
Iron: Functional Encryption using Intel SGX

Ben A Fisch∗1, Dhinakaran Vinayagamurthy †2, Dan Boneh ‡1, and Sergey Gorbunov §2

1Stanford University
2University of Waterloo

Abstract

Functional encryption (FE) is an extremely powerful cryptographic mechanism that lets an authorized
entity compute on encrypted data, and learn the results in the clear. However, all current cryptographic
instantiations for general FE are too impractical to be implemented. We build Iron, a practical and
usable FE system using Intel’s recent Software Guard Extensions (SGX). We show that Iron can be
applied to complex functionalities, and even for simple functions, outperforms the best known crypto-
graphic schemes. We argue security by modeling FE in the context of hardware elements, and prove that
Iron satisfies the security model.

1 Introduction

Functional Encryption (FE) is a powerful cryptographic tool that facilitates non-interactive fine-grained ac-
cess control to encrypted data [BSW12]. A trusted authority holding a master secret key msk can generate
special functional secret keys, where each functional key skf is associated with a function f (or program) on
plaintext data. When the key skf is used to decrypt a ciphertext ct, which is the encryption of some message
m, the result is the quantity f(m). Nothing else about m is revealed. Multi-Input Functional Encryption
(MIFE) [GGG+14] is an extension of FE, where the functional secret key skg is associated with a function
g that takes ` ≥ 1 plaintext inputs. When invoking the decryption algorithm D on inputs D(skg, c1, . . . , c`),
where ciphertext number i is an encryption of message mi, the algorithm outputs g(m1, . . . ,m`). Again,
nothing else is revealed about the plaintext data m1, . . . ,m`. Functions can be deterministic or randomized
with respect to the input in both single and multi-input settings [GJKS15,GGG+14].

If FE and MIFE could be made practical, they would have numerous real-world applications. For ex-
ample, consider a genetics researcher who collects public-key encrypted genomes from individuals. The
researcher could then apply to an authority, such as the National Institutes of Health (NIH), and request to
run a particular analysis on these genomes. If approved, the researcher is given a functional key skf , where
the function f implements the desired analysis algorithm. Using skf the researcher can then run the analysis
on the encrypted genomes, and learn the results in the clear, but without learning anything else about the
underlying data.

Similarly, a cloud storing encrypted sensitive data can be given a functional key skf , where the output
of the function f is the result of a data-mining algorithm applied to the data. Using skf the cloud can run
the algorithm on the encrypted data, to learn the results in the clear, but without learning anything else.

∗Email: benafisch@gmail.com
†Email: dvinayag@uwaterloo.ca
‡Email: dabo@cs.stanford.edu
§Email: sgorbunov@uwaterloo.ca

1

The data owner holds the master key, and decides what functional keys to give to the cloud.

Banks could also use FE/MIFE to improve privacy and security for their clients by allowing client trans-
actions to be end-to-end encrypted, and running all transaction auditing via functional decryption. The
bank would only receive the keys for the necessary audits.

The problem is that current FE constructions for complex functionalities cannot be used in prac-
tice [GGH+13]. They rely on program obfuscation which currently cannot be implemented.

Our contribution. We propose a practical implementation of FE/MIFE using Intel’s Software Guard
Extensions (SGX). Intel SGX provides hardware support for isolated program execution environments called
enclaves. Enclaves can also attest to a remote party that it is running a particular program in an isolated
environment, and even include in its remote attestation the inputs and outputs of computations performed
by that program. Our SGX-assisted FE/MIFE system, called Iron, can run functionalities on encrypted
data at full processor speeds. The security of Iron relies on trust in Intel’s manufacturing process and the
robustness of the SGX system. Additionally, a major achievement of this work was not only to propose a
construction of FE/MIFE using SGX, but also to formalize our trust assumptions and supply rigorous proofs
of security inside this formal model.

The design of Iron is described in detail in Section 3. At a high level, the system uses a Key Manager
Enclave (KME) that plays the role of the trusted authority who holds the master key. This authority sets up
a standard public key encryption system and signature scheme. Anyone can encrypt data using the KME’s
published public key. When a client (e.g., researcher) wishes to run a particular function f on the data,
he requests authorization from the KME. If approved, the KME releases a functional secret key skf that
takes the form of an ECDSA signature on the code of f . Then, to perform the decryption, the client runs
a Decryption Enclave (DE) running on an Intel SGX platform. Leveraging remote attestation, the DE can
obtain over a secure channel the secret decryption key from the KME to decrypt ciphertexts. The researcher
then loads skf into the DE, as well as the ciphertext to be operated on. The DE, upon receiving skf and a
ciphertext, checks the signature on f , decrypts the given ciphertext, and outputs the function f applied to
the plaintext. The enclave then erases all of its state from memory.

Several subtleties arise when implementing this approach. First, the specifics of SGX make it difficult
to build the system as described above with a single DE that can interpret any function f . We overcome
this complication by involving a third enclave as explained in Section 3. Second, we need a mechanism
for the KME to ensure that the DE has the correct signature verification key before sending it the secret
decryption key. Enclaves cannot simply access public information because all I/O channels are controlled
by a potentially untrusted host. The simplest idea, it seems, is to have the KME send the verification key
along with the secret decryption key in its secure message to the DE. However, it turns out that in order
to formally prove security the message from KME to the DE also needs to be signed and verified with this
verification key. We could statically code the verification key generated by the KME into the DE, but this
would complicate the KME’s verification of the DE’s remote attestation. Hardcoding a fixed certified public
key belonging to the KME/authority into the DE may appear to be a simple solution, but it requires an aux-
iliary Public Key Infrastructure (PKI) and key management mechanism, which obviates much of the KME’s
role. The best option is to define the DE such that the verification key is locally loaded and incorporated
into the remote attestation as a program input. Finally, there are several known side-channel attacks on
SGX, and we discuss how Iron can defend against them.

We implemented Iron and report on its performance for a number of functionalities. For complex func-
tionalities, this implementation is far superior to any cryptographic implementation of FE (which does not
rely on hardware assumptions). We show in Section 5 that even for simple functionalities, such as comparison
and small logical circuits, our implementation outperforms the best cryptographic schemes by over a 10,000

2

fold improvement.

In Section 7 we argue security of this construction. To do so we give a detailed model of FE/MIFE
security in the context of an SGX-like system, and prove that Iron satisfies the model.

SGX limitations. It is important to be wary of the limitations of basing security on trust in SGX, and shy
away from viewing it as a “magic box”. Unsurprisingly, several side-channel attacks have come to light since
SGX’s initial release. While we discuss known side-channel attacks and how to defend Iron against them,
we acknowledge that new side-channel attacks may yet be discovered in the future. Moreover, components
of the Intel SGX implementation are proprietary, making it difficult for security researchers to fully assess
its security. There has been academic effort to develop open-source SGX-like systems that achieve the same
strong software isolation (see Sanctum, [CLD16]) and that can be fully examined by the entire community
of security researchers.

On the other hand, Intel SGX is widely available for use in commodity chips, whereas academic systems
like Sanctum are not. Ideally, we would have the best of both worlds. Hardware software isolation is an
evolving technology, and the research contributions of this work should be viewed as a paradigm for building
functional encryption with both present and future generations of SGX-like systems.

Figure 1: Application of Multi Input Functional Encryption to IoT cloud security.

2 Intel SGX Background

Intel Software Guard Extensions (SGX) [MAB+13] is a set of processor extensions to Intel’s x86 design
that allow for the creation of isolated execution environments called enclaves. These isolated execution
environments are designed to run software and handle secrets in a trustworthy manner, even on a host
where the OS and system memory are untrusted. The isolation of enclave resident applications from all
other processes is enforced by hardware access controls. The SGX specifications are detailed and complex
[SGX16, MAB+13]. We provide only a brief overview of its design and capabilities, with emphasis on the
components relevant to our system.

There are three main functionalities that enclaves achieve: Isolation–code and data inside the enclave
protected memory cannot be read/modified by any process external to the enclave. Sealing–data passed
to the host environment is encrypted and authenticated with a hardware-resident key. And Attestation–a
special signing key and instructions are used to provide an unforgeable report attesting to code, static data,
and (hardware-specific) metadata of an enclave, as well as outputs of computations performed inside the
enclave.

3

2.1 Isolation

Enclaves reside in a hardware guarded area of memory called the Enclave Page Cache (EPC). The EPC is
currently limited to 128 MB, consisting of 4KB page chunks, and applications can use approximately 90 MB.
When an enclave program is loaded, its code and static data are copied from untrusted memory to pages
inside the EPC. A measurement of the contents of these pages called MRENCLAVE (essentially a SHA256
hash of the page contents) is also stored inside the EPC in a structure that is linked to the enclave. Entry
into the enclave is not permitted throughout this process until the measurement has been finalized. The
creation process establishes an enclave identity, which is used as a handle to transfer program control to the
enclave. The hardware enforces that only the executable code pages associated with a particular enclave
identity can access the other pages associated with that identity.

2.2 Sealing

Every SGX processor has a key called the Root Seal Key that is embedded during the manufacturing process.
An enclave can use the EGETKEY instruction to derive a key called Seal Key from the Root Seal Key that
is specific to the enclave identity, which can be used to encrypt/authenticate data and store it in untrusted
memory. Sealed data can be recovered by the same enclave even after enclave is destroyed and restarted on
the same platform. But the Seal key cannot be derived by a different enclave on the same platform or any
enclave on a different platform.

2.3 Attestation

There are two forms of attestation: local and remote. We sketch here how each of these processes work and
provide more details in Appendix B.

Local attestation Local attestation is between two enclaves on the same platform. Roughly, since enclaves
on the same machine share the same Root Seal Key, they can derive a shared key (called Report Key) for
symmetric authentication. An enclave can call a special instruction EREPORT that fetches the MRENCLAVE
and metadata of an enclave and MACs it with the Report Key (along with additional optional data provided
as input to the instruction). This is called a report.

Remote attestation Remote attestation generates a report that can be verified by any remote party.
Roughly, to generate a quote an enclave first local attests to a special enclave called the Quoting Enclave,
sending it a report. The Quoting Enclave will verify this report and convert it into a quote. The quote
contains the same underlying data but is signed with a private key for an anonymous group signature
scheme called Intel Enhanced Privacy ID (EPID) [JSR+16]. Currently, verifying these signatures involves
contacting the Intel Attestation Server, though in principle this could be done by any verifier that has the
group public key.

2.4 SGX side-channel attacks

The security of SGX is still evolving [SGX] but the current version is susceptible to the following side-channel
attacks. Side-channel attacks on SGX can be divided into two classes: physical attacks, which are mounted
by an attacker with physical access to the CPU, and software attacks, which are mounted by software running
on the same host as the CPU, such as a compromised OS. SGX does not claim to defend against physical
attacks such as power analysis. For instance, this could enable a physical attacker to extract keys from an
enclave and to spoof remote attestation. However, successful physical attacks against SGX have not yet
been demonstrated.

Several software attacks have been demonstrated so far, including cache-timing attacks [CD16], page-fault
attacks [XCP15], branch shadowing [LSG+16] and synchronization bugs [WKPK16]. Cache-timing and page-
fault attacks can reveal enclave memory access patterns at cache-line and 4KB page granularity respectively.

4

Branch shadowing can directly view the control flow branch history in an enclave. Leaking information
through these side-channels can be avoided by ensuring that enclave programs are data-oblivious, i.e. do
not have memory access patterns or control flow branches that depend on the values of sensitive data. Our
implementation of enclave programs that deal with sensitive information are data-oblivious. Synchronization
bugs only apply to multi-threaded code running inside enclaves, and various defense mechanisms are listed
in [WKPK16].

We provide a more detailed explanation of side-channel attacks and their defenses in Appendix C.

3 System Design

3.1 Overview

Platforms The Iron system consists of a single trusted authority (Authority) platform and arbitrarily many
decryption node platforms, which may be added dynamically. Both the trusted authority and decryption
node platforms are Intel SGX enabled. Just as in a standard FE system, the trusted authority has the role
of setting up public parameters as well as distributing functional secret keys, or the credentials required to
decrypt functions of ciphertexts. A client application, which does not need to run on an Intel SGX enabled
platform, will interact once with the trusted authority in order to obtain authorization for a function and
will then interact with a decryption node in order to perform functional decryptions of ciphertexts.

Protocol flow The public parameters that the Authority platform generates will consists of a public en-
cryption key for a public key cryptosystem and a public verification key for a cryptographic signature scheme.
Ciphertexts are encrypted using the public encryption key. The functional secret keys that the Authority
platform issues to client applications are signatures on function descriptions. Leveraging remote attestation,
the Authority platform provisions the secret decryption key to a special enclave on the decryption node.
When a client application sends a ciphertext, function description, and valid signature to the decryption
node, an enclave with access to the secret key will check the signature, decrypt the ciphertext, run the
function on the plaintext, and output the result. The enclave will abort on invalid signatures.

Function interpretation The simplest design is to have a single decryption enclave on the decryption
node obtain the secret decryption key, check function signatures, and perform functional decryption. How-
ever, this would require interpreting a logical description of the function inside the enclave. By design, native
code cannot be moved into an SGX enclave after initialization.1 This is reasonable for simple functions, but
could greatly impact performance for more complex functions. Moreover, it is an additional challenge to
implement a general purpose interpreter that will be robust to side-channel attacks and will not leak sensitive
information through its access pattern to external memory.

Function enclaves An alternative design, which we implement in this work, circumvents the need for
running an interpreter inside an enclave by taking advantage of local attestation, which already provides
a way for one enclave to verify the code running in another. The function code is loaded into a separate
function enclave on the same platform that locally attests to the decryption enclave. Instead of signing the
description of a function, the Authority platform signs the report that the function enclave will generate in
local attestation. A tradeoff of this design is that every authorized function runs in a separate enclave. This
has little impact on applications that run a few functions on many ciphertexts. However, a client application
that decrypts many functions of a ciphertext will have to create a new enclave for each computation, which
is a relatively expensive operation. In fact, we demonstrate in our evaluation (Section 5) that for a simple
functionality like Identity Based Encryption (IBE) interpreting the function (i.e. identity match) in an
enclave is an order of magnitude faster.

1This will change in SGX2, which can dynamically load new code pages into enclaves. This might make the function
interpretation idea more feasible; enclave would need to check a signature on the new loaded pages before accepting. We can
explore this design in future work when SGX2 becomes available.

5

3.2 Architecture

Figure 2: Iron Architecture and Protocol Flow

3.2.1 Trusted authority

The Authority platform runs a secure enclave called the key manager enclave (KME) and has three main
protocols: setup, function authorization, and decryption key provisioning.

Setup The KME generates a public/private key pair (pkpke, skpke) for a CCA2 secure public key cryptosys-
tem and a verification/signing key pair (vksign, sksign) for a cryptographic signature scheme. The keys pkpke
and vksign are published while the keys skpke and sksign are sealed with the KME’s sealing key and kept in
non-volatile storage.

Function authorization In order to authorize a client application to perform functional decryption for a
particular function f, i.e. issue the “secret key” skf for f, the Authority provides the client application with
a signature on f using the signing key sksign. Since sksign is only known to the KME, the Authority uses the
KME to produce this signature. The function f will be represented as an enclave program called a function
enclave, which we will describe in more detail. The Authority signs the MRENCLAVE value in the report
of this enclave (created by the EREPORT instruction), which identifies the code and static data that was
loaded into the enclave upon initialization. Crucially, this value will be the same when generated by an
instance of the same function enclave program running on any other SGX-enabled platform.

Decryption key provisioning When a new decryption node is initialized, the KME will establish a
secure channel with a decryption enclave (DE) running on the decryption node SGX-enabled platform. The
KME receives from the decryption node a remote attestation, which demonstrates that the decryption node

6

is running the expected DE software and that the DE has the correct signature verification key vksign. The
remote attestation also establishes a secure channel, i.e. contains a public key generated inside the DE. After
verifying the remote attestation, the KME sends skpke to the DE over the established secure channel, and
authenticates this message by signing it with sksign.

Authenticating KME’s message At this point, it is not at all obvious why the KME needs to sign its
message to the DE. Indeed, since skpke is encrypted, it seems that there isn’t anything a man-in-the-middle
attacker could do to harm security. If the message from the KME to the DE is replaced, the decryption
node platform will simply fail to decrypt ciphertexts encrypted under pkpke. However, it turns out that
authenticating the KME’s messages is necessary for our formal proof of security to work (see Section 7).

Why run the key manager in an enclave? Since the Authority is already trusted to authorize functions,
one might wonder why we chose to have an enclave generate and manage keys rather than the Authority itself.
Hiding these secret keys from the Authority does not reduce any trust assumptions since the Authority can
use the KME to sign any function of its choice and therefore authorize itself to decrypt any ciphertext. The
reason for running the KME in an enclave is to create a separation between the protocols that inherently
involve the Authority and those that do not. In particular, since the KME could be run on an entirely
separate untrusted platform, the protocol that provisions the decryption key skpke to decryption nodes does
not need to involve the Authority at all. This is an important separation. In the standard notion of a functional
encryption scheme, decryption does not require interaction with the Authority. While the Authority is trusted
to generate public parameters and to distribute functional secret keys, it could not, for example, suddenly
decide to prevent a particular client from using a decryption key that is has already received. Additionally,
managing keys inside an enclave offers better storage protection of keys (i.e. functions as an HSM).

3.2.2 Decryption node

A decryption node runs a single instance of the decryption enclave (DE). It will also receive requests from
clients to run function enclaves. If properly authorized, a function enclave will be able to decrypt ciphertexts,
run a particular function on the decrypted plaintext, and output the result encrypted under the client’s key.
For remote clients, the function enclave can also produce a remote attestation to demonstrate the integrity
of the output.

Decryption Enclave When the DE is initialized it is given the public verification key vksign. It remote
attests to the KME, and includes vksign in the attestation. A secure channel is also established within the
attestation (i.e. the attestation contains a public key generated inside the DE), and the DE receives back the
decryption key skpke over this secure channel. The DE has the role of transferring the secret decryption key
to authorized programs running within enclaves on the same platform, which we refer to as function enclaves.
The DE will verify the code running inside a function enclave via local attestation. Specifically, it receives
a KME signature on the function enclave’s MRENCLAVE value, which it will verify using vksign, and check
this against the MRENCLAVE value in the function enclave’s local attestation report. This ensures that the
trusted authority has authorized the function enclave. The local attestation also establishes a secure channel
from the DE to the function enclave (i.e. contains a public key generated inside the function enclave). If
the verifications of the local attestation and the signature pass, then the DE transfers skpke to the function
enclave over the secure channel. The DE also authenticates its message to the function enclave by wrapping
it inside its own local attestation report.2

Function Enclaves Ultimately, functional decryption for a particular function f is performed inside a
function enclave that loads the function upon initialization. A client application authorized to decrypt f can
operate the function enclave either locally or remotely. If the application is running locally on the decryption

2Authenticating the DE’s message to the function enclave serves the same purpose as authenticating the KME’s message to
the DE; it is only needed for the formal proof of security.

7

node, then it can directly call into the function enclave, providing as input a vector of ciphertexts and a
signature. A remote client application will need to establish a secure channel with the enclave via remote
attestation. A valid ciphertext input must be an encryption under the key pkpke and a valid signature input
must be a signature on the function enclave’s MRENCLAVE value produced with sksign, the KME’s signing
key. After receiving the inputs, the function enclave local attests to the DE and includes the signature
input. If the signature input was valid, the function enclave will receive back skpke over a secure channel
established in the local attestation. The message it receives back will be authenticated with a local attestation
report from the DE, which it must verify. It then uses skpke to decrypt the ciphertexts, passes the vector
of decrypted plaintexts as input to the client-defined function and records the output. In the case of a
local client application, the output is returned directly to the application. In the case of a remote client
application, the enclave encrypts the output with the session key it established with the client.

3.3 Protocols

Here we provide an informal summary of how the Iron system, as described above in 3.2, realizes each of
the four functional encryption protocols FE.Setup, FE.Encrypt, FE.Keygen and FE.Decrypt. These protocols
will be redescribed formally (for the purpose of security proofs) in 7 and at the implementation detail level
in 4.

FE.Setup The trusted platform runs the KME setup as described in 3.2 and publishes the public key
pkpke and the verification key vksign. A handle to the KME’s signing function call, which produces signatures
using sksign, serves as the trusted authority’s master secret key.

FE.Keygen The Authority receives a request from a client to authorize a function f. The requested function
is wrapped in a function enclave source file enclavef. The trusted platform compiles the enclave source and
generates an attestation report for the enclave including the MRENCLAVE value mrenclavef. It then uses
the KME signing handle to sign mrenclavef using sksign. The signature sigf is returned to the client.

FE.Encrypt Inputs are encrypted with pkpke using a CCA2 secure public key encryption scheme.

FE.Decrypt Decryption begins with a client application connecting to a decryption node that has already
been provisioned with the decryption key skpke as described in 3.2. The client application may also run locally
on the decryption node. The following steps ensue:

1. If this is the client’s first request to decrypt the function f, the client sends the function enclave source
file enclavef to the decryption node, which the decryption node then compiles and runs. (A local client
application would just run enclavef).

2. The client initiates a key exchange with the function enclave, and receives a remote attestation that it
has successfully established a secure channel with an Intel SGX enclave running enclavef. (Local client
applications skip this step).

3. The client sends over the established secure channel a vector of ciphertexts and the KME signature
sigf that it obtained from the Authority in FE.Keygen.

4. The function enclave locally attests to the DE and passes sigf . The DE validates this signature
against vksign and the MRENCLAVE value mrenclavef, which it obtains during local attestation. If this
validation passes, the DE delivers the secret key skpke to the function enclave, which uses it to decrypt
the ciphertexts and compute f on the plaintext values. The output is returned to the client application
over the function enclave’s secure channel with the client application.

8

4 Iron Implementation

We implemented a prototype of the Iron system with a single decryption node and a client application
running locally on the decryption node. The implementation was developed in C++ using the Intel(R) SGX
SDK 1.6 for Windows3. In principle, any function can be plugged into our system and loaded into the function
enclave, provided that the function is implemented in such a way to resist side channel attacks (discussed
in Section 2.4). In this paper, we demonstrate three special cases of functional encryption: identity based
encryption (IBE), order revealing encryption (ORE), and three input DNF (3DNF). We chose to evaluate
these special cases primarily in order demonstrate how our SGX assisted versions of these primitives perform
in comparison to purely cryptographic versions that have been implemented, ranging from a widely-used
and practical construction (IBE from pairings) to impractical ones (ORE and 3DNF from multilinear maps).
We were also able to secure our SGX assisted implementation of these simple primitives against side-channel
attacks.

There are two main applications, KeyManagerApp and FEClient. Enclaves are built as Windows DLLs.
KeyManagerApp is the trusted authority application, which loads the enclave KeyManager.dll. FEClient com-
bines the client and decryption node applications. It loads two enclaves, FEFunction.dll and FEDecryption.dll.
Enclaves contain trusted function calls (ECALLs) that are executed in enclaves and called from the un-
trusted application. Untrusted function calls (OCALLs) are defined by the application and may be called
from within an enclave.

All three enclaves link the MSR Elliptic Curve Cryptography Library 2.0 MSR ECClib.lib4 as a trusted
static library, which is used to implement the elliptic curve ElGamal cryptosystem (in a Weierstrass curve
over a 256-bit prime field), as well as the SDK’s cryptographic library sgx tcrypto.lib. The sgx tcrypto.lib
implements 256-bit elliptic curve Diffie-Hellman key exchange (EC256-DHKE) and ECDSA signatures over
the NIST P-256 elliptic curve. It also implements Rijndael AES-GCM encryption on 128-bit key sizes and
SHA256. We implement a CCA2-secure hybrid encryption scheme with ECC ElGamal and AES-GCM in
the standard way.

We broadly describe the fucntion of each application below. The implementation details of all ECALLS
are included in Appendix A.

4.1 KeyManagerApp

KeyManagerApp loads the enclave KeyManager.dll, i.e. the KME. The KME has a statically defined variable
containing the expected measurement (MRENCLAVE) of FEDecryption.dll, i.e. the DE. If ECDSA and
ElGamal public/secret keys have already been stored in files they are loaded into the KME, otherwise
the application runs ECALLs ecdsa setup and elgamal setup and writes the output to files. Next, the
application starts two threads: one that listens for command line inputs, and a second that listens for network
connections from a decryption node. The ECALL sign function is used to sign 256-bit length command
line input messages. When a connection from a decryption node is received, the application receives from the
decryption node a DHKE key share ga and an enclave quote structure de quote generated by the DE. This
is passed to km ra proc, which verifies the quote contents and signature against the output of ecdsa setup

and the statically defined expected MRENCLAVE value. If the verification passes it returns the KME’s
DHKE key share gb and an authenticated encryption of the ElGamal private key paired with the ECDSA
verification key. These are sent back to the decryption node.5

4.2 FEClient

Decryption Enclave Setup The application FEClient first loads the enclave FEDecryption.dll, i.e. the
DE. The application loads the Authority’s public ECDSA verification key (generated by the KME) into the

3https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
4https://www.microsoft.com/en-us/research/project/msr-elliptic-curve-cryptography-library
5Note that while standard TLS involves more rounds, our session establishment is 1-round because we assume the DE and

KME are using the same cipher suites.

9

DE. If the ElGamal secret key and ECDSA verification key have already been stored in a file it loads this
into the DE, otherwise the application connects to the server running KeyManagerApp, sending a DHKE key
share and an enclave quote. The server’s response containing a EC256-DHKE key share and an encryption
of an ElGamal private key are passed to the DE, which decrypts and seals the ElGamal private key. This
sealed key is returned to the application and written to a file.

Function Enclave Local Attestation The application next loads the enclave FEFunction.dll. The KME
signature on the MRENCLAVE value of FEFunction.dll, fe report signature, is loaded into the enclave.
Local attestation between the function and decryption enclaves is implemented with a sequence of ECALLs
and OCALLs. The application calls local attest to decryption enclave in FEFunction.dll, which gen-
erates a DHKE key share wrapped in an enclave report. The OCALL request local dh session ocall

passes these along with fe report signature to the ECALL proc local attest in FEDecryption.dll, which
verifies the report and signature. If successful, it returns a DHKE key share wrapped in an enclave report and
the ElGamal private key encrypted under the DHKE key derived from the two shares. The OCALL returns
this output to its caller local attest to decryption enclave, which derives the DHKE key, decrypts the
ElGamal private key, and stores it.

Functional decryption Lastly, FEClient runs the functional decryption ECALL. This functional decryp-
tion ECALL is specific to the particular function implemented in FEFunction.dll. In our prototype, we
demonstrate implementations of three functions: decrypt order, decrypt ibe, and decrypt 3dnf.

• Order: The ECALL decrypt order takes as input a pair of ciphertexts (encrypted integers) and
returns 1 if the first integer is less than the second, otherwise 0.

• IBE: In IBE, plaintexts consist of tagged payloads, i.e. have the form (tag,m) , and decrypting a
ciphertext requires a key specific to the value of tag. To avoid creating a separate enclave for each
key issued by the Authority, we have a single ECALL decrypt ibe that multiplexes over all possible
tags. This takes as input a ciphertext and a signature sigtag. The Authority will issue sigtag as part
of the key for Ftag (this is in addition to the signature on the MRENCLAVE value of FEFunction.dll).
The ECALL decrypt ibe decrypts the ciphertext to obtain (tag,m), uses the public verification key
to check that sigtag is a valid signature on tag, and if so outputs m (otherwise it returns an error).

• 3DNF: The ECALL decrypt 3dnf takes three ciphertexts as input, which are encryptions of n-bit
inputs x = x1 · · ·xn, y = y1 · · · yn, and z = z1 · · · zn. It outputs (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧ yn ∧ zn).

ElGamal-AES-GCM hybrid encryption The function elgamal aes hybrid encrypt takes a plaintext
and ECC ElGamal public key. It samples a random curve point p, derives from it a 128-bit AES key by
applying SHA256 (and truncating). It ElGamal encrypts p, then AES-GCM encrypts the plaintext with
derive key.

4.3 Side-channel resilience

The function and decryption enclave programs must be implemented to resist the software based side-channel
attacks on SGX described in Section 2.4. The only enclave operations that touch secret data are decryption
operations (AES-GCM and ElGamal) and the specific client functions that are loaded into the function en-
clave. Our implementation of AES-GCM uses the SGX SDK cryptographic library, which calls the AES-NI
instruction for AES-GCM, and hence is resilient to software-based side-channels. Our implementation of
ElGamal decryption uses the MSR Elliptic Curve Cryptography Library 2.0, which also claims resistance
to timing attacks and cache-timing attacks. We implemented oblivious versions of all three client-loaded
functions that we include in our evaluation (decrypt ibe, decrypt order, and decrypt 3dnf). This was
easy to achieve by implementing data comparisons in x86 assembly with the setg and sete conditional
instructions (similar to [OSF+16]), see Figure 3.

10

o greater(x, y):
cmp ecx, edx

setg al

ret

o bytecmp(a, b):
cmp ecx, edx

sete al

ret

bool o_memcmp(char* a, char* b, int len){

bool ret = 1;

for (int i = 0; i < len; i++){

ret = ret & o_bytecmp(a[i], b[i]);

}

return ret;

}

bool o_order(int x, int y){

return o_greater(x, y);

}

Figure 3: Data oblivious comparison functions.

In general, for more complex functionalities, the implementation may require ORAM or other mitigation
techniques. The Authority would need to ensure that it only signs function enclave programs that have
data-oblivious implementations or are otherwise resilient to known side channel attacks.

5 Evaluation

We tested the prototype implementation on a platform running an Intel Skyake i7-6700 processor at 3.40
GHz with 8 GiB of RAM and Windows Server 2012 R2 Standard operating system. The code was developed
and compiled in Visual Studio 2012 (platform toolset v110) with the Intel(R) SGX SDK 1.6 and Intel(R)
SGX PSW 1.6 add-ons. We compiled with a 64-bit and Debug mode build configurations (currently, an Intel
license is required to build enclaves in Release mode).

We only report on the performance of FE.Decrypt, FE.Setup, and FE.Keygen (Figures 4 and 5). FE.Encrypt
in our system is standard public key encryption (our implementation uses ElGamal), and this is done outside
of SGX enclaves. Note that all the procedures we evaluate are entirely local, which is why we do not include
any network performance metrics. We omit performance measures on decryption node setup since the
setup procedure requires contacting the Intel Attestation Server to process a remote attestation, which
we were unable to test without a license from Intel. Nonetheless, the setup is a one-time operation that
is completed when a decryption node platform is first established, and thus has little overall impact on
decryption performance.

Our evaluation demonstrates that the SGX-based functional encryption examples we implemented (IBE,
ORE, and 3DNF) are not only practical but also orders of magnitude faster than cryptographic solutions
without secure hardware, particularly for the multi-input functions ORE and 3DNF. In general, multi-input
functional encryption (without SGX) is totally impractical given current cryptographic techniques. But we
have shown that SGX is considerably faster even for a type of functional encryption widely used in practice,
i.e. IBE. We recognize that more complex functionalities than the ones we have implemented, particularly
functions that operate on data outside the EPC, may require additional side-channel mitigation techniques
such as ORAM, which will impact performance. However, we would still expect these to outperform tradi-
tional functional encryption by orders of magnitude.

FE.Setup and FE.Keygen evaluation Figure 4 contains a break down of the run time for FE.Setup
and FE.Keygen.

11

create enclave 57 ms
ECDSA setup 74 ms
ElGamal setup 8 ms
server setup 2 ms
sign message 11 ms
Total 141 ms

Figure 4: FE.Setup and FE.Keygen run time, including enclave creation and generation of public/secret keys for ECDSA
and ElGamal on 256 bit EC curves. FE.Keygen corresponds to sign message, which generates an ECDSA signature on a 256-bit
input.

FE.Decrypt evaluation We evaluated the performance of FE.Decrypt for three special cases of func-
tion encryption: identity based encryption (IBE), order revealing encryption (ORE), and three input DNF
(3DNF). We chose these functionalities primarily to demonstrate how our SGX assisted versions of these
primitives perform in comparison to their purely cryptographic versions (IBE from pairings, DNF and 3DNF
from multilinear maps). The table in Figure 5 summarizes the decryption times for the three functionalities,
including a breakdown of the time spent on the three main ECALLS of the decryption process: enclave
creation, local attesting to the DE, and finally decrypting the ciphertext and evaluating the function.

Functionality: IBE ORE 3DNF
create enclave 14.5 ms 20.7 ms 19.7 ms
local attest 1.6 ms 2.1 ms 2.1 ms
decrypt & eval 0.98 ms 0.84 ms 0.96 ms
Total 17.8 ms 23.78 ms 22.76 ms

Figure 5: Breakdown of FE.Decrypt run times for each of our Iron implementations of IBE, ORE, and 3DNF. The input in
IBE consisted of a 3-byte tag and a 32-bit integer payload. The input pairs in ORE were 32-bit integers, and the input triplets
in 3DNF were 16-bit binary strings. (The input types were chosen for consistency with the 5Gen experiments). The column
decrypt gives the cost of running a single decryption.

Amortized decryption costs As shown in Figure 5, for each of the functionalities the time spent creating
the enclave dominates the time spent on decryption and evaluation by 2 orders of magnitude. Once the
function enclave has been created and local attestation to the DE is complete, the same enclave can be used
to decrypt an arbitrary number of input ciphertext tuples. Thus, the amortized cost of running decryption
on many ciphertexts (or tuples of ciphertexts) is much lower than the cost of running decryption on a single
input. (This is not the case with cryptographic implementations of these functionalities). The amortized
cost of running decryption on 1000 inputs (ciphertext tuples) is included in the next table, Figure 6.

Figure 7: Comparison of time for decrypting 103 ciphertext tuples using the Iron implementation of IBE, ORE, 3DNF vs
cryptographic implementations from pairings and mmaps respectively.

12

|msg|:
|c|:
decrypt:
decrypt∗:

IBESGX IBE[BF01] × increase

35 bits 35 bits NA

175 bytes 471 bytes 2.69

17.8 ms 49 ms 2.75

0.39 ms 49 ms 125.64

ORESGX ORE5Gen × increase

32 bits 32 bits NA

172 bytes 4.7 GB 27.3 · 106

23.78 ms 4 m 10.1 · 103

0.32 ms 4 m 750 · 103

ORESGX ORE5Gen × increase

32 bits 32 bits NA

172 bytes 4.7 GB 27.3 · 106

23.78 ms 4 m 10.1 · 103

0.32 ms 4 m 750 · 103

Figure 6: Comparison of decryption times and ciphertext sizes for the Iron implementation of IBE, ORE, 3DNF to
cryptographic implementations. The 5Gen ORE and 3DNF implementation referenced here uses the CLT mmap with an 80-bit
security parameter. The column decrypt gives the cost of running a single decryption, and decrypt∗ gives the amortized cost
(per ciphertext tuple) of 103 decryptions.

Comparison to cryptographic implementations We measured decryption time for an implementa-
tion6 of Boneh-Franklin IBE [BF01] on our platform. We also include decryption time performance numbers
for the 5Gen implementation7 of mmap-based ORE and 3DNF as reported in [LMA+16]. We did not deem
it necessary to measure 5Gen implementations of ORE and 3DNF on our platform since their performance is
4 orders of magnitude slower than that of our SGX-based implementation. The comparison for these multi-
input functionalities simply illustrates how our Iron system makes possible primitives that are currently
otherwise infeasible to build for practical use without secure hardware.

6 Formal Models and Definitions

6.1 Formal HW model

In our FE model, parties will have access to the secure hardware defined below. Our definition is expressed
as a black-box program HW that captures the secure hardware’s functionality and its interface exposed to
the user.

Definition 6.1. A secure hardware functionality HW for a class of (probabilistic polynomial time) programs
Q consists of the following interface: HW.Setup, HW.Load, HW.Run, HW.Run&Report, HW.Run&Quote,
HW.ReportVerify, HW.QuoteVerify. HW also has an internal state state that consists of two variables HW.skquote
and HW.skreport and a table T consisting of enclave state tuples indexed by enclave handles. The two variables
HW.skquote and HW.skreport will be used for storing signing keys and the table T will be used for managing
the internal states of loaded enclave programs.

• HW.Setup(1λ): HW.Setup takes in a security parameter λ. It generates the secret keys skquote, skreport,
and stores these in HW.skquote,HW.skreport respectively. Finally, it generates and outputs public pa-
rameters params.

• HW.Load(params, Q): This loads a stateful program into an enclave. HW.Load takes as input a program
Q ∈ Q and some global parameters params. It first creates an enclave and loads Q and generates a
handle hdl that will be used to identify the enclave running Q. It initializes the entry T [hdl] = ∅.

• HW.Run(hdl, in): This runs an enclave program. It takes in a handle hdl corresponding to an enclave
running the stateful program Q and an input in. It runs Q at state T [hdl] with input in and records
the output out. It sets T [hdl] to be the updated state of Q and outputs out.

• HW.Run&Reportskreport(hdl, in): This executes a program in an enclave and also generates an attestation
of its output that can be verified by an enclave program on the same HW platform. It takes as
inputs a handle hdl for an enclave running a program Q and an input in for Q. The algorithm
first executes Q on in to get out, and updates T [hdl] accordingly. HW.Run&Report outputs the tuple
report :=

(
mdhdl, tagQ, in, out,mac

)
, where mdhdl is the metadata associated with the enclave, tagQ

6The Stanford IBE command-line utility ibe-0.7.2-win, available at https://crypto.stanford.edu/ibe/download.html
75Gen, available https://github.com/5GenCrypto

13

is a program tag that can be used to identify the program running inside the enclave (it can be a
cryptographic hash of the program code Q) and mac is a cryptographic MAC produced using skreport
on (mdhdl, tagQ, in, out).

• HW.Run&QuoteskHW
(hdl, in): This executes a program in an enclave and also generates an attestation

of its output that can be publicly verified, e.g. by a remote party. This takes as inputs a handle hdl
corresponding to an enclave running a program Q and an input in for Q. This algorithm has a restricted
access to the key skHW for using it to sign messages. The algorithm first executes Q on in to get out, and
updates T [hdl] accordingly. HW.Run&Quote then outputs the tuple quote :=

(
mdhdl, tagQ, in, out, σ

)
,

where mdhdl is the metadata associated with the enclave, tagQ is a program tag for Q and σ is a
signature on (mdhdl, tagQ, in, out).

• HW.ReportVerifyskreport(hdl
′, report): This is the report verification algorithm. It takes as inputs, a handle

hdl′ for an enclave and a report =
(
mdhdl, tagQ, in, out,mac

)
. It uses skreport to verify the MAC. If mac

is valid, it outputs 1 and adds a tuple (report, 1) to T [hdl′]. Otherwise it outputs 0 and adds (report, 0)
to T [hdl′].

• HW.QuoteVerify(params, quote): This is the quote verification algorithm. This takes params and quote =(
mdhdl, tagQ, in, out, π

)
as input. It outputs 1 if the signature verification of σ succeeds. It outputs 0

otherwise.

Correctness A HW scheme is correct if the following things hold (using the syntax from Definition 6.1):
For all aux, Q ∈ Q, all in in the input domain of Q and all handles hdl′ ∈ H,

• Correctness of Run: out = Q(in) if Q is deterministic. More generally, ∃ random coins r (sampled in
run time and used by Q) such that out = Q(in).

• Correctness of Report and ReportVerify:

Pr
[
HW.ReportVerifyskreport(hdl

′, report) = 0
]

= negl(λ)

• Correctness of Quote and QuoteVerify:

Pr
[
HW.QuoteVerify(params, quote) = 0

]
= negl(λ)

6.1.1 Local attestation unforgeability

The local attestation unforgeability (LocAttUnf) security is defined similarly to the unforgeability security
of a MAC scheme. Informally, it says that no adversary can produce a report =

(
md′hdl, tagQ, in, out,mac

)
that verifies correctly for any hdl′ ∈ H and out = Q(in), without querying the inputs (hdl, in).

This is formally defined by the following security game.

Definition 6.2. (LocAttUnf-HW). Consider the following game between a challenger C and an adversary
A.

1. A provides an aux.

2. C runs the HW.Setup(1λ, aux) algorithm to obtain the public parameters params, secret keys (skHW, skreport)
and an initialization string state. It gives params to A, and keeps (skHW, skreport) and state secret in
the secure hardware.

3. C initializes a list query = {}.

4. A can run HW.Load on any input (params, Q) of its choice and get back hdl.

14

5. A can run HW.Run&Report on input (hdl, in) of its choice and get report :=
(
mdhdl, tagQ, in, out,mac

)
.

For every run, C adds the tuple (mdhdl, tagQ, in, out) to the list query.

6. A can also run HW.ReportVerify on input (hdl′, report) of its choice and gets back the result.

We say the adversary wins the above experiment if:

1. HW.ReportVerify(hdl′∗, report∗) = 1, where report∗ = (md∗hdl, tag
∗
Q, in

∗, out∗) and

2. (md∗hdl, tag
∗
Q, in

∗, out∗) was not added to query before A queried HW.ReportVerify on (hdl′∗, report∗).

The HW scheme is LocAttUnf-HW secure if no adversary can win the above game with non-negligible
probability.

6.1.2 Remote attestation unforgeability

The remote attestation unforgeability (RemAttUnf) security is defined similarly to the unforgeability security
of a signature scheme. Informally, it says that no adversary can produce a quote =

(
hdl, tagQ, in, out, π

)
that

verifies correctly and out = Q(in), without querying the inputs (hdl, in).
This is formally defined by the following security game.

Definition 6.3. (RemAttUnf-HW). Consider the following game between a challenger C and an adversary
A.

1. A provides an aux.

2. C runs the HW.Setup(1λ, aux) algorithm to obtain the public parameters params, secret keys (skHW, skreport)
and an initialization string state. It gives params to A, and keeps (skHW, skreport) and state secret in
the secure hardware.

3. C initializes a list query = {}.

4. A can run HW.Load on any input (params, Q) of its choice and get back hdl.

5. Also, A can run HW.Run&Quote on input (hdl, in) of its choice and get quote :=
(
mdhdl, tagQ, in, out, π

)
.

For every run, C adds the tuple (mdhdl, tagQ, in, out) to the list query.

6. Finally, the adversary outputs quote∗ = (md∗hdl, tag
∗
Q, in

∗, out∗, π∗).

We say the adversary wins the above experiment if:

1. HW.QuoteVerify(params, quote∗) = 1,

2. (md∗hdl, tag
∗
Q, in

∗, out∗) /∈ query

The HW scheme is RemAttUnf-HW secure if no adversary can win the above game with non-negligible
probability.

Note that the scheme is secure even if A can produce a quote∗ different from the query outputs for some
(md∗hdl, tag

∗
Q, in

∗, out∗) ∈ query. But quote∗ cannot be a proof for a different program or input or output.
This definition resembles the existential unforgeability like notions.

We also point out some other important properties of the secure hardware that we impose in our model.

• Any user only has black box access to these algorithms and hence hidden from the internal secret key
skHW, initial state state or intermediary states of the programs running inside secure containers.

• The output of the HW.Run&Quote algorithm is succinct: it does not include the full program descrip-
tion, for instance.

15

• We also require the params and the handles hdl to be independent of aux. In particular, for all aux, aux′,

(params, skHW, skreport, state)← HW.Setup(1λ, aux)

(params′, sk′HW, sk
′
report, state

′)← HW.Setup(1λ, aux′)

and for hdl ← HW.Loadstate(params, Q) and hdl′ ← HW.Loadstate′(params′, Q), the tuples (params, hdl)
and (params′, hdl′) are identically distributed.

Differences from real SGX The purpose of this abstraction is to provide us with a way of formally
modeling our construction of FE in the simplest way possible in order to analyze its security properties.
Here, we explain and justify key differences between HW and the actual Intel SGX implementation. We
stress that these justifications are not formal security arguments. Formally proving that the Intel SGX
implementation securely realizes a given specification is a separately challenging task.

• In our model, HW is a black-box program that loads and manages enclaves, including updating their
state in HW.ReportVerify. This internal management is entirely hidden from the user, which only sees
the interface, inputs, and outputs. In real Intel SGX, only operations internal to a program running in
an enclave (i.e. instructions that operate on registers/memory in the EPC) are entirely hidden from
the user, and the enclave program’s state cannot be modified by an external entity. Programs running
in enclaves can directly run instructions to generate and verify reports.

• The key skHW used to sign remote attestations in our model is generated during HW.Setup (i.e. in
the trusted manufacturing facility). In Intel SGX, this key is not actually fused into the device. It is
delivered to an special enclave QE (the Quoting Enclave) running on the device that symmetrically
authenticates to the Intel Provisioning Server by accessing a key (the Root Provisioning Key) that is
fused into the device and also given to Intel. The QE then receives the private key for a group signature
scheme through a blind join protocol (see [JSR+16]), and uses this key to generate quotes on behalf of
other enclaves. Our model compresses the manufacturing and provisioning processes into HW.Setup.

• Our HW.Run&Report algorithm generates a report that can be verified by any enclave on the same HW
platform. In SGX, a report is generated for a specific destination enclave and only that enclave can
verify its validity. However, this particular feature of SGX is not relevant for our application.

• Intel SGX also has the capability of sealing data with a hardware fused Seal Key. In particular, this
allows the device to use persistent storage for keys. For simplicity, we do not include this in our formal
model, and assume the trusted HW functionality is persistent.

• HW.Run&Quote and HW.QuoteVerify use a standard cryptographic signature scheme to sign and verify
quotes. In Intel SGX the signatures used for quotes are actually anonymous group signatures, but this
additional property is not relevant to our application, so we omit it for simplicity. Moreover, currently
Intel SGX requires the user to contact the Intel Attestation Server (IAS) to verify group signatures.
Theoretically, verifying an anonymous group signature only requires the public group key, and needn’t
involve the IAS.

HW security models One way of viewing this definition of HW is that is describes the ideal functionality
or oracle that models the real (physical) world assumptions about the hardware security properties of Intel
SGX (see Katz [Kat07] on this approach to modeling secure hardware in cryptographic protocols). In this
view, an adversary shouldn’t be able to distinguish between interacting with the real world hardware and the
ideal functionality. Moreover, in a proof of security, the adversary’s interaction with the ideal functionality
can be simulated. This is a very strong assumption on the secure hardware being used, particularly since the
adversary has access to the physical hardware and can closely monitor its behavior. A weaker assumption
is that HW is merely an abstraction of the actual hardware instantiation, and an adversary’s physical
interactions with HW cannot be simulated. Our security proof of the main system/construction we have
presented assumes the first model. In Section 8.1 we explore the second model, though it turns out that we
cannot achieve the standard non-interactive notion of functional encryption in this stronger security model.

16

Related models Barbosa et. al. [BPSW16] define a similar interface/ideal functionality to represent
systems like SGX that perform attested computation. Compared to their model, our model sacrifices some
generality for a simpler syntax that more closely models SGX. Their security model uses a game-based
definition of attested computation, similar to the second security model we discuss in Section 8.1.

Pass, Shi, and Tramer [PST17] also define an ideal functionality for attested computation in the Universal
Composability framework [Can01]. The goal of their model is to explore composable security for protocols
using secure processors performing attested computation. Similar to [BPSW16] their syntax is more abstract
that ours, e.g. does not distinguish between local and remote attestation. However, their hardware security
model is more similar in that it allows the hardware functionality to be simulated. A key difference is that
their simulator does not possess the hardware’s secret signing key(s) used to generate attestations. Our
simulator will be given the hardware’s secret keys, similar to trapdoor information in CRS-model proofs.

Bahmani et al [BBB+16] adapts the SGX model of [BPSW16] to deal with sequences of SGX computations
that may be stateful, asynchronous, and interleaved with other computations. Their model is called labelled
attested computation, which refers to labels being appended to every enclave input/output in order to track
state. This capability is implicitly captured in our model as well.

6.2 Functional Encryption

We adapt the definition of functional encryption to fit the computational model of our system. Recall that
the decryption process in our system utilizes local SGX enclaves and also may communicate with a remote
SGX enclave, the KME. We model interaction with any local enclaves as calls to the HW functionality
defined in Definition 6.1. However, communication with the KME is over an untrusted channel with the
remote platform on which the KME is running. Therefore, we separately model this as communication with
an oracle KM(·).

Non-interaction Non-interaction is central to the standard notion of functional encryption. Our construc-
tion of hardware assisted FE requires a one-time setup operation where the decryptor’s hardware contacts
the KME to receive a secret key. However, this interaction only occurs once in the setup of a decryption
node, and thereafter decryption is non-interactive. To capture this restriction on interaction we add to the
standard FE algorithms an additional algorithm FE.DecSetup, which is given oracle access to a Key Manager
KM(·). The decryption algorithm FE.Dec is only given access to HW.

Pre-processing In our model, we allow all the parties performing decryption to complete a pre-processing
phase. The pre-processing is executed by the trusted environment. In our construction, this step is executed
by the manufacturer to setup and initialize the secure hardware. Pre-processing is executed before any FE
algorithm, and hence does not depend on any of its parameters. An output of the pre-processing phase
includes public parameters which are implicitly given to all subsequent algorithms.

A functional encryption scheme FE for a family of programs P and message space M consists of five
p.p.t. algorithms FE = (FE.Setup,FE.Keygen,FE.Enc,FE.DecSetup,FE.Dec) defined as follows.

• FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter
λ and outputs the master public key mpk and the master secret key msk.

• FE.Keygen(msk, P): The key generation algorithm takes as input the master secret key msk and a
program P ∈ P and outputs the secret key skP for P .

• FE.Enc(mpk,msg): The encryption algorithm takes as input the master public key mpk and an input
message msg ∈M and outputs a ciphertext ct.

• FE.DecSetupKM(·),HW(·)(mpk): The decryptor node setup algorithm takes as input the master public
key mpk and gets access to the KM oracle and the HW oracles. And it outputs a handle hdl to be used
by the actual decryption algorithm.

17

• FE.DecHW(·)(hdl, skP , ct): The decryption algorithm takes as input a handle hdl for an enclave, a secret
key skP and a ciphertext ct and outputs P (msg) or ⊥. This algorithm has access to the interface for
all the algorithms of the secure hardware HW.

Correctness A functional encryption scheme FE is correct if for all P ∈ P and all msg ∈ M, the proba-

bility for FE.DecHW(·)
(
hdl, skP , ct)

)
to be not equal to P (msg) is negl(λ), where (mpk,msk)← FE.Setup(1λ),

skP ← FE.Keygen(msk, P), ct← FE.Enc(mpk,msg and hdl← FE.DecSetupKM(·),HW(·)(mpk) and the probabil-
ity is taken over the random coins of the probabilistic algorithms FE.Setup,FE.Keygen,FE.Enc,FE.DecSetup.

Security definition Here, we define a strong simulation-based security of FE similar to [BSW12,GVW12,
AGVW13]. In this security model, a polynomial time adversary will try to distinguish between the real world
and a “simulated” world. In the real world, algorithms work as defined in the construction. In the simulated
world, we will have to construct a polynomial time simulator which has to do the experiment given only the
program queries P made by the adversary and the corresponding results P (msg).

Definition 6.4 (SimSecurity-FE). Consider a stateful simulator S and a stateful adversary A. Let Umsg(·)
denote a universal oracle, such that Umsg(P) = P (msg).

Both games begin with a pre-processing phase executed by the environment. In the ideal game, pre-
processing is simulated by S. Now, consider the following experiments.

ExprealFE (1λ) : ExpidealFE (1λ) :

(mpk,msk)← FE.Setup(1λ) mpk← S(1λ)

(msg)← AFE.Keygen(msk,·)(mpk) msg← AS(·)(mpk)

ct← FE.Enc(mpk,msg) ct← SUmsg(·)(1λ, 1|msg|)

α← AFE.Keygen(msk,·),HW,KM(·)(mpk, ct) α← ASUmsg(·)(·)(mpk, ct)

Output (msg, α) Output (msg, α)

In the above experiment, oracle calls by A to the key-generation, HW and KM oracles are all simulated
by the simulator SUmsg(·)(·). An FE scheme is simulation-secure against adaptive adversaries if there is a
stateful probabilistic polynomial time simulator S that on each FE.Keygen query P queries its oracle Umsg(·)
only on the same P (and hence learn just P (msg)), such that for every probabilistic polynomial time adversary
A the following distributions are computationally indistinguishable.

ExprealFE(1
λ)

c
≈ ExpidealFE (1λ)

Note that the above definition handles one message only. This can be extended to a definition of security
for many messages by allowing the adversary to adaptively output many messages while providing him the
ciphertext for a message whenever he outputs one. Here, the simulator will have an oracle Umsgi(·) for every
msgi output by the adversary.

Simulating HW As previously discussed, we let the simulator intercept all the adversary’s queries to HW
and return simulated responses, just as in [CKZ13]. If we do not allow simulation of HW, it is impossible
to achieve Definition 6.4. In Section 8.1 we provide a modified FE definition to allow minimal interaction8

with an efficient KM oracle during every run of FE.Dec, and give a construction that realizes this modified
FE in the stronger security model.

8Allowing unbounded interaction would lead to trivial constructions where KM simply decrypts the ciphertext and returns
the function of the message.

18

6.3 Crypto primitive definitions

6.3.1 Secret key encryption

A secret key encryption scheme E supporting a message domainM consists of the following polynomial time
algorithms:

E.KeyGen(1λ) The key generation algorithm takes in a security parameter and outputs a key sk from the
key space K.

E.Enc(sk,msg) The encryption algorithm takes in a key sk and a message msg ∈M and outputs the cipher-
text ct.

E.Dec(sk, ct) The decryption algorithm takes in a key sk and a ciphertext ct and outputs the decryption
msg.

The first two algorithms are probabilistic whereas the decryption algorithm is deterministic.

Correctness A secret key encryption scheme E is correct if for all λ and all msg ∈M,

Pr
[
E.Dec

(
sk,E.Enc(sk,msg)

)
6= msg

∣∣∣sk← E.KeyGen(1λ)
]

= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms E.KeyGen,E.Enc.

An encryption scheme provides data confidentiality. So, it should prevent an adversary from learning
which message is encrypted in a ciphertext. The security of E is formally defined by the following security
game.

Definition 6.5. (IND-CPA security of E). Security is depicted by the following game between a challenger
C and an adversary A.

1. The challenger run the E.KeyGen algorithm to obtain a key sk from the key space K.

2. The challenger also chooses a random bit b ∈ {0, 1}.

3. Whenever the adversary provides a pair of messages (msg0,msg1) of its choice, the challenger replies
with E.Enc(sk,msgb).

4. The adversary finally outputs its guess b′.

The advantage of adversary in the above game is

Advenc(A) := Pr[b′ = b]− 1

2

A secret key encryption scheme E is said to have indistinguishability security under chosen plaintext attack
if there is no polynomial time adversary A which can win the above game with probability non-negligible in
λ.

6.3.2 A signature scheme

A digital signature scheme S supporting a message domain M consists of the following polynomial time
algorithms:

S.KeyGen(1λ The key generation algorithm takes in a security parameter and outputs the signing key sk and
a verification key vk.

19

S.Sign(sk,msg) The signing algorithm takes in a signing key sk and a message msg ∈ M and outputs the
signature σ.

S.Verify(vk, σ,msg)) The verification algorithm takes in a verification key vk, a signature σ and a message
msg and outputs 0 or 1.

The first two algorithms are probabilistic whereas the verification algorithm is deterministic.

Correctness A signature scheme S is correct if for all msg ∈M,

Pr
[
S.Verify

(
vk,S.Sign(sk,msg),msg

)
= 0
∣∣∣(sk, vk)← S.KeyGen(1λ)

]
= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms S.KeyGen,S.Sign.

Signatures provide authenticity. So, an adversary without the signing key should not be able to generate
a valid signature. The security of S is formally defined by the following security game.

Definition 6.6. (EUF-CMA security of S). Consider the following game between a challenger C and an
adversary A.

1. The challenger runs the S.KeyGen algorithm to obtain the key pair (sk, vk), and provides the verification
key vk to the adversary.

2. Initialize query = {}.

3. Now, whenever the adversary provides a query with a message msg, the challenger replies with S.Sign(sk,msg).
Also, query = query ∪msg.

4. Finally, the adversary outputs a forged signature σ∗ corresponding to a message msg∗.

The advantage of A in the above security game is

Advsign(A) := Pr
[
S.Verify(vk, σ∗,msg∗) = 1

∣∣msg∗ /∈ query
]

A signature scheme S is said to be existentially unforgeable under chosen message attack if there is no
polynomial time adversary which can win the above game with probability non-negligible in λ.

6.3.3 Public key encryption

A public key encryption (PKE) is a generalization of secret key encryption where anyone with the public
key of the receiver can encrypt messages to the receiver. A PKE scheme supporting a message domain M
consists of the following algorithms:

PKE.KeyGen(1λ) The key generation algorithm takes in a security parameter and outputs a key pair (pk, sk).

PKE.Enc(pk,msg) The encryption algorithm takes in a public key pk and a message msg ∈ M, outputs a
ciphertext ct which is an encryption of msg under pk.

PKE.Dec(sk, ct) The decryption algorithm takes in a secret key sk and a ciphertext ct and outputs the
decryption msg or ⊥.

The first two algorithms are probabilistic whereas the decryption algorithm is deterministic.

20

Correctness A PKE scheme PKE is correct if for all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk,PKE.Enc(pk,msg)

)
6= msg

∣∣∣(pk, sk)← PKE.KeyGen(1λ)
]

= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms KeyGen,Enc.

A PKE scheme provides confidentiality to the encrypted message. The security of PKE is formally defined
by the following security game.

Definition 6.7. (IND-CCA2 security of PKE). Consider the following game between a challenger C and an
adversary A.

1. C runs the PKE.KeyGen algorithm to obtain a key pair (pk, sk) and gives pk to the adversary.

2. A provides adaptively chosen ct and get back PKE.Dec(sk, ct).

3. A provides msg0,msg1 to C.

4. C then runs PKE.Enc(pk) to obtain ct∗ = PKE.Enc(pk,msgb) for b
$← {0, 1}. C provides ct∗ to A.

5. A continues to provide adaptively chosen ct and get back PKE.Dec(sk, ct), with a restriction that ct 6=
ct∗.

6. A outputs its guess b′.

The advantage of the adversary A in the above game is

Advpke(A) := Pr[b′ = b]− 1

2

A PKE scheme PKE is said to have indistinguishability security under adaptively chosen ciphertext attack if
there is no polynomial time adversary A which can win the above game with probability non-negligible in λ.

We also require the PKE scheme to be “weakly robust” [ABN10]. Informally, a ciphertext when decrypted
with an “incorrect” secret key should output ⊥ when all the algorithms are honestly run.

Definition 6.8. ((Weak) robustness property of PKE). A PKE scheme PKE has the (weak) robustness
property if for all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk′,PKE.Enc(pk,msg)

)
6=⊥
]

= negl(λ)

where (pk, sk) and (pk′, sk′) are generated by running PKE.KeyGen(1λ) twice, and the probability is taken
over the random coins of the probabilistic algorithms PKE.KeyGen,PKE.Enc.

One heuristic way of providing this property to a PKE scheme is by padding the message with 0λ before
encrypting it, and checking the suffix for 0λ during decryption. We refer the readers to [ABN10] for a formal
treatment of this property.

6.3.4 Collision resistant hash functions

A set of functions H = {Hi} is a collision resistant hash function family with each Hi : {0, 1}poly(λ) → {0, 1}λ
(for all poly(λ) > λ), if for all λ, for every x in the domain of H, the value of

Pr
[
H(x) = H(y)|H ← H.Gen(1λ), (x, y)← A(H)

]
is negl(λ) for any polynomial time adversary A, where the probability is taken over the random coins of Gen.
In particular, we will use a function family which consists of functions with domain {0, 1}|ctenc|, where ctenc is
a ciphertext of a secret key encryption scheme which also depends on the length of the message encrypted.

21

7 Security analysis

7.1 Formal construction

We present here the formal description of our FE system using the syntax of the HW model from Defini-
tion 6.1. The trusted authority platform TA and decryption node platform DN each have access to instances
of HW. Let PKE denote an IND-CCA2 secure public key encryption scheme (Definition 6.7) and let S denote
an existentially unforgeable signature scheme (Definition 6.6).

Pre-processing phase TA and DN run HW.Setup(1λ) for their HW instances and record the output
params.

FE.SetupHW(1λ) The key manager enclave program QKME is defined as follows. The value tagDE , the
measurement of the program QDE , is hardcoded in the static data of QKME . Let state denote an internal
state variable.

QKME :

• On input (“init”, 1λ):

1. Run (pkpke, skpke)← PKE.KeyGen(1λ) and (vksign, sksign)← S.KeyGen(1λ)

2. Update state to (skpke, sksign, vksign) and output (pkpke, vksign)

• On input (“provision”, quote, params):

1. Parse quote =
(
mdhdl, tagQ, in, out, σ

)
, check that tagQ = tagDE . If not, output ⊥.

2. Parse in = (“init setup”, vksign) and check if vksign matches with the one in state. If not, output ⊥.

3. Parse out = (sid, pk) and run b← HW.QuoteVerify(params, quote) on quote. If b = 0 output ⊥.

4. Retrieve skpke from state and compute ctsk = PKE.Enc(pk, skpke) and σsk = S.Sign(sksign, (sid, ctsk)) and output
(sid, ctsk, σsk).

• On input (“sign”,msg):
Compute sig← S.Sign(sksign,msg) and output sig.

Run hdlKME ← HW.Load(params, QKME) and (pkpke, vksign) ← HW.Run(hdlKME , (“init”, 1λ)). Output
the master public key mpk := (pkpke, vksign) and the master secret key msk := hdlKME .

FE.KeygenHW(msk, P) Parse msk = hdlKME as a handle to HW.Run. Derive tagP and call
sig← HW.Run(hdlKME , (“sign”, tagP)). Output skp := sig.

FE.Enc(mpk,msg) Parse mpk = (pk, vk). Compute ct← PKE.Enc(pk,msg) and output ct.

FE.DecSetupHW,KM(·)(skP , ct) The decryption enclave program QDE is defined as follows. The security
parameter λ is hardcoded into the program.

QDE :

• On input (“init setup”, vksign):

1. Run (pkra, skra)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, skra, vksign), and output (sid, pkra).

• On input (“complete setup”, sid, ctsk, σsk):

1. Look up the state to obtain the entry (sid, skra, vksign). If no entry exists for sid, output ⊥.

2. Verify the signature b← S.Verify(vksign, σsk, (sid, ctsk)). If b = 0, output ⊥.

3. Run m← PKE.dec(skra, ctsk) and parse m = (skpke).

22

4. Add the tuple (skpke, vksign) to state9.

• On input (“provision”, report, sig):

1. Check to see that the setup has been completed, i.e. that state contains the tuple (skpke, vksign). If not, output ⊥.

2. Check to see that the report has been verified, i.e. that state contains the tuple (1, report). If not, output ⊥.

3. Parse report =
(
mdhdl, tagQ, in, out,mac

)
and compute b← S.Verify(vksign, sig, tagQ). If b = 0, output ⊥.

4. Parse out as (sid, pk). If b = 1 output (sid,PKE.Enc(pk, skpke)). Else, output ⊥.

Run hdlDE ← HW.Load(params, QDE). Parse mpk = (skpke, vksign) and call
quote← HW.Run&QuoteskHW

(hdlDE , “init setup”, vksign). Query KM(quote), which internally runs (sid, ctsk, σsk)←
HW.Run(hdlKME , (“provision”, quote, params))10. Call HW.Run(hdlDE , (“complete setup”, sid, ctsk, σsk)). Out-
put hdlDE .

FE.DecHW(·)(hdl, skP , ct) Define a function enclave program parameterized by P .

QFE(P):

• On input (“init”):

1. Run (pkla, skla)← PKE.KeyGen(1λ).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, skla), and output (sid, pkla).

• On input (“run”, reportsk, ctmsg):

1. Check to see that the report has been verified, i.e. that state contains the tuple (1, reportsk). If not, output ⊥.

2. Parse reportsk =
(
mdhdl, tagQ, in, out,mac

)
. Parse out as (sid, ctkey).

3. Look up the state to obtain the entry (sid, skla). If no entry exists for sid, output ⊥.

4. Compute skpke ← PKE.dec(skra, ctkey) and x← PKE.dec(skpke, ctmsg).

5. Run P on x and record the output out := P (x). Output out.

Set hdlDE = hdl, sig = skP , and ctmsg = ct. Run hdlP ← HW.Load(params, QFE(P)) and call
report← HW.Run&Reportskreport(hdlP , “init”). Run HW.ReportVerifyskreport(hdlDE , report) and then call
reportsk ← HW.Run&Report(hdlDE , (“provision”, report, sig)). Finally, run HW.ReportVerifyskreport(hdlP , reportsk)
and call out← HW.Run(hdlP , “run”, reportsk, ctmsg). Output out.

7.2 Security proof

Theorem 7.1. If S is an EUF-CMA secure signature scheme, PKE is an IND-CCA2 secure public key
encryption scheme and HW is a secure hardware scheme, then FE is a secure functional encryption scheme
according to Definition 6.4.

Proof. We will construct a simulator S for the FE security game in Definition 6.4. S is given the length
|msg∗| and an oracle access to Umsg∗(·) (such that Umsg∗(P) = P (msg∗)) after the adversary provides its chal-
lenge message msg∗. S can use this Umsg∗ oracle on the programs queried by the adversary A to FE.Keygen.
S has to simulate the pre-processing phase and a ciphertext corresponding to the challenge message msg∗

along with answering the adversary’s queries to the KeyGen, HW and the KM oracles.

Pre-processing phase: S simulates the pre-processing phase similar to the real world. S runs HW.Setup(1λ)
and records (skquote, skreport) generated during the process. S measures and stores tagDE . S also creates
empty lists K,R,N , LKM , LDE , LDE2, LFE which will be used later.

9vksign is already in state as part of the outputs of the previous “init setup” phase, but it is useful store and use this tuple
as result of a successfully completed setup.

10We could use HW.Run&Quote here instead of explicitly creating the signature σk. If we do that, the verification step in
DE would involve using the Intel Attestation Service.

23

FE.Keygen∗(msk, P) When A makes a query to the FE.Keygen oracle, S responds the same way as in the
real world except that S now stores all the tagP corresponding to the P ’s queried in a list K. That is, S
does the following.

1. Parse msk as a handle to HW.Run. Derive tagP and call sig ← HW.Run(hdlKME , (“sign”, tagP)).
Output skp := sig.

2. If tagP has an entry in K, make the first entry 1. Else, add (1, tagP , {}) to K. We call the first bit in
the tuple as the “honest” bit.

FE.Enc∗(mpk, 1|msg∗|) When A provides the challenge message msg∗, the following algorithm is used by S
to simulate the challenge ciphertext for msg∗.

1. Parse mpk = (pk, vk). Compute and output ct∗ ← PKE.Enc(pk, 0|msg∗|).

2. Store ct∗ in the list R.

HW oracle For A’s queries to the algorithms of the HW oracle, S runs the corresponding HW algorithms
honestly and outputs their results except for the following oracle calls.

• HW.Run(hdlKME , “provision”, quote, params): When a provision query is made to KME, S parses
quote =

(
mdhdl, tagQ, in, out, σ

)
and outputs ⊥ if out /∈ LDE2. Else, it honestly runs the HW algorithm

and then replaces ctsk with PKE.Enc(pk, 0|skpke|). S also generates and replaces σsk for the modified
ctsk. Finally, S stores (sid, ctsk) in LKM . S does the same for HW.Run&Report and HW.Run&Quote
with (hdlKME , “provision”, quote, params) as input.

• HW.Load(params, Q): When the load algorithm is run for a Q corresponding to that of a DE, S runs
the load algorithm honestly and outputs hdlDE . In addition, it stores hdlDE in the list D. When the
load algorithm is run for a Q of the form QFE(P), S adds the output handle hdlP to the list K as
follows. S first checks if the tagP corresponding to this has an entry in K, and if it exists S appends
hdlP to its handle list. Else, S adds the tuple (0, tagP , hdlP) to K.

• HW.Run(hdlDE , “init setup”, vksign): When an init setup query is made to a hdlDE ∈ D, S checks if
vksign matches with the one in mpk. Else, it removes hdlDE from D. D will remain as the list of handles
for DEs with the correct vksign fed as input. Then, S runs HW.Run honestly on the given input and
outputs the result. It also adds (sid, pkra) to the list LDE2.

• HW.Run(hdlDE , “complete setup”, sid, ctsk, σsk): When a complete setup query is made to a hdlDE ∈ D,
S output ⊥ if (sid, ctsk) /∈ LKM . Else, it honestly executes HW.Run. Similar changes are made for
HW.Run&Report and HW.Run&Quote on this set of inputs.

• HW.Run(hdlDE , “provision”, report, sig): When a provision query is made to a hdlDE ∈ D, S parses
report =

(
mdhdl, tagQ, in, out,mac

)
and outputs ⊥ if out /∈ LFE . Else, it honestly executes HW.Run.

At the end, S adds the output (sid, ctkey) to LDE . Similar changes are made for HW.Run&Report and
HW.Run&Quote on this set of inputs.

• HW.Run(hdlP , “init”): When an init query is made to a hdlP ∈ K whose tuple in K has the honest bit
set, S runs HW.Run&Report honestly and outputs the result. It also adds (sid, pkla) to the list LFE .
Similar changes are made for HW.Run&Report and HW.Run&Quote on this set of inputs.

• HW.Run(hdlP , “run”, reportsk, ctmsg): When a run query is made to hdlP ∈ K whose tuple in K has the
honest bit set, S first parses reportsk =

(
mdhdl, tagQ, in, out,mac

)
and outputs ⊥ if out /∈ LDE . Else, it

runs HW.Run on the given inputs. If the output is ⊥, S outputs ⊥. Else, it parses out as (sid, ctkey)
and retrieves skpke from msk. If ctmsg /∈ R, S computes x ← PKE.dec(skpke, ctmsg), runs P on x and
outputs out := P (x). If ctmsg ∈ R, S queries its Umsg∗ oracle on P and outputs the response. Similar
changes are made for HW.Run&Report and HW.Run&Quote on this set of inputs.

24

• For HW.Run&Report and HW.Run&Quote queries, even when changes are made according to the above
changes, report and quote are generated for unmodified tag’s of the unmodified programs descriptions.
(This is to prevent the adversary from being able to distinguish the change in hybrids just by looking
at the report or quote.)

KM oracle For A’s queries to the KM oracle with input quote, S uses the provision queries to HW.Run for
KME with the changes mentioned above.

Now, for this polynomial time simulator S described above, we will show that for experiments in Definition
6.4,

(msg, α)real
c
≈ (msg, α)ideal (1)

We prove this by showing that the view of the adversary A in the real world is computationally indistin-
guishable from its view in the ideal world. It can be easily checked that the algorithms KeyGen∗,Enc∗ and
oracle KM∗ simulated by S correspond to the ideal world specifications of Definition 6.4 (because the only
information that S obtains about msg∗ is through the Umsg∗(·) oracle which it queries on the FE.Keygen
queries made by A). We will prove through a series of hybrids that A cannot distinguish between the real
and the ideal world algorithms and oracles.

Hybrid 0 ExprealFE(1λ) is run.

Hybrid 1 As in Hybrid 0, except that FE.Keygen∗ run by S is used to generate secret keys instead of

FE.Keygen. Also, the ct∗ returned by FE.Enc for the encryption of the challenge message msg∗ is stored in
the list R. Also, when HW.Load(params, Q) is run for the Q of a DE, store the output in the list D, and when
HW.Run(hdlDE , “init setup”, vksign) is run with a vksign different from that in mpk, remove hdlDE from D.
Also, when HW.Load is run for a Q of the form QFE(P), the output handle hdlP is added to the list K in the
tuple corresponding to tagP . If tagP does not have an entry in K, the entire tuple (0, tagP , hdlP) is added to K.

Here, FE.Keygen∗ and FE.Keygen are identical. And storing in lists does not affect the view of A. Hence,
Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 2 As in Hybrid 1, except that when the HW.Run&Report is queried with (hdlDE , (“provision”, report, sig))

for hdlDE ∈ D, S outputs ⊥ if tagP that is part of report does not have an entry in K with the honest bit
set.

If sig is not a valid signature of tagP , then the S.Verify step during the execution of HW.Run&Report(hdlDE , ·)
would make it output ⊥. Hence, Hybrid 2 differs from Hybrid 1 only when a valid signature sig for tagP
is part of the “provision” query to HW.Run&Report(hdlDE , ·) with a hdlDE that has the correct vksign in its
state and with a P that A has not queried to FE.Keygen∗. But, if A does make a query of this kind to
HW.Run&Report with a valid sig, we will show that this can be used to break the existential unforgeability
of the signature scheme S.

Lemma 7.2. If the signature scheme S is existentially unforgeable as in Definition 6.6, then Hybrid 2 is
indistinguishable from Hybrid 1.

Proof. Let A be an adversary which distinguishes between Hybrid 1 and Hybrid 2. We will use it to break
the EUF-CMA security of S. We will get a verification key vk∗sign and an access to S.Sign(sk∗sign, ·) oracle from
the EUF-CMA challenger. S sets this vk∗sign as part of the mpk. Whenever S has to sign a message using
sk∗sign, it uses the S.Sign(sk∗sign, ·) oracle. Also, our construction does not ever need a direct access to sk∗sign;
it is used only to sign messages for which the oracle provided by the challenger can be used. Now, if A can
distinguish between the two hybrids, as we argued earlier, it is only because A makes a “provision” query to
the HW.Run&Report(hdlDE , ·) oracle with a hdlDE ∈ D that has vk∗sign in its state and with a valid signature
sig on a tagP /∈ K. We will output (tagP , sig) as our forgery to the EUF-CMA challenger.

25

Hybrid 3.0 As in Hybrid 2, except that S maintains a list LKM of all the “provision” query responses

from KM i.e., the (sid, ctsk) tuples. Then, on any call to HW.Run(hdlDE , “complete setup”, sid, ctk, σk) for
hdlDE ∈ D, if (sid, ctsk) /∈ LKM , S outputs ⊥.

The proof at a high level will be similar to the previous one. HW.Run(hdlDE , “complete setup”, ·) already
outputs ⊥ in Hybrid 2 if σsk is not a valid signature of (sid, ctsk) or if an entry for the session ID sid is
not in state. So, Hybrid 3.0 differs from Hybrid 2 only when A can produce a valid signature σsk on a
(sid, ctsk) pair for a sid which it has seen before in the communication between KM and a DE whose handle
is in D.

Lemma 7.3. If the signature scheme S is existentially unforgeable as in Definition 6.6, then Hybrid 3.0 is
indistinguishable from Hybrid 2.

Proof. Let A be an adversary which distinguishes between Hybrid 2 and Hybrid 3.0. We will use it to
break the EUF-CMA security of S. We will get a verification key vk∗sign and an access to S.Sign(sk∗sign, ·) oracle
from the EUF-CMA challenger. S sets this vk∗sign as part of the mpk. Whenever S has to sign a message
with sk∗sign, it uses the S.Sign(sk∗sign, ·) oracle. As mentioned in the proof of Lemma 7.2, S never needs a
direct access to sk∗sign. Now, if A can distinguish between the two hybrids, as we argued earlier, it is only
because A makes a “complete setup” query to the HW.Run(hdlDE , ·) oracle with a valid signature σsk for
(sid, ctsk) /∈ LKM but sid has an entry in state. Also, hdlDE ∈ D and hence has vk∗sign in its state. We will
output ((sid, ctsk), σsk) as our forgery to the EUF-CMA challenger.

Hybrid 3.1 As in Hybrid 3.0, except that S maintains a list LDE of all the “provision” query responses

from hdlDE ∈ D i.e., the (mdhdl, tagQDE
, (report, sig), (sid, ctkey)) tuples. And, on call to HW.Run(hdlP , reportsk, ctmsg)

with hdlP having an entry inK with its honest bit set, S outputs⊥ if reportsk =
(
mdhdl, tagQ, in, (sid, ctkey),mac

)
with tagQ = tagDE , sid having an entry in state and (sid, ctkey) /∈ LDE .

The security of local attestation is used to prove the indistinguishability of the hybrids. For honest hdlP s,
HW.Run(hdlP , reportsk, ctmsg) already outputs⊥ in Hybrid 3.0 if for reportsk = (mdhdl, tagDE , (report, sig), (sid, ctkey),mac),
mac is not a valid MAC on (mdhdl, tagDE , (report, sig), (sid, ctkey)), or if sid does not have an entry in state.
So, the only change in Hybrid 3.1 is that HW.Run also outputs ⊥ if mac is a valid MAC but on a
(sid, ctkey) /∈ LDE . Hence, A can distinguish between the hybrids only when it produces a valid mac on
a tuple with (sid, ctsk) not in LDE . But this happens with negligible probability due to the security of Local
Attestation.

Lemma 7.4. If the Local Attestation process of HW is secure as in Definition 6.2, then Hybrid 3.1 is
indistinguishable from Hybrid 3.0.

The proof of this lemma is similar to Lemma 7.3, since skreport is not used by S other than to produce a
report.

Hybrid 4 As in Hybrid 3.1, except that when HW.Run is queried with (hdlP , “run”, reportsk, ctmsg) where

reportsk is a valid MAC of a tuple containing an entry in LDE and hdlP ∈ K with the honest bit set. If ctmsg ∈
R, S uses the Umsg∗ oracle to answer the HW.Run query. If ctmsg /∈ R, S uses the skpke from FE.Setup to

decrypt ctmsg instead of the one got by decrypting ctkey i.e.,

• On input (“run”, reportsk, ctmsg):

4. If ctmsg /∈ R, retrieve skpke from msk. Com-
pute x ← PKE.dec(skpke, ctmsg). Run P on
x and record the output out := P (x). Out-
put out.

5. If ctmsg ∈ R, query Umsg∗ (P) and output
the response.

In Hybrid 3.1, the decryption of ctkey is used by S to decrypt ctmsg while running HW.Run(hdlP , ·).
This ctkey is a valid encryption of skpke because Hybrid 3.0 and Hybrid 3.1 ensure that the encryption of

26

skpke sent from KME to DE and then the one from DE to FE both reach FE unmodified. Hence, the skpke
got by decrypting ctmsg is same as the one from msk. Thus, Hybrid 4 is indistinguishable from Hybrid 3.1
for any ctmsg /∈ R. Now, let us consider the case of ctmsg ∈ R. S has the restriction that it can use the Umsg∗

oracle only for a P for which tagP ∈ K. From Hybrid 3.1, we know that HW.Run(hdlP , ·) does not output ⊥
only when run with a valid reportsk = (mdhdl, tagDE , (report, sig), (sid, ctkey),mac) which is output by a DE
“provision” query. Hence, sig is a valid signature of the tagP contained in report. Also, tagP ∈ K with the
honest bit set, as ensured in Hybrid 2. So, when a HW.Run “run” query is made for hdlP , S is allowed use its
Umsg∗ oracle to output the FE.Dec result. Thus, Hybrid 4 is indistinguishable from Hybrid 3.1 for any ctmsg.

The following set of hybrids will help S replace an encryption of skpke with an encryption of zeros. In
order to prove the indistinguishability, we will argue that all the FE algorithms run independent of the skpke
encrypted in ctsk, and that A does not get any information about the value encrypted in ctsk.

Hybrid 5.0 As in Hybrid 4, except that S maintains a list LDE2 of all (sid, pkra) that are part of quote =

(mdhdl, tagDE , “init setup”, (sid, pkra), σ) output by HW.Run&Quote(hdlDE , “init setup”, ·) for hdlDE ∈ D.
And, when HW.Run(hdlKME , “provision”, quote, params) is called S outputs ⊥ when (sid, pkra) /∈ LDE2.

The Remote Attestation security ensures that A can provide a fake quote on a pkra not provided by DE
only with negligible probability.

Lemma 7.5. If Remote Attestation is secure as in Definition 6.3, then Hybrid 5.0 is indistinguishable from
Hybrid 4.

The proof of this lemma is similar to Lemma 7.3 since skquote is not used by S except for producing a
quote. And, this lemma ensures that KME provides an encryption of skpke only under a public key pkra
generated inside QDE ∈ D i.e., when HW.Run(hdlKME , “ provision”, quote, params) is called with a valid
quote output by a valid instance of DE.

Hybrid 5.1 As in Hybrid 5.0, except that S maintains a list LFE of all (sid, pkla) that are part of

report = (mdhdl, tagP , (“init”, sid, pkla),mac) output by HW.Run&Report(hdlP , “init”, ·) for hdlP ∈ K with
the honest bit set. And when HW.Run&Report(hdlDE , “provision”, report, sig) is called for a hdlDE ∈ D, S
outputs ⊥ when report contains tagP ∈ K but (sid, pkla) /∈ LFE .

This is ensured by the Local Attestation security. And, this shows that QDE only outputs skpke encrypted
under some pkla that was generated by a QFE(hdlP , ·) running a program P that has been queried to
FE.Keygen.

Lemma 7.6. If Local Attestation is secure as in Definition 6.2, then Hybrid 5.1 is indistinguishable from
Hybrid 5.0.

The proof of this lemma is again similar to Lemma 7.3 since skreport is not used by S except for producing
a report.

Hybrid 5.2 As in Hybrid 5.1, except that when the KM oracle calls HW.Run(hdlKME , (“provision”, ·, ·)),
S replaces ctsk in the output with PKE.Enc(0|skpke|).

Lemma 7.5 and Lemma 7.6 ensure that skpke is encrypted only under pkra and pkla generated by valid
enclaves and A has no access to the corresponding secret keys. Now we will use the IND-CCA2 security
game11 to argue that A cannot distinguish whether ctsk has an encryption of zeros or skpke under pkra of the
DE, and whether ctkey is an encryption of zeros or skpke under pkla of a valid FE.

11Actually, IND-CPA security of PKE is enough here.

27

Lemma 7.7. If PKE is an IND-CCA2 secure encryption scheme, then Hybrid 5.2 is indistinguishable from
Hybrid 5.1.

Proof. We will run two IND-CCA2 games in parallel, one for ctsk and another for ctkey. It can be easily
shown that this variant is equivalent to the regular IND-CCA2 security game. The IND-CCA2 challenger
provides two challenge public keys pk∗1 and pk∗2. S sets pkra = pk∗1 and pkla = pk∗2. Now,

{
skpke, 0

|skpke|
}

is
provided as the challenge message pair for both the games. The challenger returns ct∗1 and ct∗2, which are
encryptions of either the left messages or the right messages from the each pair. Note that we use the same
challenge bit for both the games. S sets ctsk = ct∗1 and ctkey = ct∗2.

Now we argue that when the left messages are encrypted, the view of A is equivalent to Hybrid 5.1,
and when the right messages are encrypted, the view is equivalent to Hybrid 5.2. This is because the other
information that A gets do not depend on the value encoded in ctsk or ctkey. We argue this as follows. We
have already established that A only gets ctsk encrypted with a pkra generated in DE from KME. Similarly,
A only gets ctkey encrypted with a pkla generated in a valid FE from DE. In addition to these, when inter-
acting with messages from a valid QDE or QFE(·), S either uses the skpke from msk or the Umsg oracle to
answer the queries and not the decryption of ctkey.

Hence, when A decides between the two hybrids we forward the corresponding answer to the IND-CCA2
challenger. If A can distinguish between these two hybrids with non-negligible probability, then the IND-
CCA2 security of PKE can be broken with non-negligible probability.

Hybrid 6 As in Hybrid 5.2, except that FE.Enc∗ is used instead of FE.Enc.

We are now ready to use the IND-CCA2 security property of PKE to replace ctmsg which was an encryp-
tion of msg) with an encryption of zeros.

Lemma 7.8. If PKE is an IND-CCA2 secure encryption scheme, then Hybrid 6 is indistinguishable from
Hybrid 5.2.

Proof. The IND-CCA2 challenger provides the challenge public key pk∗. During FE.Setup S sets pkpke = pk∗.

Now, msg and 0|msg| are provided as the challenge messages. The challenger returns ct∗, which is an encryp-
tion of either of those with equal probability. S sets ctmsg = ct∗. When HW.Run(hdlP , “run”, reportsk, ctmsg)
is called with a valid reportsk to hdlP ∈ K with the honest bit set, S uses the Umsg∗ oracle for a challenge
ciphertext ctmsg ∈ R from Hybrid 4. Now, for any ctmsg /∈ R, S neither has the oracles nor has the sk∗

corresponding to pk∗ in msk. But, the decryption oracle provided by the IND-CCA2 challenger can be used
for any ctmsg /∈ R. Hence, S can answer all the HW.Run(hdlP , “run”, reportsk, ctmsg) queries. Thus, the
view of A is identical to Hybrid 5 when msg is encrypted in ct∗ and Hybrid 6 when zeros are encrypted
in ct∗. So we can forward the answer corresponding to A’s answer to the IND-CCA2 challenger. If A can
distinguish between these two hybrids with non-negligible probability, the IND-CCA2 security of PKE can
be broken with non-negligible probability.

8 FE construction in the stronger security model

First we will present the stronger simulation model for HW and then present our construction proven secure
in this model.

8.1 Stronger HW simulation model

Definition 8.1 (StrongSimSecurity-FE). Consider a stateful simulator S and a stateful adversary A. Let
Umsg(·) denote a universal oracle, such that Umsg(P) = P (msg).

Both games begin with a pre-processing phase executed by the environment. In the ideal game, pre-
processing is simulated by S. Now, consider the following experiments.

28

ExprealFE(1
λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AFE.Keygen(msk,·)(mpk)

3. ct← FE.Enc(mpk,msg)

4. α← AFE.Keygen(msk,·),Omsk(·)(mpk, ct)

5. Output (msg, α)

ExpidealFE (1λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AS(msk,·)(mpk)

3. ct← SUmsg(·)(1λ, 1|msg|)

4. α← AHW,SUmsg(·)(·)(mpk, ct)

5. Output (msg, α)

In the above experiment, oracle calls by A to the key-generation and KM oracles are simulated by the
simulator SUmsg(·)(·). But the simulator does not simulate the HW algorithms, except HW.Setup. We call a
simulator admissible if on each input P , it just queries its oracle Umsg(·) on P (and hence learn just P (msg)).

The FE scheme is said to be simulation-secure against adaptive adversaries if there is an admissible
stateful probabilistic polynomial time simulator S such that for every probabilistic polynomial time adversary
A the following distributions are computationally indistinguishable.

ExprealFE(1
λ)

c
≈ ExpidealFE (1λ)

We now present here the formal description of our second FE construction which can be proven secure
in the stronger security models of HW and FE. The trusted authority platform TA and decryption node
platform DN each have access to instances of HW. We assume HW.Setup(1λ) has been called for each of
these instances before they are used in the protocol and the output params was recorded. Let PKE denote
an IND-CCA2 secure public key encryption scheme (Definition 6.7) with the weak robustness property12,
let S denote an existentially unforgeable signature scheme (Definition 6.6) and E denote an IND-CPA secure
secret key encryption scheme (Definition 6.5).

FE.Setup(1λ) The key manager enclave program QKME is defined as follows. Let state denote an internal
state variable.

QKME :
• On input (“init”, 1λ):

1. Run (pkpke, skpke)← PKE.KeyGen(1λ) and (vksign, sksign)← S.KeyGen(1λ)

2. Update state to (skpke, sksign, vksign) and output (pkpke, vksign)

• On input (“provision”, quote, params):

1. Parse quote = (mdhdl, tagP , in, out, σ), and parse out = (sid, pk1, pk2, skP , ctk).

2. Run b← HW.QuoteVerify(params, quote) on quote. If b = 1, retrieve skpke and vksign from state. If b = 0 output ⊥.

3. Run b← S.Verify(vksign, skP , tagP). If b = 0, output ⊥.

4. Run (ek, h)← PKE.Dec(skpke, ctk)

5. Compute ct1sk = PKE.Enc(pk1, ek||vksign) and ct2sk = PKE.Enc(pk2, ek||vksign)

6. Compute σsk = S.Sign(sksign, (sid, ct
1
sk, ct

2
sk, h)) and output (sid, ct1sk, ct

2
sk, h, σsk).

• On input (“sign”,msg):
Compute sig← S.Sign(sksign,msg) and output sig.

Run hdlKME ← HW.Load(params, QKME) and (pkpke, vksign) ← HW.Run(hdlKME , (“init”, 1λ)). Output
the master public key mpk := pkpke and the master secret key msk := hdlKME .

FE.Keygen(msk, P) Parse msk as a handle to HW.Run. Derive tagP and call sig← HW.Run(hdlKME , (“sign”, tagP)).
Output skp := sig.

12We actually need one PKE scheme with IND-CPA security and weak robustness property and another PKE scheme with
IND-CCA2 security

29

FE.Enc(mpk,msg) Parse mpk = (pk, vk). Sample an ephemeral key ek ← E.KeyGen(1λ) and use it to
encrypt the message ctm ← E.Enc(ek,msg). Then, encrypt the ephemeral key under pk along with the hash
of ctm: ctk ← PKE.Enc(pk, [ek, H(ctm)]). Output ct := (ctk, ctm).

FE.DecHW,KM(·)(skP , ct) The decryption enclave program QDE parametrized by P is defined as follows.
The security parameter λ is hardcoded into the program. The QDE here can be seen as the merge of the
QDE and QFE in our first construction.

QDE(P):

• On input (“init dec”, skP , ctk):

1. Run PKE.KeyGen(1λ) twice to get (pk1ra, sk
1
ra) and (pk2ra, sk

2
ra).

2. Generate a session ID, sid← {0, 1}λ.

3. Update state to (sid, sk1ra, sk
2
ra), and output (sid, pk1ra, pk

2
ra, skP , ctk).

• On input (“complete dec”, (sid, ct1sk, ct
2
sk, h), σsk):

1. Look up the state to obtain the entry (sid, sk1ra, sk
2
ra). If no entry exists for sid, output ⊥.

2. Verify the signature b← S.Verify(vksign, σk, (sid, ct
1
sk, ct

2
sk, h)). If b = 0, output ⊥.

3. Check that h = H(ctm). If not, output ⊥.

4. Decrypt m← PKE.dec(sk1ra, ct
1
sk).

5. If m = ⊥, decrypt and output m← PKE.dec(sk2ra, ct
2
sk).

6. Parse m = (ek, vksign) and compute x← E.dec(ek, ctm).

7. Run P on x and output out := P (x).

Run hdlDE ← HW.Load(params, QDE) and call quote← HW.Run&QuoteskHW(hdlDE , “init dec”, skP , ctk).
Query KM(quote), which internally runs (sid, ct1sk, ct

2
sk, h, σsk)← HW.Run(hdlKME , (“provision”, quote, params))13.

Call HW.Run(hdlDE , (“complete dec”, sid, ct1sk, ct
2
sk, h, σsk)) and output its result out.

8.2 Security overview

Theorem 8.1. If E is an IND-CPA secret key encryption scheme, S is an EUF-CMA secure signature
scheme, PKE is an IND-CCA2 secure public key encryption scheme with weak robustness property and HW
is a secure hardware scheme, then FE is a secure functional encryption scheme according to Definition 8.1.

We will mention here some of the challenges faced while proving the security of our construction and
refer the interested readers to the full version of the paper for a detailed security proof. The main difference
from the proof of our first construction is that the HW algorithms are not simulated but are run as in the the
real world. Hence, when we use the IND-CCA2 security of PKE to prove that the adversary does not learn
any information from the communication between the enclaves, the decryption enclave will not have the
correct secret key to decrypt the PKE ciphertext and hence cannot proceed to generate the correct output.
To remedy that situation, DE sends two public keys and KME sends two ciphertexts during that step so
that when the IND-CCA2 game is run for one of ciphertexts, the other ciphertext can be decrypted by DE
to satisfy the correctness of the FE scheme. During this step, we will also use the indistinguishability of
ciphertexts when the same messages are encrypted under different public keys. Also during this step, to help
the programs decide whether the message got after decryption is correct or not, we require the robustness
property from our PKE scheme which ensures that decryption outputs ⊥ when a ciphertext is decrypted
with a “wrong” key.

13We could again use HW.Run&Quote here instead of explicitly creating the signature σk. If we do that, the verification step
in DE would involve using the Intel Attestation Service.

30

Discussion This construction can be modified to work like the first construction, where the decryption
enclave is separated from the function enclave written by the user programmer.

This construction allows us to achieve the stronger security notions of FE and HW. But, one might
wonder how our KM oracle compares with the notion of hardware tokens in [CKZ13]. With an “oracle”
being necessary due to the FE impossibility results, we made the functionality of the KM oracle minimal. In
our construction, KM performs minimal crypto functionality: basic signing/encryption. (And it is an inde-
pendent enclave DE without access to msk which runs the user-specified programs on user-specified inputs).
Hence, it is relatively easier to implement the KM functionality secure against side-channels, when compared
to the powerful hardware tokens. Also from a theoretical perspective, KM runs in time independent of the
runtime of program and the length of msg, in contrast to the hardware tokens whose runtime depends on
both the program and msg.

The similarity of C-FE with our notion is that there is an “authority” mediating every decryption. If
mediation by KM were a concern to an application of FE, the message sent by DE to the KME can be
encrypted and anonymous communication mechanisms like TOR can be used to communicate to KM so
that KM cannot discriminate against specific decryptor nodes (also helped by remote attestation using blind
signatures). Also, our construction could be modified to achieve C-FE when the efficiency constraints are
relaxed for the authority oracle such that they run in time independent on the length of the input but
dependent on the function description length. The construction in [NAP+14] requires the authority to run
in time proportional to the length of function description and input.

9 Related Work

A number of papers leverage SGX to build secure systems. Haven [BPH14] protects unmodified Windows
applications from malicious OS by running them in SGX enclaves. Scone [ATG+16] and Panoply [STTS17]
build secure Linux containers using SGX. VC3 [SCF+15] enables secure MapReduce computations while
keeping both the code and the data secret using SGX. A complete security analysis of the system was also
presented but the system evaluation was performed using their own SGX performance model based on the
Intel whitepapers. Ohrimenko et al. [OSF+16] present data-oblivious algorithms for some popular machine
learning algorithms. These algorithms can be used in conjunction with our system if one wants an FE scheme
supporting machine learning functionalities. Gupta et al. [GMF+16] proposed protocols and theoretical
estimates for performing secure two-party computation using SGX based on the SGX specifications provided
in Intel whitepapers. Concurrent to our work, Bahmani et al. [BBB+16] proposed a secure multi-party
computation protocol where one of the parties has access to SGX hardware and performs the bulk of the
computation. They evaluate their protocol for Hamming distance, Private Set Intersection and AES. This
work and [PST17] also attempt formal modeling of SGX like we do. We discuss the comparison between the
models in Section 6.1.

[CKZ13] first proposed a way to bypass the impossibility results in functional encryption by the use of
“hardware tokens”. First, their work is purely theoretical. They model secure hardware as a single stateless
deterministic token, which does not capture how SGX works because their hardware token is initialized
during FE.Setup (refer Definition 5 of [CKZ13]). But in SGX, and hence in our model, the secure hardware
HW is setup and initialized independent of FE.Setup by the trusted hardware manufacturer, Intel. After this
point, an adversary who is in possession of the hardware can monitor and tamper with all the input coming
in to the hardware and the corresponding outputs. Naveed et al. [NAP+14] propose a related notion of FE
called “controlled functional encryption”. The main motivation of C-FE is to introduce an additional level
of access control, where the authority mediates every decryption request.

31

References

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC, pages 480–497,
2010.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In CRYPTO, pages 500–518, 2013.

[ATG+16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian
Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David Goltzsche,
Dave Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and Christof Fetzer. SCONE: secure linux
containers with intel SGX. In OSDI, pages 689–703, 2016.

[BBB+16] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-Reza Sadeghi,
Guillaume Scerri, and Bogdan Warinschi. Secure multiparty computation from SGX. IACR
Cryptology ePrint Archive, 2016:1057, 2016.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO, pages 213–229, 2001.

[BPH14] Andrew Baumann, Marcus Peinado, and Galen C. Hunt. Shielding applications from an un-
trusted cloud with haven. In OSDI, pages 267–283, 2014.

[BPSW16] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi. Foundations of
hardware-based attested computation and application to SGX. In EuroS&P, pages 245–260,
2016.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: A new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, November 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[CD16] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint Archive,
2016:086, 2016.

[CKZ13] Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small)
hardware tokens. In ASIACRYPT II, pages 120–139, 2013.

[CLD16] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. In USENIX Security, pages 857–874, 2016.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu,
Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In EURO-
CRYPT 2014, pages 578–602, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
pages 40–49, 2013.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional Encryption for
Randomized Functionalities, pages 325–351. 2015.

[GMF+16] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin R. B. Butler, and Patrick Traynor.
Using intel software guard extensions for efficient two-party secure function evaluation. In FC
Workshops, pages 302–318, 2016.

32

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[JSR+16] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. Intel software guard extensions:
Epid provisioning and attestation services. 2016.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware.
In EUROCRYPT, pages 115–128, 2007.

[LHM+15] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and Elaine Shi.
Ghostrider: A hardware-software system for memory trace oblivious computation. In ASPLOS,
pages 87–101, 2015.

[LMA+16] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer, Daniel Wagner,
David W. Archer, Dan Boneh, Jonathan Katz, and Mariana Raykova. 5gen: A framework for
prototyping applications using multilinear maps and matrix branching programs. In CCS, pages
981–992, 2016.

[LSG+16] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring fine-grained control flow inside SGX enclaves with branch shadowing. CoRR,
abs/1611.06952, 2016.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. In HASP@ ISCA, page 10, 2013.

[NAP+14] Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday,
Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. In CCS, pages
1280–1291, 2014.

[OSF+16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors.
In USENIX Security, pages 619–636, 2016.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure
processors. In EUROCRYPT, 2017.

[RLT15] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels through
obfuscated execution. In USENIX Security, pages 431–446, 2015.

[SCF+15] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data analytics in the cloud using SGX.
In IEEE SP, pages 38–54, 2015.

[SGX] Intel SGX version 2. http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf. Ac-
cessed: 2017-02-16.

[SGX16] Intel software guard extensions programming reference. 2016.

[SLK+17] Jaebaek Seo, Byoungyoung Lee, Sungmin Kim, Ming-Wei Shih, Insik Shin, Dongsu Han, and
Taesoo Kim. SGX-shield: Enabling address space layout randomization for sgx programs. In
NDSS, 2017.

[SLKP17] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating controlled-
channel attacks against enclave programs. In NDSS, 2017.

33

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

[STTS17] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. PANOPLY: Low-TCB linux
applications with sgx enclaves. In NDSS, 2017.

[WKPK16] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza. Asyncshock: Exploit-
ing synchronisation bugs in intel SGX enclaves. In ESORICS I, pages 440–457, 2016.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In IEEE SP, pages 640–656, 2015.

A Implemented ECALLS

KeyManager.dll ECALLs

• ecdsa setup generates a public and private key for 256-bit ECDSA and seals the private key using
the SDK function sgx seal data (this retrieves the enclave’s seal key via the EGETKEY instruction
and AES encrypts the data). The public verification key vk and sealed signing key sk are returned
to the application and written to a file. The ECDSA key generation sgx ecc256 create key pair is
implemented in sgx tcrypto.lib.

• elgamal setup generates an ElGamal public key pubkey and private key privkey. It signs the ElGamal
public key with the TA’s ECDSA private key and seals the ElGamal private key with the SDK function
sgx seal data (this wraps the EGETKEY instruction to retrieve the Seal Key and AES-GCM encrypts
the data). The signed public key and sealed private key are returned to the application and written to
a file.

• sign function takes an input array of data (a 256 bit measurement MRENCLAVE) and outputs a
256-bit ECDSA signature on this input using the key sk generated in ecdsa setup.

• km ra proc receives as input a EC256-DHKE key share ga, an enclave quote structure de quote. It
checks that the report inside de quote has the appropriate HW configuration, that its mr enclave

field matches the expected MRENCLAVE value of the DE, and that it also includes a 512 byte field
report data containing the value ga. The quote structure also includes an EPID signature on the
report, which must be verified with the Intel Attestation Service (see [JSR+16]). (This additional
procedure is not implemented in our prototype). If all the checks pass, the function generates a
EC256-DHKE key share gb, computes the shared EC256-DHKE key, derives from it a 128-bit session
key ss key, and encrypts both the ElGamal private key privkey and the ECDSA verification key vk

under ss key with Rijndael AES-GCM. Finally, it returns gb and the encrypted secret.

FEDecryption.dll ECALLs

• sgx ra get msg calls the SDK function sgx ecc256 create key pair to generate an EC256-DHKE
key share ga. Next it calls the SDK function sgx init quote (this contacts the Intel Provisioning
Server if the processor has not yet been provisioned with an EPID key). It calls the SDK function
sgx get quote to obtain the quote structure de quote (through a local attestation with the Quoting
Enclave). It outputs ga and de quote.

• proc ra response receives as input a EC256-DHKE key share gb and an encrypted ElGamal private
key privkey. It computes the shared EC256-DHKE key with the SDK function sgx ecc256 compute shared dhkey,
derives the 128-bit session key ss key, and uses it to decrypt privkey with Rijndael AES-GCM. Fi-
nally, it seals the decrypted key with sgx seal data and outputs the sealed key.

• proc local attest receives inputs a EC256-DHKE key share ga, a CMACed enclave report fe report,
and an ECDSA signature fe report signature. It verifies the CMAC on fe report with sgx verify report

(an SDK function that wraps the EGETKEY instruction to retrieve the Report Key and computes the

34

CMAC). It then verifies (with the KME’s verification key) that fe report signature is a valid signa-
ture on the mr enclave field of fe report. If these verifications pass, it generates a EC256-DHKE key
share gb, computes the shared EC256-DHKE key, derives a 128-bit shared key aek and encrypts the
ElGamal private key privkey under aek with Rijndael AES-GCM. It returns gb and the encrypted
privkey.

FEFunction.dll ECALLs

• local attest to decryption enclave generates a EC256-DHKE key share ga and calls sgx create report

(an SDK function that wraps the EREPORT instruction) to generate fe report, a CMACed enclave re-
port. The values ga, fe report, and fe report signature are passed to the OCALL request local dh session ocall.
It receives back a EC256-DHKE key share gb and encrypted ElGamal private key privkey. It com-
putes the shared EC256-DHKE key, derives a 128-bit shared key aek and decrypts privkey. The
decrypted key is stored in a static variable.

B SGX Attestation

Local attestation Local attestation is between two enclaves on the same platform. The program in the
enclave generating the attestation specifies a target enclave that will verify the attestation and invokes the
EREPORT instruction. EREPORT first generates a report containing the MRENCLAVE and metadata of the
calling enclave, fetching this information directly from protected memory and registers. The report may also
include additional data provided by the calling enclave. Second, EREPORT uses the target enclave specification
(measurements and metatada) to derive the target enclave’s Report Key from the Root Seal Key. It then
uses this Report Key to compute a MAC over the report. Any enclave can use the EGETKEY instruction
to fetch its own Report Key, derived from the Root Seal Key and measurements/metadata linked to the
enclave. Thus, the target enclave, which resides on the same platform as the attesting enclave and shares
the same Root Seal Key, will be able to derive the Report Key it needs to verify the MAC on report.

Remote attestation Local attestation is leveraged in remote attestation, which generates enclave reports
that can be verified by remote parties. Roughly, a special enclave called the Quoting Enclave will process local
attestations from other enclaves and convert these into remote attestations called quotes. More specifically,
the Quoting Enclave possesses a private member key for an anonymous group signature scheme called Intel
Enhanced Privacy ID (EPID) [JSR+16] that is uses to sign reports received from other locally attesting
enclaves. In EPID, an issuer (in this case Intel) generates a group public key gpk, and registers members of
the group by issuing member private keys. Member keys are issued through a blind join protocol and are
unknown to the issuer. Signatures generated from private member keys can be publicly verified using gpk,
but cannot be linked to any particular member key.14

EPID key provisioning The Quoting Enclave obtains the EPID private key through an involved process
with the Intel Provisioning Server. Every SGX CPU has another embedded key called the Root Provisioning
Key. Unlike the Root Seal Key, the Root Provisioning Key is also given to the Intel Provisioning Server.
Another special enclave called the Provisioning Enclave calls EGETKEY to derive a Provisioning Key from the
Root Provisioning Key incorporating TCB specific information, enclave measurements, and metadata. Since
the Intel Provisioning Server can derive the same key, the Provisioning Enclave symmetrically authenticates
to the IPS, demonstrating that it is a valid Provisioning Enclave running on a genuine Intel SGX CPU at
a specific TCB. Finally, an EPID private member key is delivered to the Provisioning Enclave through the
EPID blind join protocol, and this key is passed to the QE.

14Currently, EPID signatures need to be verified by contacting the Intel Attestation Server.

35

C SGX side-channel attacks and defenses

Cache-timing attacks [CD16] cause cache misses and thus may observe enclave memory access patterns at
cache-line granularity. Similarly, page-fault attacks [XCP15] can cause enclave page lookups to result in
page-faults and thus may observe enclave memory access patterns at 4KB page granularity. Next, branch
shadowing may directly infer control flow (i.e branches) in an enclave process. Branch shadowing exploits
the fact that SGX does not erase branch history, which is used by the CPU for branch prediction, and is
important for performance of the instruction pipeline. The attack infers from timing differences in branch
prediction whether a target branch is stored in the branch history. And, finally synchronization bugs in
the multi-threaded code running in SGX could potentially lead to even circumventing the Intel licensing
procedure in creating SGX production enclaves [WKPK16]. These bugs are relatively easier to exploit in
SGX than outside because the attacker model allows an untrusted OS which can control the thread scheduling
of enclaves.

One defense against all the above software attacks is to ensure that enclave programs are data-oblivious,
i.e. do not have memory access patterns or control flow branches that depend on the values of sensitive
data. Ohrimenko et. al. [OSF+16] take this approach in their design of privacy-preserving multi-party
machine learning using SGX. T-SGX [SLKP17] also provides countermeasures against controlled-channel
attacks. A more general approach is to use ORAM techniques, as in [RLT15, LHM+15], though this can
result in a considerable performance overhead. Several countermeasures to the branch shadowing attack,
both hardware and software based, were proposed in [LSG+16]. Hardware countermeasures would require
changes to SGX architecture. Defense mechanisms against different kinds of synchronization bugs already
exist as listed by [WKPK16]. SGX-Shield [SLK+17] enables ASLR for SGX, which helps defend against
these attacks in general.

Sanctum [CLD16] is an academic SGX-like system that is resilient to both cache-timing and page-fault
attacks, demonstrating that these attacks are not inherent in SGX-like systems. SGX is an evolving tech-
nology, and so we can expect that even hardware based countermeasures could be incorporated into future
SGX versions (see changes already in SGX2 [SGX]).

36

	Introduction
	Intel SGX Background
	Isolation
	Sealing
	Attestation
	SGX side-channel attacks

	System Design
	Overview
	Architecture
	Trusted authority
	Decryption node

	Protocols

	Iron Implementation
	KeyManagerApp
	FEClient
	Side-channel resilience

	Evaluation
	Formal Models and Definitions
	Formal HW model
	Local attestation unforgeability
	Remote attestation unforgeability

	Functional Encryption
	Crypto primitive definitions
	Secret key encryption
	A signature scheme
	Public key encryption
	Collision resistant hash functions

	Security analysis
	Formal construction
	Security proof

	FE construction in the stronger security model
	Stronger HW simulation model
	Security overview

	Related Work
	Implemented ECALLS
	SGX Attestation
	SGX side-channel attacks and defenses

