automatic partitioning
such as Glamdring [47] and [59] is ineffective in our
context due to the lack of knowledge on LSM-specific
semantics.

To instantiate the LSM-storage partitioning, we first
propose a formal security protocol, LPAD or Log-
structured Persistent Authenticated Directory. The pur-
pose of this formalization is for provable security. A
challenge in the protocol design is to avoid under-
specification (losing security) or over-specification (los-
ing systems-level flexibility). LPAD formalizes the pro-
tocol at an appropriate level that provides formal security
and admits a wide variety of data-maintenance policies in
an LSM tree. In addition, LPAD can be constructed effi-
ciently without relying on expensive cryptographic prim-
itives (e.g., verifiable computation [24, 23, 55, 62, 28,
71]). It places minimal computation in its trusted party,
rendering it amendable for a small TCB.

At the systems level, we then study the placement of
the memory objects in the storage system. We explore
the design space of placing different objects inside/out-
side enclaves, and propose a series of strategies that make
trade-off between performance and the TCB size.

We implement our design based on the codebase of
Google LevelDB [9] and result in a security-enhanced
key-value store functioning on Intel SGX. Based on the
implementation, we evaluate the LPAD system in three
aspects: 1) The LPAD system on LevelDB has a small
application TCB of one thousand codelines in enclave,
comparing the twenty thousands code lines of original
LevelDB. 2) The security is formally analyzed in the
language of security games. 3) The performance over-
head can be as low as 12% slowdown under the IO-
intensive workloads and around 40% slowdown under
the memory-intensive workloads (in § 6).

In summary, this work contributes the following tech-
niques:

1. We identify the gap between the design of exist-
ing security protocols (i.e., ADS) and that of LSM-based
storage systems. The gap results in a significant perfor-

1Be aware that the code size of modern storage systems is usually at

the scale of tens or hundreds of thousands of codelines (e.g., HBase [3]

and LevelDB [9]).

mance problem, as demonstrated through analysis and
performance study. 2. We propose LPAD, the first se-
curity protocol that marries the ADS design with LSM
trees. LPAD achieves efficiency and small TCB by hav-
ing consistent data structures across layers. 3. We instan-
tiate LPAD with a series of data-placement strategies,
that make the tradeoff between performance and TCB
size. 4. We implement a secure-storage prototype based
on Google LevelDB that is functioning on Intel SGX. We
demonstrate the system is strongly secure, has a small
application-level TCB and low performance overhead.

We present the rest of paper in the following order:
preliminaries in § 2, research formulation in § 3, the pro-
posed LPAD protocol and constructions in § 4, LPAD

instantiation on Intel SGX in § 5, the system evaluation
in § 6, the related work in § 7 and the conclusion is in § 8.

2 Preliminaries

This section presents the preliminaries of related tech-
niques to this work.

2.1 LSM Tree-based Storage Systems

A log-structured merge tree (LSM) [53] is a data struc-
ture that serves random-access reads and writes with a
unique performance characteristic. At the high level, an
LSM tree is a forest of sub-trees, where each sub-tree’s
leaf nodes store a sorted run of records by data keys (each
record is a key-value pair). A subtree in an LSM tree is
also called a level. A write operation to the tree only
update the first level, making this level mutable and all
other levels immutable.2 A read operation may iterate
through all levels (in the worst case). An offline “merge”
operation3 migrates records from lower levels to a higher
level.

LSM trees have been recently adopted in the de-
sign of many modern storage systems, including Google
BigTable [31]/LevelDB [9], Apache HBase [3], Apache
Cassandra [2], Facebook RocksDB [6], etc. In these sys-
tems, an LSM tree is treated as an external memory data
structure and used for managing storage IOs. Specifi-
cally, the first level of an LSM tree resides on mem-
ory and all other levels, which are immutable, reside on
disk; by this means, only sequential disk writes occur
(random-access writes are contained in memory by the
first level).

In terms of performance, the LSM-tree based storage
design represents a middle ground between the two clas-
sic designs, that is, the read-optimized update-in-place
storage (e.g., B+ tree and many database indices [38, 66])

2To be more precise, immutable in this work means immutable to

random-access writes.
3In an LSM tree, a merge operation is also called compaction; we

use the two words interchangeably.
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and the write-optimized log-structured storage (e.g., log-
structured file systems [58]). On the one hand, an LSM
tree (in an external memory model) serves a data write
in an append-only fashion, in a way similar to log-
structured file systems. On the other hand, it supports
random-access reads without scanning the entire dataset,
which is similar to update-in-place style B+ trees. An
LSM tree reaps the benefits from both worlds, at the ex-
pense of assuming some offline hours to do the batched
merge operation. We will formally describe an LSM tree
in § 4.1.

2.2 Authenticated Data Structures (ADS)

An authenticated data structure (ADS) is a security pro-
tocol in a client-server setting that allows a data-owner
client to outsource her data storage to a third-party host
(server) and to allow a data-user client to query it. In
a public-key setting, a data owner holding a secret key
can initially sign and later update the dataset, and a user
trusting the owner’s public key (e.g., through an exter-
nal PKI [43]) can verify the authenticity of query result.
While there is recent research [74, 68, 54] to design ADS
for expressive queries, we consider in this work the most
foundational form of ADS, that is, an authenticated dic-
tionary supporting set-membership queries [20], which
is well suited for a key-value store system.

Existing ADS constructions [45, 67] are mainly based
on update-in-place data structures. In the case of a
Merkle tree, for instance, an update-in-place ADS re-
quires the data owner (keeping a simple digest/signature)
to issue read query first, modify the Merkle authentica-
tion proof, and then generate a new signature before writ-
ing it to the host. Variants of update-in-place ADSes are
proposed, such as replicated ADSes [45, 74] and cached
ADSes [37]; they improve the update efficiency at the
expense of a larger owner state. Update-in-place ADS
constructions have been used to implement system pro-
totypes, such as consistency-verified storage [46] and au-
thenticated databases [45].

2.3 Intel Software Guard eXtension (SGX)

Intel SGX is a security-oriented x86-64 ISA extension on
the Intel Skylake CPU, released in 2015. SGX provides
a “security-isolated world” for trustworthy program exe-
cution on an otherwise untrusted hardware platform. At
the hardware level, the SGX’s trusted world or enclave
includes a tamper-proof SGX CPU which automatically
encrypts memory accesses upon cache write-backs. Pro-
grams executed outside the enclave trying to access en-
clave memory only get to see the ciphertext and can-
not succeed. At the software level, the SGX enclave in-
cludes only some unprivileged program and excludes any
OS kernel code, by explicitly prohibiting system services

(e.g., system calls) inside the enclave.
To use the technology, a client initializes an enclave by

uploading her program to the server host and uses SGX’s
seal and attestation mechanism [21] to verify the correct
setup of the enclave environment (i.e., the binding be-
tween the client’s program and a genuine SGX CPU).
During the program execution, the enclave is entered and
exited proactively (by SGX instructions, e.g., EENTER
and EEXIT) or passively (by interrupts or traps). These
world-switch events trigger the context saving/reloading
in both hardware and software levels. Comparing prior
TEE solutions [14, 17, 4, 11], SGX uniquely support
multi-core concurrent execution, dynamic paging, and
interrupted execution.

3 Research Formulation

In this section, we formulate the research by presenting
the application scenarios, system and threat models, and
a baseline design to introduce the proposed approach.

3.1 Application Scenarios

The target of this work is security-sensitive applications
that require random-access data reads and writes. A con-
ventional example is serving the public key directory in
PKI [43], which requires the security of data authenticity
(C1) that revoked keys should not be served and random-
access queries (C2) where specific person’s public key is
queried. Modern security workloads are more dynamic
and may feature an intensive stream of data updates (C3).
The following is a list of real-world relevant applications.

• In health-care information exchange [16, 8] (A1), hos-
pitals may want to outsource the storage of their pa-
tient medical records (EMR) to a federated third-party
cloud for easy EMR discovery.

• In community-based code development (A2), a
Github-alike service may benefit from outsourcing its
open-source code repository to the public cloud for
lower cost and higher availability.

• In enterprise computing (A3), a Foursquare [7] alike
startup may want to outsource its customer’s social
dataset to the cloud for its cost-effectiveness.

• In smart-city (A4), an open government may want
to outsource its big-data dataset about citizens (e.g.,
homeowner information, house electricity readings,
etc.) to the public cloud with high availability. This
practice increases the government transparency.

These application scenarios have all the three charac-
teristics. For instance, in A1, intensive data updates are
generated as any patient checks in a clinical place (C3).
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A specific patient’s records may be queried about during
her clinical visit (C2). And missing a patient’s record
(C1) will lead to incomplete knowledge and uninformed
diagnostic decisions by her doctor. In general, for big-
data applications, data updates are intensively generated
as the big-data is continuously produced and collected
(C3). The data users are usually only interested in a
limited part of the data, and such interest is addressed
by random-access queries (C2) addresses this need. The
data-authenticity(C1), especially the guarantee of mem-
bership authenticity as will be described, is of critical im-
portance to the application security. We note that in some
of these applications, data confidentiality is optional, as
they involve open datasets.

3.2 System Model

Owner

Host (Untrusted)

Frontend 

(Secure channel)

Client

Cloud 

server

Enclaves

Internet 

Put / Get

Backend

LPAD 

protocol
LSM 

storage

Figure 1: LPAD protocol in an overall system: The boxes

with solid lines (in green) mean trusted domains includ-

ing the enclave and owners. The shapes with dotted lines

(in red) mean untrusted host domains including Internet

and storage host. This work focuses on the secure in-

teraction on the storage backend, formally the security

protocol of LPAD, that occurs between enclaves and un-

trusted host.

We abstract the applications described above and
present our system model: The owner of a security-
sensitive dataset outsources the data storage to a third-
party host. The owner then submits read and write re-
quests to the outsourced dataset. For simplicity, we con-
sider it is the data owner who submits read requests. In
practice, the data owner can share her public key with
another party to grant to her the data-read permission.

The host runs SGX enclaves established by the owner.
An enclave includes the SGX CPU at the hardware layer
and the program uploaded by the owner at the software
layer. The other parts of the host are untrusted by the
owner.4 In particular, the storage medium such as the

4In the rest of this paper, we use the term “host” to mean the un-

trusted parts of a host.

disk is in the untrusted domain.
The host may launch multiple enclaves: On the fron-

tend, the host communicates with the data owner through
a secure Internet channel established by an enclave; this
enclave runs software attestation and TLS handshake
protocol. On the backend, another enclave receives data-
access requests from the application and interacts with
the untrusted host storage. The host runs an LSM-based
storage system (e.g., Google LevelDB) to persist the in-
tensive update streams and to serve random-access reads.
As mentioned, the LSM-based storage lends itself to this
type of modern workload. Figure 1 illustrates the overall
system architecture and the focus of this work (as will be
explained soon).

The storage interface supported in enclave follows the
standard key-value store API: Given data key k, value v,
timestamp ts, a write operation Put(k,v) sends a data-
update request to the outsourced key-value store and re-
turns an acknowledgment about committed timestamp ts.
A read operation Get(k, tsq) sends a data-read request
to the key-value store and returns result record 〈k,v, ts〉.
Formally,

ts := Put(k,v)

〈k,v, ts〉 := Get(k, tsq) (1)

Scope of this work: This work focuses on the stor-
age backend of data outsourcing. We particularly aim at
the secure interaction between the backend enclave and
LSM-based storage host.

The frontend design and security are out of the scope
of this work. For completeness, we do assume external
mechanisms are in place to secure the frontend; existing
information-security (InfoSec) mechanisms used in prac-
tice can help establish secure-channels including various
techniques of key-distribution [43] and software attesta-
tion [21].

3.3 Threat Model

The adversary in this work attacks the storage backend
of the host. The adversary can manifest in the forms
of an untrusted operating system, a malicious user-space
program or even hardware components in the untrusted
domain. The attack goal is to compromise the member-
ship authenticity. For instance, given a Get request, a
malicious host can forge a result (breaking query-result
integrity), or present a stale record (violating query fresh-
ness), or skip a legitimate record (violating query com-
pleteness). Given a Put request, the malicious host
can send acknowledgment without actually persisting the
data.

Formally, result integrity is about whether read-result
〈k,v, ts〉 is a key-value record written by a legitimate
write request before. This is a special case of message
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integrity (in the classic secure channel [43]), and the
integrity can be easily protected by message authenti-
cation code (MAC). Query membership in a key-value
store is about whether a read result is fresh and complete.
The freshness states whether the result 〈k,v, ts〉 has the
largest timestamp (or is the latest) among all records of
the queried key k and with a timestamp smaller than tsq.
The completeness prevents a legitimate result from being
omitted.

Non-goals of our research work include rollback at-
tack and security, denial-of-service attacks, SGX side-
channel attack and security [72], enclave program secu-
rity and memory safety [36], hardware attacks to break
SGX CPU tamper-resistance [35].

For applications that data confidentiality is a concern,
we assume the key-value records are deterministically
encrypted [43], such that the ciphertext domain has an
ordering and normal key-value store operations can be
processed on the ciphertext.

3.4 Baseline and Observation
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Our security goal is to ensure the data authenticity, es-
pecially the membership authenticity under the threats
mentioned above when the enclave interacts with the
storage host on the backend.

A baseline approach is to use the existing protocols
of Authenticated Data Structures (ADS) to specify and
formalize the enclave-host interaction. While the con-

ventional setting of ADS is the client-server architec-
ture, an ADS protocol can be easily adapted to fit in
the enclave-host architecture (with the enclave being the
data owner and host being the server). As mentioned
in § 2.2, existing ADS constructions rely on update-
in-place data structures, such as a B-tree alike Merkle
tree [50]. This means at the security layer, the data reads
and writes follow an update-in-place structure while at
the data-persistence layer (in the untrusted domain), the
data reads and writes follow an LSM-based structure.

This data-structural mismatch will create the perfor-
mance problems. First, the presence of update-in-place
structures adds random disk accesses to the data-write
path which offsets the optimization by the underlying
LSM store. Second, the mismatch between the structures
at the security and data-persistence layers renders it im-
possible to co-locate data and digest physically, which
increase the number of disk “seeks”.

To demonstrate the performance, we implemented the
ADS in an B-tree format [45] and the data storage in
an LSM tree. These two components are invoked syn-
chronously in overall authenticated data storage. Key-
value records are 100 bytes while the digests are SHA256
(i.e., 256 bits). We measure the average latency of data
accesses separately on these two components and report
the results in Figure 2; The two data structures have very
different performance profiles. On the write-intensive
workloads (i.e., with a small percentage of reads), the
LSM tree has a clear performance advantage (lower la-
tency) over the B-tree based ADS. Coupling two data
structures together in an overall system would offset this
advantage.

Research statement: Based on the observation, we
present the research statement of this work: Building
membership-authenticated log-structured data storage on
Intel SGX enclaves with three salient features: 1) for-
mal security, 2) low overhead, 3) small application-level
TCB.

4 LPAD Protocol

In this section, we present the proposed LPAD technique
from the protocol’s perspective. The purpose is to de-
scribe the enclave-host interaction at an abstract level,
such that the protocol can be presented formally and pre-
cisely for the security purpose. The systems-oriented de-
scription is left the following sections.

An LPAD protocol is essentially an ADS tailored to
the LSM tree structure. We thus first present the formal
model of an LSM tree and then describe the LPAD pro-
tocol and its variants.
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4.1 Model of an LSM Tree

An LSM tree represents a dataset m by a series of so-
called levels, l0, l1...lq−1. A level li is a list of ordered
data records li = b1b2...b j.... In the beginning, all data
reside on level l0 and as new records are added, data are
migrated to higher levels through the MERGE operation.
An LSM tree supports the data reads and writes, where a
write only updates the first level l0, and a read may iterate
through all levels until a match or non-match is resolved.

The MERGE operation migrates data at the units r
across levels. It merges ranges from one or two adja-
cent levels, r0,r1, ..., into one range at one level, that is,
∅, ...,∅,r′kk :=MERGE(r0, ...,rkk−1,rkk). It is up to the
application to specify how big the migration data-unit it
is. An example policy is leveled merge/compaction [9]
where the data unit is an entire level, and it always merge
a lower level with the overlapping part of a higher level.
For another example, a size-tiered compaction policy [5]
organizes each level by multiple files in the time order,
where each file is a sorted run by key. The timed com-
paction is to merge different files at the same level and to
flush the result to the higher level. Some notations used
in this paper are in Table 1.

Table 1: Notations

b key-value record m dataset

n security parameter ts timestamp

a answer π proof

l LSM-tree level q number of levels

4.2 LPAD Protocol

An LPAD protocol runs in an ecosystem consisting of
two parties: a trusted enclave and an untrusted host
for data storage. Recall that before the LPAD proto-
col, we assume a secure channel is established between
the client-side data owner and the server-side enclave.
Through the channel, the enclave obtains the original
copy of dataset sent from the owner. Thus, the LPAD

protocol starts with the initial state that the enclave has
the original owner’s dataset. In addition, the server-side
enclave in LPAD also represents the data owner.5

The purpose of the LPAD protocol is to store the
owner’s dataset on the untrusted host and to serve the
enclave’s data-access queries with security in member-
ship authentication. For simplicity, we consider a single
owner/enclave in describing the LPAD protocol.

Formally, given dataset m and record b, the tar-
get query is a set-membership predicate, 0,1 =
P(m,b) which returns 0/1 representing the non-
membership/membership of the record in dataset m. The
protocol runs in four interactive rounds, described as be-
low.

5We use the terms “owner” and “enclave” interchangeably.

1. The enclave generates a pair of public/private keys
based on security parameter n (i.e., algorithm pk,sk =
GEN(1n)), and then signs the initial dataset m6 by secret
key sk (i.e., algorithm s = SETUPsk(m)7). The enclave
then stores the signed dataset (s) in the host, along with
public key pk.

2. On the read path, the untrusted host runs an authen-
ticated query-processing routine (i.e., algorithm π,a =
QUERYpk(m,b)) that, in addition to finding the result,
prepares a query proof π by including a membership
proof for the LSM-tree level that contains the answer,
and more importantly, by including non-membership
proofs for the tree levels that don’t contain the answer.
In this work, we use the standard Merkle tree [50, 51]
to construct the LPAD protocol.8 Under this construc-
tion, the proof of both membership and non-membership
is in the form of the so-called authentication path [50]:
An authentication path of a Merkle leaf node is the list of
tree-node hashes that are neighbors to the path from the
root to the leaf.

Then, the enclave receiving proof π and answer a ver-
ifies the integrity of the answer by iterating through all
levels, recomputing the root hash for each level, and
checking the equality between the recomputed roots and
the dataset digest from signature s.

3. On the write path, the enclave, on behalf of
the client owner, updates the dataset. The enclave up-
dates the first level l0 with new record b, resulting in
a new dataset signature s′ (i.e., algorithm l′0,s

′,upd =
UPDATEsk(b, l0)). The algorithm may retrieve an authen-
tication path from the host, perform the update, and ob-
tain the new image of first level l′0 and signature s′.

Then, the untrusted host refreshes the first level based
on the new record b and update information upd (i.e.,
algorithm l′0 = REFRESH pk(b, l0,upd)).

4. Periodically, the enclave and host interactively run
algorithms to migrate data across levels. The LPAD pro-
tocol specifies the MERGE mechanism at the granularity
of levels and leave it open to various policies to spec-
ify the actual data units r used. The enclave updates the
two adjacent levels (li, li+1) to posterior state (l′i, l

′
i+1),

with signatures and update information upd (i.e., al-
gorithm l′i, l

′
i+1,s

′,upd :=SIGMERGEsk(li, li+1,s)). The
host server then merges data in two adjacent levels
(li, li+1) to (l′i, l

′
i+1) and simply updates their signa-

tures using update information upd (i.e., algorithm
l′i, l

′
i+1,s

′ :=MERGEpk(li, li+1,s,upd)).
Specifically, SIGMERGE(li, li+1) is constructed by the

enclave retrieving from the host the two input levels, li

6Recall that the enclave obtains the genuine copy of dataset m from

the owner through the secure channel.
7We use the subscription to refer to the public/private keys used in

the algorithm.
8Despite the Merkle tree construction in this work, we stress the

LPAD scheme is generic and can be constructed by other ADS primi-

tives (e.g., multi-set hash [33]).
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and li+1, and linearly scanning them. This straightfor-
ward construction with linear cost may not be feasible
in the traditional client-server setting, but is practical in
the TEE case where the server host is co-located with the
enclave.

The above formalization supports MERGE policies
with different data units in a straightforward way.

The correctness of LPAD scheme is straightforward
and similar to that of ADS [54]; informally, the correct-
ness can be stated by that in any state resulted from call-
ing UPDATE/REFRESH and MERGE/SIGMERGE, given
any query against the state, verifying the query result
will accept. The security of LPAD scheme, informally,
requires that any adversary who compromises the host
cannot forge invalid query results and trick the VRFY al-
gorithm to acccept. The formal definition and security/-
correctness of the protocol construction are described in
the technical report [15].

4.3 Read-optimized Protocol

The basic LPAD construction above needs to read all lev-
els upon QUERY (we denote this construction by LPAD-

AllLevel). In the real-world LSM tree, one of the opti-
mizations is to stop the query processing as early as the
level the first hit is found. To incorporate this read opti-
mization, we extend our model by richer semantics and
design the next construction, LPAD-R.9

In LPAD-R, each record is associated with a times-
tamp, denoted by (b, ts). The value of a timestamp is
assigned by an ideal “clock” which monotonically in-
creases the newest timestamp. The read query is ex-
tended to return the latest record where the “latest”
record is defined by having the largest timestamp among
records of the same value. Note that by assuming a
global clock, we assume all the writes that generate
timestamp are synchronized, which as we will see is the
case for Google LevelDB [9].

In LPAD-R, processing QUERY(m,b) stops when the
first level, say li, is found to have (b, ts). In this case, π =
π0, ...π i, where π0, ...π i−1 are proofs of non-membership
and π i is proof of membership. When i = q, it means
b 6∈ m and it is the same proof with that used in the basic
construction.

Before analyzing the correctness and security, we
present a property about the temporal order of records
in different levels in LPAD.

Theorem 4.1 In an LPAD, a record stored in a lower-

numbered level has a larger timestamp than that of a
record in a higher-numbered level. That is, given records
(b, ts) and (b′, ts′) respectively residing in levels li, l j, if
i < j, ts > ts′.

9LPAD-R is used as the standard construction and it will be used

interchangeably with LPAD.

For instance, Figure 4 illustrates an LSM tree of three
levels: l0, l1 and l2. At any level, say l2, records are
sorted, say from key A to T to Z. Theorem 4.1 requires
that in Figure 4, an older record A with timestamp 2,
is stored on a higher-numbered level l2 than the level a
newer record (A,9) is stored (which is level l0).

Level l0

Level l2

A 9

Z 3A 2

Key 

Z

Time 

6

Z 1

T 0

Level l1

LSM tree

Figure 4: An example LSM tree
The proof sketch of Theorem 4.1 is that LPAD only

allows to move records from lower-numbered levels to
higher-numbered ones, but not in the reversed order. We
formally prove the property in the technical report [15].

Correctness: The correctness of this optimization
means that when VRFY(π ,a) == 1, (b, ts) must be
the latest record in the dataset. It can be proven that
VRFY(π,a = 1) == 1 would require ∃i s.t. ali

= 1. The
correctness of ADS(li) in membership queries implies
that b must be present in li, thus present in m. In addition,
the correctness of ADS(l<i) in non-membership queries
implies that b must be absent in these levels. Due to The-
orem 4.1, any records in l>i will be older than record
(b, ts) in level li.

Security: The security of the optimized construc-
tion means that an adversary cannot forge a proof for
record that is not the freshest in the system. The secu-
rity comes the security of ADS in both membership and
non-membership queries. Given proof π about record
b at level i, it is unfeasible for an adversary to forge a
proof of membership of b in l<i or to forge a proof of
non-membership of b in li.

5 LPAD-based Storage on SGX

In this section, we present the engineering of LPAD pro-
tocol on the architecture of Intel SGX, and study the
software-partitioning problem.

We build our system on Google LevelDB [9], which
is a representative and widely adopted storage sys-
tem based on the LSM trees. We stress that in this
paper we abuse the term “LevelDB” to represent a
broad class of log-structured key-value stores, such as
Apache HBase [3], Apache Cassandra [2], Facebook
RocksDB [6]. In addition to following the LSM design,
these stores are similar to LevelDB in terms of many
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software-engineering patterns, including using memory
buffers to facilitate data reads on non-zero levels, per-
sisting level zero using write-ahead log. These features
will be discussed in the context of LevelDB but readers
should be aware that they are generic to this class of key-
value stores.

Systems layer 

(IO)

Storage 

devices

Object/state layer

Level 1 Level 2 Level 3
WAL

Protocol layer

(LPAD) Update Vrfy (Sig)Merge

Level 0
Level 1 

(buffered)
Level 2 

(buffered)

Overhead-reduced 

partitioning (O1)

Trust-minimized 

partitioning (O0)

Overhead-minimized 

partitioning (O2)

Haven-style 

enclave

Data buffer

Memory

Figure 5: Partitioning the system at protocol and

memory-object layers: Strategy O0 places inside en-

clave the necessary functionality (the red rectangle), that

is, the trusted algorithms of LPAD schemes (it omits

GEN and SETUP in the Figure). Strategy O2 places in-

side enclave as many memory “objects” as possible in-

cluding those accessing data in levels l0 and l≥1 (the

dark blue rectangle). Strategy O1 is a middle ground

between O0 and O2 which placing the object of l0 in en-

clave while leaving others out (the light blue rectangle).

For simplicity, we consider the single-threaded setting
of LevelDB; we leave our multi-threaded extension to the
technical report [15]. Reads and writes are submitted to
LevelDB by a single thread and are thus fully serialized.
The security definition naturally follows the description
in § 3.3. We present an abstraction of LevelDB and then
a variety of software-partitioning strategies are devised.

LevelDB abstraction: The codebase in the LevelDB
follows the model of LSM tree (§ 4.1) and can be
split into three types of “memory objects” serving read-
s/writes. Here, we use the term “memory object” to re-
fer to a memory region that stores closely coupled code
and data and that encapsulates certain functionality. The
three memory objects in a LevelDB are:

J1 is the object relevant to reading/writing data stored in
level l0. In this object, the primary data is at level l0

and resides in memory when serving reads and writes.
Periodically, it also logs data to disk for failure toler-
ance through a data structure called Write-Ahead Log
(WAL).

J2 is the object relevant to reading immutable levels l≥1.
In this object, the data is stored on disk and served
through IO. There is a memory buffer that improves
performance by leveraging locality.

J3 is the object relevant to merging the immutable levels.
In this object, similar to J2, data is stored primarily on
disk and IO occurs upon data access.

Figure 5 illustrates this abstract view of LevelDB.
Note that each object involves the disk-IO access that
must be placed outside an enclave.

The problem of software partitioning in LevelDB
is to partition the application program and to runs the
two partitions in the two worlds of SGX. In this section,
we study the partitioning strategies of LevelDB by plac-
ing its objects inside/outside an enclave; these strategies
make the tradeoff between minimal trust and overhead.

5.1 Trust-minimized Partitioning (O0)

An intuitive instantiation of the LPAD protocol follows
the conventional rules that only secrets should be con-
fined inside the enclave [44, 29, 56]. In an LPAD pro-
tocol, the secrets are the secret keys and the dependent
operations. This results in the trust-minimized partition-
ing scheme:

Partitioning scheme O0 places five LPAD algo-
rithms (and nothing else) inside the enclave, that
is, GEN,SETUP,UPDATE,SIGMERGE, VRFY— the first
four have a dependence on secret keys and the last one
produces security-critical results. The algorithms in en-
clave are dependent only on the states of sublinear sizes,
such as the proof in VRFY. Figure 5 illustrates the O0
partitioning scheme.

Concretely, for Object J1, the memory data at level l0

is stored outside enclave. On the write path, Algorithm
REFRESH is run outside the enclave that updates Level
l0. It then notifies the enclave to run Algorithm UPDATE.
On the read path, the data at level l0 (in Object J1) and
all other levels (in Object J2) are stored outside enclave.
Algorithm QUERY is run to read all levels outside the
enclave. After that, the enclave runs Algorithm VRFY

to authenticate the read result. For Object J3, we place
inside enclave the actual computation of MERGE. An
MERGE computation reads multiple data streams from
disk, store them on a buffer, performs in-memory com-
putation and writes the result to disk. In O0, we place the
MERGE data buffer outside enclave, as it has no locality.

MERGE implementation: We implement J3 by three
threads: The first thread residing outside enclave read
data from disk to an input buffer. The second thread re-
siding inside the enclave performs the merge computa-
tion. And the third thread residing outside the enclave
persists the result data from the buffer to disk. The
three threads share data buffers and synchronize their
execution by checking the buffered data size. The sec-
ond thread performs three functionalities: 1) the com-
putation of MERGE, 2) the authentication of the input
data streams, 3) signing the output data. We implement
them in one data pass by exploiting incremental Merkle
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trees [69]. Our implementation also retains the Lev-
elDB functionality, including versioning policies, tomb-
stone delete, etc. Details about implementing verifiable
MERGE are in the technical report [15].

Security analysis of O0: Suppose reads and writes
are fully serialized. An invariant of partitioning strategy
O0 is that on both write and read paths, the LPAD al-
gorithms inside enclave (i.e., UPDATE and VRFY) occur
after the algorithms running outside enclave (i.e., RE-
FRESH and QUERY). This invariant, with the promise
of fully serialized execution,10 allow the enclave to con-
struct the execution order (of reads and writes) from the
order these in-enclave algorithms are called. This exe-
cution order further allows to fully specify the execution
history, based on which the membership can be authen-
ticated by LPAD (e.g., freshness assumes the temporal
order among reads/writes).

Concretely, we consider the freshness attack that the
adversary from the untrusted host presents a correct but
stale read result. The freshness property requires that a
read result 〈k,v, ts〉=Get(k, tsq) is fresh as of timestamp
tsq. By definition, it can be authenticated by the member-
ship of the result, 〈k,v, ts〉 and the non-membership of
any record, say 〈k,v′, ts′〉 that is “fresher” than the result
and with ts′ ∈ [ts, tsq]. Both the membership and non-
membership can be further authenticated by the LPAD

scheme. Based on the freshness authentication, any stale
result returned from the untrusted host can be easily de-
tected (by the failure of VRFY).

The freshness attack can be extended to different vari-
ants: 1) In a query-completeness attack, the untrusted
host omits the result and falsely returns an empty result.
In this case, the non-membership authentication (for the
empty result) will not pass. 2) The forking attack [49]
works by the untrusted host presenting different views
to different reads. As our enclave under LPAD protocol
fully specifies the operation history (without ambiguity),
there is always only one legitimate result that can be au-
thenticated, thus eliminating the forking vulnerability.

5.2 Overhead-minimized Partitioning
(O1,O2)

The partitioning schemes presented in this subsection
aims at minimizing the overhead of boundary crossing
and do so by placing as many objects into enclave as pos-
sible. This design is motivated by an observation of two-
fold: 1) The more data is placed in an enclave, the less
it needs to access data on the untrusted host, saving the
verification costs (at software level). 2) The more code is
placed in an enclave, the less it needs to switch the exe-
cution to outside the enclave, saving the world-switching

10The untrusted host can break the promise of serialized execution,

but will eventually be detected through the in-enclave checks.

overhead. Based on this observation, we propose two
partitioning strategies:

Partitioning scheme O1 places only the memory ob-
ject of J1 inside enclave. In particular, the disk-IO part
of J1 (for accessing WAL) is placed outside enclave, and
the memory part of J1 for accessing data stored in level l0

is placed inside enclave. In O1, accessing data in level l0

does not cause boundary crossing, thus saving overhead.
For partitioning Object J3, O1 is the same with O0.

Partitioning scheme O2 places the memory objects
of J1 and J2 inside enclave J1 is similarly placed in
enclave with O1. In addition, the disk-IO part of J2
for accessing data stored in levels l≥1 is placed out-
side enclave, and the memory part of J2 for access-
ing memory buffers is placed inside enclave. Thus, the
world switches caused by accessing the buffers of higher-
numbered levels l≥1 can be saved. Particularly, if the
workload of data accesses exhibit a high level of local-
ity, O2 is effective in saving overhead as the memory
buffer in J2 will be accessed repeatedly without bound-
ary crossing. For partitioning Object J3, O1 is the same
with O0.

Both O1 and O2 increase the trusted code size com-
paring O0. The details of these two overhead-reduced
partitioning strategies are illustrated in Figure 5.

Security analysis of O1,O2: Both O1 and O2 pre-
serve the invariant that on both write and read paths,
the in-enclave algorithm of LPAD (i.e., UPDATE and
VRFY) occurs after the outside-enclave algorithm (i.e.,
REFRESH and QUERY). As analyzed in O0, the invariant
associated with the promise of serialized execution al-
lows the enclave to fully specify the read/write execution
history and establish a total-order on which the freshness
can be authenticated.

6 Evaluation

In this section, we evaluate LPAD system with the goal
of answering the following questions:

• What is the trusted code size (§ 6.1)?

• What is the performance of LPAD under IO-intensive
and memory-intensive workloads (§ 6.2)?

We also conducted micro-benchmark experiments to
study the impact of LPAD design at a fine granularity.
Due to space limits, the micro-benchmark results are in
the technical report [15].

6.1 Implementation & Enclave Code Size

We implement LPAD partitioning schemes by modifying
LevelDB with the following changes: 1. We wrap the
enclave programs by ECalls provided in the Intel SGX
SDK [13], where the ECall arguments are passed by
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pointers. 2. For MERGE, we run the enclave algorithm in
a separate thread (described in § 5.1) that share a memory
with the untrusted threads. We implement the thread syn-
chronization by enforcing mutex on these shared memo-
ries. 3. We implemented the LPAD algorithms using the
SHA3 hash algorithm from the Crypto++ library [10],
and map the algorithms to the enclave-host architecture
based on specific partitioning schemes. In particular, we
store the Merkle trees in the untrusted LevelDB storage
by encoding the hash digests in the LevelDB data records
and in-file index. 4. We modify LevelDB to make each
Put return its timestamp for records serialization. The
change is not significant and does not cause overhead.

For evaluating the trusted code size, we prepare a base-
line by loading the unmodified LevelDB code into an in-
enclave library OS, Panoply [65]. We stress Panoply is
not an application partitioning scheme and cannot spec-
ify how to partition LevelDB. Thus, in our baseline, we
map the entire codebase of LevelDB into enclave.

Recall that the trust-minimized partitioning (O0)
place inside the enclave trusted LPAD algorithms
(SIGMERGE,UPDATE,VRFY) and require the enclave to
include the code for Merkle proof and SHA compu-
tation, in addition to the glue code generated by Intel
SGX SDK [13]. The total number of code lines in en-
clave is around 900. Comparing the baseline approach,
trust-minimized partitioning reduces the application-
level trusted code size by 20 times.

In the overhead-reduced partitioning (O1), level l0 and
associated code are included in an enclave. The level l0

is stored in a skip list, which increases the trusted code
size from 900 (of O0) to around 2500 — there are 400
lines for data access in a skip list and 1600 for the extra
glue code.

The overhead-minimized partitioning further adds the
higher-numbered levels into an enclave, which increases
the trusted code to 4100 lines. Nevertheless, it is 5 times
smaller than the Haven-style solutions. The result of en-
clave code size is presented in Table 2.

Table 2: Trusted code size with LPAD partitioning strate-

gies

Partitioning scheme Trusted code size (LoC)

Trust-minimized (O0) 891

Overhead-reduced (O1) 891+1588

Overhead-minimized (O2) 891+1588+1591

Haven/Panoply-style

(Baseline)

∼ 20000

6.2 Performance Evaluation

In this section, we present the performance of LPAD

under Yahoo Cloud Serving Benchmark (YCSB) [34]
which is a standard benchmark suite. We evaluate the

performance under IO-intensive workloads and memory-
intensive workloads. We start by describing the common
experiment setup.

Experiment setup: We did all the experiments on two
laptops with an Intel 8-core i7-6820HK CPU of 2.70GHz
and 8MB cache, 32 GB Ram and 1TB Disk. This is one
of the Skylake CPUs with SGX features.

We used the YCSB benchmark suite [34] as a work-
load generator evaluating the performance of generic
key-value stores. We leverage the LevelDB-YCSB
adapter based on online projects.11 In our experiment,
we run the YCSB workload driver on one machine and
the storage system on another machine; the two machines
are connected to a high-speed LAN network.

We use two datasets in this experiment: The large
dataset contains 200 million records (which is 24GB
without compression under 100-byte values), and the
small dataset contains 1 million records (140MB with-
out compression). The large dataset is intended to cap-
ture the IO-intensive workload where the working set is
larger than memory and IO is constantly triggered dur-
ing data serving. The small dataset captures the memory
intensive workloads with the working set fully residing
on memory; in this case memory references (or cache
misses) are the bottleneck. Both datasets are generated
with uniformly distributed keys, each key-value record
contains a 16-byte key and a value that can take a size of
100 or 1000 bytes.12

6.2.1 IO-intensive workload

In the experiment, we varied the read percent-
age from 0% (that is, a write-only workload),
20%,40%,60%,80% to 100% and we tested 1 million
queries. In the benchmark, we turned on the MERGE,
used different record sizes (116-byte and 1016-byte
records). We used the SHA3 hash algorithm. We run
the workload in a single thread. Each experiment is run
at least three times. The result in latency is reported.

We test LPAD-SGX with different partitioning
schemes and compare their performance with 1) the
baseline of running a single Merkle tree over the dataset,
and 2) the ideal solution (in the sense of ideal perfor-
mance) of running the original, insecure LevelDB sys-
tem.

The performance result under the IO-intensive work-
load is presented in Figure 6a and Figure 6b. For both
1016-byte and 116-byte record sizes, the LPAD-SGX
scheme matches well with the write-optimized charac-
teristics of the original LevelDB – their latency increases
as the workload becomes more read intensive. By con-
trast, the baseline of a single Merkle tree exhibits a

11https://github.com/jtsui/ycsb-leveldb
12Note the smaller size a value is (e.g., 100 byte), the more challeng-

ing to serve for a storage system as small writes cause more random

access IO.
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Figure 6: LPAD-SGX performance

read-optimized behavior. Moreover, with any read-write
ratio, the LPAD-SGX systems’ slowdown comparing
the ideal performance is at most 2X , which is much
smaller than the 500X slowdown of the baseline (the sin-
gle Merkle tree). Our LPAD-SGX leverage the read-
optimized construction (LPAD-R) that further reduces
the slowdown to 36% for the 116-byte records and 12%
for the 1016-byte records. This result confirms the bene-
fit of matching security protocol with an underlying stor-
age system. Note the LSM tree and LPAD protocol are
about optimizing storage IOs, and IO-intensive work-
loads are the best setting to show the effectiveness of
LPAD.

6.2.2 Memory-intensive Workload

We use the small dataset to test the performance under
the memory-intensive workload. When the memory ac-
cess dominates the performance, the placement of ob-
jects in/outside an enclave (or the partitioning) becomes
relevant. In this experiment, we thus evaluate the perfor-
mance of different LPAD-SGX partitioning strategies in
the presence of memory-intensive workloads. This ex-
periment is run in a single thread.

The performance result is presented in Figures 6c
and 6d. With a small record size (116 bytes), partition-
ing strategy O2 has a performance advantage over O0
by up to 33%, while causing 125% slowdown comparing
the ideal performance. With a larger record size (1016
bytes), O2 improves the performance of O0 by up to 20%
and has a slowdown of 40% to the ideal performance.

7 Related Work

This section presents a short version of related work. We
leave the full version in the technical report [15] due to
the space limitation.

Software Systems on SGX: There are general-
purpose system supports in enclave, including
Haven [26], Graphene-SGX [70], SCONE [22],
Panoply [64], which exports a library OS interface

and runs legacy programs in enclaves.The side-
channel vulnerabilities have been discovered on Intel
SGX [72, 30, 41, 27]. There are defense mechanisms
proposed [63, 32, 63]. A series of special-purpose
systems are proposed and built in enclaves, such
as VC3 [60], Opaque [75], oblivious machine-
learning [52], CorrectDB [25], etc; these systems
achieves advanced side-channel security in a way
tailored to specific applications. In particular, Har-
dIDX [39] is a secure storage system with enclave which
seals data using authenticated encryption [43]. LPAD

is a storage system with authenticated membership that
follows the LSM tree design.

LSM Storage Systems: bLSM [61] optimizes the
LSM tree performance by row-based data storage and
fine-grained compaction. Prior work [42] minimizes the
write amplification under the skewed key access pattern.
Pebble [57] reduces the write amplification by organiz-
ing storage layout in skip lists and avoiding data rewrit-
ing in the same level. Distributed compaction manage-
ment is proposed for better performance [18]. Beyond
disk storage, the LSM tree has been applied for main-
memory databases with high compression rate [73], on
non-volatile memory [48], and for spatial databases in
the AsterixDB project [19]. Concurrency of the LSM
tree is studied in cLSM [40] that supports snapshot scan,
conditional update, and concurrent merge operations.

8 Conclusion

This work presents membership-authenticated log-
structured storage on hardware enclaves. The proposed
techniques include the LPAD protocol that achieves
low overhead and proven security, a software system
built based on LPAD that supports various software-
partitioning strategies to optimize between minimal TCB
and lower overhead. With real implementation and ex-
tensive performance studies, we demonstrate the LPAD

system has a small enclave program, achieves low over-
head and provide security in membership authenticity.
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