
Scalable Bias-Resistant Distributed Randomness
Ewa Syta∗, Philipp Jovanovic†, Eleftherios Kokoris Kogias†, Nicolas Gailly†,

Linus Gasser†, Ismail Khoffi†, Michael J. Fischer‡, Bryan Ford†

∗Trinity College, Hartford, USA
†École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

‡Yale University, New Haven, USA

Abstract—Bias-resistant public randomness is a critical compo-
nent required in many (distributed) protocols. Generating public
randomness is hard, however, because active adversaries behave
dishonestly in order to bias public random choices toward their
advantage. Existing solutions do not scale to hundreds or thou-
sands of participants, as is needed in many decentralized systems.
In response, we propose two large-scale, distributed protocols,
RandHound and RandHerd, which provide publicly-verifiable,
unpredictable, and unbiasable randomness against Byzantine ad-
versaries. RandHound relies on an untrusted client to divide a set
of randomness servers into groups for scalability, and it depends
on the pigeonhole principle to ensure output integrity, even for
non-random, adversarial group choices. RandHerd implements
an efficient, decentralized randomness beacon. RandHerd is
structurally similar to a BFT protocol, but uses RandHound in
a one-time setup to arrange participants into verifiably unbiased
random secret-sharing groups, which are then repeatedly used to
produce random output at predefined intervals. Our prototype
demonstrates that RandHound and RandHerd achieve good
performance across hundreds of participants while retaining a
low failure-probability, by properly selecting protocol parameters
such as a group size and secret-sharing threshold. For example,
when sharding 512 nodes into groups of 32, our experiments
show that RandHound can produce fresh random output after
240 seconds, whereas RandHerd, after a setup phase of 260
seconds, is able to generate fresh random output in intervals
of approximately 6 seconds. For this configuration, our analysis
indicates that both protocols operate at a failure probability of
at most 0.08% against a Byzantine adversary.

I. INTRODUCTION

A reliable source of randomness, that provides a high-
entropy output, is a critical component in many protocols [10],
[19]. The reliability of the source, however, is often not the
only criterion that matters. In many high-stakes protocols, the
unbiasability and public-verifiability of the randomness gen-
eration process are as important as ensuring that the produced
randomness is good in terms of the entropy it provides.

More concretely, Tor hidden services [21] depend on the
generation of a fresh random value each day for protection
against popularity estimations and DoS attacks [28]. Anytrust-
based systems, such as Herbivore [27], Dissent [51], and
Vuvuzela [50], as well as sharded blockchains [20], use bias-
resistant public randomness for scalability by sharding par-
ticipants into smaller groups. TorPath [26] critically depends
on public randomness for setting up consensus groups. Public
randomness can be used to transparently select parameters for
cryptographic protocols or standards, such as in the generation
of elliptic curves [2], [33], where adversaries should not be
able to stir the process to select curves with weak security

parameters [6]. Other use-cases for public randomness include
voting systems [1] for sampling ballots for manual recounts,
lotteries for choosing winning numbers, and Byzantine agree-
ment algorithms [39], [14] for achieving scalability.

The process of generating public randomness is nontrivial
though, because obtaining access to sources of good random-
ness (even only in terms of entropy) is difficult for regular
users. One approach to public randomness is randomness
beacons which were introduced by Rabin [42] in the context
of contract signing, where a trusted third party regularly emits
randomly chosen integers to the public. The NIST beacon [38]
provides hardware-generated random output from quantum-
mechanical effects, but assumes everyone trusts their central-
ized beacon—a problematic assumption, especially after the
Dual EC DRBG debacle [46], [8].

In this work, we are concerned with the important comple-
mentary challenge of producing good sources of randomness
in terms of trust. Having an approach to public randomness
without a trusted party is very attractive, especially in a
collaborative setting, where a significant number of users
wishes to participate. This raises many interesting questions
on making use of randomness beacons in a distributed setting,
such as how to choose a subset of beacons or how to combine
random outputs of the chosen subset in an unbiasable way in
the presence of an active adversary. Proposals discussing ap-
proaches without trusted parties [41] make use of Bitcoin [12],
[4], slow cryptographic hash functions [33], lotteries [2], or
financial data [18] as sources for public randomness.

Our goal is to provide bias-resistant public randomness in
the familiar (t, n)-threshold security model already widely-
used both in threshold cryptography [40] and Byzantine con-
sensus protocols [14]. Generating public randomness is hard,
however, as active adversaries can behave dishonestly in order
to bias public random choices toward their advantage, e.g.,
by manipulating their own explicit inputs or by selectively in-
jecting failures. Although addressing those issues is relatively
straightforward for small values of n ≈ 10 [14], [31], we
address scalability challenges of using large values of n ≈ 100
for enhanced security in real-world scenarios. For example,
this is relevant for public cryptocurrencies [37], [32] which
tend to have hundreds to thousands of distinct miners or for
countries with thousands of national banks that might want to
form a national permissioned blockchain with secure random
sharding.

This paper’s contributions are mainly pragmatic rather
than theoretical, and are built upon existing cryptographic
primitives to produce distributed randomness protocols that
are efficient and scalable in practice. We introduce two
scalable public-randomness generation protocols, RandHound
and RandHerd, which provide unbiasability, unpredictability,
availability, and third-party verifiability of random output.

RandHound is a client-server randomness scavenging pro-
tocol that enables a client to gather randomness from a poten-
tially large set of servers. In every run, the client first splits
the servers into balanced subgroups to achieve scalability, and
each group uses publicly verifiable secret sharing (PVSS) [44]
to produce secret inputs, such that an honest threshold of
participants can later recover them and form a third-party-
verifiable proof of their validity. To account for potential server
failures, the client subsequently selects only a subset of secret
inputs from each group, relying on the pidgeonhole principle
to ensure the integrity of RandHound’s final output. The client
then commits to his choice by requesting from all servers a
CoSi signature [49] to ensure protection against equivocation
attacks. After the servers release the selected secrets, the
client combines and publishes them as RandHound’s collective
random output along with a third-party verifiable transcript
of the protocol run that documents all relevant choices made
within the protocol.

RandHerd is a scalable randomness cothority (collective
authority) that uses RandHound and CoSi in a one-time setup
to split a set of servers securely and verifiably into uniformly
random groups, and to generate and certify an aggregate public
key which is used to produce and verify the random output of
RandHerd. In the operational mode, to enable the generation of
collective randomness at frequent intervals using input from all
groups, RandHerd uses CoSi in conjunction with a threshold
variant of CoSi (TSS-CoSi) that we propose and outline in
this work as well. Each collective random output produced
by RandHerd is also a collective Schnorr signature [48], [49],
that can be validated efficiently against the previously created
aggregate group key.

Experiments with our prototype implementations show that
among a collective of 512 globally-distributed servers divided
into groups of 32, RandHerd can produce a new 32-byte
collective random output every 6 seconds, after a one-time
setup process using RandHound taking approximately 260
seconds. The randomness verification overhead of RandHerd
is far below one second. In the same configuration setup,
when we independently use RandHound to produce a 32-byte
random output, it takes approximately 240 seconds to produce
randomness and approximately 76 seconds to verify it using
the produced 4MBytes transcript. Our extensive analysis on
failure probabilities also suggests that a Byzantine adversary
can threaten availability, in either case, with a probability of
at most 0.08%.

The remainder of the paper is organized as follows. In Sec-
tion II we explore background and motivation for public
randomness generation. In Sections III and IV we discuss the
design and security properties of RandHound and RandHerd,

respectively. In Section V we describe evaluation of the proto-
type implementations of both protocols. Finally, in Section VI
we summarize related work and in Section VII we conclude
the paper.

II. BACKGROUND AND MOTIVATION

We first introduce notation and then recall different tech-
niques for secret sharing and Schnorr signing, which we use
as building blocks for RandHound and RandHerd. Then, we
consider a series of strawman protocols illustrating the key
challenges in distributed randomness generation of commit-
ment, selective aborts, and malicious secret shares. We end
with RandShare, a protocol that offers the desired properties,
but unlike RandHound and RandHerd is not third-party veri-
fiable and does not scale well.

For the rest of the work, we denote by G a multiplicatively
written cyclic group of order q with generator G, where the
set of non-identity elements in G is written as G∗. We denote
by (xi)i∈I a vector of length |I| with elements xi, for i ∈ I .
Unless stated otherwise, we denote the private key of a node
i by xi and the corresponding public key by Xi = Gxi .

A. Publicly Verifiable Secret-Sharing

A (t, n)-secret sharing scheme [9], [45] enables an honest
dealer to share a secret s among n trustees such that any subset
of t honest trustees can reconstruct s, whereas any subset
smaller than t does not learn anything about s. Verifiable
secret-sharing (VSS) [17], [22] extends secret sharing to
account for a dishonest dealer who might intentionally send
out bad shares and prevent honest trustees from recovering the
same, correct secret.

A publicly verifiable secret sharing (PVSS) [44] scheme
makes it possible for any party to verify secret-shares without
revealing any information about the shares or the secret.
During the share distribution phase, for each trustee i, the
dealer produces an encrypted share Ei(si) along with a non-
interactive zero-knowledge proof (NIZK) [16], [23], [24] that
Ei(si) correctly encrypts a valid share si of s. During the
reconstruction phase, trustees recover s by pooling t properly-
decrypted shares and publish s along with all shares and NIZK
proofs that show that the shares were properly decrypted.
PVSS runs in three steps:

1) The dealer chooses a degree t − 1 secret sharing poly-
nomial s(x) =

∑t−1
j=0 ajx

j and creates, for each trustee
i ∈ {1, . . . , n}, an encrypted share Ŝi = X

s(i)
i of the

shared secret S0 = Gs(0). He also creates commitments
Aj = Haj , where H 6= G is a generator of G, and
for each share a NIZK encryption consistency proof π̂i.
Afterwards, he publishes Ŝi, π̂i, and Aj .

2) Each trustee i verifies his share Ŝi using π̂i and Aj ,
and, if valid, publishes the decrypted share Si = (Ŝi)

x−1
i

together with a NIZK decryption consistency proof πi.
3) The dealer checks the validity of Si against πi, discards

invalid shares and, if there are at least t out of n de-
crypted shares left, recovers the shared secret S0 through
Lagrange interpolation.

B. Schnorr Signature Schemes

Both RandHound and RandHerd use, as important building
blocks, different variations of the well-known Schnorr signa-
tures [43] and multisignatures [35], [3].

1) Threshold Signing: TSS [48] is a distributed (t, n)-
threshold Schnorr signature scheme, that allows any subset
of t signers to produce a valid signature. During setup, all
n trustees use VSS to create a long-term shared secret key
x and a public key X = Gx. To sign a statement S, the n
trustees first use VSS to create a short-term shared secret v
and a commitment V = Gv and then compute the challenge
c = H(V ‖ S). Afterwards, each trustee i uses his shares vi
and xi of v and x, respectively, to create a partial response
ri = vi−cxi. Finally, when t out of n trustees collaborate they
can reconstruct the response r through Lagrange interpolation.
The tuple (c, r) forms a regular Schnorr signature on S which
can be verified against the public key X .

2) Collective Signing: CoSi [49] enables a set of witness-
ing servers coordinated by a leader to efficiently produce a
collective Schnorr signature (c, r) under an aggregate public
key X̂ =

∏n−1
i=0 Xi. CoSi scales Schnorr multisignatures to

thousands of participants by using aggregation techniques and
communication trees.

A CoSi round runs in four steps over two round-trips
between a leader and his witnesses. To sign a statement
S sent down the communication tree by the leader, each
server i computes a commitment Vi = Gvi and in a bottom-
up process, all commitments are aggregated until the leader
holds the aggregate commit V̂ =

∏n−1
i=0 Vi. Once the leader

computes and multicasts down the tree the collective challenge
c = H(V̂ ‖ S), each server i responds with a partial
response ri = vi − cxi, and all responses are aggregated into
r =

∑n−1
i=0 ri in a final bottom-up process.

C. Public Randomness

For expositional clarity, we now summarize a series of
inadequate strawman designs: (I) a naive, insecure design, (II)
one that uses commit-then-reveal to ensure unpredictability but
fails to be unbiasable and (III) one that uses secret sharing
to ensure unbisability in an honest-but-curious setting, but is
breakable by malicious participants.

Strawman I. The simplest protocol for producing a random
output r =

⊕n−1
i=0 ri requires each peer i to contribute their

secret input ri under the wrong assumption that a random
input from any honest peer would ensure unbiasability of r.
However, a dishonest peer j can force the output value to be
r̂ by choosing rj = r̂

⊕
i:i6=j ri upon seeing all other inputs.

Strawman II. To prevent the above attack, we want to force
each peer to commit to their chosen input before seeing other
inputs by using a simple commit-then-reveal approach. Al-
though the output becomes unpredictable as it is fixed during
the commitment phase, it is not unbiasable because a dishonest
peer can choose not to reveal his input upon seeing all other
openings. By repeatedly forcing the protocol to restart, the
dishonest peer can obtain output that is beneficial for him,
even though he cannot choose its exact value. The above

scenario shows an important yet subtle difference between an
output that is unbiased when a single, successful run of the
protocol is considered and an output that is unbiasable in a
more realistic scenario, when the protocol repeats until some
output is produced. An attacker’s ability to re-toss otherwise-
random coins he does not like is central to the reason peer-
to-peer networks that use cryptographic hashes as participant
IDs are vulnerable to clustering attacks [34].

Strawman III. In order to address this issue, we want to
ensure that a dishonest peer either cannot force the protocol
to abort by refusing to participate or does not benefit from
that. By using a (t, n)-secret sharing scheme, we can force the
adversary to commit to his action before he can decide which
action is favorable for him. First, all n peers, where at most
f are dishonest, distribute secret shares of their inputs using
a t = f + 1 recovery threshold. Only after each peer receives
n shares will they reconstruct their inputs and generate r. The
threshold t = f + 1 prevents a dishonest peer from learning
anything about the output value. Therefore, he can blindly
choose to abort the protocol or to distribute his share and
allow honest peers to complete the protocol even if he stops
participating upon seeing the recovered inputs. Unfortunately,
a dishonest peer can still misbehave by sending out some
bad shares to selectively chosen peers. The fact that each
peer receives enough shares does not guarantee a successful
recovery of the same secret by all peers.

The above protocol is a skeleton of RandShare, a small-
scale unbiasable randomness protocol, that resists active bias
attacks but is unable to scale to hundreds of participants.

D. RandShare: Small-Scale Unbiasable Randomness Protocol

RandShare is a small-scale unbiasable randomness protocol
that provides our desired security properties: unbiasability, un-
predictability, and availability. Because of its O(n3) commu-
nication complexity, it serves as an example which introduces
central concepts that we re-use in the design of RandHound
(Section III), where we additionally achieve scalability.

RandShare extends the approach for distributed key-
generation in a synchronous model of Gennaro et al. [25] by
adopting a point-of-no-return strategy implemented through
the concept of a barrier, a specific point in the protocol exe-
cution after which the protocol always completes successfully,
and by extending it to the asynchronous setting, where the
adversary can break timing assumptions [13], [14].

In RandShare, the protocol output is unknown but fixed as
a function of f+1 inputs. After the barrier point, the protocol
output cannot be changed and all honest peers eventually
output the previously fixed value, regardless of the adversary’s
behavior. In RandShare, we define the barrier at the point
where the first honest member reveals the shares he holds.

We assume a Byzantine adversary and an asynchronous
network where messages are eventually delivered. Let N =
{1, . . . , n} denote the list of peers that participate in Rand-
Share and n = 3f + 1, where f is the number of dishonest
peers. Further, let t = f+1 be the VSS threshold. We assume
that every peer has a copy of a public key Xj for all j 6= i and

only properly signed messages with valid session identifiers
are accepted.

To run RandShare, every peer i ∈ N executes the following
steps:
1. Share Distribution.

1) Select coefficients aik ∈R Z∗q of a degree t − 1 secret
sharing polynomial si(x) =

∑t−1
k=0 aikx

k. The secret to-
be-shared is si(0) = ai0.

2) Compute polynomial commitments Aik = Gaik , for all
k ∈ {0, . . . , t − 1}, and calculate secret shares si(j) for
all j ∈ N.

3) Securely send si(j) to peer j 6= i and start a Byzantine
agreement (BA) run on si(0), by broadcasting Âi =
(Aik)k∈{0,...,t−1}.

2. Share Verification.
1) Setup a bit-vector Vi = (vi1, . . . , vin) to keep track of

valid secrets sj(0) and initialize it to all-zero. Then wait
until a message with share sj(i) from each j 6= i has
arrived.

2) Verify that each sj(i) is valid using Âj . This can be done
by checking that Sj(i) = Gsj(i) where

Sj(x) =

t−1∏
k=0

Axk

jk = G
∑t−1

k=0 ajkx
k

= Gsj(x) .

3) If the verification succeeds, confirm sj(i) by broadcasting
the prepare message (p, i, j, 1) as a positive vote on the
BA instance of sj(0). Otherwise, broadcast (p, i, j, sj(i))
as a negative vote. This also includes the scenario when
Âj was never received.

4) If there are at least 2f +1 positive votes for secret sj(0),
broadcast (c, i, j, 1) as a positive commitment. If there
are at least f+1 negative votes for secret sj(0), broadcast
(c, i, j, 0) as a negative commitment.

5) If there are at least 2f + 1 commits (c, i, j, x) for secret
sj(0), set vij = x. If x = 1, consider the secret
recoverable else consider secret sj(0) invalid.

3. Share Disclosure.
1) Wait until all Byzantine agreement instances finish and

determine the number of 1-entries n′ in Vi.
2) If n′ > f , broadcast for each 1-entry j in Vi the share

sj(i) and abort otherwise.
4. Randomness Recovery.

1) Wait until at least t shares for each j 6= i have arrived,
recover the secret sharing polynomial sj(x) through
Lagrange interpolation, and compute the secret sj(0).

2) Compute the collective random string as

R =

n′⊕
j=1

sj(0)

and publish it.
RandShare achieves unbiasability, because the secret shar-

ing threshold t = f + 1 prevents dishonest peers from
recovering the honest peers’ secrets before the barrier. The
Byzantine agreement procedures ensure that all honest peers

have a consistent copy of Vi hence know which n′ > f
secrets will be recovered after the barrier or if the protocol
run has already failed as n′ ≤ f . Furthermore, if at least
f +1 honest members sent a success message for each share,
and thus Byzantine agreement (with at least 2f + 1 prepares)
has been achieved on the validity of these shares, each honest
peer will be able to recover every other peer’s secret value.
Unpredictability follows from the fact that the final random
string R contains n′ ≥ f + 1 secrets; there are at most f
malicious peers, and no honest peer will release his shares
before the barrier. Availability is ensured because f+1 honest
nodes out of the total 2f+1 positive voters, are able to recover
the secrets, given the secret-sharing threshold t = f+1 without
the collaboration of the dishonest nodes.

III. RANDHOUND: SCALABLE, VERIFIABLE
RANDOMNESS SCAVENGING

This section presents RandHound, a client/server protocol
for producing public, verifiable and unbiasable randomness.
RandHound enables a client to “scavenge” public randomness
from an arbitrary collection of servers. RandHound uses
a commit-then-reveal approach for the randomness genera-
tion, implemented through publicly verifiable secret sharing
(PVSS) [44], and it uses CoSi [49] as a witnessing mechanism
to fix the protocol output and avoid client equivocation. Below,
we first provide an overview of RandHound then introduce
the notation and threat model; we describe in detail the
randomness generation and verification phases of the protocol,
provide and discuss security properties, and conclude with
some extensions of the protocols.

A. Overview

RandHound switches to a client/server model, where a client
uses a set of cooperating servers to produce a random value.
RandHound assumes the same threat model as RandShare, i.e.,
that at most f out of at least 3f+1 participants are dishonest.
If the client is honest, we allow at most f servers to be
malicious and if the adversary controls the client then we allow
at most f − 1 malicious servers. We assume that dishonest
participants can send different but correctly signed messages
to honest participants in stages where they are supposed to
broadcast the same message to all. Furthermore, we assume
that the goal of the adversary is to bias or DoS the protocol
run in the honest client scenario and to bias the output in
the malicious client scenario. We assume that the client gets
one attempt at running RandHound. In principle, the client
could run the protocol arbitrarily many times until he obtains
a random output that is favorable to him. However, each
protocol run uses a session configuration file C that identifies
a protocol run, and defines and binds it to the intended purpose
of the random output. As a scenario illustrating RandHound’s
deployment model, we envision a lottery, in which the client
is the authority running the lottery and must commit ahead
of time to all lottery parameters, including the time and
date of the lottery. A cryptographically unique hash of those
configuration parameters included in C, identifies the specific

run of RandHound to everyone. If that one and only run of
the protocol failed to produce a drawing, it would set off an
alarm triggering an investigative procedure, ensuring that the
lottery authority does not get to covertly re-run the protocol.

RandHound improves upon RandShare by addressing scal-
ability and availability concerns. RandShare, to ensure un-
biasability, produces the random output as a function of all
members’ committed and globally agreed-upon inputs. This
approach, however, results in a high computational and com-
munication overhead as initially all members need to exchange
shares of their input values with all other members to ensure
that each secret input is recoverable. This limits the use of
RandShare to small sets of highly-available servers.

In RandHound, instead of requiring that every server di-
rectly contributes its own secret input towards the random
output, we use group secrets, generated only from inputs of the
respective group members. The servers share their secrets only
with their respective group members, decreasing the number
of created and transmitted shares. First, the client arranges
the servers into disjoint groups. Based on the pigeonhole
principle, the resulting grouping is guaranteed to be secure,
even for non-random, adversarial group choices. Each server
chooses its random input value and creates shares only for
the group members using PVSS, making the random input
recoverable by a much smaller set of servers. Then the server
sends the encrypted shares to the client together with the
NIZK proofs. The client chooses a subset of server inputs
from each group, omitting servers that did not respond on
time or with proper values, thus fixing each group’s secret
and consequently the output of the protocol. After the client
receives a sign-off on his choice of inputs in a global run of
CoSi, the servers decrypt and send their shares to the client
that, in turn, combines the recovered group secrets to produce
the final random output R. The client documents the run of the
protocol in a transcript T, by recording the messages he sends
and receives. The transcript serves as a third party verifiable
proof of the produced randomness. Fig. 1 gives an overview
on the RandHound design.

C

S

S S

S

S S

Client

PVSS Group 1 PVSS Group 2

Servers Servers

Fig. 1. An overview of the RandHound design.

B. Description

Let G be a group of large prime order q with generator G.
Let N = {0, . . . , n−1} denote the list of nodes, let S = N\{0}
denote the list of servers and let f be the maximum number of
permitted Byzantine nodes. We require that n = 3f+1. We set
(x0, X0) as the key pair of the client and (xi, Xi) as the one
of server i > 0. Further let Tl ⊂ S, with l ∈ {0, . . . ,m− 1},
be pairwise disjoint trustee groups and let tl = b|Tl|/3c + 1
be the secret sharing threshold for group Tl.

The publicly available session configuration is denoted by
C = (X,T, f, u, w), where X = (X0, . . . , Xn−1) is the list
of public keys, T = (T0, . . . , Tm−1) is the server grouping, u
is a purpose string, and w is a timestamp. We call H(C) the
session identifier. The session configuration and consequently
the session identifier have to be unique for each protocol run.
We assume that all nodes know the list of public keys X .

The output of RandHound is a random string R which is
publicly verifiable through a transcript T.

1) Randomness Generation: RandHound’s randomness-
generation protocol has seven steps and requires three round
trips between the client and the servers; see Figure 2 for an
overview. All exchanged messages are signed by the sending
party, messages from the client to servers include the session
identifier, and messages from servers to the client contain a
reply identifier that is the hash of the previous client message.
We implicitly assume that client and servers always verify
message signatures and session and reply identifiers and that
they mark non-authentic or replayed messages and ignore them
from the rest of the protocol run.

RandHound consists of three inquiry-response phases be-
tween the client and the servers followed by the client’s
randomness recovery.

1) Initialization (Client). The client initializes a protocol
run by executing the following steps:
a) Set the values in C and choose a random integer
rT ∈R Zq as a seed to pseudorandomly create a
balanced grouping T of S. Record C in T.

b) Prepare the message

〈I1〉x0 = 〈H(C), T, u, w〉x0 ,

record it in T, and broadcast it to all servers.
2) Share Distribution (Server). To distribute shares, each

trustee i ∈ Tl executes step 1 of PVSS:
a) Map H(C) to a group element H ∈ G∗, set tl =
b|Tl|/3c + 1, and (randomly) choose a degree tl − 1
secret sharing polynomial si(x). The secret to-be-
shared is Si0 = Gsi(0).

b) Create polynomial commitments Aik, for all k ∈
{0, . . . , tl − 1}, and compute encrypted shares Ŝij =

X
si(j)
j and consistency proofs π̂ij for all j ∈ Tl.

c) Choose vi ∈R Zq and compute Vi = Gvi as a Schnorr
commitment.

d) Prepare the message

〈R1i〉xi = 〈H(I1), (Ŝij , π̂ij)j∈Tl
, (Aik)k∈{0,...,tl−1}, Vi〉xi

Client Server iMessages

〈I1〉x0 = 〈H(C), T, u, w〉x0

〈R1i〉xi = 〈H(I1), (Ŝij , π̂ij)j∈Tl , (Aik)k∈{0,...,tl−1}, Vi〉xi

〈I2i〉x0 = 〈H(C), c, T ′, (Ŝji, π̂ji, Hsj (i))j∈T ′
l
〉x0

〈R2i〉xi = 〈H(I2i), ri〉xi

〈I3〉x0 = 〈H(C), r, E〉x0

〈R3i〉xi = 〈H(I3), (Sji, πji)j∈T ′
l
〉xi

P
ha

se
1

P
ha

se
2

P
ha

se
3

1. Initialization

2. Share-Distribution

3. Secret-Commitment

4. Secret-Acknowledgement

5. Decryption-Request

6. Share-Decryption

7. Randomness-Recovery: R, T

(x0, X0) / (xi, Xi) Private and public key of client / server i

C Session configuration
T Group configuration
u, w Purpose string, time stamp
Ŝij / Sij Encrypted / decrypted share
π̂ij / πij Encryption / decryption consistency proof
Aik Polynomial commitment

Hsi(j) Share commitment
Vi, c, r, E Schnorr commitment, challenge, response, exceptions
T ′ / T ′

l Chosen secrets overall / of group l

R Collective randomness
T Transcript

Fig. 2. An overview of RandHound randomness generation.

and send it back to the client.
3) Secret Commitment (Client). The client commits in this

step to the shared secrets that contribute to the final
random string, and he requests servers to co-sign his
choice:
a) Record each received 〈R1i〉xi message in T.
b) Verify all Ŝij against π̂ij using Xi and Aik. Buffer

each (correct) Hsi(j) created in the process. Mark
each share that does not pass the verification as in-
valid, and do not forward the corresponding tuple
(Ŝij , π̂ij , H

si(j)) to the respective trustee.
c) Create the commitment to the final list of secrets by

randomly selecting T ′l ⊂ Tl such that |T ′l | = tl for all
l ∈ {0, . . . ,m− 1}.

d) Compute the aggregate Schnorr commit V =
∏

i Vi
and the Schnorr challenge c = H(V ‖ H(C) ‖ T ′).

e) Prepare the message

〈I2i〉x0
= 〈H(C), c, T ′, (Ŝji, π̂ji, H

sj(i))j∈T ′l 〉x0
,

record it in T, and send it to trustee i ∈ Tl.
4) Secret Acknowledgment (Server). Each trustee i ∈ Tl

acknowledges the client’s commitment by executing the
following steps:
a) Check that |T ′l | = tl for each T ′l in T ′ and that f+1 ≤∑m−1

l=0 tl. Abort if any of those conditions does not
hold.

b) Compute the Schnorr response ri = vi − cxi.
c) Prepare the message

〈R2i〉xi
= 〈H(I2i), ri〉xi

and send it back to the client.
5) Decryption Request (Client). The client requests the

decryption of the secrets from the trustees by presenting
a valid Schnorr signature on his commitment:
a) Record each received 〈R2i〉xi

message in T.
b) Compute the aggregate Schnorr response r =

∑
i ri

and create a list of exceptions E that contains infor-
mation on missing server commits and/or responses.

c) Prepare the message

〈I3〉x0
= 〈H(C), r, E〉x0

,

record it in T, and broadcast it to all servers.
6) Share Decryption (Server). To decrypt received shares,

each trustee i ∈ Tl performs step 2 of PVSS:
a) Check that (c, r) forms a valid Schnorr signature on
T ′ taking exceptions recorded in E into account and
verify that at least 2f +1 servers signed. Abort if any
of those conditions does not hold.

b) Check for all j ∈ T ′l that Ŝji verifies against π̂ji using
Hsj(i) and public key Xi.

c) If the verification fails, mark Ŝji as invalid and do not
decrypt it. Otherwise, decrypt Ŝji by computing Sji =

(Ŝji)
x−1
i = Gsj(i) and create a decryption consistency

proof πji.
d) Prepare the message

〈R3i〉xi = 〈H(I3), (Sji, πji)j∈T ′l 〉xi

and send it back to the client.
7) Randomness Recovery (Client). To construct the col-

lective randomness, the client performs step 3 of PVSS:
a) Record all received 〈R3i〉xi

messages in T.
b) Check each share Sji against πji and mark invalid

ones.
c) Use Lagrange interpolation to recover the individual
Si0 that have enough valid shares Sij and abort if even
a single one of the secrets previously committed to in
T ′ cannot be reconstructed.

d) Compute the collective random value as

R =
∏

i∈
⋃

T ′l

Si0 ,

and publish R and T.
2) Randomness Verification: A verifier who wants to check

the validity of the collective randomness R against the tran-
script

T = (C, 〈I1〉x0
, 〈R1i〉xi

, 〈I2i〉x0
, 〈R2i〉xi

, 〈I3〉x0
, 〈R3i〉xi

)

has to perform the following steps:
1) Verify the values of arguments included in the session

configuration C = (X,T, f, u, w). Specifically, check
that |X| = n = 3f + 1, that groups Tl defined in T are
non-overlapping and balanced, that |X| =

∑m−1
l=0 |Tl|,

that each group threshold satisfies tl = |Tl|/3+ 1, that u
and w match the intended use of R, and that the hash of
C matches H(C) as recorded in the messages.

2) Verify all signatures of 〈I1〉x0 , 〈R1i〉xi , 〈I2i〉x0 , 〈R2i〉xi

〈I3〉x0
, and 〈R3i〉xi

. Ignore invalid messages for the rest
of the verification.

3) Verify that H(I1) matches the hash recorded in R1i.
Repeat for I2i and R2i, and I3 and R3i. Ignore messages
that do not include the correct hash.

4) Check that T ′ contains at least f + 1 secrets, that the
collective signature on T ′ is valid and that at least 2f+1
servers contributed to the signature (taking into account
the exceptions in E).

5) Verify each recorded encrypted share Ŝij , whose secret
was chosen in T ′, against the proof π̂ij using Xi and
Aik. Abort if there are not enough shares for any secret
chosen in T ′.

6) Verify each recorded decrypted share Sij against the
proof πij where the corresponding Ŝij was found to be
valid. Abort if there are not enough shares for any secret
chosen in T ′.

7) Verify R by recovering R′ from the recovered individual
secrets Si0 and by checking that R = R′. If the values
are equal, then the collective randomness R is valid.
Otherwise, reject R.

C. Security Properties

RandHound provides the following security properties:
1) Availability. For an honest client, the protocol success-

fully completes and produces the final random output R
with high probability.

2) Unpredictability. No party learns anything about the final
random output R, except with negligible probability, until
the secret shares are revealed.

3) Unbiasability. The final random output R represents an
unbiased, uniformly random value, except with negligible
probability.

4) Verifiability. The collective randomness R is third-party
verifiable against the transcript T, that serves as an
unforgeable attestation that the documented set of par-
ticipants ran the protocol to produce the one-and-only
random output R, except with negligible probability.

In the discussion below, we assume that each honest node
follows the protocol and that all cryptographic primitives
RandHound uses provide their intended security properties.
Specifically, the (t, n)-PVSS scheme ensures that a secret can
only be recovered by using a minimum of t shares and that
the shares do not leak information about the secret.

Availability. Our goal is to ensure that an honest client can
successfully complete the protocol, even in the presence of
an active adversary who can arbitrarily misbehave, including

refusing to participate in the protocol. A dishonest client can
always choose to abort the protocol, which is equivalent to
a self-DoS attack, and therefore, we do not consider it as an
attack on availability. In the remaining security properties, we
can thus restrict our concern to attacks in which a dishonest
client might corrupt (e.g. bias) the output without affecting the
output’s availability.

According to the protocol specification, an honest client
randomly assigns (honest and dishonest) nodes to their groups.
Therefore, each group’s ratio of honest to dishonest nodes will
closely resemble the overall ratio of honest to dishonest nodes
in the entire set. Given that n = 3f +1, the expected number
of nodes in a group Tl is about 3f/m. The secret-sharing
threshold of tl = |Tl|/3 + 1 = (3f/m)/3 + 1 = f/m + 1
enables 2f/m honest nodes in each group to recover its
group secret without requiring the collaboration of malicious
nodes. This ensures, with high probability, availability for an
honest client. We refer to Section V-C for an analysis of the
failure probability of a RandHound run for different parameter
configurations.

Unpredictability. We want to ensure that output R remains
unknown to the adversary until step 7 of the protocol, when
honest nodes decrypt and reveal the secret shares they hold.

The random output R is a function of m group secrets,
where each group contributes exactly one secret that depends
on tl inputs from group members. Further, each input is
recoverable using PVSS with tl shares. In order to achieve
unpredictability, there must be at least one group secret that
remains unknown to the adversary until step 7.

We will show that there exists at least one group for which
the adversary cannot prematurely recover the group’s secret.
An adversary who controls the dishonest client can deviate
from the protocol description and arbitrarily assign honest
and dishonest nodes into groups. Assuming that there are h
honest nodes in total and m groups, then by the generalized
pigeonhole principle, regardless of how the dishonest client
assigns the groups, there will be at least one group which
contains at least dh/me nodes. This means that there will be
at least one group with at least an average number of honest
nodes. Therefore, the threshold for secret recovery for each
group l must be set such that the number of nodes needed
to recover the group secret contains at least one honest node,
that is, |Tl| − h/m+ 1 = f/m+ 1. In RandHound, we have
n = 3f + 1 and tl = |Tl|/3 + 1 = (3f/m)/3 + 1 = f/m+ 1
as needed.

Consequently, the adversary will control at most m − 1
groups and obtain at most m− 1 group secrets. Based on the
properties of PVSS, and the fact that R is a function of all m
group secrets, the adversary will not be able to reconstruct R
without the shares held by honest nodes that are only revealed
in step 7.

Unbiasability. We want to ensure that an adversary cannot
influence the value of the random output R.

In order to prevent the adversary from controlling the output
R, we need to ensure that there exists at least one group for
which the adversary does not control the group’s secret. If,

for each group, the adversary can prematurely recover honest
nodes’ inputs to the group secret and therefore be able to
prematurely recover all groups’ secrets, then the adversary can
try many different valid subsets of the groups’ commits to
find the one that produces R that is most beneficial to him. If,
for each group, the adversary can exclude honest nodes from
contributing inputs to the group secret, then the adversary has
full control over all group secrets, hence R.

As argued in the discussion of unpredictability, there exists
at least one group for which the adversary does not control
its group secret. Furthermore, the requirement that the client
has to select tl inputs from each group in his commitment T ′

ensures that at least
∑m−1

l=0 tl =
∑m−1

l=0 f/m + 1 = f + m
inputs contribute to the group secrets, and consequently to the
output R. Combining these two arguments, we know that there
is at least one group that is not controlled by the adversary
and at least one honest input from that group contributes to R.
As a result, the honest member’s input randomizes the group’s
secret and R, regardless of the adversary’s actions.

Lastly, the condition that at least 2f + 1 servers must sign
off on the client’s commitment T ′ ensures that a malicious
client cannot arrange malicious nodes in such a way that would
enable him to mount a view-splitting attack. Without that last
condition the adversary could use different arrangements of
honest and dishonest inputs that contribute to R and generate
multiple collective random values with valid transcripts from
which he could choose and release the one that is most
beneficial to him.

Verifiability. In RandHound, only the client obtains the
final random output R. In order for R to be usable in other
contexts and by other parties, any third party must be able to
independently verify that R was properly generated. Therefore,
the output of RandHound consists of R and a transcript T, that
serves as third-party verifiable proof of R. The transcript T
must (a) enable the third party to replay the protocol execution,
and (b) to be unforgeable.

T contains all messages sent and received during the pro-
tocol execution, as well as the session configuration C. If the
verifying party finds C acceptable, specifically the identities of
participating servers, he can replay the protocol execution and
verify the behavior of the client and the servers, as outlined
in Section III-B2. After a successful protocol run completes,
the only relevant protocol inputs that remain secret are the
private keys of the client and the servers. Therefore, any third
party on its own can verify T and decide on its validity since
the private keys are only used to produce signatures and the
signatures are verified using the public keys.

If an adversary forges the transcript, that is, produces the
transcript entirely on its own without an actual run of the
protocol, then the adversary must be in possession of all
secret keys of the participant listed in C, which violates
the assumption that at most f nodes are controlled by the
adversary.

Therefore, under the assumption that all cryptographic prim-
itives used in RandHound offer their intended security proper-
ties, it is infeasible for any party to produce a valid transcript,

except by legitimately running the protocol to completion with
the willing participation of the at least

∑m−1
l=0 |T ′l | servers

listed in the client’s commitment vector T ′ (step 3).
Further Considerations. In each protocol run, the group

element H is derived from the session identifier H(C), which
mitigates replay attacks. A malicious server that tries to replay
an old message is immediately detected by the client, as the
replayed PVSS proofs will not verify against the new H .
It is also crucial for RandHound’s security that none of the
participants knows a logarithm a with G = Ha. Otherwise
the participant can prematurely recover secret shares since
(Hsi(j))a = Hasi(j) = Gsi(j) = Sij , which violates Rand-
Hound’s unpredictability property and might even enable a
malicious node to bias the output. This has to be taken into
account when deriving H from H(C). The naive way to map
H(C) to a scalar a and then set H = Ga is obviously insecure
as G = H1/a. The Elligator mappings [7] provide a secure
option for elliptic curves.

D. Extensions

Each Lagrange interpolation that the client has to perform to
recover a server’s secret can be replaced by the evaluation of
a hash function as follows: Each server i sends, alongside his
encrypted shares, the value H(si(0)) as a commitment to the
client in step 2. After the client’s request to decrypt the shares,
each server, whose secret was chosen in T ′, replies directly
with si(0). The client checks the received value against the
server’s commitment and, if valid, integrates it into R.

Note that the verification of the commitment is necessary,
as a malicious server could otherwise just send an arbitrary
value as his secret that would be integrated into the collective
randomness thereby making it unverifiable against the tran-
script T. The client can still recover the secret as usual from
the decrypted shares with Lagrange interpolation if the above
check fails or if the respective server is unavailable,

IV. RANDHERD: A SCALABLE RANDOMNESS COTHORITY

In this section we introduce RandHerd, a randomness
cothority, that extends the notion of a collective authority or a
cothority [49] to unbiasable and verifiable randomness gener-
ation. Our objective is to produce a decentralized randomness
beacon [42], [38], which efficiently generates not just one
but a frequent, regular stream of random values. RandHerd
retains many of the major RandHound’s design choices, but
it significantly improves upon RandHound in terms of repeat-
execution performance.

We first give an overview of RandHerd followed by a
detailed protocol description, then describe its security prop-
erties, and we end with some protocol extensions.

A. Overview

RandHerd is a continually-running decentralized service
that generates fresh, publicly verifiable and unbiasable ran-
domness on demand, in regular intervals, or both. It is imple-
mented as a randomness cothority, a collective authority that
consists of hundreds of diverse participants that partake in the

randomness generation process. As before, the random output
r̂ of RandHerd is unbiasable and can be verified, together
with the corresponding challenge ĉ, as a collective Schnorr
signature against RandHerd’s collective public key; Fig. 3
gives an overview on the RandHerd design.

The RandHerd’s design uses RandHound, CoSi [49] (col-
lective witness cosigning) that implements a cothority, and
a (t, n)-threshold Schnorr signature (TSS) scheme [48], as
described in Section II, that implements threshold-based CoSi
(TSS-CoSi).

The starting point for RandHerd is an existing cothority
defined by the cothority configuration C, that among other
parameters, lists the public keys of all participating servers and
the collective public key X of the cothority. RandHerd consists
of RandHerd-Setup, a one-time setup mode and RandHerd-
Round, an operational mode that produces randomness.

In the setup mode, we use the output of RandHound to
randomly select a RandHerd leader and arrange nodes into
verifiably-unbiased random groups. Each group runs the key
generation phase of TSS to establish a public group key X̂l

such that each group member holds a share of the corre-
sponding private key x̂l. Each group can issue a collective
signature with a cooperation of tl of nodes. All public group
keys contribute to the collective RandHerd public key X̂ , that
is endorsed by individual nodes in a run of CoSi.

In the operational mode of RandHerd, we produce a col-
lective Schnorr signature (ĉ, r̂) on some input w using TSS-
CoSi and output r̂ as the randomness. We modify CoSi’s
original design to achieve bias-resistance in the presence of
node failures. CoSi requires that either all nodes participate
in the signing process or that an exception mechanism is
used to account for missing nodes. Although sufficient for
many application, the exceptions mechanism in the context
of randomness would enable to bias the output by selectively
preventing certain nodes from participating and including their
input. In RandHerd, all m groups contribute towards Rand-
Herd’s output, however, each group’s contribution requires
the participation of only tl group members. The selection of
each group’s contributions towards group secrets is certified by
individual nodes in a run of CoSi. This enables a reasonable
fraction of all nodes to be absent without biasing r̂. The
key improvement over RandHound is the fact that whereas
randomness is still produced based on secrets contributed by
all m groups, instead of PVSS, we use a much more efficient
TSS scheme to construct group secrets in the threshold setting.
Further, the properties of CoSi ensure that the random output
of RandHerd can be easily verified using X̂ .

B. Description

Let N = {0, . . . , n − 1} denote the list of available nodes
and let f denote the maximum number of permitted Byzantine
nodes. We assume that n = 3f + 1. Private and public
key of node i ∈ N are identified with xi and Xi = Gxi ,
respectively. Further, let C denote the cothority configuration
file that includes the public keys of all nodes, the collective
public key of the cothority X , contact information such as

CL

GL GL

TSS Group 1

TSS Group 2 TSS Group 3

Cothority Leader

Group Leaders

CoSi-Tree Server-to-Server

Fig. 3. An overview on the RandHerd design

IP address and port number, default group sizes for secret
sharing, and a timestamp on when C was created. Each node
has a copy of C.

1) RandHerd-Setup: The setup phase of RandHerd consists
of the following four steps:

1) Leader Election. Upon the occurrence of a predefined
event, which might be specified in C, each node generates
a lottery ticket ti = H(C ‖ Xi) for every i ∈ N and
sorts them in an ascending order. The ticket ti with the
lowest value wins the lottery and the corresponding node
i becomes the (temporary) RandHerd leader. If the leader
is unavailable, the node in the ascending order steps in to
take the place of the leader. This process is repeated until
an available node has been found. Section IV-E1 further
discusses leader election and proposes a randomized
lottery mechanism.

2) Seed Generation. The leader assumes the role of the
RandHound client and runs the protocol together with all
other nodes. A given leader has one chance to execute
this step. If he fails, the next node, as specified by the
outcome of the lottery, steps in and attempts to execute
RandHound. After a successful run of RandHound, the
leader obtains the tuple (R,T), where R is a collective
random string and T is the publicly verifiable transcript
that proves the validity of R. Lastly, the current leader
broadcasts (R,T) to all nodes.

3) Group Setup. Once the nodes receive (R,T), they use
T to verify R, and then use R as a seed to compute
a random permutation of N resulting in N′. Afterwards
N′ is sharded into m groups Tl of the same size as in
RandHound, for l ∈ {0, . . . ,m − 1}. The node at index
0 of each group becomes the group leader and the group
leader of the first group takes up the role of the temporary
RandHerd leader. If any of the leaders is unavailable, the
next one, as specified by the order in N′, steps in. After
this step, all nodes know their group assignments and the
respective group leaders run a TSS-setup to establish the
long-term group secret x̂l using a secret sharing threshold

of tl = |Tl|/3 + 1. All group leaders report back to the
current RandHerd leader with the public group key X̂l.

4) Key Certification. As soon as the RandHerd leader has
received all X̂j , he combines them to get the collective
RandHerd public key X̂ =

∏m−1
j=0 X̂j and starts a run of

the CoSi protocol to certify X̂ by requesting a signature
from each individual node. Therefore, the leader sends
X̂ together with all X̂j and each individual node checks
that X̂j corresponds to its public group key and that X̂
is well-formed. Only if both checks succeed, the node
participates in the co-signing request, otherwise it refuses.
The collective signature on X̂ is valid if there are least
f/m+1 signatures from each group and the total number
of individual signatures across the groups is at least
2f + 1. Once a valid signature on X̂ is established, the
setup of RandHerd is completed. The validity of X̂ can
be verified by anyone by using the collective public key
X , as specified in C.

After a successful setup, RandHerd switches to the opera-
tional randomness generation mode.

2) RandHerd-Round: In this mode, we distinguish between
communications from the RandHerd leader to group leaders,
from group leaders to individual nodes, and communications
between all nodes within their respective group. Each random-
ness generation run consists of the following seven steps and
can be executed multiple times to produce the desired number
of random outputs:

1) Initialization (Leader). The RandHerd leader initializes
a protocol run by broadcasting an announcement message
containing a timestamp w to all group leaders. All groups
will cooperate to produce a signature (ĉ, r̂) on w.

2) Group Secret Setup / Commitment (Groups / Servers).
Upon the receipt of the announcement, each group creates
a short-term secret v̂l, using a secret sharing threshold
tl, to produce a group commitment V̂l = Gv̂l that will
be used towards a signature of w. Furthermore, each
individual node randomly chooses vi ∈R Zq , creates
a commitment Vi = Gvi that will be used to globally
witness, hence validate the round challenge ĉ, and sends
it to the group leader. The group leader aggregates the
received individual commitments into Ṽl =

∏
i∈Tl

Vi and
sends (V̂l, Ṽl) back to the RandHerd leader.

3) Challenge (Leader). The RandHerd leader aggregates
the respective commitments into V̂ =

∏m−1
l=0 V̂l and

Ṽ =
∏m−1

l=0 Ṽl, and creates two challenges ĉ = H(V̂ ‖ w)
and c̃ = H(Ṽ ‖ V̂). Afterwards, the leader sends (ĉ, c̃)
to all group leaders that in turn re-broadcast them to the
individual servers of their group.

4) Response (Servers). Server i stores the round group
challenge ĉ for later usage, creates its individual response
ri = vi− c̃xi, and sends it back to the group leader. The
latter aggregates all responses into r̃l =

∑
i∈Tl

ri and
creates an exception list Ẽl of servers in his group that
did not respond or sent bad responses. Finally, each group
leader sends (r̃l, Ẽl) to the RandHerd leader.

5) Secret Recovery Request (Leader). The RandHerd
leader gathers all exceptions Ẽl into a list Ẽ, and ag-
gregates the responses into r̃ =

∑m−1
l=0 r̃l taking Ẽ into

account. If at least 2f + 1 servers contributed to r̃, the
RandHerd leader sends the global group commitment V̂
and the signature (c̃, r̃, Ẽ) to all group leaders thereby
requesting the recovery of the group secrets.

6) Group Secret Recovery (Groups / Servers). The group
leaders re-broadcast the received message. Each group
member individually checks that (c̃, r̃, Ẽ) is a valid
signature on V̂ and only if it is the case and at least 2f+1
individual servers signed off, they start reconstructing the
short-term secret v̂l. The group leader creates the group
response r̂l = v̂l − ĉx̂l and sends it to the RandHerd
leader.

7) Randomness Recovery (Leader). The RandHerd leader
aggregates all responses r̂ =

∑m−1
l=0 r̂l and, only if he

received a reply from all groups, he releases (ĉ, r̂) as the
collective randomness of RandHerd.

3) Randomness Verification: The collective randomness
(ĉ, r̂) of RandHerd is a collective Schnorr signature on the
timestamp w, which is efficiently verifiable against the aggre-
gate group key X̂ .

C. Security Properties

RandHerd provides the following security properties:
1) Availability. Given an honest leader, the protocol success-

fully completes and produces the final random output R
with high probability.

2) Unpredictability. No party learns anything about the final
random output R, except with negligible probability, until
the group responses are revealed.

3) Unbiasability. The final random output R represents an
unbiased, uniformly random value, except with negligible
probability.

4) Verifiability. The collective randomness R is third-party
verifiable as a collective Schnorr signature under X̂ .

In the discussion below, we make the same assumptions as
in the case of RandHound (Section III-C) on the behavior of
the honest nodes and the cryptographic primitives RandHerd
employs.

RandHerd uses a simple and predictable ahead-of-time elec-
tion mechanism to choose the temporary RandHerd leader in
the setup phase. This approach is sufficient because the group
assignments and the RandHerd leader for the randomness
phase of the protocol are chosen based on the output of
RandHound. RandHound’s properties of unbiasability and un-
predictability hold for honest and dishonest clients. Therefore,
the resulting group setup has the same properties in both cases.

Availability. Our goal is to ensure that with high probability
the protocol successfully completes, even in the presence of
an active adversary.

As discussed above, the use of RandHound in the setup
phase ensures that all groups are randomly assigned. If the
RandHerd leader makes satisfactory progress, the secret shar-
ing threshold tl = f/m+1 enables 2f/m honest nodes in each

group to reconstruct the short-term secret v̂l, hence produce
the group response r̂l without requiring the collaboration of
malicious nodes. An honest leader will make satisfactory
progress and eventually output r̂ at the end of step 7. This
setup corresponds to a run of RandHound by an honest
client. Therefore, the analysis of the failure probability of
a RandHound run described in Section V-C is applicable to
RandHerd in the honest leader scenario.

In RandHerd, however, with a probability f/n, a dishonest
client will be selected as the RandHerd leader. Although the
choice of a dishonest leader does not affect the group assign-
ments, he might arbitrarily decide to stop making progress
at any point of the protocol. We need to ensure RandHerd’s
availability over time, and if the current leader stops making
adequate progress, we move to the next leader indicated by
the random output of RandHound and, as with common BFT
protocols, we rely on “view change” [15], [32] to continue
operations.

Unpredictability. We want to ensure that the random output
of RandHerd remains unknown until the group responses r̂l
are revealed in step 6.

We note that the high-level design of RandHerd closely
resembles the one of RandHound. Both protocols use the same
thresholds, assign n nodes into m groups, and each group
contributes an exactly one secret towards the final random
output of the protocol. Therefore, based on the analysis of
the unpredicability property of RandHound, we know that in
RandHerd, there will also be at least one group with at least
an average number of honest nodes. Furthermore, the secret-
sharing and required group inputs threshold of tl = f + 1
guarantees that for at least one group, the adversary cannot
prematurely recover v̂l and reconstruct the group’s response
r̂l. Therefore, before step 6, the adversary will control at most
m − 1 groups and obtain at most m − 1 out of m responses
that contribute to r̂.

Unbiasability. Our goal is to prevent the adversary from
biasing the value of the random output r̂.

Applying the arguments used in the discussion of un-
biasability of RandHound, we know that for at least one
group the adversary cannot prematurely recover r̂l and that
r̂l contains a contribution from at least one honest group
member. Further, the requirement that the leader must obtain
a sign-off from 2f + 1 individual nodes in step 4 on his
commitment V̂ , fixes the output value r̂ before any group
secrets r̂l are produced. This effectively commits the leader
to a single output r̂.

The main difference between RandHound and RandHerd is
the fact that an adversary who controls the leader can affect
unbiasability by withholding the protocol output r̂ in step 7,
if r̂ is not beneficial to him. A failure of a leader would
force a “view change” and therefore a new run of RandHerd,
giving the adversary at least one (if the next selected leader
is honest) or more (if the next selected leader is dishonest or
the adversary can DoS the selected honest leader) alternative
values of r̂. Although the adversary cannot freely choose the
next value of r̂ and cannot go back to the previous value if

the next one is not more advantageous, he nonetheless has an
option to try for another value of r̂ which constitutes bias.
This bias, however, is limited as the view-change schedule
must eventually appoint an honest leader, at which point the
adversary no longer has any bias opportunity. Section IV-D
further discusses this issue and proposes alternative designs
of RandHerd that address this limited, “one-per-view-change”
bias opportunity in the case of a dishonest leader.

Verifiability. The random output r̂ generated in RandHerd
is obtained from a collective Schnorr signature (ĉ, r̂) on input
w against a public key X̂ . Any third-party can verify r̂ by
simply checking the validity of (ĉ, r̂) as a CoSi signature on
input w using X̂ .

D. Addressing Leader Availability Issues

Each run of RandHerd is coordinated by a RandHerd leader
who is responsible for ensuring a satisfactory progress of the
protocol. Although a (honest or dishonest) leader might fail
and cause the protocol failure, we are specifically concerned
with intentional failures that benefit the adversary and enable
him to affect the protocol’s output.

As discussed in the previous section, once a dishonest
RandHerd leader receives responses from group leaders in
step 7, he is the first one to know r̂ and can act accordingly,
including failing the protocol. However, the failure of the
RandHerd leader does not necessarily have to cause the
failure of the protocol. Even without the dishonest leader’s
participation, f/m + 1 of honest nodes in each group are
capable of recovering the protocol output. They need, however,
a consistent view of the protocol and the output value that was
committed to.

Instead of requiring a CoSi round to get 2f+1 signatures on
V̂ , we reach Byzantine Fault Tolerant (BFT) consensus on V̂
and consequently the global challenge ĉ = H(V̂ ‖ w). Upon a
successful completion of BFT, at least f+1 honest nodes have
witnessed that we have consensus on the V̂ . Consequently,
the ĉ that is required to produce each group’s response r̂l =
v̂l − ĉx̂l is set to stone. Therefore, if a leader fails, instead of
restarting RandHerd, we can select a new leader, (for example
by using the group ordering from the setup phase) whose only
allowed action is to continue this protocol’s execution. This
removes the possibility of biasing the output by a dishonest
leader and the incentive to fail a protocol execution.

However, using a traditional BFT protocol (e.g., PBFT [15]),
like we did in RandShare, yields prohibiting performance
for RandHerd because of the large number of servers that
participate in the protcol. In order to overcome this obstacle,
we use BFT-CoSi from ByzCoin [32], a Byzantine consensus
protocol that uses scalable collective signing, to agree on
successfully delivering the commitment V̂ . Due to the BFT
guarantees RandHerd crosses the point-of-no return when
consensus is reached. This means that even if the dishonest
leader, in an attempt to bias the output, chooses to fail the
protocol, the new (eventually honest) leader will be able to
recover r̂ allowing all honest servers to successfully complete
the protocol.

E. Extensions

1) Randomizing Temporary-Leader Election: The current
set-up phase of RandHerd uses a very simple leader election
mechanism. Because the ticket generation uses only values
known to all nodes, it is efficient as it does not require any
communication between the nodes but makes the outcome of
the election predicable as soon as the cothority configuration
file C is available. We use this mechanism to elect a temporary
RandHerd leader whose only responsibility is to run and
provide the output of RandHound to other servers. Rand-
Hound’s unbiasibility property prevents the dishonest leader
from biasing its output. However, an adversary can force f
restarts of RandHound and can therefore delay the setup by
compromising the first (or next) f successive leaders in a well-
known schedule.

To address this issue, we can use a lottery mechanism that
depends on verifiable random functions (VRFs) [36], which
ensures that each participant obtains an unpredictable “fair-
share” chance of getting to be the leader in each round. Each
node produces its lottery ticket as ti = H(C ‖ j)xi , where C
is the group configuration, j is a round number, and xi is node
i’s secret key, along with a NIZK consistency proof showing
that ti is well-formed.

2) BLS-Signatures: Through the use of CoSi and TSS,
RandHerd utilizes collective Schnorr signatures in a threshold
setting. Other alternatives are possible. Specifically, Boneh-
Lynn-Shacham (BLS) [11] signatures require pairing-based
curves, but offer even shorter signatures (a single elliptic curve
point) and a simpler signing protocol. In the simplified design
using BLS signatures, there is no need to collectively form a
fresh Schnorr commitment, and the process does not need to
be coordinated by a group leader. Instead, a member of each
subgroup, whenever it has decided that the next round has
arrived, produces and releases its share for a BLS signature
of the message for the appropriate time (based on a hash
of view information and the wall-clock time or sequence
number). Each member of a given subgroup waits until a
threshold number of BLS signature shares are available for that
subgroup, and then forms the BLS signature for this subgroup.
The first member to do so can them simply announce or gossip
it with members of other subgroups, combining subgroup
signatures until a global BLS signature is available (based
on a simple combination of the signatures of all subgroups).
This activity can be unstructured and leaderless, because no
“arbitrary choices” need to be made per-transaction: the output
of each time-step is completely deterministic but cryptograph-
ically random and unpredictable before the designated time.

V. EVALUATION

In this section we discuss the evaluation of our prototype
implementations for RandHound and RandHerd. The primary
questions we wish to evaluate are whether architectures of the
two protocols are practical and scalable to large numbers, e.g.,
hundreds of servers, in realistic scenarios. Important secondary
questions are what the important costs are, such as randomness
generation latencies and computation costs. We start with

some details on the implementation itself, followed by our
experimental results, and finally describe our analysis of the
failure probability for both protocols.

A. Implementation

We implemented PVSS, TSS, RandHound, and RandHerd in
Go and made it publicly available on GitHub1. Table I shows
rounded up numbers for the lines of code (LoC) of our imple-
mentations. We relied on the cothority-framework (≈ 27000
LoC) for CoSi and for handling network communication,
and used the corresponding crypto-library2 (≈ 20000 LoC)
for basic cryptographic operations (such as Curve25519 [5]
arithmetic, etc.).

TABLE I
LINES OF CODE PER MODULE

PVSS TSS RandHound RandHerd

300 700 1300 1000

B. Performance Measurements

1) Experimental Setup: We ran all our experiments on
DeterLab using 32 physical machines, each equipped with an
Intel Xeon E5-2650 v4 (24 cores at 2.2GHz), 64GBytes of
RAM, and a 10Gbps network link. To obtain more realistic
simulation results we restricted the connections to 100Mbps
and imposed an 200ms round-trip latency.

To run the experiments with up to 1024 nodes, we oversub-
scribed the servers by a factor of up to 32, and arranged the
nodes in such a way that most messages had to go through the
network. In order to test the influence of the oversubscription
on our experiments, we ran the same simulations also with 16
servers only. This resulted in an overhead increase of about
20%, indicating that we are CPU-bound and not network-
bound. In real-world deployments of our systems we can
therefore expect slightly better results than the values from
our simulations.

2) RandHound: Fig. 4 shows the CPU-usage costs of
a complete RandHound run that first generates a random
value that is validated subsequently via the transcript. For
the randomness-generation part, we measured the total costs
across all servers, plus the costs of the client; whereas, for
the verification, we only measured the costs for the client or
equivalently a single node. In a setup with 1024 nodes and a
group size of 32, for example, the complete RandHound run
(generation + verification) requires about 10 CPU minutes,
which is equivalent to costs of about $0.02 on Amazon EC2.

Fig. 5 shows the wall-clock time of a complete RandHound
run for different configurations. This corresponds to the du-
ration of a RandHound execution, from the point when the
protocol is started until the client has computed the collective
randomness and verified it. Our measurements show that the
time required by the servers is negligible, hence not depicted

1https://github.com/dedis/cothority
2https://github.com/dedis/crypto

https://github.com/dedis/cothority
https://github.com/dedis/crypto

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

200

400

600

800

1000

C
P
U
-U
sa
g
e
 (
se
c)

Verification (Client)

Generation (Client)

Generation (All Servers)

128 256 512 768 1024
Number of Nodes

Fig. 4. System CPU-usage of RandHound

in Fig. 5. In the above configuration RandHound randomness
generation and verification consume roughly 290 and 160
seconds, respectively.

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

0

100

200

300

400

500

600

700

800

W
a
ll-
ti
m
e
 (
se

c)

Verification (Client)

Generation (Client)

128 256 512 768 1024
Number of Nodes

Fig. 5. Wall-clock time of RandHound

3) RandHerd: Before RandHerd is able to produce random-
ness it needs to go through a setup phase, using RandHound
for the intial randomness, and CoSi for siging the RandHerd
collective key. The results of our measurements for the CPU-
usage are depicted in Fig. 6. These indicate that for 1024 nodes
and a group size of 32, the RandHerd setup requires roughly
40 CPU hours which corresponds to $4.00 on Amazon EC2.
The associated wall-clock time we measured (not depicted in
the graphs) amounts to about 10 minutes.

After the setup, RandHerd efficiently produces random
numbers. Fig. 7 illustrates the wall-clock time results of our
measurements in order for a single execution of the RandHerd
round function to generate a 32-byte random value. For our
example with 1024 nodes and a group size of 32, RandHerd
needs slightly more than 6 seconds to finish one run. The

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

1
6

2
4

3
2

4
0

Group Size

10-3

10-2

10-1

100

101

102

C
P
U
-U
sa
g
e
 (
h
o
u
rs
)

RandHound

TSS-Key-Setup

CoSi

128 256 512 768 1024
Number of Nodes

Fig. 6. System CPU-usage of RandHerd setup

corresponding CPU-usage (not shown in the graphs), across
the entire system, amounts to roughly 30 seconds.

A clear sign of the server-oversubscription with regard to
the network-traffic can be seen in Fig. 7, where the wall-clock
time for 1024 nodes and a group size of 32 is lower than the
one for a group size of 24. This is due to the fact that nodes
running on the same server do not have any network-delay. We
did a verification run without server oversubscription for up to
512 nodes and could verify that the wall-clock time increases
with higher group-size.

128 256 512 768 1024
Number of Nodes

3

4

5

6

7

8

9

10

W
a
ll-
cl
o
ck

 T
im

e
 (
se

c)

Group Size

40

32

24

16

Fig. 7. Randomness creation time in RandHerd

In Fig. 8 we compare the overall communication costs
for CoSi, RandHound, and RandHerd, with varying server
numbers and a group size of 32 nodes. For the example of
1024 nodes, CoSi and RandHound require about 15 and 25
MB, respectively, whereas RandHerd needs about 400 MB.
This is expected, due to the higher in-group communication
of RandHerd. Note that these values correspond to the sum of
the communication costs of the entire system and, considering
the number of servers involved, are thus still fairly moderate.

128 256 512 768 1024
Number of Nodes

100

101

102

103
C
o
m

m
u
n
ic

a
ti
o
n
 C

o
st

 (
M

B
y
te

)

Randherd

RandHound

CoSi

Fig. 8. Comparison of communication costs for RandHerd, RandHound, and
CoSi (group size 32)

Finally, in Fig. 9 we compare RandHound and RandHerd
against a non-scalable version of RandHerd that uses only
one group. This variant is basically equivalent to RandShare,
see Section II-D, and has communication complexity of
O(n3). In comparison, RandHound has communication and
computation complexity of O(nc) and thus scales linearly,
given a constant group size c. RandHerd has communication
complexity O(n + c2) and scales linearly as well but the
overhead increase is lower.

128 256 512 768 1024
Number of Nodes

100

101

102

103

W
a
ll-
cl
o
ck

 t
im

e
 (
se

c)

RandShare

RandHound

RandHerd

Fig. 9. Comparison of randomness generation times for RandShare, Rand-
Hound, and RandHerd (group sizie 32)

C. System Failure Probability

An adversary who controls a disproportional number of
nodes in a single group can threaten the availability in both
RandHound and RandHerd. Assuming that nodes are assigned
randomly to groups, we can model analogously the system
failure probability for both protocols. Note that this assumption
excludes the scenario where the adversary controls the client
in RandHound, as his goal is there to bias the output and not
disrupt availability which would be equivalent to a self-DoS.

To get an upper bound for the failure probability of the
entire system, we first bound the failure probability of a
single group, that can be modeled as a random variable X
that follows the hypergeometric distribution, followed by the
application of Boole’s inequality, also known as the union
bound. For a single group we start with Chvátal’s formula [47]

P [X ≥ E[X] + cd] ≤ e−2cd
2

where d ≥ 0 is a constant and c is the number of draws or in
our case the group size. The event of having a disproportionate
number of malicious nodes in a given group is modeled by
X ≥ c− t+1, where t is the secret sharing threshold. In our
case we use t = cp + 1 since E[X] = cp, where p ≤ 0.33
is the adversaries’ power. Plugging everything into Chvátal’s
formula and doing some simplifications, we obtain

P [X ≥ c(1− p)] ≤ e−2c(1−2p)
2

10 20 30 40 50 60 70
Group Size c

0

10

20

30

40

50

60

S
y
st
e
m
 F
a
ilu

re
 P
ro
b
a
b
ili
ty
 [
-l
o
g
2
(q
)]

Adversarial Power p

0.33
0.32

0.28
0.23

Fig. 10. System failure probability for varying group sizes

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Adversarial Power p

0

20

40

60

80

100

120

S
y
st

e
m

 F
a
ilu

re
 P

ro
b
a
b
ili

ty
 [
-l
o
g
2
(q

)]

Group Size c

16
24

32
40

Fig. 11. System failure probability for varying adversarial power

Applying the union bound on this result, we obtain Figs. 10
and 11 that show the average system failure probabilities q for
varying group sizes (c = 16, . . . , 64) and varying adversarial
power (p = 0.01, . . . , 0.33), respectively. Note that q on the
y-axis is given as − log2(q), meaning that the higher the

points in the graph are, the lower the failure probability of
the system is. Finally, Table II lists failure probabilities for
some concrete configurations. There we see, for example, that
both RandHound and RandHerd have a failure probability of
at most 2−10.25 ≈ 0.08% for p = 0.33 and c = 32. Moreover,
assuming p = 0.33, we identified the point where the system’s
failure probability falls below 1% for a group size of c = 21.

TABLE II
SYSTEM FAILURE PROBABILITIES q (GIVEN AS − log2(q)) FOR CONCRETE

CONFIGURATIONS OF ADVERSARIAL POWER p AND GROUP SIZE c

p | c 16 24 32 40

0.23 13.13 19.69 26.26 32.82
0.28 8.66 15.17 17.33 21.67
0.32 5.76 8.64 11.52 14.40
0.33 5.12 7.69 10.25 12.82

VI. RELATED WORK

Generation of public randomness has been already studied
in various contexts: Rabin introduced the notion of randomness
beacons in cryptography [42] in 1983, that was later adopted
by NIST who launched their own online service to provide
public randomness [38] from high-entropy sources. However,
these centralized beacons lack transparency and potential users
have to rely on the trustworthiness of the party that controls
the service. There are some approaches, though, that increase
transparency and sometimes even work completely without
trusted third parties [41]. Bonneau et al. [12] show how to
use Bitcoin for collecting entropy, however this work focuses
on the financial costs of a given amount of bias instead
of preventing it. Another approach from Lenstra et al. [33]
implements a new cryptographic primitive, namely a slow
hash function, in order to prevent a client from biasing the
output. This approach assumes that the network is loosely
synchronous so that everyone gets the commitment before
the hash function produces the output. Nevertheless, if an
adversary manages delay the commitment messages enough,
he can still see the output of the hash-function before commit-
ting. Then the unbiasability depends upon whether the client
accepts this delayed commitment as valid or not, and how
slow is slow-enough, in order to be sure that all commits have
been delivered. Other approached use lotteries [2], or financial
data [18] as a source for public randomness.

An important observation by Gennaro et al. [25] is that
in many distributed key generation protocols [40] an attacker
can observe public values of honest participants. To mitigate
this attack, the authors propose to delay the disclosure of the
protocol’s public values after a “point-of-no-return” at which
point the attacker cannot influence the output anymore. We
also use the concept of a “point-of-no-return” to prevent an
adversary from biasing the output. However, their assumption
of a fully synchronous network is unrealistic for real-world
scenarios. Cachin, on the other hand proposed an asychronous
distributed coin tossing scheme [14] for public randomness-
generation that relies on a single trusted dealer for share

distribution. We improve on that by letting multiple nodes deal
secrets and combine them for randomness generation in our
protocols. Finally, Kate et al. [31], introduced an approach to
solve distributed key-generation in large-scale asynchronous
networks, such as the Internet. The communication complexity
of their solution, similar to Genaro’s and Cachin’s prevents
scalability to large numbers of nodes. Our protocols use
sharding to limit communication overheads to linear increases,
which enables RandHound and RandHerd to scale to hundreds
of nodes.

Applications of public randomness are manifold and include
the protection of hidden services in the Tor network [28],
the selection of elliptic-curve parameters [2], [33], Byzantine
consensus [39], electronic voting [1], the random sharding of
nodes into groups [29], and non-interactive client-puzzles [30].
In all of these cases, both RandHound and RandHerd can
be valuable assets for generating bias-resistant and third-
party verifiable randomness. For example, RandHound could
be integrated into the Tor consensus mechanism to help the
directory authorities generate their daily random values in
order to protect hidden services against DoS or popularity
estimation attacks.

VII. CONCLUSIONS

Although many distributed protocols critically depend on
public bias-resistant randomness for security, current solutions
that are secure against active adversaries only work for small
(n ≈ 10) numbers of participants [14], [31]. In this paper,
we have focused on the important issue of scalability and ad-
dressed this challenge by adapting well-known cryptographic
primitives. We have proposed two different approaches to
generating public randomness in a secure manner in the
presence of a Byzantine adversary. RandHound uses PVSS
and depends on the pigeonhole principle for output integrity.
RandHerd relies on RandHound for secure setup and then uses
TSS and CoSi to produce random output as a Schnorr signature
verifiable under a collective RandHerd key. RandHound and
RandHerd provide unbiasability, unpredictability, availability
and third-party verifiability while retaining good performance
and low failure probabilities. Our working prototype demon-
strates that both protocols, in principle, can scale even to
thousands of participants. By carefully choosing protocols
parameters, however, we achieve a balance of performance,
security, and availability. While retaining a failure probability
of at most 0.08% against a Byzantine adversary, a set of 512
nodes divided into groups of 32 can produce fresh random
output every 240 seconds in RandHound, and every 6 seconds
in RandHerd after an initial setup.

REFERENCES

[1] B. Adida. Helios: Web-based Open-audit Voting. In 17th USENIX Se-
curity Symposium, pages 335–348, Berkeley, CA, USA, 2008. USENIX
Association.

[2] T. Baignères, C. Delerablée, M. Finiasz, L. Goubin, T. Lepoint, and
M. Rivain. Trap Me If You Can – Million Dollar Curve. Cryptology
ePrint Archive, Report 2015/1249, 2015.

http://static.usenix.org/event/sec08/tech/full_papers/adida/adida.pdf
http://eprint.iacr.org/2015/1249

[3] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In ACM Conference on Computer and
Communications Security (CCS), 2006.

[4] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin Beacon. https:
//arxiv.org/abs/1605.04559, 2016.

[5] D. J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key
Cryptography - PKC 2006, pages 207–228, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[6] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange,
R. Niederhagen, and C. van Vredendaal. How to manipulate curve
standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014.

[7] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’13, pages 967–980. ACM, 2013.

[8] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A Standardized
Back Door. Cryptology ePrint Archive, Report 2015/767, 2015.

[9] G. R. Blakley. Safeguarding cryptographic keys. Managing Require-
ments Knowledge, International Workshop on, 00:313, 1979.

[10] C. Blundo, A. De Santis, and U. Vaccaro. Randomness in distribution
protocols. In S. Abiteboul and E. Shamir, editors, Automata, Languages
and Programming, volume 820 of Lecture Notes in Computer Science,
pages 568–579. Springer Berlin Heidelberg, 1994.

[11] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil
pairing. In ASIACRYPT, Dec. 2001.

[12] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public
randomness source. Cryptology ePrint Archive, Report 2015/1015, 2015.

[13] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and ef-
ficient asynchronous broadcast protocols. In Advances in Cryptology
(CRYPTO), Aug. 2001.

[14] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology, 18:219–246, July 2005.

[15] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In 3rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Feb. 1999.

[16] D. Chaum and T. P. Pedersen. Wallet databases with observers. In IACR
International Cryptology Conference (CRYPTO), 1992.

[17] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults. In
Symposium on Foundations of Computer Science (SFCS), SFCS ’85,
pages 383–395, Washington, DC, USA, 1985. IEEE Computer Society.

[18] J. Clark and U. Hengartner. On the Use of Financial Data as a Random
Beacon. Cryptology ePrint Archive, Report 2010/361, 2010.

[19] H. Corrigan-Gibbs, W. Mu, D. Boneh, and B. Ford. Ensuring high-
quality randomness in cryptographic key generation. In 20th ACM
Conference on Computer and Communications Security (CCS), Nov.
2013.

[20] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, and E. Gün. On scaling decentralized
blockchains. In Proc. 3rd Workshop on Bitcoin and Blockchain Research,
2016.

[21] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-
generation onion router. In 13th USENIX Security Symposium, Aug.
2004.

[22] P. Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th Annual Symposium on Foundations
of Computer Science, SFCS ’87, pages 427–438, Washington, DC, USA,
1987. IEEE Computer Society.

[23] A. Fiat and A. Shamir. How to prove yourself: practical solutions to
identification and signature problems. In IACR International Cryptology
Conference (CRYPTO), pages 186–194, 1987.

[24] M. Franklin and H. Zhang. Unique ring signatures: A practical
construction. In A.-R. Sadeghi, editor, Financial Cryptography and Data
Security 2013, pages 162–170. Springer Berlin Heidelberg, 2013.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. Journal of Cryp-
tology, 20(1):51–83, 2007.

[26] M. Ghosh, M. Richardson, B. Ford, and R. Jansen. A TorPath to
TorCoin: Proof-of-bandwidth altcoins for compensating relays. In
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs),
2014.

[27] S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore: A scalable
and efficient protocol for anonymous communication. Technical Report
2003-1890, Cornell University, February 2003.

[28] D. Goulet and G. Kadianakis. Random Number Generation During Tor
Voting, 2015.

[29] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly dynamic distributed
computing with byzantine failures. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, PODC ’13, pages
176–183, New York, NY, USA, 2013. ACM.

[30] J. A. Halderman and B. Waters. Harvesting Verifiable Challenges from
Oblivious Online Sources. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07, pages 330–341,
New York, NY, USA, 2007. ACM.

[31] A. Kate and I. Goldberg. Distributed key generation for the internet. In
Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE Interna-
tional Conference on, pages 119–128. IEEE, 2009.

[32] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In 25th USENIX Conference on
Security Symposium, 2016.

[33] A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and
trx. Cryptology ePrint Archive, Report 2015/366, 2015.

[34] C. Lesniewski-Lass and M. F. Kaashoek. Whanau: A sybil-proof
distributed hash table. NSDI, 2010.

[35] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisigna-
tures. In ACM Conference on Computer and Communications Security
(CCS), 2001.

[36] S. Micali, S. Vadhan, and M. Rabin. Verifiable random functions. In
Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 120–130. IEEE Computer Society, 1999.

[37] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Oct. 2008.
[38] NIST Randomness Beacon.
[39] O. Oluwasanmi and J. Saia. Scalable Byzantine Agreement with a Ran-

dom Beacon. In A. W. Richa and C. Scheideler, editors, Stabilization,
Safety, and Security of Distributed Systems, volume 7596 of Lecture
Notes in Computer Science, pages 253–265. Springer Berlin Heidelberg,
2012.

[40] T. P. Pedersen. A threshold cryptosystem without a trusted party. In
EUROCRYPT (EUROCRYPT). Springer, 1991.

[41] S. Popov. On a Decentralized Trustless Pseudo-Random Number
Generation Algorithm. Cryptology ePrint Archive, Report 2016/228,
2016.

[42] M. O. Rabin. Transaction Protection by Beacons. Journal of Computer
and System Sciences, 27(2):256–267, 1983.

[43] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology (CRYPTO), 1990.

[44] B. Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In IACR International Cryptol-
ogy Conference (CRYPTO), pages 784–784, 1999.

[45] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[46] D. Shumow and N. Ferguson. On the Possibility of a Back Door in the
NIST SP800-90 Dual EC PRNG. CRYPTO 2007 Rump Session, 2007.

[47] M. Skala. Hypergeometric Tail Inequalities: Ending the Insanity. CoRR,
abs/1311.5939, 2013.

[48] D. R. Stinson and R. Strobl. Provably secure distributed Schnorr
signatures and a (t, n) threshold scheme for implicit certificates. In
V. Varadharajan and Y. Mu, editors, Australasian Conference on
Information Security and Privacy (ACISP), pages 417–434, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[49] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[50] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 137–152, New York, NY, USA, 2015. ACM.

[51] D. I. Wolinsky, H. Corrigan-Gibbs, A. Johnson, and B. Ford. Dissent in
numbers: Making strong anonymity scale. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Oct. 2012.

https://arxiv.org/abs/1605.04559
https://arxiv.org/abs/1605.04559
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2015/767
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2010/361
https://eprint.iacr.org/2010/361
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://eprint.iacr.org/2015/366.pdf
https://eprint.iacr.org/2015/366.pdf
http://www.nist.gov/itl/csd/ct/nist_beacon.cfm
http://eprint.iacr.org/2016/228
http://eprint.iacr.org/2016/228
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs

	Introduction
	Background and Motivation
	Publicly Verifiable Secret-Sharing
	Schnorr Signature Schemes
	Threshold Signing
	Collective Signing

	Public Randomness
	RandShare: Small-Scale Unbiasable Randomness Protocol

	RandHound: Scalable, Verifiable Randomness Scavenging
	Overview
	Description
	Randomness Generation
	Randomness Verification

	Security Properties
	Extensions

	RandHerd: A Scalable Randomness Cothority
	Overview
	Description
	RandHerd-Setup
	RandHerd-Round
	Randomness Verification

	Security Properties
	Addressing Leader Availability Issues
	Extensions
	Randomizing Temporary-Leader Election
	BLS-Signatures

	Evaluation
	Implementation
	Performance Measurements
	Experimental Setup
	RandHound
	RandHerd

	System Failure Probability

	Related Work
	Conclusions
	References

