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Theoretical Construction of n-variable balanced
Boolean functions with Absolute Indicator < 2

n
2 for

n ≡ 2 (mod 4) and n ≥ 46
Deng Tang and Subhamoy Maitra

Abstract

In this paper we consider the maximum absolute value ∆f in the autocorrelation spectra (not considering the
zero point) of a function f . In even number of variables n, bent functions possess the highest nonlinearity and
∆f = 0. The long standing (for two decades) open question in this area is to obtain a theoretical construction of
balanced functions with ∆f < 2

n
2 . So far there are only a few examples of such functions for n = 10, 14, but there

is no general technique known. In this paper, we mathematically construct an infinite class of balanced Boolean
functions on n variables having absolute indicator strictly lesser than 2

n
2 − 2

n+6
4 , nonlinearity strictly greater than

2n−1−7 ·2n2 −3−5 ·2n−2
4 and algebraic degree n−1, where n ≡ 2 (mod 4) and n ≥ 46. While the bound n ≥ 46

is required for proving the generic result, our construction starts from n = 18 and we could obtain a balanced
function with ∆f = 480 < 2

18
2 and nonlinearity 130664 > 217 − 29 = 130560 and algebraic degree 17.

Index Terms

Absolute Indicator, Autocorrelation Spectrum, Balancedness, Boolean function, Nonlinearity.

I. INTRODUCTION

Symmetric-key cryptography, which includes stream ciphers and block ciphers, plays a very important role in
modern cryptography. The fundamental and generally accepted design principles for symmetric-key cryptography are
confusion and diffusion, introduced by Shannon [23]. Confusion means making the relation between the ciphertext
and the plaintext as complex as possible for the attacker and diffusion is the spreading out of the influence of one
or several arbitrary bits of the plaintext or/and of the key over the output bits. These two design principles are very
general and informal, but while considering a Boolean function as a primitive of a cipher design, confusion relates
to Walsh spectrum and diffusion relates to autocorrelation spectrum of the said Boolean function. The motivation
of a good cryptographic design is to minimize the maximum absolute values in both the spectra.

In this direction, there are several long standing open questions in the domain of Boolean functions. For even
number of variables n, the two main conjectures related to balanced Boolean functions are as follows:
• 1994: nlb(f) ≤ 2n−1−2

n

2 +nlb(n2 ) [6], where nlb(n) is maximum nonlinearity of balanced Boolean functions
on n-variables;

• 1996: ∆f ≥ 2
n

2 [27].
While the first one is still standing, the second one has been disproved for a few cases namely n = 10, 14 and each
of those had been considered to be important milestone in Boolean function research (see Table I). Such functions
could be achieved by heuristic search. In this paper, two decades after the conjecture [27] had been placed, we
could provide a specific construction method to discover an infinite class of such functions. Our construction is
possible for n ≥ 18, though our generic proof for ∆f < 2

n

2 starts from n ≥ 46.
In even number of variables, it is well-known that bent functions [19] possess the highest nonlinearity and the

all the nonzero values in its autocorrelation spectrum is zero. Unfortunately, bent functions are not balanced and
not generally used directly in the design of symmetric-key cryptography. Therefore, the main challenge for the
construction of balanced highly nonlinear Boolean functions f in even number of variables n is to obtain very low
absolute indicator ∆f . With respect to this challenge, Zhang and Zheng proposed the following Conjecture.
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Conjecture 1 ([27], Conjecture 1). The absolute indicator of any balanced Boolean function f of algebraic degree
no less than 3 is lower-bounded by 2b

n+1

2
c.

For odd variables n, this conjecture has been disproved for n = 9, 11 in [7], n = 15 in [15] and n = 21 in [14],
[10]. Till date, for even n, this conjecture has been disproved only for n = 10 [7] and 14 [1]. That is, there is
no evidence that there are balanced Boolean functions with absolute indicator strictly less than 2

n

2 for an infinite
class. Note that the integers 10 and 14 are 2 (mod 4) as we construct for a general class in this paper.

TABLE I
BALANCED FUNCTIONS f ∈ Bn (n EVEN) WITH ∆f < 2n/2

Results n even ∆f Algebraic degree Nonlinearity
S. Kavut et al. [7] 10 24 9 488

L. Burnett et al. [1] 14 104 13 8102
14 112 13 8104

Construction 1 (example) 18 480 (< 2
18
2 ) 17 130664 (> 217 − 29 = 130560)

Construction 1 (theory) n ≥ 46 < 2
n
2 − 2

n+6
4 n− 1 > ρ

(where ρ = 2n−1 − 7 · 2
n
2
−3 − 5 · 2

n−2
4 and n ≡ 2 (mod 4))

In the present paper, we propose a method for constructing balanced Boolean functions in even number of
variables with very low absolute indicator and strictly almost optimal nonlinearity. Our construction base on a
modification of the simplest partial spread (PS) bent function in n variables, in which the PS bent function
was introduced by Dillon [4] in his PhD thesis. As a result, we can obtain an infinite class of balanced Boolean
functions f in n variables with absolute indicator strictly lesser than 2

n

2 − 2
n+6

4 , nonlinearity strictly greater than
2n−1− 7 · 2

n

2
−3− 5 · 2

n−2

4 and algebraic degree n− 1, where n ≡ 2 (mod 4) and n ≥ 46. This is the first time that
an infinite class of balanced Boolean functions with absolute indicator strictly lesser than 2

n

2 have been exhibited,
which can be also viewed as an infinite class of counterexamples against Conjecture 1.

We like to underline that the construction that we present here requires substantially involved as well as tricky
ideas. For a quick look, the broad steps are as follows.

• Lemma 3: g0, g1 are two specially constructed Boolean functions on 4-variables.
• Lemma 4: Two quadratic bent functions s0, s1 on (t− 1)-variables where t ≥ 5 is odd, with certain properties

that provide two functions w0, w1 on t variables.
• Definition 3 and Lemma 6: Construction of h0 (based on g0, w0) and h1 (based on g1, h1), on k = t + 4

variables, i.e., k ≥ 9 odd.
• Construction 1: A bent function on n = 2k variables is modified using the two k-variable functions h0, h1 to

obtain an n-variable balanced function f . As k is odd, n is 2 mod 4.
• Theorem 1: The proof that ∆f < 2

n

2 for n ≥ 46.
• Example 1: The lowest number of variables, on which this construction is possible, is n = 2k = 18. This n is

not covered by Theorem 1. However, we checked this balanced function f by computer program to note that
∆f = 480 < 2

18

2 .
• Theorems 2 and 3: Results explaining the nonlinearity and algebraic degree respectively.

The rest of this paper is organized as follows. In Section II, necessary background is reviewed. Then, in section
III, we explain two preliminary functions that will be used towards the main construction. Our construction and
main results are presented in Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES

Let Fn2 be the vector space of n-tuples over the field F2 of two elements. For any positive integer n, we shall
denote by 0 (respectively 1) the all-zero vector (respectively all-one vector) of Fn2 . A Boolean function on n
variables is a function from Fn2 into F2. Denote by Bn the set of all the 22n Boolean functions of n variables. The
basic representation of an n-variable Boolean function f is by its truth table, i.e.,

f =
[
f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)

]
.
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The support of f , denoted by supp(f), is defined as the set {x ∈ Fn2 | f(x) 6= 0}. The Hamming weight of f ,
denoted by wt(f), is defined as the Hamming weight of the truth table of f , or in other words, the size of the
support of f . We say that the Boolean function f ∈ Bn is balanced if its Hamming weight equals 2n−1. It is
well-known that any Boolean function f ∈ Bn can be uniquely represented by a multivariate polynomial over F2,
called the algebraic normal form (ANF), in the form:

f(x1, · · · , xn) =
⊕
u∈Fn2

au

( n∏
j=1

x
uj
j

)
,

where au ∈ F2 and u = (u1, · · · , un). The algebraic degree, denoted by deg(f), is the maximal value of wt(u)
such that au 6= 0. A Boolean function is an affine function if its algebraic degree is at most 1. The set of all affine
functions is denoted by An. In order to resist the Berlekamp-Massey algorithm [16], [20] and the Rønjom-Helleseth
attack [18], Boolean functions used in stream ciphers should have high algebraic degree. It should be noted that
the maximum algebraic degree of a balanced Boolean function of n variables is n− 1.

Note that the vector space Fn2 is isomorphic to the finite field F2n through the choice of some basis of F2n

over F2. If (λ1, λ2, · · · , λn) is a basis of F2n over F2, then every vector x = (x1, · · · , xn) of Fn2 can be identified
with the element x1λ1 + x2λ2 + · · · + xnλn ∈ F2n . The finite field F2n can then be viewed as an n-dimensional
vector space over F2. Further, each of its elements can be identified with a binary vector of length n and clearly
the element 0 ∈ F2n is identified with the all-zero vector. In the rest of this paper, we shall still use x to denote
this element of the finite field. Thus, any Boolean function in n variables can be defined over F2n and uniquely
expressed by an univariate polynomial

f(x) =

2n−1∑
i=0

fix
i,

where f0, f2n−1 ∈ F2, fi ∈ F2n is such that f2i [mod 2n−1] = f2
i for 1 ≤ i < 2n − 1. The algebraic degree under

this representation deg(f) is equal to max{wt(i) | fi 6= 0, 0 ≤ i < 2n}, where i is the binary expansion of i. It is
well-known that Fn2 can be written as Fn/22 ×Fn/22 when n is even. Recall that the vector space Fn/22 is isomorphic
to the finite field F2n/2 through the choice of some basis of F2n/2 over F2. Thus, the finite field F2n can be viewed
as F2n/2 × F2n/2 = F2

2n/2 . Hence, any Boolean function in even number of n variables can be viewed over F2
2n/2

and uniquely expressed by a bivariate polynomial

f(x, y) =

2n/2−1∑
i,j=0

fi,jx
iyj ,

where fi,j ∈ F2n/2 is such that
• f2i [mod 2n/2−1],2j [mod 2n/2−1] = f2

i,j ,
• f2n/2−1,2j [mod 2n/2−1] = f2

2n/2−1,j , and
• f2i [mod 2n/2−1],2n/2−1 = f2

i,2n/2−1,
for 0 ≤ i, j < 2n/2 − 1. The algebraic degree deg(f) equals max{wt(i) + wt(j) | fi,j 6= 0}.

In order to resist the best affine approximation (BAA) [5] and the fast correlation attack [17], Boolean functions
used in a cryptosystem must have high nonlinearity. The nonlinearity nl(f) of a Boolean function f ∈ Bn is defined
as

nl(f) = min
g∈An

(dH(f, g)),

where dH(f, g) is the Hamming distance between f and g, i.e., dH(f, g) = |{x ∈ Fn2 : f(x) 6= g(x)}|. In other
words, the nonlinearity nl(f) is the minimum Hamming distance between f and all the affine functions.

Definition 1. In the present paper, a Boolean function in n variables is called to have strictly almost optimal
nonlinearity if its nonlinearity is strictly greater than 2n−1 − 2d

n

2
e.

The nonlinearity can also be expressed by means of the Walsh transform of f . Let x = (x1, x2, · · · , xn) and
ω = (ω1, ω2, · · · , ωn) both belong to Fn2 and let x · ω be the usual inner product in Fn2 , then the Walsh transform
of f ∈ Bn at point ω is defined by

Wf (ω) =
∑
x∈Fn2

(−1)f(x)+ω·x.



4

The multiset constituted by the values of the Walsh transform is called the Walsh spectrum of f . Over F2n , the
Walsh transform of f at point a the Boolean function f can be defined by

Wf (a) =
∑
x∈F2n

(−1)f(x)+Trn1 (ax),

where Trn1 (x) =
n−1∑
i=0

x2i is the trace function from F2n to F2. Over F2
2n/2 , the Walsh transform of f at point

(a, b) ∈ F2
2n/2 can be defined as

Wf (a, b) =
∑

x,y∈F
2n/2

(−1)f(x,y)+Trk1(ax+by),

where a, b ∈ F2n/2 . Then, the nonlinearity of a Boolean function f ∈ Bn can be computed as

nl(f) = 2n−1 − 1

2
max
ω∈Fn2

|Wf (ω)|

= 2n−1 − 1

2
max
a∈F2n

|Wf (a)|

= 2n−1 − 1

2
max

a,b∈F
2n/2

|Wf (a, b)| if n even.

The well-known Parseval’s relation [12] states that: for any n-variable Boolean function, we have
∑

u∈Fn2 Wf
2(u) =

22n. Parseval’s relation implies that, for a Boolean function of n variables, the mean of square of Walsh spectrum
equals 2n. Then the maximum of the square of Walsh spectrum is greater than or equal to 2n and therefore
maxu∈Fn2 |Wf (u)| ≥ 2

n

2 . This implies that the nonlinearity nl(f) is upper-bounded by 2n−1 − 2
n

2
−1. This upper

bound 2n−1 − 2
n

2
−1 is tight for even n. The functions achieving the equality are called bent [19]. Bent functions

are interesting combinatorial objects with the important property of having the maximum Hamming distance to the
set of all affine functions. Bent functions are not balanced and their algebraic degrees are upper-bounded by n

2 .
Thus they are generally not suitable for direct cryptographic use.

To provide the property of diffusion to the cryptosystems, it is desirable for functions used in symmetric-key
cryptography to have low autocorrelation. The autocorrelation function of a Boolean function f at a point α is
defined by

Cf (α) =
∑
x∈Fn2

(−1)f(x)+f(x+α).

In 1985, Webster and Tavares [26] introduced the concept of strict avalanche criterion (SAC) when searching for
principles for designing DES-like data encryption algorithms. A Boolean function f ∈ Bn is said to satisfy strict
avalanche criterion (SAC) if

Cf (α) = 0 for all wt(α) = 1.

In 1995, Zhang and Zheng [27] pointed out that SAC is a measure for local avalanche and hence has some
limitations. So, they proposed the global avalanche characteristics (GAC).

Definition 2. Let f be an arbitrary Boolean function in n variables. The global avalanche characteristics (GAC)
of f is related to two indicators: the absolute indicator

∆f = max
α 6=0
|Cf (α)|

and the sum-of-squares indicator
σf =

∑
α∈Fn2

C2
f (α).

Lemma 1. ([19]) A Boolean function f ∈ Bn is bent if and only if Cf (ω) = 0 for any ω ∈ Fn∗2 .

Given a bent function f , by f̃ we denote the dual of that function, which is also bent.

Lemma 2. Let f1, f2 ∈ Bn be two bent functions such that f̃1 + f̃2 is also a bent function. Then for any a ∈ Fn2
we have

∑
x∈Fn2 (−1)f1(x)+f2(x+a) ∈ {2

n

2 ,−2
n

2 }.
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Proof. It follows from [21, Corollary 3.3] that∑
x∈Fn2

(−1)f1(x)+f2(x+a) = 2−n
∑
u∈Fn2

Wf1(u)
( ∑
x∈Fn2

(−1)f2(x+a)+u·x
)

= 2−n
∑
u∈Fn2

Wf1(u)Wf2(u)(−1)u·a

=
∑
u∈Fn2

(−1)f̃1(u)+f̃2(u)+u·a

∈ {2
n

2 ,−2
n

2 }.

This completes the proof.

III. TWO PRELIMINARY FUNCTIONS FOR MAIN CONSTRUCTION

In this section, we present two classes of Boolean functions, denoted by h0 and h1 respectively, which will be
employed in the main construction (see Construction 1 below) of this paper. We first present two Boolean functions
g0, g1 in four variables, which will be useful in the design of h0, h1, and their cryptographic properties.

Lemma 3. Let g0, g1 be two Boolean functions in four variables and their truth tables are given as follows:
• g0 = [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0];
• g1 = [1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1].

The following properties of g0 and g1 can be checked:
1) wt(g0) + wt(g1) = 16;
2) deg(g0) = deg(g1) = 3;
3) nl(g0) = nl(g1) = 2;
4) Cg0(β), Cg1(β) ∈ {8, 16} for any β ∈ F4

2;
5) Cg0(β) + Cg1(β) ∈ {16, 24}, for any β ∈ F4∗

2 where F4∗
2 = F4

2 \ {0};
6) 2

∑
y∈F4

2
(−1)g0(y)+g1(y+β) ∈ {−16,−24}, for any β ∈ F4

2.

Lemma 4. Let t ≥ 5 be an odd number. Let s0(y1, · · · , yt−1) and s1(y1, · · · , yt−1) be two quadratic bent functions
on Ft−1

2 such that wt(s0) = wt(s1) = 2t−2−2(t−1)/2−1 and s̃0 + s̃1 is a bent function as well. Define two Boolean
functions w0, w1 on Ft2 as w0(y1, · · · , yt) = yts0 and w1(y1, · · · , yt) = yts1. Then the following statements hold:

1)
∑

y∈Ft2(−1)w0(y)+w1(y+β) ∈ {2t−1 ± 2(t−1)/2, 2(t+1)/2} for any β = (β1, · · · , βt) ∈ Ft2;

2) Cw0
(β) = Cw1

(β) =


2t, if β = 0
2t−1, if βt = 0,

2(t+1)/2, if βt = 1
for any β = (β1, · · · , βt) ∈ Ft2;

3) |Ww0
(β)| = |Ww1

(β)| =


2t−1 + 2(t−1)/2, if β = 0

2t−1 − 2(t−1)/2, if β = (0, · · · , 0, 1)

2(t−1)/2, if β ∈ Ft∗2 \ {(0, · · · , 0, 1)}
.

Proof. For any β = (β1, β2, · · · , βt) ∈ Ft2, we define β′ = (β1, β2, · · · , βt−1), i.e., β = (β′, βt).

1) Note that for any (β′, βt), (y
′, yt) ∈ Ft2 we have w1(y + β) = (βt + yt)s1(β′ + y′). Thus, we immediately

get that
∑

y∈Ft2(−1)w0(y)+w1(y+β) = 2t−1 +
∑

y′∈Ft−1
2

(−1)s0(y′)+s1(y′+β′) if βt = 0, which is equal to 2t−1 ±
2(t−1)/2 according to Lemma 2. If βt = 1, we have

∑
y∈Ft2(−1)w0(y)+w1(y+β) =

∑
y′∈Ft−1

2
(−1)0+s1(y′+β′) +∑

y′∈Ft−1
2

(−1)s0(y′)+0 = 2(t+1)/2. Therefore, we have
∑

y∈Ft2(−1)w0(y)+w1(y+β) ∈ {2t−1 ± 2(t−1)/2, 2(t+1)/2} for
any β ∈ Ft2.

2) Clearly, we have Cw0
(β) = Cw1

(β) = 2t when β = 0. Note again that w1(y + β) = (βt + yt)s1(β′ + y′).
So for βt = 0 we have Cw1

(β) =
∑

y′∈Ft−1
2

(−1)0+0 +
∑

y′∈Ft−1
2

(−1)s1(y′)+s1(y′+β′) = 2t−1 by Lemma 1, and we
have Cw1

(β) =
∑

y′∈Ft−1
2

(−1)0+s1(y′+β′) +
∑

y′∈Ft−1
2

(−1)s1(y′)+0 = 2
∑

y′∈Ft−1
2

(−1)s1(y′) = 2(t+1)/2 if βt = 1.
Similarly, we can get the values of Cw0

(β) for all β ∈ Ft2.
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3) Note that for any β = (β′, βt) ∈ Ft2 we have Ww1
(β) =

∑
y∈Ft2(−1)w1(y)+β·y =

∑
y∈Ft2(−1)yts1(y′)+β′·y′+ytβt =∑

(y′,0)∈Ft−1
2 ×{0}(−1)β

′·y′ +
∑

(y′,1)∈Ft−1
2 ×{1}(−1)s1(y′)+β′·y′+βt . Recall that s1 is a bent function and note that∑

y′∈Ft−1
2

(−1)β
′·y′ = 2t−1 if β′ = 0′ and equals 0 otherwise. So we can immediately get that Ww1

(β) = 2t−1 +

2(t−1)/2 if β = 0, Ww1
(β) = 2t−1−2(t−1)/2 if β = (0, · · · , 0, 1), and Ww1

(β) = 2(t−1)/2 if β ∈ Ft∗2 \{(0, · · · , 0, 1)}.
Similarly, we can get the values of Ww0

(β) for all β ∈ Ft2.

We are now ready to present the construction of h0 and h1.

Definition 3. Let k ≥ 9 be an odd integer. The two Boolean functions h0 and h1 in k variables defined as follows:
• h0(y1, · · · , yk) = g0(y′) + w0(y′′)
• h1(y1, · · · , yk) = g1(y′) + w1(y′′)

where y′ = (y1, y2, y3, y4) ∈ F4
2, y
′′ = (y5, y6, · · · , yk) ∈ Fk−4

2 , g0, g1 ∈ B4 defined by Lemma 3 and w0, w1 ∈ Bk−4

defined by Lemma 4.

It is noted that the form of function h0 (resp. h1) is called the direct sum of Boolean functions w0 and g0 (resp.
w1 and g1). We shall now provide the cryptographic properties of Boolean functions h0 and h1. For doing this, we
first need the following lemma on direct sum of two Boolean functions.

Lemma 5 ([22]). Let three positive integers k, r and e such that k = r + e. Let h(y1, · · · , yk) = g(y1, · · · , yr) +
s(yr+1, · · · , yk), where g ∈ Br and s ∈ Be. For any β ∈ Fk2 , we have

1) Wh(β) = Wg(β
′) ·Ws(β

′′)
2) Ch(β) = Cg(β

′) · Cs(β′′)
where β = (β′, β′′) ∈ F4

2 × Fk−4
2 with β′ = (β1, · · · , βr) and β′′ = (βr+1, · · · , βk).

Lemma 6. Let k ≥ 9 be an odd integer and h0, h1 be two Boolean functions in k variables defined by Definition
3. Then the following statements hold:

1) deg(h0) = deg(h1) = 3;
2) 2(k+5)/2 ≤ Ch0

(β) + Ch1
(β) ≤ 3 · 2k−1 for any β ∈ Fk∗2 ;

3) −3 · 2k−2 − 3 · 2(k+1)/2 ≤ 2
∑

y∈Fk2 (−1)h0(y)+h1(y+β) ≤ −2(k+5)/2 for any β ∈ Fk2;
4) |maxβ∈Fk2 Wh0

(β)| = |maxβ∈Fk2 Wh1
(β)| = |maxβ′∈F4

2
Wg0(β

′)| · |maxβ′′∈Fk−4
2

Ww0
(β′′)|

= |maxβ′∈F4
2
Wg1(β

′)| · |maxβ′′∈Fk−4
2

Ww1
(β′′)| = 3 · 2k−3 + 3 · 2(k−1)/2;

5) wt(h0) + wt(h1) = 2k.

Proof. It can be easily seen that the algebraic degrees of h0 and h1 are equal to 3 since deg(g0) = deg(g0) = 3
and deg(w0) = deg(w0) = 3. In what follows, we prove the Items 2, 3, 4 respectively.

2) For any β = (β′, β′′) ∈ F4
2 × Fk−4

2 , it follows from Lemma 5 that Ch0
(β) + Ch1

(β) = Cg0(β
′) · Cw0

(β′′) +
Cg1(β

′) ·Cw1
(β′′). Note that Ch0

(0′) = Ch1
(0′) = 24 and Cw0

(0′′) = Cw1
(0′′) = 2k−4. Then by Item 5) of Lemma

3 and Item 2) of Lemma 4 we arrive at 2(k+5)/2 ≤ Ch0
(β) + Ch1

(β) ≤ 3 · 2k−1 for any β ∈ Fk∗2 .

3) For any β = (β′, β′′) ∈ F4
2 × Fk−4

2 , we have∑
y∈Fk2 (−1)h0(y)+h1(y+β) =

∑
y′∈F4

2
(−1)g0(y′)+g1(y′+β′) ·

∑
y′′∈Fk−4

2
(−1)w0(y′′)+w1(y′′+β′′). Then it follows from

Item 6) of Lemma 3 and Item 1) of Lemma 4 that
−3 · 2k−2 − 3 · 2(k+1)/2 ≤ 2

∑
y∈Fk2 (−1)h0(y)+h1(y+β) ≤ −2(k+5)/2.

4) For any β = (β′, β′′) ∈ F4
2 × Fk−4

2 , by Lemma 5 we have Wh0
(β) = Wg0(β

′) · Ww0
(β′′). Thus, we have

|maxβ∈Fk2 Wh0
(β)| = |maxβ′∈F4

2
Wg0(β

′)| · |maxβ′′∈Fk−4
2

Ww0
(β′′)| = 3 · 2k−3 + 3 · 2(k−1)/2 according to Item 3)

of Lemma 3 and Item 3) of Lemma 4. Similarly, we can obtain that |maxβ∈Fk2 Wh1
(β)| = |maxβ′∈F4

2
Wg1(β

′)| ·
|maxβ′′∈Fk−4

2
Ww1

(β′′)| = 3 · 2k−3 + 3 · 2(k−1)/2.

5) Note that Wh0
(0) = Wg0(0

′) ·Ww0
(0′′) = 12 · (2k−5 − 2(k−5)/2) and Wh1

(0) = Wg1(0
′) ·Ww1

(0′′) = −12 ·
(2k−5 − 2(k−5)/2), where the values of Wg0(0

′),Wg1(0
′) from the two truth tables in Lemma 3 and the values of
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Ww0
(0′′),Ww1

(0′′) can be found in the proof process of Item 3) of Lemma 4. Then we have wt(h0) + wt(h1) =
2k.

IV. BALANCED BOOLEAN FUNCTIONS WITH VERY LOW ABSOLUTE INDICATOR, STRICTLY ALMOST OPTIMAL

NONLINEARITY AND MAXIMAL ALGEBRAIC DEGREE

In this section, we present our main results of this paper. As we have mentioned in the introduction, bent functions
possess the highest nonlinearity and has the lowest absolute indicator 0. Thus, a naturae way to get balanced 2k-
variable Boolean function with high nonlinearity and low absolute indicator is to replace the all-zero values on a
k-dimensional affine subspace of F2k

2 of a normal bent function with weight 22k−1 − 2k−1 by a balanced Boolean
function h in k variables. It was shown in [13, Lemma 20] that such function has absolute indicator no less than
2k + ∆h. Therefore, we need to at least replace the values on two k-dimensional affine subspace of F2k

2 by two
functions in k variables.

Let us first introduce the partial spread (PS) bent function and then propose a construction of balanced Boolean
functions based on revising the simplest PS bent functions. We also mathematically proved that the constructed
balanced Boolean functions have very low absolute indicator, strictly almost optimal nonlinearity and maximal
algebraic degree.

The class of n-variable bent functions called PS was introduced by Dillon [4] in his PhD thesis. Any bent
function in n variables belonging to this class is the union of 2

n

2
−1 or 2

n

2
−1 + 1 disjoint n

2 -dimensional vector
spaces of Fn2 , where n is an even positive integer and “disjoint” means that any two of these subspaces intersect in
0 only. It should be note that any bent function in n variables belonging to this class has maximum algebraic degree
n
2 . Particularly, Dillon exhibited a subclass of PS in an explicit form, called PSap bent functions. It is well-known
that for an arbitrary n = 2k the finite field F2n can be viewed as a 2-dimensional vector space F2k × F2k over
F2k , which is equal to the disjoint union of its 2k + 1 lines through the origin. By arbitrarily picking up 2k−1 lines
except for the origin as the support, Dillon presented a PSap bent function r(x, y) from F2n to F2 as

r(x, y) = g

(
x

y

)
where g is a balanced Boolean function on F2k with g(0) = 0, and x

y is defined to be 0 if y = 0 (we shall always
assume this kind of convention in the sequel).

In the rest of this section, our aim is to construct a class of balanced Boolean functions with very low absolute
indicator, strictly almost optimal nonlinearity and maximal algebraic degree, via revising the simplest PSap bent
function in 2k variables which is defined as

s(x, y) = Trk1(
λx

y
), (1)

where (x, y) ∈ F2k × F2k and λ ∈ F∗2k .
We now present the main construction.

Construction 1. Let n = 2k and λ, µ ∈ F∗2k , where k ≥ 9 is an odd integer. We construct an n-variable Boolean
function over F2n as follows

f(x, y) =


h0(y), if x = 0
h1(y), if x = µ
s(x, y), if x 6= 0 and x 6= µ

(2)

where s(x, y) is the function over Fn2 defined by (1), and h0, h1 are the functions over Fk2 defined by Definition 3.

It should be noted that in Construction 1 both functions h0 and h1 are defined over the vectorspace Fk2 and
s(x, y) are defined over the finite field F2k ×F2k . As we mentioned in Section II, the vectorspace Fk2 is isomorphic
to the finite field F2k through the choice of some basis of F2k over F2. Thus, the truth table of f can be given by
identifying every element of the finite field F2k to an element of the vectorspace Fk2 , see for instance Example 1.
Indeed, the lower bounds on absolute indicator and nonlinearity of f given in the rest of this section do not depend
on the choice of the basis of F2k over F2, and we shall interchange the elements belonging to Fk2 and F2k below.
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Clearly, every Boolean function generated by Construction 1 is balanced according to Item 5) of Lemma 6 and
the Boolean function Trk1(λxy ) on variable y ∈ F2k is balanced over F2k for any fixed λx 6= 0. In what follows, we
give an upper bound on the absolute indicator, a lower bound on the nonlinearity, and the algebraic degree of the
balanced Boolean functions generated by Construction 1, respectively.

A. The absolute indicator

In this subsection, we will obtain an upper bound on the absolute indicator of the functions generated by
Construction 1. In order to do this, we need to give the following two results which are particularly useful to derive
our bound.

Lemma 7. ([2]) For any positive integer k, the third-order nonlinearity of the function h(y) = Trk1(λ/y), where
λ ∈ F∗2k , defined over F2k is

nl3(h) ≥ 2k−1 − 1

2

√
(2k − 1)

√
23k/2+3 + 3 · 2k+1 − 2k/2+3 + 16.

Lemma 8 ([25]). For any integer k ≥ 3, let Cµ,ν(τ) =
∑

x∈F2k
(−1)Trk1(µ

x
)+Trk1( ν

x+τ
). Then for any µ, ν, τ ∈ F∗2n ,

the value of Cµ,ν(τ) belongs to [−2k/2+1 − 3, 2k/2+1 + 1] and is divisible by 4.

Based on the above results, we shall now deduce an upper bound on the absolute indicator of the functions
defined by Construction 1.

Theorem 1. Let f(x, y) be the n = 2k-variable Boolean function generated by Construction 1. Then we have
∆f < 2k − 2(k+3)/2 for k ≥ 23.

Proof. For any (α, β) ∈ F2k × F2k . It follows from the definition of autocorrelation function that

Cf (α, β) =
∑
x∈F2k

∑
y∈F2k

(−1)f(x,y)+f(x+α,y+β),

which can be classified into the following four cases:
[Case 1.] α = β = 0. Obviously, in this case we have Cf (α, β) = 2n.
[Case 2.] α = 0, β ∈ F∗2n . In this case we can deduce that

Cf (α, β) =
∑
x∈F2k

∑
y∈F2k

(−1)f(x,y)+f(x+α,y+β)

=
∑

x∈F2k\{0,µ}

∑
y∈F2k

(−1)Trk1(λx
y

+ λx

y+β
) + Ch0(β) + Ch1(β)

= T0 + Ch0(β) + Ch1(β),

where

T0 =
∑

x∈F2k\{0,µ}

∑
y∈F2k

(−1)Trk1(λx
y

+ λx

y+β
).

[Case 3.] α = µ, β ∈ F2n . In this case we can get that

Cf (α, β) =
∑
x∈F2k

∑
y∈F2k

(−1)f(x,y)+f(x+α,y+β)

=
∑

x∈F2k\{0,µ}

∑
y∈F2k

(−1)Trk1(λx
y

+λ(x+α)

y+β
) + 2

∑
y∈F2k

(−1)h0(y)+h1(y+β)

= T1 + 2
∑
y∈F2k

(−1)h0(y)+h1(y+β),

where

T1 =
∑

x∈F2k\{0,µ}

∑
y∈F2k

(−1)Trk1(λx
y

+λ(x+α)

y+β
).
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[Case 4.] α ∈ F2n \ {0, µ}, β ∈ F2n .

Cf (α, β) =
∑
x∈F2k

∑
y∈F2k

(−1)f(x,y)+f(x+α,y+β)

=
∑

x∈F2k\{0,µ,α,α+µ}

∑
y∈F2k

(−1)Trk1(λx
y

+λ(x+α)

y+β
)

+2
∑
y∈F2k

(−1)h0(y+β)+Trk1(λα
y

) + 2
∑
y∈F2k

(−1)h1(y+β)+Trk1(λ(µ+α)

y
)

= T2 + 2
∑
y∈F2k

(−1)h0(y+β)+Trk1(λα
y

) + 2
∑
y∈F2k

(−1)h1(y+β)+Trk1(λ(µ+α)

y
),

where

T2 =
∑

x∈F2k\{0,µ,α,α+µ}

∑
y∈F2k

(−1)Trk1(λx
y

+λ(x+α)

y+β
).

We shall now evaluate the values of T0, T1 and T2. Note that the function s(x, y) = Trk1(λxy ) ∈ Bn defined by (1)
is the simplest PSap bent function. Thus, we have Cs(α, β) = 0 for any (α, β) ∈ F2k × F2k \ {(0, 0)}, according
to Lemma 1. Similar to the Cases 2-4 above, by the definition of autocorrelation function of the bent function s
we have

T0 + 2k +
∑

y∈F2k

(−1)Trk1(λµ
y

+ λµ

y+β
) = 0, if α = 0, β ∈ F∗2n

T1 + 2
∑

y∈F2k

(−1)Trk1(λµ
y

)+0 = 0, if α = µ, β ∈ F2n .

T2 + 2
∑

y∈F2k

(−1)Trk1(λα
y

)+0 + 2
∑

y∈F2k

(−1)Trk1(λµ
y

+λ(µ+α)

y+β
) = 0, if α ∈ F2n \ {0, µ}, β ∈ F2n

Let t = max{|t′| : t′ ∈ [−2k/2+1 − 3, 2k/2+1 + 1] and t′ = 0 (mod 4)}. On the one hand, according to Lemma
8, we have |

∑
y∈F2k

(−1)Trk1(λµ
y

+λ(µ+α)

y+β
)| ≤ t when λµ 6= 0, β ∈ F∗2k and α ∈ F2k . On the other hand, note that∑

y∈F2k
(−1)Trk1(λµ/y) = 0 if λµ 6= 0. Therefore, we immediately get −2k − t ≤ T0 ≤ −2k + t, T1 = 0 and

−2t ≤ T2 ≤ 2t. Hence, by Item 2) of Lemma 6 we easily have −2k − t + 2(k+5)/2 ≤ Cf (α, β) ≤ 2k−1 + t if
α = 0, β ∈ F∗2n ; by Item 3) of Lemma 6 we directly have −3 · 2k−2 − 3 · 2(k+1)/2 ≤ Cf (α, β) ≤ −2(k+5)/2 if
α = µ, β ∈ F2n .

Note that Lemma 7 implies that the Hamming distance from Trk1(γy ), where γ ∈ F∗2k , to any function h of

degree no more than 3 is greater than 2k−1− 1
2

√
(2k − 1)

√
23k/2+3 + 3 · 2k+1 − 2k/2+3 + 16, which is equivalent

to saying that |
∑

y∈F2k
(−1)h(y)+Trk1( γ

y
)| ≤ 2k − 2nl3(h). Further, both h0(y + β) and h1(y + β) have alge-

braic degree 3 since both h0(y) and h1(y) have algebraic degree 3 by Item 1) of Lemma 6. Thus, we have
|
∑

y∈F2k
(−1)h0(y+β)+Trk1(λα

y
)| ≤ 2k − 2nl3(h) ≤ l and |

∑
y∈F2k

(−1)h1(y+β)+Trk1(λ(µ+α)

y
)| ≤ 2k − 2nl3(h) ≤ l,

where l =

√
(2k − 1)

√
23k/2+3 + 3 · 2k+1 − 2k/2+3 + 16. Recall that −2t ≤ T2 ≤ 2t.

Therefore, we have |Cf (α, β)| ≤ 4l + 2t if α ∈ F2n \ {0, µ}, β ∈ F2n . Note that t < 2
k+3

2 and l <√
(2k − 1)(2(3k+6)/4 + 2(k+1)/4) < 2k/2(2(3k+6)/8 + 2−(k+12)/8) = 2(7k+6)/8 + 2(3k−12)/8 for odd k ≥ 3. Form

what has been discussed above, we conclude that

|Cf (α, β)| <


2k − 2

k+3

2 , if α = 0, β ∈ F∗2n
2k−1 + 2k−2 + 2

k+3

2 + 2
k+1

2 , if α = µ, β ∈ F2n .

2
7k+22

8 + 2
3k+4

8 + 2
k+5

2 , if α ∈ F2n \ {0, µ}, β ∈ F2n

So we have
∆f < max{2k − 2

k+3

2 , 2k−1 + 2k−2 + 2
k+3

2 + 2
k+1

2 , 2
7k+22

8 + 2
3k+4

8 + 2
k+5

2 }.

Note that (2k − 2
k+3

2 )− (2k−1 + 2k−2 + 2
k+3

2 + 2
k+1

2 ) = 2k−2 − 5 · 2
k+1

2 > 2k−2 − 2
k+7

2 ≥ 0 for k ≥ 11. Note also
that (2k − 2

k+3

2 )− (2
7k+22

8 + 2
3k+4

8 + 2
k+5

2 ) = 2
7k+22

8 (2
k−22

8 − 1)− 2
3k+4

8 − 3 · 2
k+3

2 > 2
7k+22

8 − 2
3k+4

8 − 3 · 2
k+3

2 >
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2
7k+22

8 − 2
3k+4

8 − 2
k+7

2 > 2
7k+22

8 − 2
4k+28

8 − 2
k+7

2 = 2
7k+22

8 − 2
4k+36

8 ≥ 0 for k ≥ 23. Thus we have ∆f < 2k − 2
k+3

2

for k ≥ 23. This completes the proof.

Thus, we present a construction and prove for the first time that it is possible to obtain an infinite class of
balanced functions f on n variables with ∆f < 2

n

2 , when n ≡ 2 (mod 4) and n ≥ 46. The constraint n ≡ 2
(mod 4) comes as n = 2k, where k is odd, and the bound n ≥ 46 comes from algebraic manipulation to show
that ∆f is indeed less than 2

n

2 . However, the proof is one directional. Thus, in case we can actually construct the
function on lower number of variables, that might have ∆f < 2

n

2 too. The main trick here comes from Lemma 6,
where we construct functions h0, h1 on k variables, k ≥ 9, odd. Thus our construction can be experimentally
checked for the minimum value of n = 2k = 18. This we present in the following example and show that our
construction indeed achieves ∆f = 480 < 2

18

2 , though it is not explicitly proved in Theorem 1. One may access
the Boolean function and the related programs at [24].

Example 1. Let n = 2k where k = 9. Let ω be a root of the primitive polynomial x9 +x4 +1 and 1, ω, ω2, · · · , ω8

be a basis of F29 . Then every element x ∈ F29 can be uniquely expressed as x = x1 + x2ω + x3ω
2 + · · · +

x9ω
8 and hence x ∈ F29 is identified with a vector (x1, x2, x3, · · · , x8, x9) ∈ F9

2. By a Matlab program, we
have Trk1(w) = Trk1(w2) = Trk1(w3) = Trk1(w4) = Trk1(w6) = Trk1(w7) = Trk1(w8) = 0 and Trk1(1) =
Trk1(w5) = 1. In this example we take λ = µ = 1 ∈ F29 , s0 = [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0] and
s1 = [0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1]. Then we can obtain the truth table of f by computer program. For exam-
ple, consider that we want to get the value of f at point (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1) ∈ F18

2 . We have
(0, 0, 0, 0, 0, 1, 0, 0, 1) identified with w5 + w8 = w425 and (0, 0, 0, 0, 0, 0, 0, 1, 1) identified with w7 + w8 = w137.
Hence, f(0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1) = Trk1(w

425

w137 ) = Trk1(w288) = Trk1(1 + w2 + w3 + w7 + w8) =
Trk1(1) + Trk1(w2) + Trk1(w3) + Trk1(w7) + Trk1(w8) = 1. After constructing the truth table of this function, we
checked by computer program that f has absolute indicator 480 < 29 = 512. Further, one can also check that the
function has nonlinearity 130664 > 217 − 29 = 130560 and algebraic degree 17.

B. Nonlinearity

We shall now obtain a lower bound on the nonlinearity of the Boolean functions generated by Construction 1.
This requires the following two results.

Lemma 9 ([11]). For any positive integer k and arbitrary a ∈ F∗2k , the Walsh spectrum of Trk1(ax) defined on F2k

can take any value divisible by 4 in the range [−2k/2+1 + 1, 2k/2+1 + 1].

Lemma 10. Let k be a positive integer and λ be a nonzero element of F2k . For any (α, β) ∈ F2k ×F2k , we define
U(α,β) =

∑
x∈F∗

2k

∑
y∈F2k

(−1)Trk1(λx
y

+αx+βy). Then we have

U(α,β) =

{
0, if β = 0

2k(−1)Trk1( βλ
α

), if β 6= 0
.

Proof. Basically, our discuss is built on the fact that
∑

x∈F∗
2k

(−1)Trk1(γx) = 2k−1 if γ = 0 and
∑

x∈F∗
2k

(−1)Trk1(γx) =

−1 otherwise. We have

U(α,β) =
∑
x∈F∗

2k

∑
y∈F2k

(−1)Trk1(λx
y

+αx+βy)

=
∑
y∈F2k

(−1)Trk1(βy)
∑
x∈F∗

2k

(−1)Trk1((λ
y

+α)x)

= (2k − 1)(−1)Trk1( βλ
α

) −
∑

y∈F2k\{
βλ

α
}

(−1)Trk1(βy)

= 2k(−1)Trk1( βλ
α

) −
∑
y∈F2k

(−1)Trk1(βy)

=

{
0, if β = 0

2k(−1)Trk1( βλ
α

), if β 6= 0
.
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This completes the proof.

Theorem 2. Let f(x, y) be the n = 2k-variable Boolean function generated by Construction 1. Then we have
nl(f) > 2n−1 − 7 · 2k−3 − 5 · 2

k−1

2 , which is strictly almost optimal nonlinearity for integer k ≥ 11.

Proof. For any (α, β) ∈ F2k × F2k ,the walsh transform of f at (α, β) can be written as

Wf (α, β)

=
∑
x∈F2k

∑
y∈F2k

(−1)f(x,y)+Trk1(αx)+Trk1(βy)

=
∑

x∈F2k\{0,µ}

(−1)Trk1(αx)
∑
y∈F2k

(−1)Trk1(λx
y

+βy) + (−1)Trk1(αµ)Wh1
(β) +Wh0

(β)

=
∑
x∈F∗

2k

∑
y∈F2k

(−1)Trk1(λx
y

+αx+βy) + (−1)Trk1(αµ)Wh1
(β) +Wh0

(β)−
∑
y∈F2k

(−1)Trk1(λµ
y

+αµ+βy)

= U(α,β) + (−1)Trk1(αµ)Wh1
(β) +Wh0

(β)−
∑
y∈F2k

(−1)Trk1(λµ
y

+αµ+βy).

So we have

|Wf (α, β)| = |U(α,β) + (−1)Trk1(αµ)Wh1
(β) +Wh0

(β)−
∑
y∈F2k

(−1)Trk1(λµ
y

+αµ+βy)|

≤ |U(α,β)|+ |Wh1
(β)|+ |Wh0

(β)|+ |
∑
y∈F2k

(−1)Trk1(λµ
y

+αµ+βy)|

=

{
|Wh1

(β)|+ |Wh0
(β)|+ |

∑
y∈F2k

(−1)Trk1(λµ
y

+αµ+βy)|, if β = 0

2k + |Wh1
(β)|+ |Wh0

(β)|+ |
∑

y∈F2k
(−1)Trk1(λµ

y
+αµ+βy)|, if β 6= 0

,

where Lemma 10 is used in the last identity. Then, by Lemmas 6 and 9, we immediately get that

| max
(α,β)∈F2k×F2k

Wf (α, β)| ≤ 2k + 2 · (3 · 2k−3 + 3 · 2
k−1

2 ) + 2
k+3

2

= 2k + 3 · 2k−2 + 10 · 2
k−1

2 .

Therefore, we have nl(f) > 2n−1 − 7 · 2k−3 − 5 · 2
k−1

2 .

C. Algebraic degree

It is well-known that the maximum algebraic degree of a balanced Boolean functions in n variables is n − 1.
We shall now discuss the algebraic degrees of the functions given by Construction 1.

Theorem 3. The n = 2k-variable Boolean function f(x, y) defined by Construction 1 has maximum algebraic
degree n− 1.

Proof. Clearly, the Boolean function f can be written as f(x, y) = s(x, y) + f ′(x, y), where s ∈ Bn is defined by
(1) and f ′ ∈ Bn is defined as follows

f ′(x, y) =


h1(y) + Trk1(λµy ), if x = µ

h0(y), if x = 0
0, otherwise

.

Note that s is a PSap bent function and so has algebraic degree k. Thus, for proving that f has algebraic degree
n − 1, we only need to prove that f ′ has algebraic degree n − 1. By Lagrange interpolation we have f ′(x, y) =∑

(a,b)∈supp(f)

(
1+(x+a)2k−1

)(
1+(y+b)2k−1

)
=
∑

(0,b)∈supp(f)

(
1+x2k−1

)(
1+(y+b)2k−1

)
+
∑

(µ,b)∈supp(f)

(
1+

(x+µ)2k−1
)(

1 + (y+ b)2k−1
)

=
(
1 +x2k−1

)∑
b∈supp(h0)

(
1 + (y+ b)2k−1

)
+
(
1 + (x+µ)2k−1

)∑
b∈supp(h1)

(
1 +

(y + b)2k−1
)

=
(
1 + x2k−1

)
h0 +

(
1 + (x+ µ)2k−1

)
h1. Note that the algebraic degree of Trk1(λµy ) defined on F2k

equals k−1 since Trk1(λµy ) = Trk1((λµ)y2k−2) and the Hamming weight of the binary expansion of 2k−2 is k−1.
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Note also that the algebraic degree of h0 is 3 by Item 1) of Lemma 6. So we can easily see that the term x2k−1h1

will never be canceled by other terms of f ′ and hence the algebraic degree of f ′ equals k+ (k− 1) = n− 1. This
implies that f has algebraic degree n− 1 as well. This completes the proof.

V. CONCLUSION

Since the conjecture had been proposed almost two decades back, that ∆f ≥ 2
n

2 [27], examples of balanced
Boolean functions in even variables n with absolute indicator strictly less than 2

n

2 could only be achieved for
n = 10, 14 by computer search techniques. In this paper, we could mathematically construct an infinite class of
balanced Boolean function on n variables (n ≡ 2 mod 4) with absolute indicator strictly less than 2

n

2 − 2
n+6

4 ,
nonlinearity strictly greater than 2n−1 − 7 · 2

n

2
−3 − 5 · 2

n−2

4 and algebraic degree n− 1, where n ≥ 46. This is the
first time that an infinite class of balanced Boolean functions with absolute indicator strictly less than 2

n

2 could be
obtained. While we could theoretically prove the result for n ≥ 46, our construction also works for lesser number
of variables. In fact, our construction starts from n = 18 and we could check that the constructed balanced function
f achieves ∆f = 480 < 2

18

2 with nonlinearity 130664 > 217 − 29 = 130560 and algebraic degree 17. Given our
result, we have now two different classes left to achieve similar results.
• Functions on n variables, where n ≡ 0 mod 4: In this case, we do not have any example yet to disprove the

conjecture of [27]. Thus the immediate question here is to at least find an example (better if a theoretical
construction is obtained) or to show that it is not at all possible to construct such functions.

• Functions on n variables, where n is odd: In this case, we have examples where the conjecture is disproved,
namely for n = 9, 11 in [7], n = 15 in [15] and n = 21 in [14], [10]. Thus a general construction in this case
would be of interest.

We leave these questions for future research.
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[7] Selçuk Kavut, Subhamoy Maitra, and Melek D Yücel. Search for Boolean functions with excellent profiles in the rotation symmetric

class. IEEE Transactions on Information Theory, 53(5):1743–1751, 2007.
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