
A SAT-Based Algorithm for Finding Short
Cycles in Shift Register Based Stream Ciphers

Elena Dubrova1 and Maxim Teslenko2

1 Royal Institute of Technology, Electrum 229, 164 40 Stockholm, Sweden
dubrova@kth.se

2 Ericsson Research, Ericsson, Färögatan 6, 164 80 Stockholm, Sweden
maxim.teslenko@ericsson.com

Abstract. This paper addresses the problem of finding short cycles in
the internal state space of shift register based stream ciphers. The ab-
sence of short cycles is a desirable property for stream ciphers because
otherwise the keystream they generate may have small period. The ex-
isting Boolean Decision Diagram (BDD) based algorithms for finding
cycles have limited capacity due to the excessive memory requirements
of BDDs. The simulation-based algorithms can be applied to larger in-
stances, however, they cannot guarantee the detection of all cycles of
a given length. The same holds for general-purpose SAT-based model
checkers. We present a SAT-based algorithm which can find all short
cycles in real cryptographic systems with very large state spaces. The
algorithm is evaluated by analyzing Trivium, Bivium, and Grain family
of stream ciphers. We found that Trivium, Bivium, Grain-80 and Grain-
128 contain short cycles whose existence, to our best knowledge, was
previously unknown.

Keywords: Shift register, stream cipher, Trivium, Grain, cycle, SAT.

1 Introduction

SAT solvers are a powerful tool for finding solutions to Boolean satisfiability
problem. Using backtracking and different heuristics, these solvers explore the
exponential space of variable assignments looking for a satisfying assignment. In
spite of NP-completeness of the SAT problem [1], today’s SAT solvers are able
to handle problem instances involving thousands of variables. This is sufficient
for many practical SAT problems in formal verification, automatic test pattern
generation, and logic synthesis [2].

In the past there were multiple attempts to use SAT solvers in cryptanalysis,
including finding preimages for hash functions [3–5], generating collisions for
hash functions [6], faking RSA signatures [7], recovering RSA private keys [8],
finding (or disproving the existence of) weak keys in stream and block ciphers [9,
10], guess-and-determine attacks on stream ciphers [9], algebraic attacks [11–13],
and side-channel attacks on software implementations of block ciphers [14]. So



2

called logical cryptanalysis has been introduced by Massacci and Marraro [15]
as a general framework for encoding the low-level properties of cryptographic
algorithms as SAT problems and then using efficient automated theorem-proving
systems and SAT-solvers for reasoning about them. This approach has been
followed by many, including [16–19]. However, it is generally quite difficult to
make SAT solvers to produce meaningful results except for strongly reduced
instances of cryptographic systems.

In this paper, we present a SAT-solver based algorithm which is able to
produce results for important stream ciphers such as Trivium [20] and Grain [21]
which are among the candidates that have continuously attracted attention since
the end of the eStream project [22]. The presented algorithm can find all short
cycles of a given length in the internal state space of a shift register-based stream
cipher. Given that the internal state space of Trivium is of size 2288, designing an
algorithm which guarantees that all cycles of a given length are detected is far
from trivial. To the best of our knowledge, none of the existing algorithms is able
to do it. The existing Boolean Decision Diagram (BDD) based algorithms [23,24]
have limited capacity due to the excessive memory requirements of BDDs. The
simulation-based algorithms [25–28] can be applied to larger problem instances,
however, they cannot guarantee the detection of all cycles of a given length, even
if the length is short. The same holds for the SAT-based algorithms that do not
limit cycle length [29] and general-purpose SAT-based model checkers, e.g. [30].
There are many algorithms for finding cycles of length one, including [31–33],
but they cannot handle larger cycles.

The presented algorithm uses a SAT-solver for the identification of paths of a
particular length k in the state transition graph of a shift register. The input fed
into the SAT-solver is a propositional formula representing the unfolding of the
transition relation of the shift register by k time steps. A satisfying assignment
to this propositional formula corresponds to a valid path of length k in the state
transition graph. Since each state of a shift register has a unique next state,
once a path reaches a loop, it never leaves it. So, we can determine the presence
of a cycle simply by checking whether the last state of the path occurs at least
twice on this path. Furthermore, for shift registers with invertible state transition
functions (which is the case for stream ciphers), we can take advantage of that
fact that their state transition diagrams consist of pure cycles, without branches.
In this case, if the last state of a path of length k is equal to its first state, we
can conclude that we found a cycle of length k or a factor of k. We can than
mark all cycle’s states by adding them as constrains to the input formula of the
SAT-solver and, in the following iterations, search only for paths in which the
last state is not marked. We repeat the process iteratively until the SAT-solver
cannot find any more satisfying assignments.

This paper contributes to the ongoing work by providing an algorithm which
can find all short cycles in real cryptographic systems. We evaluated the pre-
sented algorithm by analyzing Trivium, Bivium, Grain family stream ciphers.
We found that Trivium, Bivium, Grain-80 and Grain-128 contain short cycles



3

whose existence, to our best knowledge, was previously unknown (except for
all-0 cycles).

The paper is organized as follows. Section 2 gives the background on shift
registers, stream ciphers and SAT-solvers. Section 3 presents the new SAT-based
algorithm. Section 4 summarizes the experimental results on four stream ciphers.
Section 5 concludes the paper and discusses open problems.

2 Background

This section gives an introduction to shift registers, stream ciphers and SAT
solvers and describes basic notions used in the paper.

2.1 Shift registers

As a model of a shift register, we use a deterministic finite state machine with a
set of states S = {0, 1}n and the state transition function f : S → S. We are not
concerned with inputs and outputs in this paper, so we assume that the input
alphabet is empty and there is no output function.

The state transition function f defines the next state s+ = (x+
1 , x

+
2 , . . . , x

+
n )

as f(s), where s = (x1, x2, . . . , xn) is a current state and xi ∈ {0, 1} and x+
i ∈

{0, 1} are Boolean variables representing the bit number i of the current and
next state, respectively , ∀i ∈ {1, 2, . . . , n}. The bit number i of the output of f
is computed by the Boolean function fi : S → {0, 1}, ∀i ∈ {1, 2, . . . , n}. In other
words, the state transition function f defines the mapping x1

. . .
xn

→
 f1(x1, . . . , xn)

. . .
fn(x1, . . . , xn)

 . (1)

Note that such a general definition of shift registers includes the linear and
non-linear feedback shift registers in the Fibonacci and the Galois configura-
tions [34], shift registers with feedforward connections (e.g. used in Trivium), as
well as Golomb’s binary machines [35, p. 21].

Each state transition function f induces a directed graph called the state
transition graph in which the nodes represent the states and the edges repre-
sent possible transitions between the states. The node x (the predecessor) in
connected to node y (the successor) by an edge if f(x) = y. Nodes forming a
loop are called a cycle. A node x satisfying f(x) = x is regarded as a cycle
of length 1. Every node has a unique successor, but some nodes may have no
predecessors and some may have more than one predecessor. In general, a state
transition graph consists of a number of cycles and a number of directed trees
rooted in cycles. For example, Figure 1 shows the state transition graph for the
state transition function x1

x2

x3

→
x2

x3 ⊕ x1x2

x1 ⊕ x2

 (2)



4

010

101

011

100

111

001

000

110

Fig. 1. The state transition graph of the function defined by (2).

where “⊕” is for the Boolean XOR (the Boolean AND in the product-terms is
omitted).

If the state transition function f is invertible, so that for every y there is
an x satisfying f(x) = y, then f is called a permutation, and the state transi-
tion diagram consists of pure cycles, without any trees rooted in them. Stream
ciphers [20, 36] and hash functions [37, 38] typically use invertible state transi-
tion functions to prevent incremental reduction of the entropy of the state. The
round function of a block cipher [39–41] has to be invertible in order to result
in a unique decryption.

Conditions for invertibility are well-known [35] for Fibonacci NLFSRs whose
state transition function is of type

x1

x2

. . .
xn

→


x2

x3

. . .
f(x1, . . . , xn)

 .

An n-bit Fibonacci NLFSR is invertible if and only if the Boolean function
updating its nth bit has the form:

f(x1, . . . , xn) = x1 ⊕ g(x2, . . . , xn).

where g : {0, 1}n−1 → {0, 1} does not depend on x1.
For Galois NLFSRs, a sufficient condition for invertibility has been derived

in [42]. An n-bit Galois NLFSR is invertible if its state transition function is of
type 

x1

x2

x3

. . .
xn

→


x2 ⊕ g1
x3 ⊕ g2(x2)
x4 ⊕ g3(x2, x3)
. . .
x1 ⊕ gn(x2, x3 . . . , xn)

 .

2.2 Stream ciphers

A stream cipher is a symmetric cryptographic primitive that allows two parties
which share a secret key to communicate confidential information [43]. Stream



5

ciphers generate a stream of pseudo-random bits, called the keystream, given
a secret key and a public random initialization vector (IV). The keystream is
combined with the plaintext message before the message is send, typically by
bitwise XORing. The received ciphertext is again XORed with the keystream to
recover the original plaintext. As a result, the message cannot be read while in
transit or storage by unauthorized parties who do not posses the secret key.

The stream ciphers considered in this paper are based on one or more shift
registers with linear or non-linear state transition functions as well as an output
function that maps the internal register state to keystream bits. Stream ciphers
have two working phases: (1) an initialization phase and (2) a keystream gener-
ation phase. During the initialization, key and IV are usually mixed by shifting
the shift registers while updating them with a combination of the state tran-
sition function and the output function. During the keystream generation, the
shift registers are shifted and their state transition functions are evaluated, while
the keystream is generated from the internal state using the output function.

2.3 SAT solvers

SAT solvers are software tools that employ efficient heuristics to decide whether
a set of constraints has a solution. Constraints are typically represented by a
propositional formula in the Conjunctive Normal Form (CNF). In a CNF, each
variable symbol in the expression, x or x, is called a literal. A clause is a disjunc-
tion (Boolean OR) of literals. CNF is a conjunction (Boolean AND) of clauses.

SAT solvers are widely used in Electronic Design Automation (EDA) for
formal verification, automatic test pattern generation, and logic synthesis [2],
though they are also popular in a growing number of other domains.

Modern SAT solvers that are typically based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [44] which is a refinement of the earlier Davis-
Putnam algorithm [45]. Most efficient DPLL-based SAT solvers include GRASP
[46], where a powerful conflict analysis procedure was introduced, and Chaff [47],
where a particularly efficient implementation of Boolean constraint propagation
and a novel low overhead decision strategy were introduced. Solvers that employ
these techniques are called conflict-driven SAT solvers. In this paper we use Min-
iSat [48], a conflict-driven SAT solver which is designed to be easily adaptable to
different domains. Other reasons for choosing MiniSat is its competitive perfor-
mance, code availability, and flexibility in adding arbitrary Boolean constraints

MiniSat employs a backtracking-based, depth-first search algorithm to find a
satisfying assignment of variables for a set of clauses. The algorithm branches on
a variable by picking it heuristically, guessing its value to be TRUE or FALSE
and examining whether the values of other variables depend on this guess. The
affected variables are then assigned and the search continues until no more as-
signments can be made. During this propagation phase, a conflict may be de-
tected, i.e. a clause that cannot be satisfied may be found (because all its literals
became false). If this happens, a so called conflict clause (or learned clause)
which describes the wrong guesses that lead to the conflict is constructed and



6

added to the SAT problem. Assumptions are then canceled by backtracking un-
til the conflict clause becomes a unit, at which point it is propagated and the
search process continues. The conflict clauses drive the backtracking, guiding
the algorithm in choosing the best next guess, and speed up future conflicts by
caching the reason for the conflict [48]. Eventually, either a satisfiable assignment
is found, or the search tree is exhausted implying that no satisfying assignment
exists.

3 Description of the Algorithm

The pseudocode of the presented algorithm is given as Algorithm 1. The al-
gorithm 1 finds cycles of length k and factors of k in a shift register with an
invertible state transition function f .

3.1 Transition relation

The state transition function f of an n-bit shift register induces a transition
relation T ⊆ S×S which can be described by the following propositional formula:

T (s, s+) =

n∧
i=1

(x+
i ↔ fi(x1, . . . , xn)) (3)

where “∧” and “↔” are the Boolean logic operations AND and EQUALITY,
respectively.

For example, the transition relation for the state transition function in the
example (2) is given by:

T (s, s+) = (x+
1 ↔ x2) ∧ (x+

2 ↔ x3 ⊕ x1x2) ∧ (x+
3 ↔ x1 ⊕ x2). (4)

3.2 Unfolding of transition relation

At step 2 of the algorithm, the unfolding of the transition relation T by k time
steps is constructed.

The unfolding of a transition relation by k time steps is typically performed
by taking the AND of the transition relations from the current state to the
next state, from the next state to the one after next state, etc., from the state
at the time step k − 1 to the state at the time step k [30]. For instance, for
the example defined by (2), the unfolding by two time steps is computed as
T (s, s+)∧T (s+, s++), where T (s, s+) is given by (4) and T (s+, s++) is given by

T (s+, s++) = (x++
1 ↔ x+

2 ) ∧ (x++
2 ↔ x+

3 ⊕ x+
1 x

+
2 ) ∧ (x++

3 ↔ x+
1 ⊕ x+

2 ).

A possible satisfying assignment for the expression T (s, s+) ∧ T (s+, s++) is
s = (101), s+ = (011), and s++ = (111). This assignment corresponds to the
path 101→ 011→ 111 in the state transition graph in Figure 1.



7

Algorithm 1 An algorithm for finding cycles of length k and factors of k in the
internal state space of an n-bit shift register with an invertible state transition
function f : {0, 1}n → {0, 1}n.

1: T =
∧n

i=1(x+
i ↔ fi(x1, . . . , xn)); /* transition relation induced by f */

2: T−k...0 =
∧−1

i=−k T (si, si+1); /* unfolding of T from the time step −k to 0 */
3: F = T−k...0; /* propositional formula representing T0...−k */
4: F = F ∧ (s−k ↔ s0); /* adding a constrain requiring the last state of a path */
5: /* of length k, s0, to be equal to the first state, s−k */
6: C(s0) = 0; /* propositional formula representing the set states of all currently */
7: /* found cycles expressed in terms of variables of the state s0 */
8: Find the set Mk of all factors of k;
9: while Sat(F ) do

10: for each m ∈Mk do
11: if s−m = s0 then
12: for (j = 0; j > −m; j −−) do
13: C(s0) = C(s0) ∨ (s0 ↔ aj); /* marking a cycle of length m */
14: /*aj is the assignment of variables of the state sj returned by Sat(F )*/
15: end for
16: F = F ∧ ¬C(s0); /* adding a constrain describing marked cycles */
17: break;
18: end if
19: end for
20: end while
21: return all cycles contained in C(s0)

3.3 Reverse direction of unfolding

Let T0...k denotes the unfolding of the transition relation T from the time step
0 to the time step k:

T0...k =

k−1∧
i=0

T (si, si+1).

Note that we need to switch from the previous notation T (s, s+) to the notation
T (si, si+1) in order to describe longer sequences of states.

It is common to unfold the transition relation T in the forward direction, as
shown above, however, we have chosen to unfold T in the reverse order, from
the time step −k to the time step 0 (step 2):

T−k...0 =

−1∧
i=−k

T (si, si+1). (5)

In this way, the states from the previous time steps rather than the next ones
are added to the unfolding. As a result, the last state of the unfolded transition
relation is always s0, independently of the depth of unfolding. For example, the
unfolding by two time steps is computed as T−2,−1,0 = T (s−2, s−1)∧T (s−1, s0).
In this case, the path 101→ 011→ 111 in the state transition graph in Figure 1



8

corresponds to the satisfying assignment s−2 = (101), s−1 = (011), and s0 =
(111). This way of unfolding reduces the number of extra clauses added to F at
each iteration of SAT-solver. A similar strategy was used in the algorithm [29].

3.4 Finding satisfying assignments

Once the transition relation is unfolded, the propositional formula F representing
the unfolding T−k...0 is constructed using the standard procedure [30] (step 3).
Then a constrain s−k ↔ s0 which means that the last state of a path of length
k, s0, should to be equal to the first state of the path, s−k, is added to F (step
4) and the SAT-solver is called to find a satisfying assignment for F (step 9).

The function Sat(F ) takes the expression F and returns TRUE if there exists
an assignment of variables for the states s−k, . . . , s1, s0 which makes F true. Such
a satisfying assignment corresponds to a path of length k in the state transition
graph induced by the state transition function f . A path has length k if it makes
k transitions between the states. Since we added to F the constrain s−k ↔ s0,
we also know that in the path returned by the SAT-solver the last state is equal
to the first. This means we found a cycle which can either be of length k, or a
factor of k.

To find the length of the cycle, for each of the factors of k, m, we check if
the last state of the path, s0, is equal to s−m (step 11). In the pseudocode, the
set Mk containing all factors of k is computed at step 8, before the first run of
the SAT-solver. If a shorter than k cycle if found, the for-loop breaks.

For instance, a possible satisfying assignment for the unfolding by two steps
T−2,−1,0 = T (s−2, s−1) ∧ T (s−1, s0) in the example (2) is s−2 = (110), s−1 =
(110), and s0 = (110). This assignment corresponds to the path 110 → 110 →
110 in the state transition graph in Figure 1. By checking the set of factors
M2 = {1, 2} of 2, we can determine that this path corresponds to a cycle of
length 1 and stop checking other factors.

3.5 Identifying and marking cycles

If Algorithm 1 finds that s0 = s−m for some m ∈ Mk, the corresponding cycle
of length m is marked by adding constraints to the input formula of the SAT-
solver, F . In the following iterations, the algorithm only searches for paths in
which the last state is not marked.

Clearly, if the last state of a path of length k does not belong to a cycle
of length at most k, then no states of this path belongs to such a cycle either.
In our case, the last state of a path is always s0. Therefore, it is sufficient to
express the constraints in terms of variables of the state s0 only. By adding these
constraints to F , we restrict F in such a way that no satisfying assignment for
F returned by the SAT solver contains a state of a previously found cycle.

The constraints are added to F as F = F ∧ ¬C(s0) (step 13), where C(s0)
is the propositional formula describing the characteristic function of the set of
states of all currently found cycles expressed in terms of variables of the state s0



9

and “¬” is the Boolean logic operation NOT. Before the first run of the SAT-
solver, at step 6, C(s0) is initialized to 0. If the algorithm finds a cycle of length
m (step 11), each of the m states of this cycle, sj , j ∈ {0, 1, . . . ,m−1}, is added
to C(s0) as C(s0) = C(s0)∨(s0 ↔ aj), where aj is an n-bit vector corresponding
to the assignment of variables of the state sj returned by the SAT-solver.

In the presented approach, the number of extra clauses added to F at each
iteration is equal to the total number of states in the cycles found at this iter-
ation, i.e. at most k. So, a formula of size O(nk) is added to F , where n is the
number of variables. Contrary, in a general case, a formula of size O(np log p)),
where p is the depth of unfolding, has to be added to to F to mark cycles [49].

If a satisfying assignment does not exist, then there is no cycle of length k
or a factor of k among the unmarked states of the state transition graph. This
implies that all cycles of length k and a factor of k are already found and marked.
The algorithm terminates and returns the set of all found cycles (step 21).

4 Analysis of Trivium, Bivium and Grain

We applied the presented algorithm to Trivium, Bivium, Grain-80 and Grain-128
stream ciphers. This section shows the results and compares them to the results
of the SAT-based algorithm from [29].

It might be worth mentioning that a random permutation over a set of p
elements is expected to have an average of log p cycles [50]. The number of
r-cycles is expected to decrease as 1/r, for any fixed integer 1 ≤ r ≤ p [50].

4.1 Analysis of Trivium

We used the presented algorithm to search for short cycles in Trivium stream
cipher [20]. Trivium has a 288-bit internal state in which only 3 out of 288 bits
are updated non-trivially. The rest of bits shift the content of the previous bit.

Let (x1, x2, . . . , x288) be the variables representing the bits of a current state
of Trivium. At each clock cycle, the bit number i of the next state, denoted by
x+
i , is computed as:

x+
1 = x288 ⊕ x287x286 ⊕ x243 ⊕ x69

x+
94 = x93 ⊕ x92x91 ⊕ x171 ⊕ x66

x+
178 = x177 ⊕ x176x175 ⊕ x264 ⊕ x162

and x+
i = xi−1 for all other xi, i ∈ {2, 3, . . . , 93, 95, . . . , 177, 179, . . . , 288}.

We searched for cycles of length k, for k = 1, 2, 3, . . . until the timeout of 12
hours was reached at k = 31. The results are shown in Table 1. The 2nd row in
the table shows the number Nk of cycles of length k found by the Algorithm 1.
The 3rd row shows CPU time, t. The experiments were run on a PC with Intel
Core i7-4600U CPU at 2.1 GHz with 7.7 GB RAM running under Ubuntu 14.04
LTS.



10

k 1 2 3 4 5 6 7 8 9 10 11 12

Nk 1 0 21 0 0 0 0 0 0 1 1 2

t 0.004s 0.003s 0.011s 0.004s 0.014s 0.030s 0.040s 0.091s 0.099s 0.359s 0.261s 0.384s

k 13 14 15 16 17 18 19 20 21 22

Nk 0 0 1 0 0 0 0 0 0 0

t 0.034s 0.748s 0.565s 7.275s 10.604s 53.161s 1m2.358s 3m18.442s 3m5.661s 48.548s

k 23 24 25 26 27 28 29 30

Nk 0 0 0 0 0 0 0 0

t 0.285s 15m10.014s 14m43.513s 0.125s 8m46.997s 151m44.853s 0.239s 511m19.397s

Table 1. The number Nk of cycles of length k found in Trivium; t is the runtime.

In total, we found 27 cycles: one cycle of length 1 (all-0), 21 cycles of length
3, one cycle of length 10, one cycle of length 11, 2 cycles of length 12, and
one cycle of length 15. Note, however, that these cycles do not directly affect
security of Trivium because none of them contains a state required for Trivium’s
initialization. Trivium is initialized by loading the following state into its state
register:

(x1, x2, . . . , x93) = (K1, . . . ,K80, 0, . . . , 0)
(x94, x95, . . . , x177) = (IV1, . . . , IV80, 0, . . . , 0)
(x178, x179, . . . , x288) = (0, . . . , 0, 1, 1, 1)

where (K1, . . . ,K80) is an 80-bit key and (IV1, . . . , IV80) is an 80-bit initialization
value (IV), and clocking the cipher 4× 288 times.

4.2 Analysis of Bivium

We also applied the presented algorithm to Bivium stream cipher [51], a simpli-
fied version of Trivium.

Bivium [51] has a 177-bit internal state in which only 2 out of 177 bits are
updated non-trivially. Using the same notation as in the previous section, Bivium
can be specified as:

x+
1 = x177 ⊕ x176x175 ⊕ x69 ⊕ x162

x+
94 = x93 ⊕ x92x91 ⊕ x171 ⊕ x66

and x+
i = xi−1 for all other xi, i ∈ {2, 3, . . . , 93, 95, . . . , 177}.

Due to a smaller search space, the timeout of 12 hours was reached at k = 44.
In Bivium, we found only one cycle of length 1 (all-0) and 5 cycles of length 3. As
in Trivium’s case, these cycles do not directly affect security of Bivium because
none of them contains a state required for Bivium’s initialization. Bivium is
initialized by loading the following state into the state register:

(x1, x2, . . . , x93) = (K1, . . . ,K80, 0, . . . , 0)
(x94, x95, . . . , x177) = (IV1, . . . , IV80, 0, . . . , 0)



11

where (K1, . . . ,K80) is an 80-bit key and (IV1, . . . , IV80) is an 80-bit IV, and
clocking the cipher 4 times.

4.3 Analysis of Grain-80

The stream cipher Grain-80 [36] is constructed from an 80-bit NLFSR and an
80-bit LFSR. The LFSR is known to have the maximum period of 280 − 1 since
it uses a primitive generator polynomial of degree 80. The period of the NLFSR
is unknown, however, the input stage of the NLFSR is fed from the output stage
of the LFSR to guarantee the lower bound of 280−1 on the overall period of the
two combined shift registers.

We investigated the state space of the 80-bit NLFSR of Grain-80 for the case
when it is disconnected from the LFSR. In this case, its feedback function is
specified as

x+
80 = x64 ⊕ x61 ⊕ x53 ⊕ x46 ⊕ x38 ⊕ x34 ⊕ x29 ⊕ x22 ⊕ x16 ⊕ x10 ⊕ x1 ⊕ x64x61

⊕ x38x34 ⊕ x16x10 ⊕ x61x53x46 ⊕ x34x29x22 ⊕ x64x46x29x10 ⊕ x61x53x38x34

⊕ x64x61x22x16 ⊕ x64x61x53x46x38 ⊕ x34x29x22x16x10 ⊕ x53x46x38x34x29x22

and x+
i = xi+1 for all other xi, i ∈ {1, 2, . . . , 79}.

The timeout of 12 hours was reached at k = 46. We found one cycle of length
1 (all-0), one cycle of length 3 and one cycle of length 12. Note that in the
full version Grain-80, when the NLFSR is combined with the LFSR, the cycles
of length 3 and 12 will translate into the cycles of length 3 × (280 − 1) and
12× (280 − 1).

Grain-80 is initialized by loading an 80-bit key into the NLFSR, loading a
64-bit IV into the first 64-bits of the LFSR, filling the rest of LFSR with 1s, and
clocking the cipher 160 times without producing keystream. Since no restrictions
are imposed on the 80-bit key loaded into the NLFSR, the key may potentially
be one of the states of the short cycles.

4.4 Analysis of Grain-128

Similarly to Grain-80, the stream cipher Grain-128 is constructed from an 128-bit
NLFSR and a 128-bit LFSR which is feeding the input stage of the NLFSR [21].

We investigated the state space of the 128-bit NLFSR of Grain-128 for the
case when it is separated from the LFSR. In this case, its feedback function is
specified as

x+
128 = x1 ⊕ x27 ⊕ x57 ⊕ x92 ⊕ x97 ⊕ x4x68 ⊕ x12x14 ⊕ x18x19 ⊕ x28x60

⊕ x41x49 ⊕ x62x66 ⊕ x69x85

and x+
i = xi+1 for all other xi, i ∈ {1, 2, . . . , 127}.

The timeout of 12 hours was reached at k = 32. We found one cycle of length
1 (all-0), one cycle of length 7 one cycle of length 8. Note that in the full version



12

Grain-128, when the NLFSR is combined with the LFSR, the cycles of length 7
and 8 will translate into the cycles of length 7× (2128 − 1) and 8× (2128 − 1).

Grain-128 is initialized by loading an 128-bit key into the NLFSR, loading
a 96-bit IV into the first 96-bits of the LFSR, filling the rest of LFSR with
ones, and clocking the cipher 256 times without producing keystream. Since no
restrictions are imposed on the 128-bit key loaded into the NLFSR, the key may
potentially be one of the states of the short cycles.

4.5 Comparison with the SAT-based algorithm from [29]

The algorithm presented in [29] is a SAT-based algorithm which does not limit
the cycle length. It was developed for the analysis of so called (n, 2) random
Boolean networks (or Kauffman networks) which are used in physics to model
spin glasses [52] and in biology to study cell differentiation [53], immune re-
sponse [54], and evolution [55]. The (n, 2) random Boolean networks use non-
invertible n-variable state transition functions in which each Boolean function
depends on at most two variables assigned at random. They are known to have
a small number of short cycles [56]. While quite successful for the (n, 2) random
Boolean network case, the algorithm [29] does not seem suitable for the invert-
ible mappings in which all states belong to some cycle. This makes the search
for all cycles unfeasible for large n.

We have applied the algorithm [29] to Trivium, Bivium, Grain-80 and Grain-
128. It all four cases, the algorithm [29] was able to find all-0 cycles, but no other
short cycles. The process was killed due to the memory blow-up.

5 Conclusion

In this paper, we presented a SAT-based algorithm for finding short cycles and
applied it to Trivium, Bivium, Grain-80 and Grain-128 stream ciphers. We found
that all four ciphers contain short cycles whose existence, to our best knowledge,
was previously unknown (except for all-0 cycles).

Note that the presented algorithm is applicable not only to shift-register
based systems, but also to any invertible mapping of type {0, 1}n → {0, 1}n
including Feistel networks [57], T-functions [58], and univariate permutation
polynomials modulo 2n [59].

Our next steps are to investigate if the discovered cycles open new possibilities
for cryptanalysis and to apply the presented algorithm to other cryptographic
systems. It is particularly interesting to investigate systems which use only a
secret key and IV for their initialization, without fixing the remaining state bits
(if any) to constants.

6 Acknowledgements

The first author was supported in part by the research grant No SM14-0016 from
the Swedish Foundation for Strategic Research.



13

References

1. S. A. Cook, “The complexity of theorem-proving procedures,” in 3rd Annual ACM
Symposium on Theory of Computing, pp. 151–158, 1971.

2. in Logic Synthesis and Verification (S. Hassoun and S. Tsutomu, eds.), Norwell,
MA, USA: Kluwer Academic Publishers, 2002.

3. D. De, A. Kumarasubramanian, and R. Venkatesan, “Inversion attacks on secure
hash functions using SAT solvers,” in Proceedings of the 10th International Con-
ference on Theory and Applications of Satisfiability Testing, SAT’07, (Berlin, Hei-
delberg), pp. 377–382, Springer-Verlag, 2007.

4. V. Nossum, SAT-based Preimage Attacks on SHA-1. MSc. Thesis, University of
Oslo, Norway, 2012.

5. P. Morawiecki and M. Srebrny, “A SAT-based preimage analysis of reduced keccak
hash functions,” Inf. Process. Lett., vol. 113.10-11, pp. 392–397, 2013.

6. I. Mironov and L. Zhang, “Applications of SAT solvers to cryptanalysis of hash
functions,” in Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing, SAT’06, (Berlin, Heidelberg), pp. 102–115,
Springer-Verlag, 2006.

7. C. Fiorini, E. Martinelli, and F. Massacci, “How to fake an RSA signature by
encoding modular root finding as a SAT problem,” Discrete Appl. Mat.

8. C. Patsakis, “Rsa private key reconstruction from random bits using SAT solvers.”
Cryptology ePrint Archive, Report 2013/026, 2013. http://eprint.iacr.org/.

9. F. Lafitte, O. Markowitch, and D. Van Heule, “SAT based analysis of LTE stream
cipher ZUC, booktitle = Proceedings of the 6th International Conference on Se-
curity of Information and Networks, series = SIN ’13, year = 2013, isbn = 978-
1-4503-2498-4, location = Aksaray, Turkey, pages = 110–116, numpages = 7, url
= http://doi.acm.org/10.1145/2523514.2523533, doi = 10.1145/2523514.2523533,
acmid = 2523533, publisher = ACM, address = New York, NY, USA, keywords =
128-EEA3, 128-EIA3, LTE, SAT solver, ZUC, stream cipher,,”

10. F. Lafitte, J. Nakahara, and V. D. Heule, “Applications of sat solvers in cryptanal-
ysis: Finding weak keys and preimages,” Journal of Politics in Latin America;2014,
Vol. 6 Issue 2, p1, vol. 6, 2014.

11. B. Chen, “Strategies on algebraic attacks using SAT solvers,” in Young Computer
Scientists, 2008. ICYCS 2008. The 9th International Conference for, pp. 2204–
2209, Nov 2008.

12. M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to cryptographic
problems,” in Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing, SAT ’09, (Berlin, Heidelberg), pp. 244–257,
Springer-Verlag, 2009.

13. P. Jovanovic and M. Kreuzer, “Algebraic attacks using SAT-solvers,” Groups Com-
plexity Cryptology, vol. 2.2, pp. 247–259, 2010.

14. N. R. Potlapally, A. Raghunathan, S. Ravi, N. K. Jha, and R. B. Lee,
“Satisfiability-based framework for enabling side-channel attacks on cryptographic
software,” in Proceedings of the Conference on Design, Automation and Test in Eu-
rope: Designers’ Forum, DATE ’06, (3001 Leuven, Belgium, Belgium), pp. 18–23,
European Design and Automation Association, 2006.

15. F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT problem,” J. Autom.
Reason., vol. 24, pp. 165–203, Feb. 2000.

16. D. Jovanović and P. Janičić, “Logical analysis of hash functions,” in Proceedings of
the 5th International Conference on Frontiers of Combining Systems, FroCoS’05,
(Berlin, Heidelberg), pp. 200–215, Springer-Verlag, 2005.



14

17. T. Eibach, E. Pilz, and G. Völkel, Attacking Bivium Using SAT Solvers, pp. 63–76.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

18. E. Homsirikamol, P. Morawiecki, M. Rogawski, and M. Srebrny, Security Margin
Evaluation of SHA-3 Contest Finalists through SAT-Based Attacks, pp. 56–67.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

19. L. Papay, Use of SAT Solvers in Cryptanalysis. MSc. Thesis, Comenius University,
Bratislava, Slovakia, 2016.

20. C. D. Canniere and B. Preneel, “TRIVIUM specifications,” cite-
seer.ist.psu.edu/734144.html.

21. M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher pro-
posal: Grain-128,” in Information Theory, 2006 IEEE International Symposium
on, pp. 1614–1618, July 2006.

22. “estream: the ecrypt stream cipher project,” 2008.
http://www.ecrypt.eu.org/stream/.

23. E. Dubrova, M. Teslenko, and A. Martinelli, “Kauffman networks: Analysis and
applications,” in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 479–484, November 2005.

24. A. Garg, I. Xenarios, L. Mendoza, and G. De Micheli, “An efficient method for
dynamic analysis of gene regulatory networks and in silico gene perturbation ex-
periments,” in Proceedings of 11th Annunal International Conference on Research
in Computational Molecular Biology (RECOMB’2007), vol. 4453 of Lecture Notes
in Computer Science, pp. 62–76, Springer, April 2007.

25. S. Bilke and F. Sjunnesson, “Stability of the Kauffman model,” Physical Review
E, vol. 65, p. 016129, 2001.

26. J. E. S. Socolar and S. A. Kauffman, “Scaling in ordered and critical random
Boolean networks.” http://arXiv.org/abs/cond-mat/0212306.

27. C. Oosawa, “Effects of alternative connectivity on behavior of randomly con-
structed Boolean networks,” Physica D: Nonlinear Phenomena, vol. 170, no. 2,
pp. 143–161, 2002.

28. L. Raeymaekers, “Dynamics of Boolean networks controlled by biologically mean-
ingful functions,” Theoretical Biology, vol. 218, no. 3, pp. 331–41, 2002.

29. E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding attractors in syn-
chronous Boolean networks,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 8, no. 5, pp. 1393–1399, 2011.

30. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu, “Symbolic model check-
ing using SAT procedures instead of BDDs,” Proceedings of Design Automation
Conference (DAC’99), pp. 317–320, June 1999.

31. T. Tamura and T. Akutsu, “An improved algorithm for detecting a singleton at-
tractor in a Boolean network consisting of AND/OR nodes,” in Proceedings of the
3rd International Conference on Algebraic Biology (AB’08), vol. 5147 of Lecture
Notes in Computer Science, pp. 216–229, Springer, July-August 2008.

32. T. Akutsu and T. Tamura, “On finding a fixed point in a Boolean network with
maximum indegree 2,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. E92.A, no. 8, pp. 1771–1778, 2009.

33. A. Naldi, D. Thieffry, and C. Chaouiya, “Decision diagrams for the representation
and analysis of logical models of genetic networks,” in Proceedings of International
Conference on Computational Methods in Systems Biology (CMSB’2007), vol. 4695
of Lecture Notes in Computer Science, pp. 233–247, Springer, September 2007.

34. E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs,” IEEE
Transactions on Information Theory, vol. 55, pp. 5263–5271, November 2009.



15

35. S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.

36. M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained
environments,” citeseer.ist.psu.edu/732342.html.

37. G. Bertoni, J. Daemen, M. Peeters, and G. V. V. Assche, “The Kessak reference,”
January 2011. http://keccak.noekeon.org/.

38. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “Quark: A
lightweight hash,” Journal of Cryptology, vol. 26, no. 2, pp. 313–339, 2013.

39. J. Daemen and V. Rijmen, “AES proposal: Rijndael,” April 2003. National Insti-
tute of Standards and Technology.

40. A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2007 (P. Paillier and I. Ver-
bauwhede, eds.), vol. 4727 of Lecture Notes in Computer Science, pp. 450–466,
Springer Berlin Heidelberg, 2007.

41. J. Borghoff, A. Canteaut, T. Gneysu, E. Kavun, M. Knezevic, L. Knudsen, G. Le-
ander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. Thomsen, and T. Yaln,
“Prince - a low-latency block cipher for pervasive computing applications,” in Ad-
vances in Cryptology ASIACRYPT 2012 (X. Wang and K. Sako, eds.), vol. 7658
of Lecture Notes in Computer Science, pp. 208–225, Springer Berlin Heidelberg,
2012.

42. E. Dubrova, “On constructing secure and hardware-efficient invertible map-
pings,” in Proceedings of International Symposium on Multiple-Valued Logic (IS-
MVL’2016), pp. 27–33, May 2016.

43. M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.

44. M. Davis, G. Logemann, and D. Loveland, “A machine program for theorem-
proving,” Commun. ACM, vol. 5, pp. 394–397, July 1962.

45. M. Davis and H. Putnam, “A computing procedure for quantification theory,” J.
ACM, vol. 7, pp. 201–215, July 1960.

46. J. P. M. Silva and K. A. Sakallah, “Conflict analysis in search algorithms for
satisfiability,” in Tools with Artificial Intelligence, 1996., Proceedings Eighth IEEE
International Conference on, pp. 467–469, Nov 1996.

47. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: En-
gineering an efficient SAT solver,” in Proceedings of the 38th Annual Design Au-
tomation Conference, DAC ’01, (New York, NY, USA), pp. 530–535, ACM, 2001.

48. N. Eén and N. Sörensson, An Extensible SAT-solver, pp. 502–518. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004.

49. D. Kroening and O. Strichman, “Efficient computation of recurrence diameters,” in
Proceedings of the 4th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’2003), vol. 2575 of Lecture Notes in Computer
Science, pp. 298–309, Springer, January 2003.

50. P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, pp. 329–354. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1990.

51. H. Raddum, “Cryptanalytic results on TRIVIUM.” ECRYPT Stream Cipher
Project, Report 2006/039, 2006. http://www.ecrypt.eu.org/stream.

52. B. Derrida and H. Flyvbjerg, “Multivalley structure in Kauffman’s model: Analogy
with spin glass,” J. Phys. A: Math. Gen., vol. 19, p. L1103, 1986.

53. S. Huang and D. E. Ingber, “Shape-dependent control of cell growth, differenti-
ation, and apoptosis: Switching between attractors in cell regulatory networks,”
Experimental Cell Research, vol. 261, pp. 91–103, 2000.



16

54. S. A. Kauffman and E. D. Weinberger, “The NK model of rugged fitness landscapes
and its application to maturation of the immune response,” Theoretical Biology,
vol. 141, pp. 211–245, 1989.

55. S. A. Kauffman, The Origins of Order: Self-Organization and Selection of Evolu-
tion. Oxford: Oxford University Press, 1993.

56. M. Aldana, S. Coopersmith, and L. P. Kadanoff, “Boolean dynamics with random
couplings.” http://arXiv.org/ abs/adap-org/9305001.

57. H. Feistel, “Cryptography and computer privacy,” Scientific American, vol. 228,
pp. 15–23, May 1973.

58. A. Klimov and A. Shamir, “A new class of invertible mappings,” in Revised Papers
from the 4th International Workshop on Cryptographic Hardware and Embedded
Systems, CHES’02, (London, UK), pp. 470–483, Springer-Verlag, 2002.

59. R. L. Rivest, “Permutation polynomials modulo 2w,” Finite Fields and Their Ap-
plications, vol. 7, pp. 287–292, 1999.


