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ABSTRACT

This work presents ContractChecker, a Blockchain-based secu-
rity protocol for verifying the storage consistency between mu-
tually distrusting cloud provider and clients. Unlike existing ap-
proaches, the ContractChecker uniquely delegates log auditing to
the Blockchain, and has the advantages in reducing client cost
and lowering requirements on client availability, lending itself to
emerging security applications.

New attacks are proposed that exploits the limitation of practi-
cal Blockchain systems including write unavailability, contract race
conditions, and Blockchain forks. ContractChecker leverages pro-
posed countermeasures to close the attack vectors and ensure the
correctness of consistency assertion under attacks.

We build a consistency verification service based on Con-
tractChecker which charges service fee for running a smart contract
on Ethereum. We evaluate the client cost of ContractChecker which
is lower than the prior state-of-the-art by orders of magnitude.
While our techniques improve the cost-effectiveness of Blockchain,
the current system is practical mainly for low-frequency data stor-
age.

1. INTRODUCTION
In today’s cloud storage services (e.g., Dropbox [4] and Ama-

zon S3 [1]), storage consistency is a pressingly important security
property, especially in an age that cloud incidents become the norm.
The consistency of a data-storage service dictates how reads/writes
should be ordered and whether a read should reflect the latest write
(i.e., freshness). This property can be easily exploited by a mali-
cious cloud provider and leads to severe security consequences. For
instance, when the cloud storage hosts a pubic-key directory (as in
certificate-transparency schemes [2]), a malicious cloud violating
storage consistency can return to the user a stale key (i.e., a re-
voked public key), which leads to consequences like impersonation
attacks and unauthorized data access. Assured storage consistency
is fundamental and critical to supporting many security infrastruc-
tures in the cloud (e.g., DNS server, Github/DockerHub, personal
data hosting).

The problem of asserting remote storage consistency entails two
logical steps: W1) establishing a globally consistent view of op-
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eration log across clients (i.e., operation log attestation), and W2)
auditing the log for checking consistency conditions (i.e., log au-
diting). To the best of our knowledge, all existing approaches in-
cluding Caelus [26], CloudProof [34], and Catena [37], rely on the
clients to collectively conduct the log auditing (step W2). More
specifically, they rely on a trusted third-party log attester (step W1),
and sends the attested global log to individual clients, each of which
audits the global log against her local operations. Catena [37], par-
ticularly, leverages the Blockchain as the TTP log attester, and uses
clients as the log auditor. These client-based log auditing schemes
incur requirements on high client availability (i.e., all clients have
to participate in the protocol execution) and high client cost (i.e., a
client needs to store the global operation log of all other clients),
rendering them ill-suited for the target applications with a large
number of ad-hoc clients; see § A.1 for a list of target applications.

We propose ContractChecker, a security protocol for
Blockchain-based consistency verification. Distinct from ex-
isting works, ContractChecker uniquely delegates both log
attestation (W1) and log auditing (W2) to the Blockchain. Con-
cretely, ContractChecker runs a program on the Blockchain (i.e.,
the so-called smart contracts) to collect log attestations from
clients and the server and to audit the log for consistency assertion.
Comparing existing works, our new approach, by delegating
log auditing to Blockchain, has the advantage in lowering client
availability requirement (i.e., only active clients who interacts the
cloud are required to participate in the protocol) and in minimizing
client overhead (i.e., a client only maintains her own operations for
a limited period of time).

Designing the security protocol of ContractChecker against 1)
mutually untrusted clients and server (detailed in § 5.2) and 2) ex-
ploitable Blockchain systems in the real world (detailed in § 5.3)
is non-trivial. First, a ContractChecker party, be it a client or the
server, can be malicious and forge operations in her log attestation
in order to trick ContractChecker to make an incorrect assertion
about the operation consistency. We propose to cross-check the
server attestation and client attestations on Blockchain to both de-
tect and mitigate the attacks from malicious clients and the server,
such that the ContractChecker makes a correct assertion in presence
of the attacks.

Second, real-world Blockchain systems are known to be limited
in terms of E1) write unavailability (i.e., a valid transaction could
be dropped by the Blockchain), E2) exploitable smart-contract race
conditions (i.e., incorrect contract logic can be triggered by run-
ning contract code concurrently), and E3) Blockchain forks (i.e.,
a Blockchain network or data structure can be forked to multi-
ple instances). We propose attacks against the use of Blockchain
in the context of ContractChecker. These new attacks systemati-
cally exploit the Blockchain limitations mentioned above, and they



are: 1) the selective-omission attack exploiting Blockchain write
unavailability (E1), forking attacks exploiting smart-contract race
conditions (E2), and another version of forking attack exploiting
Blockchain forks (E3).

We propose countermeasures to defend the Blockchain-oriented
ContractChecker attacks. To prevent write unavailability (E1), we
propose a client mechanism to retry transaction submission with
increasing transaction fees, such that the transaction submission is
bound to succeed within a certain period of time. To prevent the
race conditions on ContractChecker (E2), we define a small critical
section in the contract to secure the contract execution yet with-
out losing the support of concurrent server and client attestations.
We prevent forking through Blockchain forks (E3) by ensuring all
clients and server be aware of the presence of all Blockchain forks.

We build a prototype materializing the ContractChecker proto-
col with Ethereum [5]. For the on-chain part, we write a Solidity
program that collects the log attestations from clients and server,
crosschecks them and audits the log by checking consistency con-
ditions. During the log auditing, the on-chain contract accesses
the historical operations stored off-chain and data authenticity is
assured by a Merkle tree maintained by the server.

We conduct cost analysis and experimental analysis on our pro-
totype. We evaluate the client cost of the protocol and service under
YCSB workloads [20]. Our results show that on Ethereum, Con-
tractChecker results in significant cost saving on the client side,
with reasonable Gas cost on running smart contract. The off-chain
placement saves up to 80% of the cost comparing an on-chain
placement. ContractChecker can support 613710 operations at the
cost of $100 at a real Ether price.

The contributions of this work are:
1. New use of Blockchain: This work proposes a new use

of Blockchain for cloud-storage verification. Unlike existing re-
search, the work delegates both log attestation and log auditing on
Blockchain which reduces the client cost for consistency verifica-
tion (§ 2.1).

2. Security protocol: New security attacks are identified due to
the new use of Blockchain, and new security protocols that sched-
ule the on-chain events for consistency checking are proposed (§ 4).

3. Prototyping and evaluation: We implement a Con-
tractChecker prototype on Ethereum. Through cost analysis and
YCSB-based experiments, we show the cost-effectiveness of the
ContractChecker protocol (§ 6).

2. PRELIMINARIES

2.1 Secure Consistency Verification Protocols
Verifying the consistency of untrusted storage entails two steps:

log attestation and log auditing. In the step of log attestation, the
untrusted server attests to the global log against a trusted attester
and the clients verify the correctness of log attestation. The purpose
of having the attester is to ensure there is a single view of the global
log and to prevent the server from mounting the forking attack [31].
Once a global log (without fork1) is constructed, the second step
can take place which is to check the consistency conditions over
the established global history.

SUNDR [28] is a secure log attestation scheme without trusted
third party. SUNDR directly sends the server attestation to indi-
vidual clients, which can be seamlessly and elegantly integrated
to the data plane of serving reads/writes. SUNDR achieves the
level of fork consistency that any forking attack will be eventually

1Note that the forking attack differs the Blockchain forks caused
by software updates.

detected. Caelus [26] is a log attestation scheme that rotates (or
time-share) the role of attester among a group of personal devices.
Caelus runs an epoch-based protocol for log attestation. Caelus
audits the log and checks a variety of consistency models, by re-
quiring each client to download the global operation history. Simi-
larly, CloudProof [34] relies on trusted data owners to attest to the
server’s claim of log and to audit the operation history. Catena [37]
is a log-attestation scheme based on Blockchain. Catena prevents
the server forking attack by running an auditing pass on clients. In
Catena, the security of preventing forking attacks is reduced to the
Blockchain’s security in preventing double-spending attacks.

All existing works rely on trusted clients (or data owners) to au-
dit the log and check consistency conditions, as illustrated in Ta-
ble 1. In this respect, ContractChecker is the first scheme that dele-
gates both log attestation and log auditing to the trusted-third party
Blockchain.

Table 1: Distinction of the ContractChecker design: ✗ means the
log operation is not supported by Blockchain, but instead by clients.

Solutions Attestation Auditing
by Blockchain by Blockchain

SUNDR [28], Caelus [26], Cloud-
Proof [34]

✗ ✗

Catena [37] ✓ ✗

ContractChecker ✓ ✓

2.2 Blockchain and Smart Contract
Blockchain is the backend technology in today’s cryptocurren-

cies, such as Bitcoin and Ethereum. This work considers the pub-
lic Blockchain over the Internet, and do not consider permissioned
Blockchains over a private “consortium” of players. Physically,
a public Blockchain runs in a large-scale peer-to-peer network,
where peer nodes, called miners, collectively maintain Blockchain
data structures. The P2P network is open-membership in that any-
one on the Internet can join.

We now present the background of Blockchain system from two
perspectives that are most relevant to our work: Blockchain as a
distributed ledger and Blockchain as a smart-contract execution
platform.

Distributed ledger: Blockchain is a distributed ledger that
stores the history of “transactions” for cryptocurrency payment.
The Blockchain ledger can be viewed as storage that is publicly
readable and is writable by decentralized authorities namely min-
ers. In particular, writing a transaction to Blockchain goes through
the following pipeline: 1) The transaction is broadcast to all min-
ers, pending in their memory pools. 2) Pending transactions are
selected (e.g., by transaction fee) to be validated based on some
prescribed rules (e.g., no double spending transactions). 3) All
Blockchain nodes run a consensus protocol to decide which valid
transactions are to be included next in the Blockchain ledger. Fol-
lowing this pipeline, every “block time” B, the Blockchain is ex-
pected to produce a new block of accepted transactions.

Writing a transaction to a Blockchain is asynchronous in the
sense that it takes a long delay to confirm if the transaction is fi-
nally included in Blockchain. More precisely, only after there are
F blocks produced after the transaction, the transaction is con-
sidered finalized on the Blockchain. That is, it will be hard to
change the transaction state on Blockchain. Writing a transaction
to a Blockchain can fail in the sense that the Blockchain can drop
valid transactions in some circumstances. For example, when the
transaction throughput is larger than Blockchain’s throughput lim-
its2 or transaction fee is too low, Blockchain will drop transactions.

2Public Blockchains are considered as low-throughput systems that



In other words, Blockchain may have low write availability in the
above conditions.

Contract execution: Blockchain is also an execution platform
for smart contact. Smart contract is a program that can be executed
in modern Blockchains, such as Ethereum and that is originally
proposed to support financial applications over Blockchain. To ex-
ecute a smart contract, the contract author writes a program, com-
piles it to bytecode and deploys it to the Blockchain by encoding
the compiled bytecode in a special Blockchain transaction. Once
the contract is deployed on all Blockchain miners, a party off-chain
will be able to trigger the contract execution by sending another
transaction encoding the runtime arguments. Internally, a smart
contract is executed as a replicated state machine on Blockchain
miners. That is, the execution instances are spawn and replicated
across all miner nodes. Running a contract function is a state tran-
sition to the Blockchain where the begin and end contract states are
encoded in two blocks in Blockchain and all miners running the
contract race to include the execution result in the end block.

In public Blockchain, a fundamental security assumption is that
the majority of miners are honest nodes in the sense that they exe-
cute the Blockchain software by honestly following the prescribed
protocol. In the case of 51% attacks where the majority of miners
are malicious, many Blockchain security properties are broken. In
practice, compromising 51% of miners in a large-scale Blockchain
network is extremely hard and we believe this is reasonable to as-
sume an honest majority. There are more sophisticated attacks,
such as selfish mining [23], that require only 33% malicious min-
ers, but they never happen in practice and we do not consider them
in this paper.

Blockchain forks: This work focuses on practical forks in real-
world public Blockchains, and excludes theoretic Blockchain forks
(due to 51% attacks, selfish mining, etc.). There are two types
of Blockchain forks: a transient fork among miners on recently
found blocks, and a permanent fork among different Blockchain
networks. The transient fork (the former) in a public Blockchain
is eventually resolved after the finality delay when all miners reach
consensus on one fork while other forks are orphaned. The per-
manent fork (the latter) is caused by the “hard fork” in Blockchain
software updates (e.g., the case of bitcoin and bitcoin cash), launch-
ing an Alt coin (i.e., by running Blockchain software among a
group of friends), etc. It is found common in practice.

Blockchain cost includes the fee to send a transaction and the
cost of running smart-contracts. The higher a transaction fee is,
the more likely the transaction will be included in the next block.
For the smart-contract, any contract on chain needs to be associated
with a cost budget, called “Gas”, which bounds the execution time
of the contract and is a mechanism for the defense of DoS (denial
of service) attacks.

3. RESEARCH FORMULATION

3.1 Target Applications
The target application scenarios of ContractChecker are char-

acterized by the following properties: S1) The clients are of lim-
ited capability in computing, storage, and availability. This moti-
vates them to outsource data storage to the more powerful cloud.
S2) Violating storage consistency leads to security consequences.
S3) The data load is low (e.g., typically lower than tens of opera-
tions per second). In particular, the low throughput properties of
these typical application scenarios make it amenable for the use of
Blockchain, which is known to have limited throughput in ingest-

accept just tens of transactions per second

ing transactions.
In real world, there are many application scenarios that fit the

above paradigm. As an example, consider DockerHub [3] style
container registry distributes software patches for mobile apps. In
this scenario, the clients are low-power smart phones (S1). Dis-
tributing a stale software image with unfixed security bugs leads to
vulnerability on users’ phone (S2). In terms of workloads, an IBM
report [17] shows that among seven geo-distributed registry deploy-
ments, the busiest one serves only 100 requests per minute for more
than 80% of time(S3). We believe there are many real-world ap-
plications that meet our target scenarios, ranging from Google’s
certificate-transparency logs [2], iCloud style personal-device syn-
chronization [8], Github-hosted secure software development [38,
7], etc.

3.2 System and Security Model
Our system model consists of three parties: a storage server in

the cloud, multiple concurrent clients and the Blockchain. Clients
submit storage operations (i.e., data reads and writes) to the storage
server. The operations are witnessed by the Blockchain via our
ContractChecker protocol.

3.2.1 Clients
Clients are data owners who outsource the data storage to the

cloud. They submit operations to the cloud storage to read or up-
date their data. Different clients’ operations may occur concur-
rently, that is, the cloud service may process multiple operations in
parallel, with their time intervals overlapped. A client can be active
when she has submitted operations recently (we will explain the
definition of active clients later) and inactive when she goes offline
without any operations on the cloud.

Clients in our model are stateless in the sense that a client does
not persist state across active sessions. That is, a client does not
need to remember her past operations when she is engaged with a
cloud. In addition, among clients, there are no direct communica-
tion channels. That is, other than the cloud or Blockchain, clients
do not communicate out-of-band. We believe this model reflects
low-power clients in many real-world situations. For example, in
ContainerRegistry and CT log, clients can be web browsers run-
ning on smart phones. Web clients are stateless and do not directly
communicate among themselves.

We assume each client is identified by her pseudonymous ID, say
her public key. A client knows all other clients’ public keys. We
assume a protected communication channel or a trusted PKI offline
to securely distribute public keys. The client identity management
is described in more details in in Appendix § ??.

We assume clients share synchronized clocks by running NTP
protocols. Synchronized clocks will be useful in our protocol when
clients are required to log operations. The accuracy of NTP pro-
tocols may affect the precision of our consistency verification re-
sults. Existing protocols can achieve highly synchronized clocks
and limit clock skews to the level of milliseconds [21], which we
believe are sufficient in our system.

3.2.2 Cloud storage service
The cloud service hosts a data store shared among multiple

clients. The service accepts clients’ requests and processes them
concurrently. That is, different operations from clients may be pro-
cessed in parallel and in an out-of-order fashion.

Under this execution model, we consider strong consistency or
linearizability [25]. Linearizability considers independent access to
different data records and is sufficiently strong to capture necessary
conditions in many security scenarios [26, 34]. Weaker consistency

, such as smart-phone clients running web browsers.





that is widely adopted in modern cloud services [35] is commonly
less relevant to security-sensitive and critical applications. In this
paper, we do not consider database serializability or isolation under
multiple keys [18].

We assume the cloud service makes a consistency-centric
service-level agreement (SLA) [36] with the clients which states
where the cloud service promises to guarantee strong consistency
(more specifically, linearizability as will be defined next) over the
operations it will serve. An honest server will enforce the promised
consistency conditions during operational hours.

A malicious storage server will violate the consistency condi-
tions (as will be elaborated on), by returning a stale result for a
read. In addition, a malicious server will not follow our Con-
tractChecker protocol and tries to conceal the operation inconsis-
tency from clients. Consistency violation, if left undetected, can
lead to severe security consequences such as impersonation attacks
(recall § A.1).

Moreover, we assume the cloud service is rational. While a ma-
licious cloud server may forge operations to make an inconsistent
operation history look like consistent (i.e., concealing the incon-
sistency), the server will not attempt to make a consistent opera-
tion history look like inconsistent. We believe this assumption re-
flects practical situations with SLA where the cloud server will be
charged in case of verified inconsistency, and thus does not have
the incentive to forge an inconsistent history.

Consistency definition: We consider the storage service exposes
a standard key-value API, where each data record is a key-value
pair and each storage operation accesses the target record by the
data key. A storage operation, be it a read or write, is specified
by two timestamps, which respectively represent 1) the begin time
when the request of the operation is sent by the client, and 2) the
end time when the response of the operation is received by the
client. Formally, given a key-value pair ⟨K,V ⟩, a read operation
is V = r[tb,te](K) and ACK = w[tb,te](K,V ). Here r/w denotes
read or write operation. tb < te and they are the begin and end
timestamps. If two operations are concurrent, their time intervals
[tb, te] may overlap.

An operation history is linearizable if the following two condi-
tions are met: 1) All operations can be mapped to a total-order
sequence that is compatible with the real-time intervals of the op-
erations. 2) There is no stale read on the total-order sequence. That
is, any read operation should return the record that is fresh on the
total-order. This property is also called read freshness.

Any linearizable operation history can be represented by a
totally-ordered operation sequence. We denote an operation se-
quence by operation indices. For instance, in w1w2r3[w2], the
subscription is the operation index in the total-order (described be-
low). Linearizability specifies operations of the same data key; for
simplicity, we omit data key in this notation. The square bracket of
a read indicates the result record. r3[w2] denotes a read operation
ordered as the third operation in the total-order sequence and which
returns the record written by write w2.

Network: In this work, we assume a reliable network among
clients, the server and Blockchain nodes. When one party sends
a message to the network, the network will deliver the message to
the receiver with negligible delay (comparing with the period our
protocol runs). We don’t consider network faults or partition in this
work.

3.2.3 Blockchain
The Blockchain in our protocol is a public, permissionless

Blockchain running over a large P2P network and supporting smart
contract execution. Real-world examples include Ethereum and the

latest version of Bitcoin. In this setting, we assume the honest ma-
jority among Blockchain miners. We believe this is a reasonable
assumption as in practice there are no successful 51% attacks on
Bitcoin or Ethereum.

The Blockchain in our protocol is parameterized by the follow-
ing arguments: block time B, which is the average time to find a
block in a Blockchain; and transaction-validation delay P , which
is the time between a pending transaction enters the memory pool
and when it lefts for transaction validation; and finality delay F ,
which is the number of blocks needed to be appended after a fi-
nalized transaction. That is, a transaction is considered to be final-
ized in Blockchain when there are at least F blocks included in the
Blockchain after the transaction.

The Blockchain supports the execution of smart contracts. The
contract is executed across all Blockchain miners. It guarantees the
execution integrity and non-stoppability. That is, the Blockchain
truthfully executes a smart contract based on the provided argu-
ments, despite of the attacks to subvert the Blockchain (as de-
scribed below). Once the execution of a contract starts, it is hard to
stop the execution or to abort.

Blockchain write availability: The Blockchain may drop trans-
actions based on its current load and transaction fee. A transaction
with a higher fee will have a lower chance of being dropped [37]
and have shorter latency to be included. This assumption will be
tested in our evaluation.

Blockchain attacks: The Blockchain is subject to a series of
threats. In this work, we focus on practical Blockchain threats and
exclude theoretic threats (e.g., 51% attacks, selfish mining, etc.)
and off-chain threats (e.g., stealing wallet coins and secret keys).
1) The Blockchain may be forked permanently due to software up-
date as in the case of Bitcoin cash (Blockchain forks). 2) Smart
contacts may contain security bugs that can be exploited by a vector
of attacks [6], such as reentrancy attacks, buffer overflow attacks,
etc. In practice, the DAO (decentralized autonomous organization)
incidents are caused by this attack vector.

3.3 Goals

3.3.1 Security Goals
In our system, there are two main threats: 1) In the case that

inconsistency occurs, the malicious server wants to hide the incon-
sistency from victim clients. 2) In the case that all operations are
consistent, a malicious client may want to accuse the benign server
of the storage inconsistency that does not occur. We exclude other
cases as they are not rational. For instance, we don’t consider that a
rational server will forge operations such that a consistent operation
history will appear inconsistent. We also don’t consider that a vic-
tim client will want to hide an inconsistent operation history. Due
to this reason, we assume clients and the server will not collude to
either hide inconsistency or accuse of false consistency.

Our security goals are listed below:
Timely detection of inconsistency against malicious server:

A malicious server cannot hide the occurrence of inconsistent op-
erations from victim clients. To be concrete, when inconsistency
occurs, the protocol will assert there are inconsistent operations in
a timely manner, even when a malicious server can forge a seem-
ingly consistent log. In addition to that, the protocol will present
a verifiable proof of the inconsistency, so that it can penalize the
cloud service violating the consistency.

No false accusation of inconsistency against malicious clients:
A malicious client cannot falsely accuse a benign server of incon-
sistency that does not occur. Given a consistent operation history,
the protocol will assert it is consistent, even when there are mali-



cious clients who want to forge inconsistent operations in the log.

3.3.2 Cost Goals
Client cost: Clients in our protocol can remain stateless. That

is, running the ContractChecker protocol, a client does not need to
store her operations indefinitely and can truncate operations after
use (i.e., stateless). In addition, the protocol data stored on a client
is limited to the client’s local operation; a client does not need to
store other clients’ operations (i.e., local operations). These two
requirements make clients lightweight and render the protocol ap-
plicable to scenarios with low-power clients.

3.3.3 Non-goals
Data authenticity: Data authenticity states a malicious cloud

service cannot forge a client’s data without being detected. We
assume an external infrastructure in place that ensures data authen-
ticity, such as MAC or digital signatures. To be more specific, the
client who writes a record signs the record, and the signature can
be verified to guarantee the data authenticity of the record. Here,
clients’ public keys are securely distributed by a PKI or secure com-
munication channel.

Collusion: In ContractChecker, we aim at security guarantees
against a malicious cloud server or malicious clients. However, we
do not consider the case that a server colludes a client, because this
would make it impossible for any third-party to detect the attack.
To be concrete, a colluding client can lie about her log (e.g., omit-
ting an operation), and the server can do the same. With the client
and server both lying about their operations, any third-party can-
not detect the existence of the lie. If an operation can be forged or
omitted in a log, the consistency assertion over the log cannot be
trusted. For instance, omitting w2 in w1w2r3[w1] leads to incor-
rect consistency assertion. Due to this reason, we exclude from our
threat model the collusion among clients and server. In practice,
we believe server-client collusion is a rare situation.

4. THE SECURITY PROTOCOLS

4.1 Design Motivation
The key design in ContractChecker is to use Blockchain to au-

dit the log in a client-server system (recall Table 1). This use of
Blockchain is motivated by our observations below:

1) Low cost on stateless clients: By delegating log audit to
the Blockchain, one can significantly relieve the burden from the
clients. Existing consistency-verification protocols are based on
client-side log auditing [37, 41], which requires a client to persist
not only her own operations but also operations of all other clients,
rendering it impractical for stateless clients. Delegating log audit-
ing to the Blockchain, clients are relieved from storing any state
about operations. Ideally, a client’s job is reduced to receiving log-
audit results from the Blockchain.

2) Security without client availability: To guarantee the proto-
col correctness under attacks, existing client-based schemes (e.g.,
Caelus) assume highly available clients, that is, they have to be on-
line every epoch to participate in the periodic log auditing (see § 5.1
for detailed analysis). Briefly, without highly available clients, it
cannot distinguish the case of an inactive client and the case of an
active client reporting an attack but whose report gets suppressed
by the untrusted server.

Our work is motivated by that Blockchain can be used as a
trusted “communication channel” to report attack detection without
assuming client availability. As we will see (in § 5.1), the proposed
protocol allows an inactive client (who did not submit any operation
in a given epoch) to be offline and not to participate in the protocol

execution. Intuitively, this is realizable because the trusted com-
munication enabled by Blockchain will not omit messages among
clients.

4.2 Protocol Overview
ContractChecker is a protocol that runs among clients, a stor-

age server and the Blockchain. The purpose of the protocol is to
present a trustworthy assertion about the consistency of the oper-
ations among clients and the server. At a high level, the protocol
works by asking clients and the server to attest to their views of op-
erations to the Blockchain where different views are crosschecked
and consistency conditions are verified. An attack from a malicious
server (or client) by forging her view of the log can be detected and
mitigated by the crosscheck on Blockchain.

In our protocol, the interaction between the Blockchain and the
clients/server off chain can be described by the following three
functions. Note that the protocol runs in epochs and here we con-
sider the operations in one epoch.

• S.attestServerLog(OpsS, skS): Server S declares a
total-order over the global history of operations in the cur-
rent epoch (OpsS). She attests to the declared total-order
sequence by signing it with her secret key skS .

• C.attestClientLog(OpsC , skC): An active client C
attests to her local operations in the current epoch (OpsC )
by signing it with her secret key skC . Operations of a single
client can also be concurrent and a client does not need to
declare a total-order over her own operations. If a client is
inactive, meaning she did not submit any operation in the
epoch, she does not need to call this function.

• C.consistencyResult() = {Y,N}: A client C can
check consistency of the current operation history. With
Blockchain, the checking result is only valid when the at-
testations are finalized on the chain. This function is block-
ing until the finality is confirmed. If the attestations are not
finalized, it will retry by calling attestClientLog.

4.3 Design Alternatives
We present alternative protocol designs that we encountered, in

order to examine the design space and to justify our design choices.
No server attestation: In our protocol, both clients and the

server attest to their views of operation histories. An alternative
design is to collect the operation history only from clients. In this
scheme, all clients send their local operations to the Blockchain
without collecting the server log. The union of client logs can re-
construct all operations and their relations in real time (i.e., serial
or concurrent with each other). However, it does not have the total-
order information necessary to determine the operation consistency
(Recall § 3.2.2). Relying on the smart contracts to “solve” the con-
sistency total-order out of concurrent operation history, it would
be an expensive approach. Therefore, we rely on the (untrusted)
server to declare the consistency total-order in her attestation to the
Blockchain. In addition, without server attestation, the protocol
will be vulnerable under malicious clients. Also note that Catena
has studied the design choice without client attestations.

Use Blockchain as data storage: In our protocol, all operations
are uploaded to the Blockchain. An alternative design is to use
the Blockchain as the actual data storage. However, Blockchain
is ill-suited to be data storage serving online operations. First,
Blockchain incurs multiple rounds of confirmations for persisting
data, leading to perceivable write latency. Second, when operations
access large data records (e.g., multimedia data), storing them di-
rectly on Blockchain incurs a high cost. Therefore, in our work,

limiting the system scalability. By delegating log auditing to the Blockchain, a client can be relieved from accessing other clients' operations, and can have a minimal overhead of receiving log-auditing results from the Blockchain.

{\bf Freshness with stateless clients}: Consistency verification needs to access historical operations. With stateless clients who do not communicate, it is impossible to guarantee the freshness of any global state without trusted third party~\cite{XXX}. The presence of Blockchain as a trusted third party is necessary and beneficial in guaranteeing the freshness of serving historical operations in the presence of server rollback attack.�



Intuitively, Blockchain serves as a highly available\footnote{The concrete availability of a Blockchain system is described in XXX.} trusted third party, and it can be used to support clients with low availability. More specifically, in existing client-based auditing schemes, all clients are assumed to be highly available in the sense that they require inactive clients to participant log auditing in every epoch. In a world without a highly available third-party, this requirement is necessary because otherwise it is hard to distinguish an inactive and benign client who does not report, and an active client whose report is suppressed by the untrusted server. With a Blockchain serving as a reliable broadcast channel among clients,\footnote{There are situations that consistency verification protocols require client-client communication, such as disseminating the global list of operations for client-based auditing and reporting attack incidents.} it can afford that an inactive client need not participate in the protocol execution. The reliable Blockchain makes it possible to collect all active clients’ logs in the presence of untrusted server. (See \S~\ref{XXX} for detailed analysis)�



Periodically

The purpose of the crosscheck on Blockchain is to detect and mitigate the attack from a malicious server (or client) who forges her view of the log.

�

Our protocol (as presented above) requires to collect the log from both clients and the server.

Recall the consistency definition in 



we use Blockchain as a log auditor off the critical path. It records
operations at a certain frequency (e.g., every 10 minutes) and only
publishes the record hashes3 to the Blockchain.

Synchronize contract functions: Conceptually, our high-level
goal is to delegate the work of log auditing to the Blockchain. The
work consists of log attestation, log crosscheck and consistency
checking. For correctness, these three steps have to be run serially.
Our original design is to implement the three steps in three “pub-
lic” contract functions which can be called from off-chain. How-
ever, the order in which the functions are called off-chain may differ
from the order in which they get executed on individual miners. For
instance, if a Blockchain client serially calls attestation, crosscheck
and checking, the three functions may be delivered to an individ-
ual miner in a different order, say checking, crosscheck, attestation.
One can rely on clients to synchronize different contract calls, say
by requiring a client only calls crosscheck until it confirms the fi-
nality of the call of log attestation. However, this client-side syn-
chronization is extremely slow and unnecessarily time-consuming.

Therefore, in our work, we implement the step of log attestation
by a public contract function and the other two steps by a private
contract function. A private contract function is called by another
contract function and cannot be called from off-chain clients. By
this means, the serial order is ensured directly by individual miners
without expensive client-side finality confirmation.

4.4 The Protocol: Execution and Construc-
tion

In this section, we present the protocol in the top-down fashion.
We first describe the overall protocol execution flow involving both
on-chain and off-chain parties. We then describe the construction
of the protocol with the details of the various primitives used in the
construction..

4.4.1 Overall Protocol Execution
We present the overall protocol execution. The ContractChecker

protocol runs in epochs. Each epoch is of a pre-defined time in-
terval E. During an epoch, clients send read/write requests to the
storage server in the cloud. For simplicity, we consider a client runs
a single thread.4 The operations are logged on both sides of clients
and the server as in Figure 2). A client logs her own operations
while the server logs the operations submitted by all clients. Given
an operation, a client logs the start time when the request for the
operation is sent and the end time when the response of the opera-
tion is received. We assume the NTP protocol in place enables all
clients to log operation time with low inaccuracy. Both clients and
the server store the logged operations locally.

At the end of the epoch, both clients and the
server attest to their operation log. The server calls
attestServerLog(ops_server,skS) where she de-
clares a total-order sequence over the operations and signs the log
with server key skS before sending it the Blockchain. A client
calls attestClientLog(ops_client, skC) where she
signs the logged operations with secret key skC and sends it to the
Blockchain. The total-order in the server attestation is necessary
for consistency checking (recall the definition in § 3.2.2).

The smart contract running on the Blockchain receives the
calls of attestServerLog(ops_server,skS) from the
server and attestClientLog(ops_client, skC) from
all clients. After that, it runs log verification, log crosschecking

3More precisely, given a key-value record, we can publish to the
Blockchain the key hash and the value hash.
4In practice, the case of a multi-threaded client can be treated as
multiple single-threaded virtual clients.

and log auditing as described previously. The result, namely the
assertion of log consistency, is stored on chain for future inquiry.

Clients can call consistencyResult() to check the con-
sistency result. This function checks two conditions: 1) Whether
all clients’ transactions attestClientLog(ops_client,

skC) are finalized on Blockchain. 2) whether the consistency as-
sertion (i.e., the result of running auditLog()) is finalized on
Blockchain.

The execution schedule of ContractChecker is parameterized by
an epoch duration E. In practice, E is set to be multiply of the
block time on Blockchain, that is, E = n × B. n is determined
based on the client availability and latency requirements in target
scenarios.

Figure 1: Running ContractChecker: An example scenario with
two clients. Client C1 sends a write w1 before a read r3[w1] that
returns the record written by w1. Client C2 sends a write w2 to the
server.

An example is presented in Figure 1 where the ContractChecker
protocol runs one epoch between two clients C1 and C2. An
epoch can be set to multiple of Blockchain’s block time. On
Ethereum, it is multiply of 15 seconds. During the epoch, client
C1 submits two operations to the server, namely w1 and r3[w1].
r3[w1] represents a read operation that returns write w1. Client
C2 submits an operation w2 to the server. All operations are
on the same data key, and they are processed by the server in
the serial order of w1w2r3[w1]. By the end of epoch, it first
runs log attestation: C1 calls attestClientLog(w1, r3) and
C2 calls attestClientLog(w2). The server declares a total-
order w1, w2, r3 by calling attestServerLog(w1, w2, r3).
The smart contract then stores the two client logs and one
server log on the Blockchain. After that, it runs two func-
tions: crosscheckLog({w1, r3}, {w2}, {w1, w2, r3}), and
auditLog({w1, w2, r3[w1]}). As a result, the smart contract as-
serts the log is inconsistent and stores it on chain.

Meanwhile, the clients may call C.consistencyResult().
The function call will block until the transaction of
C.attestClientLog() is finalized on Blockchain. On
Ethereum, it takes 25 epochs to finalize a transaction. After 25
epochs, if the transaction is finalized, the consistency assertion
stored on chain can be treated as an immutable statement and be
further used by applications. In addition, the client can truncate her
local operations in that epoch. If the transaction is not included in
the Blockchain, the client will retry C.attestClientLog().

Our protocol implements log attestation as public contract functions (i.e., \texttt{attestServerLog()}, \texttt{attestClientLog()}) and implements the log crosschecking and auditing as private contract functions. Our initial design is to implement all three tasks in three public contract functions that can be called from offchain clients.

However, a problem arises with the order in which these public functions can be executed. The order in which the calls to public contract functions are issued (issuance order) may be different from the order in which the public contract functions are executed
 on Blockchain miners (execution order). For instance, if a Blockchain client can serially submit functions calls for log attestation, crosscheck and checking, the three functions may be delivered to individual Blockchain miners in a different order, say checking, crosscheck, attestation, which will break the protocol correctness. To fix this, one can rely on clients to synchronize different contract calls, say by requiring a client only calls crosscheck until it confirms the completion (or transaction finality) of the call of log attestation.

our protocol implements the log crosschecking and auditing by private contract functions that can only be called by another contract on chain. 

all active clients

which will be elaborated on in \S~\ref{XXX}.



Now we modify the setting of this example that w1 and w2 are
processed concurrently by the server (i.e., with overlapped time in-
tervals). In this case, a rational server (recall § A.2.1) will search
and attest to the total-order that is consistent, namely w2w1r3[w1].
Note that the other total-order w1w2r3[w1] also matches the real-
time relation, as w1 and w2 are concurrent. But it contains incon-
sistent read r3[w1].

Note that in this example, the ContractChecker clients are state-
less (in that client C1 can discard operations w1r3 and truncate the
log after client attestation) and store only local operations (in that
client C1 does not need to store the operations of client C2). This
saves the client cost, comparing all existing approaches including
Catena and Caelus which require clients to maintain global state
without log truncation.

4.4.2 Construction of On-chain Contracts

1 contract ContractChecker{
2 address payable ownerContract;

3 attestClientLog(Op[] ops_client, signature_client){
4 if(true == verifyClientLog(ops_client,

5 signature_client, pubkey_client)){
6 lock.acquire();//to prevent race conditions
7 if(++attested_clients == N

8 && attested_server = 1){
9 if(!crosscheckLog(ops_clients, ops_server))

10 throw;
11 if(!auditLog(ops_server)) throw;

12 }
13 lock.release();
14 }

15 }
16
17 attestServerLog(Op[] ops_server, signature_server){
18 if(true == verifyServerLog(ops_server,

signature_server, pubkey_server)){

19 lock.acquire();//to prevent race conditions
20 if(attested_clients == N

21 && ++ attested_server = 1){
22 if(!crosscheckLog(ops_clients, ops_server))

23 throw;
24 if(!auditLog(ops_server)) throw;
25 }

26 lock.release();
27 }

28 }
29
30 modifier crosscheckLog(Op[] ops_clients, Op[]

ops_server)) returns (false) {...}
31 modifier auditLog(Op[] ops_server)) returns (false)

{...}
32 mapping ops_server;

33 mapping ops_clients;
34 }

Figure 2: Smart-contract program of ContractChecker

The two attestations described in § 4.2 invoke a smart-contract
on chain. The smart contract taking as input of log attestations from
the server and clients will conduct four operations: verifying client
attestations (verifyClientLog()), verifying the server attes-
tation (verifyServerLog()), crosschecking the logs of clients
and server (crosscheckLog()), and auditing the checked log to
assert consistency (auditLog()).

In verifyClientLog(), the contract would ver-
ify the client attestation using the client’s public key. In
verifyServerLog(), the contract verifies the server attesta-
tion using the server’s public key. It is optional that an individual
operation can be signed by both the client and server. In this
case, both verification functions will verify individual operations
as well using both clients’ and server’s public keys. Once logs

are verified, the client logs are union-ed and are crosschecked
with the server log to find any inequality (crosscheckLog()).
Once the logs are successfully cross-checked, it runs log auditing
(i.e., auditLog()) where strong consistency conditions (e.g.,
operation ordering and read freshness) are checked over the
crosschecked server log.

4.4.3 Storage of Historical Operations
For consistency verification, historical operations need to be per-

sisted. Historical operations are those operations in the previous
epochs. They are needed because an operation in the current epoch
returns the record written by a historical operation.

A baseline is to maintain all historical operations on chain (e.g.,
in a smart-contract container). A slightly better approach is to store
the “latest” snapshot of the records in smart contract. These base-
lines, however, cause high Blockchain cost as they rely on expen-
sive on-chain storage for the actual data storage.

We build a Merkle tree to enable authenticated query process-
ing between the untrusted server and the Blockchain. Briefly,
the dataset that historical operations lead to is stored on the un-
trusted server. The historical dataset is digested by an Merkle
tree. The root hash of the Merkle tree is kept in the smart con-
tract on chain. In an epoch, when auditLog() is called, the
ContractChecker contract will need to query the historical dataset
off-chain (see the example below). When a query of a data key is
sent, an “authentication path” is constructed by the hash of neigh-
bor nodes along the path from the record to the root in the Merkle
tree. This authentication path can be used to prove the member-
ship (or non-membership) of the record in the historical dataset.
When auditLog() is completed successfully, all operations in
the current epoch are reflected to the off-chain Merkle tree and the
on-chain hash root is updated as well.

For instance, consider the operation sequence
w1(K), w2(K

′), r3[w1](K) where w1w2(K
′) occurs in Epoch 1

and r3[w1](K) occur in Epoch 2. For the Blockchain to assert the
consistency of r3[w1], it will need to know as of Epoch 2 whether
the latest write of data key K is w1. The Blockchain will send out
this query to the server and the server who maintains a Merkle tree
of the current state (of latest records of all data keys) returns the
authentication path for w1, so that its freshness can be verified by
the Blockchain.

4.4.4 Finality of Client Attestations
The finality checking is realized by all active clients staying on-

line and confirming the finality of their own attestations. For a
client to check the finality of her attestation, she simply checks
if there are F blocks on the Blockchain that are ordered after the
block where her attestation transaction is stored. Blockchain’s
immutability guarantees the hardness of altering or omitting the
client attestation if its finality is confirmed on the chain. If the
transaction is not finalized, the client is responsible for retrying
attestClientLog() until the finalized transaction inclusion.

A consistency assertion is only valid when all active clients have
confirmed the finality of their log attestations. Had one client’s log
not confirmed on the Blockchain, a malicious server can launch the
selective-omission attack (detailed in § 5.3.1) that leads to an incor-
rect assertion. Clients wait until all clients’ attestations are finalized
on Blockchain (see § 5.3.1 for a heuristic client-synchronization
scheme).

4.4.5 Identity Management
In ContractChecker, both clients and the server are registered in

the sense that their public keys are known by the contract code. The

they directly persist data on Blockchain and Blockchain is known to be expensive for data storage.

\subsubsection{ContractChecker Epoch Configuration}
\label{sec:settinge}

ContractChecker runs in epochs. The duration of an epoch $E$ can be configured in practice to respect various application-level requirements. In general, a large $E$ is preferred when 1) the application can afford longer delay in consistency assertion, 2) the clients tend to be available in a longer time period after their interaction with the cloud server, 3) there are more clients producing more attestations transactions in an epoch.

While the first two requirements are applications specific, we present a model for the third requirement. For simplicity, we consider epoch duration $E$ is set to be multiple of the block time $B$, namely $E=e\times{}B$. 
The value of $e$ must be set be large enough to avoid the attestation transactions saturate the Blockchain. For instance, suppose there are $N=30$ clients and a Block can only store 20 transactions. Setting $e=1$ may saturate the Blockchain limited throughput as every block time, the protocol produces $30+1$ transactions which are above what the Blockchain can ingest (i.e., $20$ transaction per block). In this case, it is advised to configure $e\geq{2}$, such that the $31$ attestation transactions produced in each epoch can be amortized to at least two blocks.





public keys are used to verify the log attestations from clients and
the server. The log verification is necessary to prevent anyone from
injecting arbitrary operations in the log which can easily obstruct
the consistency assertion.

To set up the public keys, we assume a secure key-distribution
channel exists. Clients can dynamically join and register; we as-
sume an external trusted identity provider in place who assists the
user authentication and sends the new public keys to the smart con-
tract.

The clients and server can reuse the public key pair in their
Blockchain wallets for ContractChecker operations. In this work,
we assume the secret keys are securely managed by clients and
server offline. With securely managed keys, a variety of attacks,
e.g., clients and server impersonation, are prevented.

5. PROTOCOL ANALYSIS
In this subsection, we analyze the protocol correctness under

both benign and malicious settings. We start with the correctness
with benign clients and the server. We consider the case of lowly-
available clients. We then focus on the malicious cases, by analyz-
ing protocol security with a malicious server, malicious clients, and
unreliable Blockchain.

5.1 Correctness
In ContractChecker, the protocol correctness states that

if the protocol is truthfully executed by benign clients and
server, a consistent operation history will be asserted as a
consistent history, and an inconsistent operation history will
be asserted as an inconsistent history. Informally, given any
consistent operation history OpsS and any {OpsC} with
∪OpsC = OpsS , it holds that S.attestServerLog(OpsS),
C.attestClientLog(OpsC),
C.consistencyResult() = Y . For
any inconsistency operation history OpsS and
any {OpsC}, S.attestServerLog(OpsS),
C.attestClientLog(OpsC),
C.consistencyResult() = N .

Analyzing the protocol correctness is straightforward. If the
clients and server are benign, the protocol guarantees the authentic
copies of client logs and server log are send to the Blockchain as the
input of crosscheckLog() and auditLog(). The computa-
tion logic guarantees that a server log with consistency total-order
will be asserted as consistency. For an inconsistency log, the server
cannot find a total-order without inconsistency and the case of in-
consistency will be detected by auditLog().

Correctness with low client availability: In ContractChecker,
we consider active clients and inactive clients: Given an epoch, an
active client is one that has submitted at least one operation to the
cloud. Otherwise, it is an inactive client. ContractChecker requires
only active clients in an epoch to be available to participate in the
protocol by the end of the epoch. Be more precise, given an inactive
client, it does not require its availability for protocol participation.

The protocol correctness without the availability of inactive
clients is straightforward. Whether inactive clients send their empty
log to the Blockchain, it does not affect either the union of all client
operations or the log crosscheck (crosscheckLog()). There-
fore, an attack is detected by the server-client log inequality, which
is irrelevant to the inactive clients’ empty logs.

This is in contrast with existing client-based protocols which re-
quire the availability of both active and inactive clients (as ana-
lyzed in Appendix ??). Briefly, the reason that ContractChecker
does not require availability of inactive clients while other proto-
cols do is that it cannot distinguish the benign case of an inactive

client who is legitimately unavailable from the malicious case of an
active client who detects an attack but whose attack report is sup-
pressed by the untrusted server who relays the report among clients.
In ContractChecker, it does not rely on the untrusted server to re-
port the case of an attack, but instead by the trusted Blockchain.

5.2 Security under Server/Client Attacks
In this subsection, we consider the attacks launched by individual

malicious clients or server. As reasoned before, our threat model
excludes the collusion between a client and server. We leave the
Blockchain exploits to the next subsection.

In our threat model, either a client or the server can forge her
attestation to the Blockchain. Specifically, she can forge a non-
existing operation (A1), omit a valid operation (A2), replays a valid
operation multiple times (A3), reorders the serially-executed oper-
ations (A4). Note that we assume a rational server who will not
declare a total-order with inconsistency among concurrent and con-
sistent operations.

A malicious server can exploit the operation forging (A1-A4) to
conceal an inconsistent log and to avoid paying the penalty to vic-
tim clients. For instance, successfully omitting w2 in w1w2r3[w1]
may fool the ContractChecker to falsely assert the operation his-
tory to be consistent. A malicious client may exploit the operation
forging (A1-A4) to forge an inconsistent log and to falsely accuse
a benign cloud. For instance, a client can forge an operation (A1)
w2.5 in a consistent log w1w2r3[w2] to make it look like inconsis-
tent.

ContractChecker can detect any operation forging (A1, A2) by
a mismatch between server attestation and client attestation (in
crosscheckLog()). Without server-client collusion, if one
party, say the server, forge an operation in the server attestation, the
forged/omitted operation will be found in the server/client attesta-
tion, but not in the client/server attestation. The replay attack (A3)
can be detected by multiple identical operations in the server/client
log. Reordered operations (A4) can be detected by the condition
that the operation order does not match the real-time order (i.e., an
operation that occurs later is ordered before an earlier operation).

In addition, ContractChecker can be security-hardened to not
only detect attacks but also mitigate these attacks. Briefly, assum-
ing an online operation is both signed by the server and the client,
the ContractChecker can distinguish different attack vectors (i.e.,
A1, A2, A3 or A4), which enables it to recover the forged attesta-
tion logs and to assert the consistency correctly despite the attack.
The details of the attack mitigation are presented in Appendix A.2.3
and A.2.

5.3 Security under Blockchain Exploits

5.3.1 Exploiting Blockchain Write Unavailability
Recall that the practical Blockchain systems exhibit low write

availability, and may drop valid transactions. Given a faulty
Blockchain like this, a malicious server can selectively omit
operations in her attestation such that dropped transactions of
client attestations correspond to the omitted operations in the
server attestation. By this mean, the server can omit oper-
ations without being detected by ContractChecker, in a way
to conceal inconsistency. For instance, in Figure 1, Client
C2’s call of attestClientLog(w2) can be dropped by the
Blockchain. The malicious server, observing w2 is not in-
cluded in the Blockchain, can selectively omit the operation
in her attestation. This will allow the forged log (with omit-
ted operations) to pass the log crosschecking (more specifically,
crosscheckLog({w1, r3[w1]},{w1, r3[w1]}), which further

Recall that our system model considers a rational server who, given concurrent and consistent operations, will not declare a total-order to make it look like an inconsistent log.



tricks the ContractChecker to assert incorrectly that the opera-
tion history (which is actually w1, w2, r3[w1]) is consistent. Be-
cause in this attack, the server selective the operations to omit
based on dropped transactions in Blockchain, we call this attack
by selective-omission attack.

Security hardening: The selective-omission attack can be pre-
vented if the finality of any client’s log attestation in Blockchain
can be assured of. To prevent the miss of a transaction on
Blockchain, a common paradigm is to resubmit the transactions.
A naive resubmission policy is to resubmit every F block until the
transaction is finalized. With this naive policy, it may lead to an
unwanted situation where the resubmitted transaction keeps being
declined (e.g., due to low transaction fee).

Enforcing a time bound on transaction finality is crucial to the
security of ContractChecker. That is, ContractChecker’s security
relies on whether a transaction (after resubmission) can be guaran-
tee to succeed before a pre-scribed timeout (e.g., 2F blocks). Be-
cause if both clients and Blockchain are allowed to be unavailable
in an arbitrarily long time, it is impossible to distinguish between
the benign case of an inactive client where the client does not send
a transaction and the malicious case of an unavailable Blockchain
under selective-omission attacks.

To break the indistinguishability and to prevent the attack, we
propose a transaction-resubmission policy that provide high confi-
dence of transaction finality within a time bound. In our policy, any
active client will monitor the state of her attestCliengLog()
call. If the finality is not confirmed after F blocks, the client will
increase the chance of inclusion by maximizing the transaction
fee. We determine the maximal transaction fee based on heuris-
tics in practice. High chances are that the second submission with
maximal fee will make the transaction successfully included in the
Blockchain.

With the resubmission policy, it can be expected all clients’
transactions in an epoch are successfully included in the
Blockchain. We require that all clients wait after 2F blocks be-
fore using the log-consistency assertion produced by the Con-
tractChecker program. Through this mechanism, it synchronizes
across all active clients on the finality of their log attestations on
Blockchain.

Analysis of attack prevention: If all active ContractChecker
clients execute the transaction resubmission policy, the selective-
omission attack can be prevented. What follows is the security
analysis: Assume the resubmission policy can guarantee the high
chance (as will be evaluated in § ??) that all clients’ transactions
(for attestClientLog()) are included in the Blockchain be-
fore the timeout of 2F blocks. The selective-omission attack can-
not succeed because any valid operation can be found in the client
log attestations and the omission of the operation in the attack can
be detected by the mismatch in log crosschecking. In the previ-
ous example, by the time w2 is included in the Blockchain (before
2F blocks), the ContractChecker can detect the w2 is absent in the
server log as it appears in Client c2’s log. The ContractChecker
can identify the attack, recover the server log for making a correct
assertion about the operation inconsistency.

5.3.2 Forking Attacks exploiting Contract Races
Forking attacks: Consider multiple clients share a state hosted

on a server. In this setup, a forking attacker is a malicious server
who forks the shared state and serves different clients with different
(forked) states. In client-based consistency protocols (e.g., Catena
and Caelus), the malicious server may fork her log attestations for
different auditing clients, such that the forked global logs appear to
be consistent from different clients’ local views.

In ContractChecker, the malicious server can mount a fork-
ing attack by equivocating with two conflicting attestations to the
Blockchain. The hope is to make it crosscheck different clients’
attestations with different (forked) server attestations. However, it
is more challenging to make a successful forking attack in Con-
tractChecker than client-based auditing protocols. Because the log
auditing (for consistency checking) in ContractChecker does not
occur on individual clients, but instead in Blockchain nodes where
all clients’ logs are fused. In this new setting, the success of a fork-
ing attack depends on whether one can separate different client logs
and make them compared with the forked server logs.

Exploiting contract races: To launch a forking at-
tack in ContractChecker, the malicious server may run
contract functions concurrently to trigger race conditions
for exploit. To be more concrete, consider the function-
call sequence S.serverAttestLog(w1, w2, r3[w1]),
C1.clientAttestLog(w2),
C2.clientAttestLog(w1, r3[w1]),
S.serverAttestLog(w2, w1, r3[w1]). Sup-
pose before S.serverAttestLog(w2, w1, r3[w1])
runs, the contract already enters crosscheckLog()

where the server log w1, w2, r3[w1] is being cross-
checked with client logs w2 and w1, r3[w1]. When
S.serverAttestLog(w2, w1, r3[w1]) runs, it might happen
that the call of S.serverAttestLog(w2, w1, r3[w1])
replaces the variable of ops_server during
crosscheckLog(). This may lead to the unwanted situa-
tion that client log w2 is crosschecked with one version of server
log w1, w2, r3[w1], and client log w1, r3[w1] is crosschecked with
another version of server log w2, w1, r3[w1]. In this situation,
server log w2, w1, r3[w1] will survive as the successfully cross-
checked version, which will lead to an incorrect consistency. We
call this attack by forking-by-races attack.

The ContractChecker prevents the forking-by-races attack by
synchronizing the critical functions and avoiding concurrency.
Concretely, in ContractChecker, we define a critical section
around the functions crosscheckLog() and auditLog(),
such that the execution of these two victim functions needs to
be serialized with other functions. To be more specific, in
the forking-by-races attack, the attacker (i.e., calling function
S.serverAttestLog(w2, w1, r3[w1])) and the victim (i.e.,
running function crosscheckLog()) are forced to execute in a
serial order. Without concurrent execution of attacking and victim
functions, the attack cannot succeed.

5.3.3 Forking Attacks exploiting Blockchain Forks
In this version of forking attack, the malicious server can exploit

the Blockchain forks. The server sends forked attestations to dif-
ferent Blockchain forks. In the case of transient forks, the server
may be able to encode attestation forks in double-spending trans-
actions as is done in Catena [37]. In the case of permanent forks,
the server can simply encode attestation forks in two transactions
and submit them separately to the two Blockchain forks. The hope
is that if there is some client attestation which is omitted in one
of the Blockchain forks, chances are the attack can succeed. For
instance, to Blockchain fork 1, the server can send the attestation
w2, w1, r3[w1], client C1 sends her attestation w1, r3, and client
C2 has her attestation be omitted.

The forking attack by exploiting Blockchain forks cannot suc-
ceed in ContractChecker, if it guarantees any client will retry her
attestation to all Blockchain forks. In the previous example, client
C2’s attestation cannot be omitted if she retries the attestation to
Blockchain fork 1.



6. EVALUATION OF CLIENT COST
In this section, we evaluate the client cost in ContractChecker.

We first present an analysis of client cost and then present our ex-
perimental results.

6.1 Cost Analysis
Cost model: For a consistency verification protocol, either

client-based schemes or ContractChecker, its execution can be
modeled by the following: Clients periodically send their log attes-
tations and check the consistency results. In this process, a client’s
cost is characterized by 1) how many operations the client needs to
store, and 2) how long the client needs to maintain an operation. In
our cost model, we accredit to one cost unit storing one operation
by a client in one epoch. Given a process of T epochs, a client’s to-
tal cost is the sum of cost units of all operations stored in the client
in all epochs. If an operation is stored continuously in a client for
T epochs, it is counted as T units.

Based on the above model, we present a cost analysis of client-
based auditing schemes and ContractChecker.

Client cost in client-based auditing: In client-based audit-
ing schemes, a client needs to access operations submitted by all
(active) clients in the current epoch, including herself and other
clients; these operations may only need to be stored by the clients
in one epoch, assuming a trusted third-party attester. For simplic-
ity, we omit the cost of accessing historical operations. Instead,
we focus on a low-bound estimate of the client cost in client-based
auditing schemes:

CCostClientAudit ≥ T ·N ·M (1)

The above equation considers a client’s cost in a process of run-
ning client-based auditing scheme in T epochs, with totally N
clients where on average each client in one epoch submit M op-
erations.

Client cost in ContractChecker: In the above setting, a Con-
tractChecker client only needs to store her own operations, that is,
M operation per epoch. But the ContractChecker client needs to
keep an operation for, instead of the current epoch, but an extended
period of time denoted by Ft/E epochs. Ft is the total delay
for successfully submitting a client attestation to the Blockchain
in ContractChecker. Briefly, Ft = r · (B · F + P ), where r is
the average times to resubmit a client attestation, and F /B/P is the
finality delay/block time/average wait time for transaction valida-
tion. Thus, ContractChecker’s client cost is as follows. Note that
in ContractChecker, log auditing is fully delegated and clients are
relieved from accessing historical operations.

CCostContractChecker = T ·M · Ft/E (2)

Therefore, the cost saving of ContractChecker comparing exist-
ing client-based auditing schemes is:

f =
CCostClientAudit

CCostContractChecker
≥

E ·N
Ft

(3)

This formula shows that the cost saving of ContractChecker
comparing existing work depends on three factors: the total attes-
tation delay Ft, the maximal number of clients N , and epoch time
E.

6.2 Experiments
Based on the cost model above, we design experiments for

client cost measurement. Our experiments focus on transaction-

validation delay (P ) and maximal number of operations (N · M ),
w.r.t. the budgeted amount of Ethers. Based on the results, we com-
pare ContractChecker’s client cost with that of client-based audit-
ing schemes.

6.2.1 Experiment Setup
We set up a private Ethereum network in a LAN environment.

The Ethereum runs on machines of the following specs: Intel 8-
core i7-6820HK CPU of 2.70GHz, 32KB L1 and 8MB LL cache,
32 GB RAM and 1 TB Disk. When setting up the network, we use
the default configuration (e.g., difficulty levels) for Ethereum. Note
that we only measure the cost (e.g., transaction fee and Gas), which
is independent of network scale. We deploy our smart-contract pro-
gram written in Solidity to the Blockchain, by leveraging an online
python tool5.

6.2.2 Transaction Finality Time
In the experiment, we measure the relationship between transac-

tion fee and the time to finalize a storage operation on Blockchain.
We use the Geth client that interacts the Ropsten testnet of
Ethereum [14] using asynchronous RPC interface, promise [9]. In
the implementation, we bound the maximum depth of the asyn-
chronous operation chain in promise to avoid errors.

We measure the finality delay by recording the timing difference
between sending a transaction and finalizing the transaction. In
experiments, we generate transactions of the same fee 18 times and
report the average and standard deviation of the measured delay.
Transactions of different fee are dispatched at a different time and
end up at different blocks.

The results are presented in Figure 3c show how finality delay
grows along with the transaction fee. As the transaction fee grows,
the transaction finality delay (including the validation delay) is de-
creased from 35 blocks to about 15 blocks.

6.2.3 Clients Cost Comparison
We plot the client costs based on the equations 1 and 2, and the

transaction finality time as measured before. The results are plotted
in Figure 3d. When the number of clients is small, ContractChecker
incurs higher costs due to its need of storing operations across mul-
tiple epochs. When the number of clients grows, ContractChecker
scales much better than client-based auditing schemes. Because a
ContractChecker client only needs to store its own operations. With
increasing amount of fees, ContractChecker client cost decreases
thanks to the decreased transaction delay.

6.2.4 Storage Capacity
This experiment measures the storage capacity with transactions

fee. Given a budget of Ether, ContractChecker’s storage capacity
is bounded which affects the number of operations the Blockchain
can consume and the maximal number of clients it can support.

In this experiment, we use the YCSB benchmark suit. To adapt
YCSB to ContractChecker, we first play and record the YCSB
workload trace. We then replay the trace during the experiments.
In our experiments, we set an epoch to be one block time (B) and
limit 140 operations per epoch (so that Blockchain is not saturated).
We set finality delay to be F ·B = 6B. We drive YCSB workload
D (of 95% reads) into ContractChecker. The workload consists
of 11340 operations in total which are evenly distributed among
81 epochs (with each containing 140 operations). We measure the
Gas cost (from the transaction receipt) with the varying number of
operations. The result is in Figure 3. The Gas cost grows linearly

5https://github.com/ConsenSys/ethjsonrpc





The larger $E$ is, the more costs the ContractChecker saves. Because with a larger $E$, the client-based schemes have to store an operation for longer time. The larger $F_t$ is, the fewer costs the ContractChecker saves. Because with a larger $F_t$, an operation needs to be stored on a CotnractChecker client for longer time. The more clients there are (a larger $N$), the most costs the ContractChecker saves. Because with a larger $N$, the more operations a client needs to store (in client-based auditing schemes).
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with operation count. For the off-chain placement of historical op-
erations (of both server and client logs), the total Gas is about 4.5
Ether for 11340 operations.

The off-chain placement of historical operations saves 80% of
the cost comparing the on-chain placement. This result shows that
transaction fee is cheaper than on-chain storage in Ethereum and
the off-chain placement that trades the latter for the former is cost
effective.

We also convert the Ether to US dollar and show the dollar cost
with ContractChecker storage capacity. Because the price of Ether
in US dollar changes over time, we present the ContractChecker
storage capacity allowed by 100 dollars at a different time. The
result is illustrated in Figure 3b. It shows that with 100 dollars, the
maximal capability it can buy occurs on Oct. 2015 when the Ether
is cheapest. However, as the cryptocurrency price continuously
drops in 2018, the ContractChecker will be more cost-effective in
US dollar.

6.3 Related Work
Blockchain applications: Blockchain has been applied in both

financial and non-financial applications. In the application sce-
narios, Blockchain and its security properties are repurposed to
address application-specific security needs. CSC [19] runs crim-
inal smart contract on Blockchain for facilitating commissioned
crimes. Paralysis [39] supports practical wallet management un-
der key loss/compromise by using Blockchain as trusted clock to
detect client unavailability. Blockstack [16] runs trusted directory
on Blockchain by treating it as immutable data storage. IKP [30]
proposes an incentive scheme based on Blockchain to address the
certificate mis-issuance problems. Blockchain is also used as the
source of randomness [33], non-equivocation log as in Catena [37],
etc. in many novel applications.

Blockchain throughput improvement: There are known per-
formance problems in Blockchain notably the limited through-
put. There are protocol-analysis works on Blockchain that try to
understand the throughput limitation (e.g., by block sizing [22]).
Lightning network [10, 32] is an off-chain scheme that batches
multiple micro-payment transactions to reduce the load on chain.
Lightweight mining protocols are proposed including proof-of-
stake [13, 12], proof-of-elapsed-time [11, 40], etc. Ekiden [19]
combines Blockchain with trusted hardware to form a virtual high-
throughput Blockchain system. Blockchain sharding [27, 29] par-
titions the state of transaction graph among multiple miners, in a
way to improve its scalability.

7. CONCLUSION
This work presents ContractChecker, a lightweight consistency

verification protocol based on public Blockchain. It presents a new
approach by auditing the storage log on the Blockchain, and has
advantages in saving the clients’ cost and lower availability re-

quriements. ContractChecker is implemented in a middleware sys-
tem federating cloud services, clients and the Blockchain.
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APPENDIX



A. APPENDICES: SUPPLEMENTARY DE-
TAILS

A.1 Motivating Applications
While ContractChecker can definitely benefit small-scale cloud-

hosted applications such as smart homes [24], we argue that Con-
tractChecker can be utilized in a long spectrum of application sce-
narios, ranging from low-throughput small organizations [24], to
enterprise-scale cloud object stores [17]. In the following we list
two representative examples of real-world use cases.

DockerHub style container-distribution infrastructures (here-
after called ContainerRegistry): The “ContainerRegistry” dis-
tributes the latest software from developers to users in the form of
Docker container images. The ContainerRegistry is usually hosted
in third-party public cloud, such as in hub.docker.com, which is in-
dependent of both developers and users. The storage consistency
implies security as returning a stale image (violating the strong con-
sistency) from the hub means the users may run buggy programs,
vulnerable to the latest attacks. The ContainerRegistry is usually
accessed infrequently. For instance, workload analysis on IBM
Docker Registry reports that, among seven geo-distributed registry
deployments, the busiest one serves only 100 requests per minute
for more than 80% of time [17]6.

Certificate-transparency(CT) log: The CT log stores the certifi-
cates about key-identity bindings, and is made public to invite pub-
lic scrutiny for timely detection of certificate mis-issuance. Vio-
lating storage consistency in CT log leads to the security breaches
such as concealing of mis-issued certificate or use of revoked keys.
The load of writes in a CT log (regenerating/revoking a public key)
is usually low and the read load is not high on a small number of
domains (websites).

Additional relevant scenarios such as device synchronization
through cloud and Github-hosted software development are found
in Appendix § ??. These application scenarios feature the follow-
ing properties that motivate the use of Blockchain: S1) The clients
are of limited capability in computing, storage, and availability.
Thus they outsource data storage to a third-party cloud. In both
scenarios above, the client can be a mobile phone (e.g., hosting a
web browser against a CT log or installing security patches against
a ContainerRegistry). S2) On the cloud-hosted data storage, violat-
ing storage consistency leads to a security consequence to the ap-
plication. Intuitively, using a Blockchain as a “trusted” third-party
witness can harden the application security. S3) The storage-access
load in our application scenarios is typically lower than tens of op-
erations per second. In particular, the low throughput properties of
these typical application scenarios make it amenable for the use of
Blockchain, which is known to have limited throughput in ingest-
ing transactions.

A.2 Security under Client/Server Attacks

A.2.1 Security against the Malicious Server

In ContractChecker, the server’s job is to declare a total-order
over concurrent operations and to attest to it. A benign server is
allowed to find a total-order without inconsistent operations to the
degree that she does not forge operations.

Before describing the server threats, we stress that our server,
be it benign or malicious, is rational. Given a consistent operation
history, a rational server does not falsely attest to a total order with
inconsistency, as it does not have the incentive (recall § ??). For

6The workloads exhibit diurnal patterns and the peak throughput is
remarkably low as well.

instance, consider an operation history w1|w2r3[w1] where w1 and
w2 occur concurrently. A rational server will find the total-order for
consistency (i.e., w2w1r3[w1]) and attest to it. The rational server
is not incentivized to attest to the total-order with inconsistent op-
erations (i.e., w1w2r3[w1]). Note that both total-orders match the
real-time relation in the concurrent operation history.

Server threats: The goal of a malicious (and rational) server is
this: Given an inconsistent operation history, a malicious server
aims at concealing the inconsistency by forging operations and
declaring a false total order over it. In order to conceal inconsis-
tency, the malicious server can launch a variety of threats: A mali-
cious server forges a non-existing operation (AS1), omits the valid
operation (AS2), replays a valid operation multiple times (AS3),
reorders the serially-executed operations (AS4).

Attack detection: ContractChecker can detect the server attacks
by the difference between the client logs and server log. Concretely,
the server forging an operation (AS1) can be detected by an oper-
ation in the server log that cannot be found in any client log. The
server omitting an operation (AS2) can be detected by an operation
in a client log that cannot be found in the server log. The replay
attack (AS3) can be detected by identical operations in the server
log. Reordered operations (AS4) can be detected by the condition
that the operation order does not match real-time (i.e., an operation
that occurs later is ordered before an earlier operation).

A.2.2 Security against Malicious Clients

Client threats: A malicious client is incentivized to falsely ac-
cuse a benign server of inconsistent operations that the server did
not process. Towards this goal, a malicious client can mount the
following attacks to forge her log attestation. Specifically, she
omits her local operation (AC1), forges an operation the server did
not process (AC2), replays a valid operation multiple times (AC3),
reorder the serially-executed operations (AC4). For instance, given
a consistent history, the client can forge a write operation w2 be-
tween w1 and r3[w1] to make r3 look like a stale read. She can
omit w1 to make r3[w1] look like an invalid read. She can reorder
her local operations from w2w1r3[w1] to w1w2r3[w1], such that
r3[w1] is falsely inconsistent.

Attack detection: The attacks by forging a client log can be de-
tected by the difference between the client logs and server log. Due
to no server-client collusion, we assume that the server attests to a
truthful log of operations. Thus, any operation forged by the client
will result in a mismatch to the server log (which can be similarly
analyzed as malicious server attacks).

A.2.3 Security Hardening for Attack Mitigation

In the ContractChecker, attacks from a malicious server or
clients are detected by the mismatch between the server attesta-
tion and client attestations (in crosscheckLog()). In the case
of attacks, the ContractChecker does not only detect them but also
mitigate them in the sense of making a trustworthy assertion about
the log consistency in the presence of attacks. We describe how
attacks are detected and mitigated.

In order to distinguish attacks from clients and the server, we
augment the basic protocol (in § 4.4) by requiring both client and
server signatures on both server attestation and client attestation.
More concretely, every online operation (i.e., read/write) is aug-
mented with a server signature and a client signature. This can be
naturally integrated to the regular request/response workflow with-
out adding extra communication round. When a client submits a
request, she embeds in the request her signature of the requested
operation, such that the server receives a client-signed operation.
When the server processes the operation, she produces a server sig-
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nature over the operation response, such that the client receives a
server-signed operation response. When the client starts to do attes-
tation, she will sign her local log of server-signed operations with
the client signature. When the server starts to do attestation, she
will declare the total order based on the client-signed operations.
When the Blockchain receives a client attestation, it will validate
the input by verifying both the client signatures and server signa-
tures attached to the attestation. So is the case of validating a server
attestation. We call this extension by double-signed attestation.

Distinguishing causes of attacks: With the double-signed attesta-
tion, the ContractChecker can distinguish different attacks (in our
threat model). When the server attestation contains an operation
whose client signature cannot be verified, this is attributed to a
server attack forging a non-existing operation (AS1). If the client
signature can be verified but the operation cannot be found in a
client attestation, this is attributed to a client attack who omits her
local operation (AC1). When the client attestation contains an oper-
ation whose server signature cannot be verified, it is attributed to a

client attack forging an operation the server did not process (AC2).
If the server signature can be verified but the operation cannot be
found in the server attestation, it is attributed to a server attack omit-
ting the operation (AS2). The replay attack (AC3 and AS3) where
a client (or server) may duplicate a signed operation multiple times
can be detected by finding duplicated operations on the server (or
client) attestation. Normally, each operation is uniquely identified
by a client-generated nonce (using an external source of trusted
randomness). In addition, a malicious server (or client) may want
to reorder the serially-executed operations in a dfferent order (AC4
and AS4). This attack can be detected by the mismatch between
the timestamps in the operations and the total in the attestation.

Note that we assume a rational server who will find a consistent
total-order, if it exists, from the operation history and attests to it.
An irrational server who does not find such a total order for consis-
tent operation history may falsely report a case of inconsistency in
ContractChecker.

Repair server attestation: In different attack scenarios, the Con-
tractChecker can repair the server attestation to recover the truthful
log and to further assert the log consistency. In AS1 (the server
forging attack), the ContractChecker removes the forged operation
from the server attestation. In AS2 (the server omission attack), the
ContractChecker copy the omitted operation from the client attes-
tation to the server attestation. In AC1 and AC2 (the client attacks
by operation omission and forging), no action is needed to recover
the server attestation. In replay attacks (AC3 and AS3), if it finds
replayed operations on the server attestation, the ContractChecker
removes the duplicated copy from the server attestation. After the
repair, the ContractChecker can move forward and conduct con-
sistency checking over the repaired server attestation. In reorder
attacks (AC4 and AS4), the serial operations are reordered back to
match the execution order in their timestamps.

The overall workflow of our ContractChecker for attack detec-
tion and mitigation is illustrated in Figure 4.
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