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Abstract. As recently been emphasized by NSA and NIST, there is an
increasing need for cryptographic schemes being secure against quantum
computer attacks. Especially in the area of digital signature schemes,
multivariate cryptography is one of the main candidates for this. At In-
scrypt 2015, Nie et al. proposed a new multivariate signature scheme
called CUOV [22], whose public key consists both of quadratic and cubic
polynomials. However, the scheme was broken by an attack of Hashimoto
[16]. In this paper we take a closer look on the CUOV scheme and its
attack and propose two new multivariate signature schemes called CSSv
and SVSv, which are secure against Hashimoto’s attack and all other
known attacks on multivariate schemes. Especially our second construc-
tion SVSv is very efficient and outperforms current multivariate signature
schemes such as UOV and Rainbow in terms of key and signature size.

Keywords: Post-Quantum Cryptography, Multivariate Cryptography, Signa-
ture Schemes

1 Introduction

The currently most widely used public key cryptosystems are the number the-
ory based schemes RSA [30], DSA [19] and ECC [18]. However, these schemes
will become insecure as soon as large enough quantum computers arrive [31].
Therefore, one needs alternatives to those classical public key schemes, based
on hard mathematical problems not affected by quantum computer attacks (so
called post quantum cryptosystems). The increasing importance of research in
this field has recently been emphasized by a number of authorities, including
the American National Security Agency (NSA), who recommended governmen-
tal organizations to switch their security infrastructures from schemes such as
RSA and ECC to post-quantum cryptosystems [14], and the National Institute
of Standards and Technology (NIST), which is preparing to develop standards
for these schemes [23].
According to [23], multivariate cryptography is one of the main candidates for
this standardization. Multivariate schemes are in general very fast and require



only modest computational resources, which makes them attractive for the use
on low cost devices like smart cards and RFID chips [3,5]. Since the late 1980’s,
many multivariate schemes both for encryption and signatures were proposed.
One of the first was the Matsumoto-Imai cryptosystem [20], which was later
extended to schemes such as Sflash [28] and HFE [25]. However, due to some
flaws in the design (low rank of the private polynomials, low degree of regularity,
. . . ), many of these schemes have been broken by direct, rank and differential
attacks [24,12]. Another research direction led to the development of SingleField
signature schemes such as UOV [17] and Rainbow [8]. These two schemes have
withstood (for suitable parameters) cryptanalysis for nearly 20 years now and
therefore are considered to provide high security. While the signature genera-
tion of UOV is very efficient, it has a very large public key. To deal with this,
Ding and Schmidt [8] proposed the Rainbow signature scheme, which can be
seen as a multi-layer version of UOV with smaller keys and shorter signatures.
However, the multi-layer structure of Rainbow enables a number of new attacks
[2,9] which makes the parameter choice of Rainbow to be a challenging task.
Furthermore, this shows that one has to be very careful when designing new
multivariate schemes on the basis of UOV and Rainbow.
At Inscrypt 2015, Nie et al. proposed a new idea of using cubic polynomials in
the public key in a way that the key sizes are not too large and the signing
process is efficient (CUOV) [22]. The use of cubic polynomials in the public key
increases the degree of regularity of the system and hence increases the security
against direct attacks. In addition, several attacks such as differential attacks
are also not applicable against the scheme. Furthermore, the CUOV scheme has
shorter signatures and a smaller private key than UOV and Rainbow. However,
the scheme was broken by a newly developed attack of Hashimoto [16].
In this paper we revisit the CUOV scheme of Nie et al. [22] and analyze why
it can be broken by Hashimoto’s attack. Furthermore, we identify a number
of components not relevant for the security of the scheme. By omitting these
unnecessary components, we propose our first improved multivariate signature
scheme, called CSSv (see Section 3). By our modifications, in addition to avoid-
ing Hashimoto’s attack, we make the signature generation much more stringent
and reduce the number of cubic polynomials in the public key from 3 to 1, thus
reducing the public key size by up to 40 %. We show that the resulting scheme
resists not only Hashimoto’s attack, but also all other known attacks on mul-
tivariate cryptosystems, including direct and rank attacks (Section 3.2). Based
on our construction of CSSv, we then propose a second new multivariate signa-
ture scheme called SVSv (Section 4). While, as in the case of CUOV, the public
key of CSSv consists of both cubic and quadratic polynomials, the public key
of SVSv is completely quadratic, which decreases the key sizes further without
weakening the security of the construction (Section 4.2). The scheme provides
shorter signatures than Rainbow and reduces both public and private key size
significantly (by 24% and 79% respectively compared to Rainbow).



2 The Cubic Unbalanced Oil and Vinegar Signature
Scheme (CUOV)

In this section we recall the CUOV scheme of [22]. Before we come to the descrip-
tion of the scheme itself, we start with a short overview of the basic concepts of
multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials over a finite field K. The security of multivariate schemes is based
on the MQ-Problem which asks for a solution of a given system of multivariate
quadratic polynomials over the field K. The MQ-Problem is proven to be NP-
hard even for quadratic polynomials over the field GF(2) [13].
To build a public key cryptosystem on the basis of the MQ-Problem, one starts
with an easily invertible quadratic map F : Kn → Km (central map). To hide
the structure of F in the public key, one composes it with two invertible affine
(or linear) maps T : Km → Km and S : Kn → Kn. The public key is there-
fore given by P = T ◦F ◦S : Kn → Km. The private key consists of T ,F and S.

In this paper we consider multivariate signature schemes. For these schemes,
we require n ≥ m, which ensures that every message has a signature.

Signature Generation: To generate a signature for a message (or its hash value)
d ∈ Km, one computes recursively w = T −1(d) ∈ Km, y = F−1(w) ∈ Kn and
z = S−1(y). z ∈ Kn is the signature of the message d. Here, F−1(w) means
finding one (of possibly many) pre-image of w under the central map F .

Signature Verification: To check the authenticity of a signature z ∈ Kn, the
verifier simply computes d′ = P(z). If the result is equal to the message d, the
signature is accepted, otherwise rejected.

2.2 The CUOV Scheme

In [22], Nie et al. proposed a new multivariate signature scheme called Cubic
Unbalanced Oil and Vinegar (CUOV). The scheme can be described as follows.
Let K be a finite field with q elements and o, v ∈ N. The number of variables in
the scheme is given by n = o+ v, the number of equations is o.



Key Generation: The central map F of the CUOV scheme has the form
F = F̄ ◦ (F̂ × idv) : Kn → Ko. Here, F̂ : Kn → Ko consists of one quadratic
and o− 1 affine polynomials of the form
f̂ (1) =

∑o
i=1

∑n
j=o+1 a

(1)
ij · yiyj +

∑n
i=o+1

∑n
j=i a

(1)
ij · yiyj +

∑n
i=1 b

(1)
i · yi + c(1),

f̂ (2) =
∑n

i=1 b
(2)
i · yi + c(2),

. . .

f̂ (o) =
∑n

i=1 b
(o)
i · yi + c(o),

(1)

where the coefficients a
(k)
ij , b

(k)
j , c(k) are random elements ofK with i ∈ {1, . . . , v}, j ∈

{1, . . . , n} and k ∈ {1, . . . , o} and

F̂ × idv : Kn → Kn

(y1, . . . , yo, yo+1, . . . , yn) 7→ (f̂ (1), . . . , f̂ (o), yo+1, . . . , yn︸ ︷︷ ︸
vinegar variables

).

Note that f̂ (1) has the form of an oil and vinegar polynomial with o oil and v
vinegar variables (cf. [17]).

The map F̄ is a map fromKo×Kv toKo, (x1, . . . , xo, yo+1, . . . , yn) 7→ (f̄ (1), . . . , f̄ (o))
of the form 

f̄ (1) = r1 · (x1 + x1 · x2) + g1(yo+1, . . . , yn),
f̄ (2) = r2 · x1 · x2 + g2(yo+1, . . . , yn),
f̄ (3) = r3 · (x1 + x2) · x3 + g3(yo+1, . . . , yn),

. . .
f̄ (o) = ro · (xo−2 + xo−1) · xo + go(yo+1, . . . , yn).

(2)

Here r1, . . . , ro are random elements in K \{0}, g1, g2, g3 are random cubic poly-
nomials in the v vinegar variables yo+1, . . . , yn, whereas g4, . . . , go are random
quadratic maps.
Due to the structure of F̂ and F̄ , the central map F = (f (1), . . . , f (o)) of the
CUOV scheme consists of three cubic polynomials f (1), f (2), f (3) and (o − 3)
quadratic polynomials f (4), . . . , f (o).

To hide the structure of F in the public key, we choose randomly an invert-
ible affine map S : Kn → Kn. The public key is given by P = F ◦ S : Kn → Ko

and consists of three cubic polynomials p(1), p(2), p(3) and (o−3) quadratic poly-

nomials p(4), . . . , p(o). The private key consists of the polynomials f̂ (1), . . . , f̂ (o)

and g1, . . . , go, the invertible affine map S and the field elements r1, . . . , ro. 4

The key generation process is illustrated in Algorithm 1.

4 In contrast to the standard construction of multivariate cryptography (see above),
Nie et al. did not use a second affine map T . The reason for this is that T would
turn the public key into a completely cubic map and therefore increase the key size
drastically.



Algorithm 1 Key Generation of CUOV [22]

Input: Finite field K with q elements and integers o, v
Output: CUOV key pair ((F ,S),P)
1: Choose randomly o polynomials f̂ (i) in n = o + v variables as shown in (1).
2: Choose 3 random cubic polynomials g1, g2, g3 in v variables.
3: Choose o− 3 random quadratic polynomials g4, . . . , go in v variables.
4: Choose random elements r1, . . . , ro ∈ K \ {0}.
5: Define f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, . . . , xo, yv+1, · · · , yn) as shown

in (2)
6: The central map is F = (f (1), . . . , f (o)) : Kn → Ko. where for each i = 1, . . . , o we

have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yv+1, . . . , yn)
7: Choose randomly an invertible affine map S : Kn → Kn.
8: P = F ◦ S : Kn → Ko

9: return ((F ,S),P)

Signature Generation: To generate a signature z ∈ Kn for a message (hash value)
d = (d1, . . . , do) ∈ Ko, the signer performs the following steps.

(1) Choose random values for the vinegar variables yo+1, . . . , yn and substitute

them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go.
(2) Compute x1 by x1 = 1

r1
· (d1 − g1) − 1

r2
· (d2 − g2), x2 = 1

r2·x1
· (d2 − g2)

and recursively xi = 1
ri·(xi−2+xi−1)

· (di − gi) (i = 3, . . . , o). If any of the

denominators in these equations happens to be zero, choose other values for
the vinegar variables yo+1, . . . , yn.

(3) Solve the linear system given by the last o− 1 equations of (1) to obtain for
y2, . . . , yo univariate linear representations in y1. If this fails, choose other
values for the vinegar variables yo+1, . . . , yn.

(4) Substitute the linear relations found in the previous step into f̂ (1) and solve
the resulting linear equation for y1.

(5) Compute a signature z ∈ Kn for d by z = S−1(y1, . . . , yn).

Signature Verification: To check the authenticity of a signature z ∈ Kn, the
verifier simply computes d′ = P(z) ∈ Ko. If the result is equal to the message
d, the signature is accepted, otherwise rejected.

2.3 The attack of Hashimoto [16]

In the case of the CUOV scheme we have

f̄ (1) − r1
r2
· f̄ (2) = r1 · x1 + (g1(yo+1, . . . , yn)− r1

r2
· g2(yo+1, . . . , yn))︸ ︷︷ ︸

cubic map in yo+1,...,yn

. (3)

By denoting

Dcp
(i)(z) = p(i)(z + c)− p(i)(z) (4)



for p(i) being the i-th component of the CUOV public key, some fixed vector
c ∈ Kn and Qi being the coefficient matrix of the corresponding quadratic form
(i = 1, 2), Hashimoto showed that, due to equation (3), there exists an (easy
to find) linear combination Q1 + β · Q2 of rank at most v. By using this fact,
Hashimoto could identify (the linear representations of) the vinegar variables
yo+1, . . . , yn, compute an equivalent central map and therefore forge signatures.

3 Our first improved scheme

In this section we take a closer look at the CUOV signature scheme and Hashimoto’s
attack. We analyze which properties make the scheme insecure and develop a
strategy to avoid these weaknesses. Furthermore, we identify some components
of CUOV which are not relevant for the security of the scheme. By removing
them from the scheme, we can make the signature generation process much more
stringent and reduce the public key size of the scheme. We denote our improved
scheme by CSSv (Cubic Signature Scheme with Vinegar).

By studying Hashimoto’s attack closely, we find that it works mainly due to
the fact that, in the case of CUOV, we have a linear combination of the central
polynomials f̄ (i) which is the sum of a quadratic form X in y1, . . . , yn and a
cubic polynomial G in yo+1, . . . , yn (c.f. equation (3)). By taking the differential
(equation (4)), the quadratic terms of X vanish, and there remain only quadratic
terms in the variables yo+1, . . . , yn. For the attacker this means that Hashimoto’s
attack works if and only if there exists an (easy to find) relation of the public
polynomials of the form

Y =

o∑
i=1

ai · p(i) = X + G,

with X being a quadratic map of rank n and G being a cubic map of rank v.
To prevent Hashimoto’s attack, we therefore have to design our scheme in a
way that such a relation does not exist. In the CSSv scheme, this is achieved
by reducing the number of cubic polynomials from 3 to 1 and introducing an
additional affine map T (see Section 3.2).
Furthermore, we identified the following components of CUOV not relevant for
the security of the scheme. By omitting them, we can make the signature gener-
ation process much more straightforward and reduce the key sizes significantly.

1. The use of the coefficients ri in equation (2) is unnecessary, since these factors

can easily be included into the maps f̂ (1), . . . , f̂ (o).
2. Instead of using an oil and vinegar polynomial for f̂ (1), we can easily switch

to a random quadratic one. In this case we have to solve in step (4) of the
signing process a univariate quadratic polynomial.

3. Taking the sum xi−2 + xi−1 in equations 3, . . . , o of (2) does not bring ex-
tra security into the scheme since the result is still a linear combination of
y1, . . . , yn.



4. The summation (x1 + x1 · x2) in the first component of (2) is unnecessary,

too, since f̂ (1) was chosen as a random polynomial.

3.1 The CSSv Signature Scheme

In this subsection we propose our first improved scheme CSSv, which is obtained
by applying our strategy to prevent Hashimoto’s attack and removing the above
identified unnecessary components from the CUOV scheme of Nie et al. [22].
Our scheme can be described as follows.

Key Generation: Let K be a finite field with q elements and o, v ∈ N. We set
n = o+v. As in the case of the CUOV scheme (see previous section), the central
map F of the CSSv scheme has the form F = F̄ ◦ (F̂ × idv) : Kn → Ko, with

idv being the identity map in Kv. The map F̂ = (f̂ (1), . . . , f̂ (o)) has the form
f̂ (1) =

∑n
i=1

∑n
j=i a

(1)
ij · yiyj +

∑n
i=1 b

(1)
i · yi + c(1)

f̂ (2) =
∑n

i=1 b
(2)
i · yi + c(2)

· · ·
f̂ (o) =

∑n
i=1 b

(o)
i · yi + c(o)

(5)

with a random quadratic polynomial f̂ (1) and affine maps f̂ (2), . . . , f̂ (o) in the
variables y1, . . . , yn.
The map F̄ : Ko × Kv → Ko, (x1, . . . , xo, yo+1, . . . , yn) 7→ (f̄ (1), . . . , f̄ (o)) is
given by 

f̄ (1) = x1 + g1(yo+1, . . . , yn)
f̄ (2) = x1 · x2 + g2(yo+1, . . . , yn)
· · ·

f̄ (o) = xo−1 · xo + go(yo+1, . . . , yn).

(6)

Here we choose randomly a cubic polynomial g2 and (o−1) quadratic polynomials
g1, g3, . . . , go in the v variables yo+1, . . . , yn.

The central map F = (f (1), . . . , f (o)) therefore consists of one cubic polyno-
mial f (2) and (o − 1) quadratic polynomials f (1), f (3), . . . , f (o) in the variables
y1, . . . , yn. In order to hide the structure of F in the public key, we choose two
invertible affine maps S : Kn → Kn and T : Ko → Ko. While the map S is
chosen completely at random, the matrix T representing the map T has the form

T =

(
?1×1 ?1×1 ?1×(o−2)

?(o−1)×1 0(o−1)×1 ?(o−1)×(o−2)

)
∈ Ko×o. (7)

The public key has the form P = (p(1), . . . , p(o)) = T ◦ F ◦ S : Kn → Ko, the
private key consists of F̂ , g1, . . . , go, S and T . Due to the special form of the map
T , the public key consists of one cubic polynomial p(1) and (o − 1) quadratic
polynomials p(2), . . . , p(o) in n variables. The key generation process is illustrated
in Algorithm 2.



Algorithm 2 Key Generation of CSSv

Input: Finite field K with q elements and integers o, v
Output: CSSv key pair ((F ,S, T ),P)
1: Choose randomly 1 quadratic polynomial f̂ (1) and (o−1) affine maps f̂ (2), . . . , f̂ (o)

in the n = o + v variables y1, . . . , yn.
2: Choose 1 random cubic polynomial g2 in the v variables yo+1, . . . , yn
3: Choose o − 1 random quadratic polynomials g1, g3, g4, . . . , go in the v variables

yo+1, . . . , yn
4: Define f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, · · · , xo, yo+1, . . . , yn) as in (6)
5: The central map is F = (f (1), · · · , f (o)) : Kn → Ko where for each i = 1, . . . , o we

have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yo+1, . . . , yn)
6: Choose a randomly invertible affine map S : Kn → Kn

7: Choose a randomly invertible affine map T : Ko → Ko as in (7)
8: P = T ◦ F ◦ S : Kn → Ko

9: return ((F ,S, T ),P)

Signature Generation: In order to generate a signature for a message (or hash
value) d ∈ Ko, the signer performs the following steps.

1. Compute w = T −1(d) ∈ Ko.
2. Choose random values for the vinegar variables yo+1, . . . , yn and substitute

them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go.
3. Compute x1 = w1 − g1 and recursively xi = 1

xi−1
· (wi − gi) (i = 2, . . . , o).

If one of the xi (i = 1, . . . , o− 1) occurs to be 0, choose other values for the
vinegar variables yo+1, . . . , yn.

4. Solve the linear system given by the last o − 1 equations of (5) to obtain
univariate linear representations of y2, . . . , yo in the single variable y1. If this
fails, choose other values for the vinegar variables yo+1, . . . , yn.

5. Substitute these relations into the first equation of (5) to get a univariate
quadratic equation in the variable y1, and solve it. If the equation has no
solution, choose other values for the vinegar variables yo+1, . . . , yn.

6. Compute a signature z ∈ Kn of the message d by z = S−1(y1, . . . , yn).

Signature Verification: To check if z ∈ Kn is indeed a valid signature for a
message d ∈ Ko, the verifier simply computes d′ = P(z). If d′ = d holds, the
signature is accepted, otherwise it is rejected.

3.2 Security

Rank Attacks There are two main types of rank attacks: The MinRank at-
tack [2,6] and the HighRank attack [15]. The goal of the MinRank attack is to find
a linear combination of the matrices associated to the homogeneous quadratic
parts of the public polynomials of low rank. The idea is that such a linear com-
bination corresponds to a central polynomial.
In the case of the CSSv scheme, the matrices associated to the central polyno-
mials have rank ≥ v + 2 (v + 1 if q even and v odd). Recovering such a central



polynomial by solving a MinRank Problem has a complexity of at least qv+2. By
choosing the parameter v in an appropriate way, it is therefore easy to prevent
attacks of the MinRank type.
The HighRank attack tries to find (the linear representations of) the variables
which appear the fewest times in the central polynomials. However, since all the
variables y1, . . . , yn appear in every component of the central map, the HighRank
attack is not applicable against CSSv.

Direct Attacks The most straightforward method to attack a multivariate
cryptosystem is the direct attack. For this type of attack, one tries to solve the
equation P(z) = d directly as an instance of the MQ-Problem. The most efficient
and popular tool for this are Gröbner bases methods such as the F4 algorithm
[11]. The complexity of this algorithm can be estimated by

O

(
m ·

(
n+ dreg − 1

dreg

)ω)
,

where dreg is the so called degree of regularity of the system and 2 < ω ≤ 3 is
the linear algebra constant.
In order to estimate the security of our scheme against direct attacks, we have
to study the degree of regularity of the public systems. To do this, we carried
out a number of experiments with MAGMA [4] (see Table 2 in the appendix of
this paper). As our experiments showed, the public systems of CSSv behave, for
v = o

2 , very similar to random systems. On the other hand we found that, for
smaller values of v, the public systems are significantly easier to solve. 5 In our
parameter selection (see Section 5), we therefore choose o = 2 · v and the value
of o in such a way, that the complexity of a direct attack against our scheme is
beyond the proposed levels of security. As we found, this choice also prevents
the MinRank attack against our scheme.

Linearization Equations Attack The Linearization Equations attack was
first successfully used by Patarin [24] to break the Matsumoto-Imai cryptosystem
[20]. The idea of this attack is to look for equations of the form

n∑
i=1

m∑
j=1

αij · zi · dj +

n∑
i=1

βi · zi +

m∑
j=1

γj · dj + δ (8)

fulfilled by the message / signature pairs (d, z) of a cryptosystem. By substitut-
ing a given message d? into (8), one obtains a linear equation in the components
zi of the signature which helps to forge a signature z? for the message d?.
However since, in the case of the CSSv scheme, the maps f̂ (1), . . . , f̂ (o) and
g1, . . . , go are chosen completely at random, there should not exist any lineariza-
tion equations for our scheme.

5 Our experiments showed that the same holds for the original CUOV scheme. In our
comparison (see Table 1) we therefore changed the parameters compared to [22] to
cover this fact.



Differential Attacks In a differential attack one looks for symmetries or in-
variants of the differential

G(x,y) = P(x + y)− P(x)− P(y) + P(0)

of the public key of a multivariate cryptosystem. Differential attacks were suc-
cessfully applied to attack multivariate BigField Schemes such as Sflash [10] and
PMI [12]. However, differential properties have also been found for SingleField
Schemes such as SimpleMatrix [32]. However, while the structure of the map F̄
looks similar to the central map of the SimpleMatrix scheme [32], the differen-
tial properties are efficiently destroyed by the use of the random quadratic maps
g1, . . . , go.

Hashimoto’s attack To simplify the description, let us assume here that the
affine map S is the identity map, i.e. we have P = T ◦ F . 6 As shown above,
Hashimoto’s attack relies on the fact that there exists an (easy to find) relation
of the public polynomials p(1), . . . , p(o) of the form

Y =

o∑
i=1

ai · p(i) = X + G, (9)

with X being a quadratic form in the variables z1, . . . , zn and G being a cubic
polynomial in zo+1, . . . , zn. Since the only quadratic terms in the public key of
CSSv are contained in p(1), we have a1 6= 0. But this implies that Y also contains
cubic terms in the variables z1, . . . , zo. Furthermore, since p(1) is the only cubic
polynomial in P and the structure of the central polynomials is efficiently hidden
by the use of the affine map T , we can not remove these terms from Y without
recovering T (i.e. solving a MinRank problem). Therefore, finding a relation of
the form (9) is infeasible, which means that Hashimoto’s attack is not applicable
to our scheme.

4 Our second improved scheme

In this section we propose, based on the idea of the CSSv scheme, a second sig-
nature scheme, which we call the Simple Vector Signature Scheme with Vinegar
(SVSv) 7. Our goal here is to get rid off the cubic equations in the private and
public polynomials and therefore to reduce the size of the public key further.

6 By doing so, we do not have to distinguish between a quadratic form of rank v and
a quadratic form in v variables.

7 The design of our scheme is inspired by the SimpleMatrix scheme [32]. Hence the
name.



4.1 Construction

Key generation: Let K be a finite field with q elements, o, v, r ∈ N and set
n = o+ v + r. 8 As in the case of the CUOV and the CSSv scheme, the central
map of the SVSv scheme has the form F = F̄ ◦ (F̂ × idv), where idv is the

identity map in Kv. The map F̂ = (f̂ (1), . . . , f̂ (o)) : Kn → Ko consists of
o randomly chosen affine polynomials in the n variables y1, . . . , yn. The map
F̄ : Ko ×Kv+r → Ko is given by

f̄ (1) = x21 + g1(yo+1, . . . , yn)
f̄ (2) = x1 · x2 + g2(yo+1, . . . , yo+v)
· · ·

f̄ (o) = xo−1 · xo + go(yo+1, . . . , yo+v)

(10)

where g1, . . . , go are randomly chosen quadratic polynomials in the vinegar vari-
ables yo+1, . . . , yn. Therefore, in contrast to the CUOV and CSSv scheme, all the
components of the central map of the SVSv scheme are quadratic polynomials.
To hide the structure of F in the public key, we combine it with two randomly
chosen invertible affine maps T : Ko → Ko and S : Kn → Kn. The public key
is given by P = T ◦ F ◦ S : Kn → Ko and consists of o quadratic polynomials
in n variables. The private key consists of the o affine polynomials f̂ (1), . . . , f̂ (o)

in n variables, the o quadratic polynomials g1, . . . , go in v + r variables and the
two affine maps S and T . The key generation is illustrated in Algorithm 3.

Algorithm 3 Key Generation of SVSv

Input: Finite field K with q elements and integers o, v, r
Output: SVSv key pair ((F ,S, T ),P)
1: Choose randomly o affine polynomials f̂ (i) in the n = o + v variables y1, . . . , yn
2: Choose a random quadratic polynomial g1 in the v + r variables yo+1, . . . , yn
3: Choose o − 1 random quadratic polynomials g2, . . . , go in the v variables

yo+1, . . . , yo+v

4: Define polynomials f̄ (1)(x1, . . . , xo, yo+1, . . . , yn), . . . , f̄ (o)(x1, . . . , xo, yo+1, . . . , yn)
as shown in (10)

5: The central map is F = (f (1), . . . , f (o)) : Kn → Ko where, for each i = 1, . . . , o,
we have f (i) = f̄ (i)(f̂ (1), . . . , f̂ (o), yo+1, . . . , yn)

6: Choose randomly invertible affine maps S : Kn → Kn and T : Ko → Ko

7: P = T ◦ F ◦ S : Kn → Ko

8: return ((F ,S, T ),P)

8 The reason for using the parameter r is to ensure that all components of the central
map have the same rank (see Section 4.2). For the case of (q mod 2) = (v mod 2) =
0, we use r = 2, otherwise r = 1.



Signature Generation: To generate a signature for a message d = (d1, . . . , do) ∈
Ko, the signer performs the following steps.

(1) Compute the pre-image w = T −1(d).
(2) Choose random values for the vinegar variables yo+1, . . . , yn and substitute

them into the polynomials f̂ (1), . . . , f̂ (o) and g1, . . . , go. We obtain the values
of x1, . . . , xo as follows:

(a) Compute x1 =
√
w1 − g1 =

{
(w1 − g1)1/2 q = 1 mod 2
(w1 − g1)q/2 q = 0 mod 2

. If x1 = 0

holds, we choose other values for the vinegar variables yo+1, . . . , yn.
(b) Inductively, for i = 2, . . . , o, xi can be obtained by xi = (wi − gi)/xi−1.

If xi occurs to be 0, we choose other values for the vinegar variables
yo+1, . . . , yn.

(3) Having found (x1, . . . , xo), we solve the linear system given by f̂ (1), . . . , f̂ (o)

for (y1, . . . , yo). If there is no solution, we go back to Step (2).
(4) From a solution (y1, . . . , yn), a signature z ∈ Kn for d is easily obtained by

computing z = S−1(y1, . . . , yn).

Signature Verification: To check the authenticity of a signature z ∈ Kn, one
simply computes d′ = P(z). If the result is equal to the message d, the signature
is accepted, otherwise rejected.

4.2 Security

Rank attacks Similar to our analysis in Section 3.2, we study here the security
of our scheme against the MinRank and the HighRank attack.
In the case of the SVSv scheme, the rank of all matrices G1, . . . , Go associated to
the homogeneous quadratic parts of the central map components is v+ 2 (v+ 1
in the case of even q and odd v).
In order to ensure that all the matrices Gi have the same rank, we use the
parameter r of our scheme. For odd q and r = 0, the rank of G1 would be 1 less
than the rank of the other matrices Gi (i = 2, . . . , o). In order to avoid this, we
increase the number of variables in g1 by 1. In the case of even q, the situation
is a bit more complicated, since the rank of the matrices Gi is always even. In
this case, we choose r = 1 if v is odd and r = 2 otherwise.
The complexity of a MinRank attack against our scheme is therefore greater or
equal to qv+2. By choosing the parameter v in an appropriate way, we therefore
can easily defend our scheme against the MinRank attack.
Since, similar to the case of CSSv, every component of the central map of SVSv
contains all the variables y1, . . . , yn, the HighRank is not applicable against our
scheme.

Direct attacks In order to estimate the security of our scheme against direct
attacks, we carried out a number of experiments with MAGMA [4] (see Table 3
in the appendix of this paper).
As our experiments showed, the public systems of SVSv behave, for o = 2·v, very



similar to random systems, whereas, for smaller values of v, the SVSv systems
are significantly easier to solve. In our parameter selection (see next section), we
therefore choose o = 2 · v and the value of o in such a way that the complexity
of a direct attack against the scheme is beyond the proposed levels of security.
As we find, this parameter choice also prevents the MinRank attack.

Hashimoto’s attack [16] Again, let us assume that the affine map S is the
identity map, i.e. P = T ◦ F . In order to make Hashimoto’s attack work, we
have to find a relation of the public polynomials of the form

Y =

o∑
i=1

ai · p(i) = X + G

with a quadratic map X in z1, . . . , zn and a cubic map G in zo+1, . . . , zn. In order
to get cubic terms in Y, the coefficients ai have to be polynomials itself. However,
this implies that Y also contains cubic terms in the variables z1, . . . , zo. Removing
them requires to reconstruct the map T (i.e. solving a MinRank problem) which,
as shown above, is infeasible.

Other attacks Similar to the CSSv scheme (see previous section), Linearization
Equations Attacks are not applicable to SVSv due to the random choice of the
maps f̂ (1), . . . , f̂ (o) and g1, . . . , go. Furthermore, the use of the vinegar maps
g1, . . . , go efficiently destroys the differential properties of the central map F
and therefore prevents differential attacks.

5 Parameters and Efficiency

In Table 1, we compare our CSSv and SVSv with the original CUOV [22],
UOV [17] and Rainbow [8] signature schemes in terms of key and signature
size. As can be seen from the table, our schemes provide, for the same security
level, shorter signatures and smaller public keys than CUOV, UOV and Rain-
bow. In particular, SVSv achieves a reduction of the public key size of up to 55%,
79% and 24% compared to CUOV, UOV and Rainbow respectively. Regarding
the private key size, the reduction factors are 13%, 93% and 79% respectively.

The signature generation process of both the CSSv and the SVSv scheme can be
implemented very efficiently. Besides solving systems of linear equations, the sig-
nature generation of CSSv requires only the solution of a univariate quadratic
equation; see Step 5 of the Signature Generation in Section 3.1. In the case
of the SVSv scheme, we need to compute the square root of a finite field ele-
ment, which is just a 2-power in fields of even characteristic; see Step 2(a) of
the Signature Generation in Section 4.1. Table 2 compares the execution time
in second ([s]) of our schemes with those of UOV, Rainbow and CUOV at a
security level of 80 bit. The experiments were performed by using a straight-
forward MAGMA [4] implementation (version 2.19-7) on a processor Intel(R)



Table 1. Comparison of key sizes and signature lengths for parameters at 80-bit, 100-
bit and 128-bit security level

security level scheme hash length signature length public key private key
(bit) parameters (bit) (bit) size (KB) size (KB)

80

UOV(28, 28, 56) 224 672 99.9 93.5
Rainbow(28, 17, 13, 13) 208 344 25.1 19.1

CUOV(28, 26, 13) 208 312 47.6 6.5
Our CSSv(28,26,13) 208 312 29.7 6.9

Our SVSv(28,26,13,1) 208 320 21.9 6.0

100

UOV(28, 35, 70) 280 840 193.8 179.5
Rainbow(28, 26, 16, 17) 264 472 59.0 45.0

CUOV(28, 34, 17) 272 408 106.8 12.7
Our CSSv(28,34,17) 272 408 66.1 13.1

Our SVSv(28,34,17,1) 272 416 47.5 11.3

128

UOV(28, 45, 90) 360 1080 409.4 375.9
Rainbow(28, 36, 21, 22) 344 632 136.1 102.5

CUOV(28, 44, 22) 352 528 232.0 24.8
Our CSSv(28,44,22) 352 528 142.6 24.6

Our SVSv(28,44,22,2) 352 544 103.8 21.4

Table 2. Comparison of execution time for parameters at 80-bit security level

scheme parameters key generation [s] signature generation [s] signature verification [s]

UOV(28, 28, 56) 6.186 0.421 1.685

Rainbow(28, 17, 13, 13) 3.824 0.370 0.808

SVSv(28, 26, 13) 1.638 0.081 0.292

CSSv(28, 26, 13) 2.128 0.141 0.453

CUOV(28, 26, 13) 6.041 0.248 1.076

Core(TM) i5-4300U CPU @ 2.50GHz with 8 GB RAM in Windows 7 Profes-
sional. Here, we use MAGMA commands IsConsistent() for solving linear
systems, Factorization() for solving univariate quadratic equations, Sqrt()
for computing square-root of numbers over finite fields and Cputime() for com-
puting the execution time.

In the signature generation process of both the CSSv and the SVSv scheme we
require all variables x1, . . . , xo−1 to be different from zero. However this holds, in

the case of q = 256, with a high probability of
(
255
256

)o−1
. For the parameter sets

proposed in Table 1, this probability is at least 84.5 %. Therefore, the probability
of finding a signature in the first try (without choosing other values for the
vinegar variables) is very high.



6 Conclusion

In this paper we revisited the recently proposed multivariate signature scheme
CUOV of Nie et al. [22] and the attack of Hashimoto against this scheme. We
carefully analyzed which design properties make the scheme insecure and pro-
posed two new multivariate signature schemes called CSSv and SVSv which avoid
Hashimoto’s attack. We showed that our schemes are secure not only against
Hashimoto’s attack, but also against all known attacks on multivariate cryp-
tosystems, including direct, rank and differential attacks. Especially the SVSv
scheme is very efficient and outperforms current multivariate constructions such
as UOV and Rainbow in terms of key and signature size.
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A Experiments with MAGMA

In this section we present the results of our experiments with the direct at-
tack against the CSSv and SVSv schemes. For our experiments we created, for



K =GF(256) and different values of o and v, public systems of CSSv and SVSv
in MAGMA [4] code. We then fixed v (resp. v + r in the case of SVSv) of the
variables to create determined systems and solved these using the F4 algorithm
[11] integrated in MAGMA. Table 2 and 3 show the degree of regularity of the
corresponding systems. For each of the parameter sets listed in the table we
performed 10 experiments.

Table 3. Experiments with the direct attack against CSSv

o 8 9 10 11 12 13 14 15

CSSv with v = o
3

v - 3 - - 4 - - 5
dreg - 8 - - 9 - - 11

CSSv with v = o
2

v 4 - 5 - 6 - 7 -
dreg 11 - 13 - 15 - 17 -

random system 1 dreg 11 12 13 14 15 16 17 18
1 determined system with 1 cubic and (o− 1) quadratic equations

Table 4. Experiments with the direct attack against the SVSv scheme

o 8 9 10 11 12 13 14 15

SVSv with v = o
3

(v,r) - (3,1) - - (4,2) - - (5,1)
dreg - 8 - - 9 - - 11

SVSv with v = o
2

(v,r) (4,2) - (5,1) - (6,2) - (7,1) -
dreg 10 - 12 - 14 - 16 -

random system dreg 10 11 12 13 14 15 16 17

As the experiments show, the public systems of both CSSv and SVSv behave,
for o = 2 · v, very similar to random systems. On the other hand, for smaller
values of v, the public systems are significantly easier to solve.


