
Preventing CLT Zeroizing Attacks on Obfuscation

Rex Fernando∗ Peter M. R. Rasmussen∗ Amit Sahai∗

November 16, 2016

Abstract

We describe a defense against zeroizing attacks on indistinguishability obfuscation (iO) over
the CLT13 multilinear map construction. This defense applies to the most recent extension
of the attack by Coron et al. (ePrint 2016), under which a much larger class of branching
programs is vulnerable. To accomplish this, we distill an essential common component of all
previous zeroizing attacks on iO over CLT13. This leads to the notion of a function being “input
partionable”, meaning that the bits of the function’s input can be partitioned into somewhat
independent subsets. We find a way to thwart these attacks by requiring a signature structure
to be added to the input of every function. The signature eliminates the possibility of finding
independent subsets of the input that still leads to more than one valid input, and thus, stops
this line of attack. Finally, two concrete instantiations of such signatures are suggested.

We can also apply our defense to a recent extension of attacks by Chen et al (ePrint 2016)
on obfuscation in the context of GGH13 construction.

∗UCLA and Center for Encrypted Functionalities. {rex, rasmussen, sahai}@cs.ucla.edu. Research supported
in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984,
1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense
Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed
are those of the author and do not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

1

1 Introduction
Indistinguishability obfuscation (iO) has so far relied on multilinear maps for instantiation
[GGH+13b] and viable candidates for such are sparse. On top of that, the few that exist
[GGH13a, CLT13, GGH15] have all been shown to suffer from significant vulnerabilities. How-
ever, not all attacks against these multilinear maps can be applied to iO. The very particular
structure that most iO candidates induce puts numerous constraints on the way the encoded
values can be combined, thus often not allowing the flexible treatment needed to mount an
attack. That said, attacks on iO schemes have nonetheless slowly been found for obfuscation of
increasingly general families of functions.

Current Attacks on iO over CLT13. In this paper we focus on the Coron-Lepoint-
Tibouchi (CLT13) multilinear maps [CLT13]. The known attacks over CLT13, called zeroizing
attacks [CHL+14, CGH+15, CLLT16], involve exploiting information which is leaked from a suc-
cessful zero-test. Each of these attacks require sets of encodings that satisfy a certain structure.
Namely, to attack a CLT instance of dimension n, an adversary needs three sets of encodings
{Ai}i∈[n], {B0, B1}, and {Cj}j∈[n] such that for every i, j ∈ [n] and σ ∈ {0, 1}, AiBσCj is a
top-level encoding of zero. In other words, we must be able to vary the choice of encoding
in each set independently of the other choices and always produce an encoding of zero. If an
adversary is able to obtain such sets, then the adversary is able to factor the modulus of the
ciphertext ring, completely breaking the CLT instance.

In the case of applying zeroizing attacks to iO constructions over CLT13, the above require-
ment leads to an interesting constraint on the behavior of the function being obfuscated. The
intuition behind this is that iO schemes are designed so that the only way to achieve an encoding
of zero is by performing an honest evaluation of the obfuscated program. The result of this is
that the only way to obtain the products of the three sets of encodings described above is to vary
the inputs to the obfuscated function. So for any function to be vulnerable to zeroizing attacks
over CLT13, the input bit indices of the function must be divisible into three sets, corresponding
to the three sets of encodings above. For each set of indices there must be a large set of possible
assignments of bit values to those indices which evaluate to zero, and like before we must be
able to vary the choices for each set independently of the others. (See the next section for a
formal description of this requirement, and the appendix for an explanation of why this follows
from the structure of iO constructions over CLT13.)

At first glance this requirement seems very restrictive, and in fact it is even more restrictive
than described; the matrices of the obfuscated branching program must be organized in a
specific way in relation to the three sets of inputs. Because of this, the first paper applying
zeroizing attacks over CLT13 to iO only showed how to apply the attack to very simple branching
programs [CGH+15], and attacking more realistic targets seemed out of reach of this technique.
However a very recent work by Coron et al. [CLLT16] introduced a simple method that can
transform a much larger class of branching programs into ones that have this very specific
structure. As such, zeroizing attacks appear much more threatening to the security of iO over
CLT13 than previously thought.

Our Contribution. Our aim in this paper is to provide a robust defense against the known
classes of zeroizing attacks for iO over CLT13, and to some potential future extensions of these
attacks. We do this by showing how to change the input structure of any function f to be
obfuscated in such a way that it is impossible to divide its input bit indices into three sets such
that the indices in each set can be varied independently. More specifically, given f : {0, 1}n →
{0,⊥} we will construct a function h : {0, 1}n → {0, 1}m and a new program f ′ : {0, 1}n+m →
{0,⊥} from f such that f ′(s) outputs the value of f(x) if and only if the input is of the
form s = xh(x). We find a necessary and sufficient condition on h to guarantee input non-
independence of f ′ and present and discuss various possible instantiations of this, i.e. different
possibilities for h.

2

We remark that the attacks in [CLLT16] still do not apply to obfuscations of all branching
programs. Specifically, if the branching program is too long compared to the input size then
there is a blowup associated with the transformation in [CLLT16] which becomes infeasible.
Also, there does not seem to be any straightforward way to apply the attack to dual-input
branching programs, due to a similar blowup in complexity. Even if future work reduces the
blowup to extend the attacks to these two cases, though, our defense should still hold against
them.

It is noteworthy to contrast this line of work with the recent attacks on iO over the GGH13
[GGH13a] multilinear maps construction. In [MSZ16] Miles et al. implement the first known
such attacks, which they call annihilating attacks. A follow-up paper [GMM+16] give a weakened
multilinear map model (by altering the ideal model given in [BGK+14]) and an obfuscation
construction in this model which is safe against all annihilating attacks. We stress that the
attacks over CLT13 are not related to these annihilating attacks, which are not known to work
over CLT13. However, a recent paper attacking obfuscation over GGH13 [CGH16], in which
the authors extend annihilating attacks to the original GGHRSW construction of iO, does use
an input partition as part of their attack. They do this as a first step in order order to recover
a basis of the ideal which defines the plaintext space. Our defense applies to this step of their
attack.

As a final note, our defense does not operate in a weak multilinear map model, in contrast
to the one defined in [GMM+16]. We leave it as an important open question to develop such a
weak multilinear map model for CLT13.

2 Securing Functions against Partition Attacks
Throughout this paper, St will denote the set of permutations of {1, 2, . . . , t} and for a bit string
x = x1 . . . xt ∈ {0, 1}t we will write σ(x) = xσ(1) . . . xσ(t) for σ ∈ St.

2.1 Attack Model
This section seeks to describe the exact attack model we wish to work from. Since we are
interested in inputs to programs which result in an output of 0, we consider computable functions
of the form f : {0, 1}t → {0,⊥}, where ⊥ represents any input other than 0. We first formally
define the function behavior which is required in order to perform all known zeroizing attacks.

Definition 1 (Input Partition). Let f : {0, 1}t → {0,⊥} be a function. An input partition for
f of degree k is a tuple

Ikf =
(
σ ∈ St, {ai}i∈[k] ⊆ {0, 1}l, {cj}j∈[k] ⊆ {0, 1}m

)
with ai 6= aj, ci 6= cj for all i, j ∈ [k] and l +m = t such that for all i, j ∈ [k],

f(σ(aicj)) = 0.

As explained in the introduction, this definition requires that there are sets of input bit
indices where the input bits corresponding to each set can be varied independently of the other
bits always resulting in a zero output. The use of σ means that the sets of bit indices do not
have to be sequential.

Here we use two sets of indices instead of the three required for the actual attack defined in
[CGH+15]. This is sufficient since preventing a partitioning of the input into two parts naturally
also prevents a partitioning into three parts. We do this to simplify the exposition.

We now describe the attack we will prevent. All known zeroizing attacks on iO over CLT
have this step, which exploits the function behavior described in the previous definition. By
defending against this attack we defend against all such zeroizing attacks.

3

Definition 2 (Input Partition Attack). For each t ∈ N let Ft be a family of functions f : {0, 1}t →
{0,⊥} and let F = {Ft}t∈N. We shall say that a PPT adversary A performs an input partition
attack of degree k on F if for a non-negligible function ε,

Pr
w,f←Ft

[
A(f) = Ikf such that Ikf is an input partition of f of degree k

]
> ε(t)

where the probability is taken over the randomness w of A and the choice of f .

Turning the above definition around, we can ensure security against the above type of attack,
if the function we obfuscate satisfies the following.

Definition 3 (Input Partition Resistance). For each t ∈ N let Ft be a family of functions
f : {0, 1}t → {0,⊥} and let F = {Ft}t∈N. We say that F is input partition resistant for degree
k if no PPT adversary A successfully performs an independent input attack on f of degree k.

A stronger version of this is for a function to simply not admit any input partitions which
would clearly also make attacks requiring a partition of the input impossible.

Definition 4 (Input Unpartitionable Function). A function f : {0, 1}n → {0,⊥} is input un-
partitionable for degree k if it does not admit an input partition of degree k. If f is input
unpartitionable for degree 2, we simply say that it is input unpartitionable.

2.2 Securing Functions
Having made precise the attack model, we proceed to determine the framework from which we
will be working. The basic idea of countering the attacks of the model is to modify the functions
being obfuscated such that no input partition attack can succed.

Definition 5 (Completely Securing a Function). Let f : {0, 1}n → {0,⊥} and h : {0, 1}n →
{0, 1}m be functions and construct a function g : {0, 1}n+m → {0,⊥} by

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

We say that h completely secures f if g is input unpartitionable.

A slightly less strict definition is the following, which does not exclude the existence of
partitions, but simply guarantees that such partitions are hard to find.

Definition 6 (Computationally Securing a Function Family). Let F = {ft}t∈N where ft : {0, 1}t →
{0,⊥} and let H = {Ht}t∈N where for each t ∈ N, Ht is a family of functions h : {0, 1}t →
{0, 1}`(t) for a polynomially bounded function `. Further, define for each t ∈ N a family of
functions Gt = {gh}h∈H where gh : {0, 1}t+`(t) → {0,⊥} is the function satisfying

gh(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

We say that H computationally secures F if G is input partition resistant for degree two.

While we have chosen to work with rather strong definitions that exclude input partitions
of degree two, the known attacks following the input partition attack model uses significantly
more partitions. So although we only work with the two definitions above in this paper, it is
worth defining the following notions for completeness.

Definition 7 (k-securing a function). Let f : {0, 1}n → {0,⊥} and h : {0, 1}n → {0, 1}m be
functions and construct a function g : {0, 1}n+m → {0,⊥} by

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

We say that h k-secures f if g is input unpartitionable for degree k.

4

Definition 8 (Computationally k-securing a function). Let F = {ft}t∈N where ft : {0, 1}t →
{0,⊥} and let H = {Ht}t∈N where for each t ∈ N, Ht is a family of functions h : {0, 1}t →
{0, 1}`(t) for a polynomially bounded function `. Further, define for each t ∈ N a family of
functions Gt = {gh}h∈H where gh : {0, 1}t+`(t) → {0,⊥} is the function satisfying

gh(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b,

We say that H computationally k-secures F if G is input partition resistant for degree k.

2.3 Necessary and Sufficient Conditions
We proceed to find a necessary and sufficient condition on the function h of Definitions 5 and
6. In the following we consider bit strings x ∈ {0, 1}n both as integers, in which case we simply
write x, or as vectors over Z, in which case we shall write −→x ∈ Zn. When considered as vectors
over Z, addition and subtraction of the bit strings will be component-wise.

Now, for our necessary and sufficient condition, we have the following definitions.

Definition 9. A function h : {0, 1}n → {0, 1}m is safe if for every x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n
it is the case that if

−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2,
−−−−→
h(x1,1)−

−−−−→
h(x2,1) =

−−−−→
h(x1,2)−

−−−−→
h(x2,2),

then x1,1 = x1,2 or x1,1 = x2,1.

Definition 10. Let H = {Ht}t∈N where for each t ∈ N, Ht is a family of functions h : {0, 1}t →
{0, 1}`(t) for a polynomially bounded function `. We say that H is computationally safe if it
satisfies the following. No PPT adversary A can with non-negligible probability as a function of
t, for h sampled from Ht, produce

A(h) = (x1,1, x1,2, x2,1, x2,2) ∈ ({0, 1}n)4

with x1,1 6= x1,2 and x1,1 6= x2,1 such that
−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2,

−−−−→
h(x1,1)−

−−−−→
h(x2,1) =

−−−−→
h(x1,2)−

−−−−→
h(x2,2).

We shall soon enough prove that in fact safe and computationally safe functions secure and
computationally secure every function according to Definition 5 and 6, respectively. First we
prove two lemmas.

Lemma 1. Let σ ∈ Sn+m, a1, a2 ∈ {0, 1}n, and d1, d2 ∈ {0, 1}m. Further, let

{t1, . . . , tk} = T ⊆ [n+m], t1 < t2 < · · · < tk

be a set of indices and pT (s) = st1st2 . . . stk for a bit string s ∈ {0, 1}n+m. Then
−−−−−−−−→
pT (σ(a1d1))−

−−−−−−−−→
pT (σ(a2d1)) =

−−−−−−−−→
pT (σ(a1d2))−

−−−−−−−−→
pT (σ(a2d2)).

Proof. Fix j ∈ {1, 2}. Writing
−−−−−−−−→
pA(σ(a1dj)) = (e1, . . . , ek) and

−−−−−−−−→
pA(σ(a2dj)) = (f1, . . . , fk) we

get

−→y :=
−−−−−−−−→
pA(σ(a1dj))−

−−−−−−−−→
pA(σ(a2dj)) = (e1 − f1, . . . , ek − fk)

Let B be the set of indices i such that the bits ei, fi originally came from a1 and a2, respectively,
and similarly let C be the set of indices i such that the bits ei, fi originally came from dj . Then
it is clear that for every p ∈ C, yp = ep − fp = 0 since ep and fp represent the same bit of dj .
Thus, y is independent of j and our conclusion follows.

5

Lemma 2. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be given such that

−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2. (1)

Then there exists

σ ∈ Sn, a1, a2 ∈ {0, 1}k, c1, c2 ∈ {0, 1}l

with a1 6= a2, c1 6= c2, and k + l = n such that for i, j ∈ {1, 2},

σ(aicj) = xi,j .

Proof. In the following denote by xpi,j the pth bit of xi,j .
For d ∈ {−1, 0, 1} denote by Sd the set of indices s such that the sth component of −−→x1,1−−−→x2,1

is d. We have −−→x1,1−−−→x2,1 ∈ {−1, 0, 1}n so clearly S−1 ·∪S0 ·∪S1 = [n]. Now, the following relations
can be obtained from (1)

∀s ∈ S1 : xs1,1 = xs1,2 = 1 and xs2,1 = xs2,2 = 0,

∀s ∈ S0 : xs1,1 = xs2,1 and xs1,2 = xs2,2,

∀s ∈ S−1 : xs1,1 = xs1,2 = 0 and xs2,1 = xs2,2 = 1.

Further, by rearranging terms we also have the relation

−−→x1,1 −−−→x1,2 = −−→x2,1 −−−→x2,2.

and denoting by Rd the set of indices r such that the rth component of −−→x1,1 −−−→x1,2 is d, we get
the similar relations

∀r ∈ R1 : xr1,1 = xr2,1 = 1 and xr1,2 = xr2,2 = 0,

∀r ∈ R0 : xr1,1 = xr1,2 and xr2,1 = xr2,2,

∀r ∈ R−1 : xr1,1 = xr2,1 = 0 and xr1,2 = xr2,2 = 1.

Clearly, S1 ∪ S−1 ⊆ R0 and R1 ∪R−1 ⊆ S0. Write R0 = {r1, . . . , rk} and S0 \R0 = {s1, . . . , sl}
where we note that k + l = n, define

ai = xr1i,1x
r2
i,1 . . . x

rk
i,1

bj = xs11,jx
s2
1,j . . . x

sl
1,j ,

and let σ ∈ Sn be the permutation such that a1b1 7→ x1,1. Then we must have

σ(a2b1) = x2,1

since xs11,jx
s2
1,j . . . x

sl
1,j = xs12,jx

s2
2,j . . . x

sl
2,j by the relation defined by S0. Similarly, by the relation

defined by R0, σ(a1b2) = x1,2 and finally, σ(a2b2) = x2,2 which completes the proof.

Finally, it is time for the main theorem of the section.

Theorem 1. The function h : {0, 1}n → {0, 1}m completely secures every function f : {0, 1}n →
{0,⊥} if and only if it is safe.

Proof. First, suppose that h completely secures every function f and assume for contradiction
that there exists x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n with x1,1 6= x1,2 and x1,1 6= x2,1 such that

−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2,
−−−−→
h(x1,1)−

−−−−→
h(x2,1) =

−−−−→
h(x1,2)−

−−−−→
h(x2,2).

6

Let f be the function satisfying f(x) = 0 for every x ∈ {0, 1}n and consider the function

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

Then we clearly have

−−−−−−−→
x1,1h(x1,1)−

−−−−−−−→
x2,1h(x2,1) =

−−−−−−−→
x1,2h(x2,1)−

−−−−−−−→
x2,2h(x2,2)

and it follows by Lemma 2 that there exist

σ ∈ Sn+m, a1, a2 ∈ {0, 1}k, c1, c2 ∈ {0, 1}l

with a1 6= a2, c1 6= c2, and k + l = n+m such that for every i, j ∈ {1, 2},

σ(aicj) = xi,jh(xi,j).

However, then g(σ(aicj)) = 0 for every i, j ∈ {1, 2} which is a contradiction since there should
not exist an input partition of g of degree two if h completely secures f .

Second, suppose that h is safe, such that for all x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n satisfying the
equations

−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2
−−−−→
h(x1,1)−

−−−−→
h(x2,1) =

−−−−→
h(x2,1)−

−−−−→
h(x2,2)

either x1,1 = x1,2 or x1,1 = x2,1. Now, let f : {0, 1}n → {0,⊥} be any function, define

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b,

and assume for contradiction that there exists an input partition for g of degree two

I2g = (σ ∈ Sn+m, a1, a2 ∈ {0, 1}k, c1, c2 ∈ {0, 1}l).

Write σ(aicj) = xi,jyi,j with |xi,j | = n and |yi,j | = m and observe that then h(xi,j) = yi,j for
every choice of i, j. Furthermore, we have the equations

−−→y1,1 −−−→y2,1 = −−→y1,2 −−−→y2,2
−−→x1,1 −−−→x2,1 = −−→x1,2 −−−→x2,2

by Lemma 1. Since h(xi,j) = yi,j it follows directly from the condition on h that either x1,1 =
x1,2 or x1,1 = x2,1. The two cases are symmetric, so assume without loss of generality that
x1,1 = x1,2. Then y1,1 = y1,2 and we get σ(a1c1) = σ(a1c2). A contradiction.

The computational parallel of the above theorem follows similarly.

Theorem 2. Let H = {Ht}t∈N where for each t ∈ N, Ht is a family of functions h : {0, 1}t →
{0, 1}`(t) for a polynomially bounded function `. The class H computationally secures every
function family F = {ft : {0, 1}t → {0,⊥}}t∈N if and only if it is computationally safe.

Proof. The proof is similar to the proof of Theorem 1.

2.4 Instantiations
In terms of actual instantiations of functions h that secure every function f , we present two
number theoretical functions – most likely many others exist – and discuss computational in-
stantiations in terms of hash functions.

7

2.4.1 Number Theoretical Functions

By the necessary and sufficient condition of Theorem 1 and the definition of a safe function, it
seems that a function will secure every other function if it is somwhat non-linear everywhere.
This is captured in the following corollary, letting us work with functions over the integers.

Corollary 1. Let h : {0, 1}n → {0, 1}m be given such that for all x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n
satisfying the equations

x1,1 − x2,1 = x1,2 − x2,2
h(x1,1)− h(x2,1) = h(x1,2)− h(x2,2)

either x1,1 = x1,2 or x1,1 = x2,1. Then h completely secures every function f : {0, 1}n → {0,⊥}.

Proof. This follows immediately from Theorem 1 since −−→x1,1 − −−→x2,1 = −−→x1,2 − −−→x2,2 implies x1,1 −
x2,1 = x1,2− x2,2 and

−−−−→
h(x1,1)−

−−−−→
h(x2,1) =

−−−−→
h(x2,1)−

−−−−→
h(x2,2) implies h(x1,1)− h(x2,1) = h(x1,2)−

h(x2,2).

Intuitively, many functions we know and love would satisfy this as long as they have sufficient
non-linearity. Here we list two examples.

Proposition 1. Let p be a prime satisfying 2n < p < 2n+1. The function h : {0, 1}n → {0, 1}n+1

given by h(x) = [x2]p completely secures every function f : {0, 1}n → {0,⊥}.

Proof. Let x1,1, xx1,2, x2,1, x2,2 ∈ {0, 1}n be given satisfying x1,1−x2,1 = x1,2−x2,2 and h(x1,1)−
h(x2,1) = h(x1,2) − h(x2,2). We will show that x1,1 = x1,2 or x1,1 = x2,1, concluding the proof
by Corollary 1.

Directly from the conditions on the xi,j , we get

(x1,1 + x2,1)(x1,1 − x2,1) ≡ h(x1,1)− h(x2,1)
= h(x1,2)− h(x2,2)
≡ (x1,2 + x2,2)(x1,2 − x2,2) (mod p).

This yields two cases. If x1,1−x2,1 = x1,2−x2,2 = 0 then x1,1 = x2,1 and we are done. Otherwise
x1,1 − x2,1 = x1,2 − x2,2 is invertible modulo p since p > 2n and we get

x1,1 + x2,1 ≡ x1,2 + x2,2 (mod p).

Adding x1,1 − x2,1 = x1,2 − x2,2 to both sides yields 2x1,1 ≡ 2x1,2 (mod p) which is equivalent
to x1,1 ≡ x1,2 (mod p). Hence, x1,1 = x1,2 since p > 2n and we are done.

Proposition 2. Let p be a prime satisfying 2n < p < 2n+1 with primitive root r. The function
h : {0, 1}n → {0, 1}n+1 given by h(x) = [rx]p completely secures every function f : {0, 1}n →
{0,⊥}.

Proof. Let x1,1, xx1,2, x2,1, x2,2 ∈ {0, 1}n be given satisfying x1,1−x2,1 = x1,2−x2,2 and h(x1,1)−
h(x2,1) = h(x1,2) − h(x2,2). We will show that x1,1 = x1,2 or x1,1 = x2,1, concluding the proof
by Corollary 1.

Directly from the conditions on the xi,j , we get

rx1,1(1− rx2,1−x1,1) ≡ h(x1,1)− h(x2,1)
= h(x1,2)− h(x2,2)
≡ rx1,2(1− rx2,2−x1,2) (mod p).

Now we have two cases. First, if 1 − rx2,1−x1,1 = 1 − rx2,2−x1,2 is invertible modulo p then
rx1,1 ≡ rx1,2 (mod p), yielding x1,1 = x1,2 since r has order p − 1 ≥ 2n modulo p. Second, if
1− rx2,1−x1,1 = 1− rx2,2−x1,2 is not invertible modulo p then clearly 1− rx2,1−x1,1 ≡ 0 (mod p)
and thus, x2,1 − x1,1 = 0 since the order of r is ≥ 2n. It follows that either x1,1 = x1,2 or
x1,1 = x2,1.

8

2.4.2 Hash Functions

The requirements for a function h which k-secures a computation f are reminiscent to that
of a hash function. Indeed, to break such a function h it is sufficient to find two separate
collisions where the inputs differ by the same bits. It is quite plausible that a wide variety
of efficiently computable cryptographic hash functions would satisfy our condition (which is
certainly satisfied with overwhelming probability by a random oracle). We leave for future
work the study of concrete families of hash functions that are efficiently computable by matrix
branching programs and satisfy our condition.

References
[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.

Protecting obfuscation against algebraic attacks. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 221–238.
Springer, 2014.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancréde Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroiz-
ing without low-level zeroes: New mmap attacks and their limitations. LNCS,
9215:247–266, 2015.

[CGH16] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. Cryptology ePrint Archive, Report 2016/998, 2016. http:
//eprint.iacr.org/2016/998.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehle.
Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive,
Report 2014/906, 2014. http://eprint.iacr.org/2014/906.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancréde Lepoint, and Mehdi Tibouchi.
Zeroizing attacks on indistinguishability obfuscation over CLT13. IACR Cryptology
ePrint Archive, 2016.

[CLT13] Jean-Sébastien Coron, Tancréde Lepoint, and Mehdi Tibouchi. Practical multilin-
ear maps over the integers. LNCS, 8042:476–493, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 40–49. IEEE, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography Conference, pages 498–527. Springer,
2015.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Theory
of Cryptography Conference, pages 241–268. Springer, 2016.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 629–658,
2016.

9

http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2014/906

A Branching Program Structure Required for Zeroizing At-
tacks
Here we describe the form which the attack in [CGH+15] requires obfuscations of matrix branch-
ing programs to satisfy in order to work. Recall that a matrix branching program is a sequence
of matrices

{Ai,0, Ai,1}ri=1

along with “bookend” vectors A0 and Ar+1 and an input selection function inp(·). For an input
x, if xi is the ith bit of x, then the evaluation of the branching program at that point is the
product

A0 ×
r∏
i=1

Ai,xinp(i) ×Ar+1.

Almost all branching program obfuscators work by randomizing each individual matrix and then
encoding them in the multilinear map.

Let

M(x) = M̂0 ×
r∏
i=1

M̂i,xinp(i)
× M̂r+1, x ∈ {0, 1}t

be an obfuscation of a matrix branching program carried out in this way and partition the input
bits as A ·∪B ·∪C = [t]. Suppose one can write Ax = M̂0×

∏a
i=1 M̂i,xinp(i)

, Bx =
∏b
i=a+1 M̂i,xinp(i)

,
and Cx =

∏r
i=b+1 M̂i,xinp(i)

×Mi,r+1 such that the value of Ax, Bx, and Cx rely only on A, B,
and C, respectively. Further, suppose one can find different {xσi,j}σ∈{0,1}i,j∈[n] ⊆ M−1(0) such
that Axσi,j is invariant only of σ and j; Bxσi,j is invariant only of i and j; and Cxσi,j is invariant
only of σ and i. Then the set{

Axσi,jBxσi,jCxσi,j | σ ∈ {0, 1}, i, j ∈ [n]
}

is a set of top-level encodings of zero that can be used in the attack as described in the intro-
duction.

10

	Introduction
	Securing Functions against Partition Attacks
	Attack Model
	Securing Functions
	Necessary and Sufficient Conditions
	Instantiations
	Number Theoretical Functions
	Hash Functions

	Branching Program Structure Required for Zeroizing Attacks

