
Computing Private Set Operations with Linear
Complexities

Alex Davidson and Carlos Cid

Royal Holloway, University of London
{carlos.cid, alex.davidson.2014}@rhul.ac.uk

Abstract. Private set operation (PSO) protocols provide a natural way
of securely performing operations on data sets, such that crucial de-
tails of the input sets are not revealed. Such protocols have an ever-
increasing number of practical applications, particularly when imple-
menting privacy-preserving data mining schemes. Protocols for comput-
ing private set operations have been prevalent in multi-party compu-
tation literature over the past decade, and in the case of private set
intersection (PSI), have become practically feasible to run in real ap-
plications. In contrast, other set operations such as union have received
less attention from the research community, and the few existing de-
signs are often limited in their feasibility. In this work we aim to fill
this gap, and present a new technique using Bloom filter data structures
and additive homomorphic encryption to develop the first private set
union (PSU) protocol with both linear computation and communication
complexities. The overheads of our protocol scale better with increasing
set sizes than existing PSU designs and we thus provide the first poten-
tially practical realisation of the PSU functionality. Moreover, we show
how to adapt this protocol to give novel ways of computing PSI and
private set intersection/union cardinality (PSI/PSU-CA). The resulting
schemes have complexities that are comparable to current solutions that
are considered practical. We therefore present an adaptable way for effi-
ciently computing the main set operations, with linear complexities, and
with the possibility of extending to compute other more complex func-
tionalities. Our constructions can be proven secure with respect to both
semi-honest and malicious adversaries.

Keywords: Private set operations, Bloom filters, additively homomor-
phic encryption, secure computation, data mining

1 Introduction

The emergence of Big Data has resulted in an increasing need for analytical tech-
niques such as data mining that allow entities to gain information from the large
data sets they own. Even more can however be learnt by combining internal data
sets with other entities, although to do this privacy-preserving measures must
be put in place to stop data being leaked to competitors or untrusted parties.

Private set operation (PSO) protocols provide a natural way of securely per-
forming operations on these combined data sets, such that crucial details of the
different input sets are not revealed to participating parties. In the last decade
research into private set intersection (PSI) protocols has resulted in designs that
are practically feasible for real-world use. Particularly, the works of [14, 30, 31]
have shown that certain techniques and data structures like oblivious transfer
(OT) and Bloom filters can be used to design protocols that scale and perform
well, even for huge data sets (e.g containing billions of items). These construc-
tions are crucial for developing large-scale data mining applications where data
privacy and efficient computation are important for practical usage. For example
computations over genetic data as shown in [20] may require comparing records
from databases with hundreds of millions of elements.

Despite of much recent progress in the design of PSI protocols, research into
performing other set operations in similar secure way has not been as compre-
hensive, and thus has not been able to provide protocols that meet the same
efficiency requirements. For instance, the state of the art in private set union
(PSU) protocols requires a quadratic number of exponentiations in the size of
the sets involved in the computation. More generally, Kissner and Song [26]
introduced an adaptable way of computing multiple PSOs with quadratic over-
heads for communication and computation; no other work since has managed to
improve on these. This means that complex data mining applications that rely
on the computation of multiple set operations is likely to require implementation
of inefficient protocols. We address this problem in this paper, by proposing a
method for implementing different privacy-preserving set operations with linear
overheads for both computation and communication.

1.1 Applications of PSOs

Private set operation protocols have an ever-increasing number of practical ap-
plications, particularly in privacy-preserving data mining schemes. We provide
below examples of applications for the main types of set operations.

1. Law enforcement: An airline must alert law enforcement authorities if
anyone who has been placed on a no-flight list attempts to board a flight.
The airline may not want to give away customer data unnecessarily and the
authorities must not give away data on criminals to the airlines. A private
set intersection (PSI) protocol allows the two entities to compare the sets of
people they are aware of and learn only the intersection.

2. International crime: Two or more states may want to combine the in-
formation they have about criminals operating on an international scale. It
benefits all parties to know about all the individuals operating at this level as
they could target any of the countries involved. The entities can use a private
set union (PSU) protocol to learn all of their combined data.

3. Changes in customer base: An industry sector wants to evaluate whether
the customer base has grown or declined over a certain time period. To do
this the major entities in the sector must combine the number of customers

2

they have currently together. The companies can enact a private set union
cardinality (PSU-CA) protocol on their set of customers to learn the combined
number of customers in the sector.

4. Ad-space usage: An online marketplace selling ad-spaces on their web plat-
form seeks to find out how many new customers current ad-space purchasers
gain to give figures out to prospective buyers. In this case the entities will
look to perform a private set intersection cardinality (PSI-CA) protocol to
learn the number of common customers that they both have.

Further concrete examples of the applicability of PSOs range from proximity
testing [28] to botnet discovery [27] to implementation of mediating mechanisms
in cyber security information sharing schemes [25]. All these examples highlight
the need for efficient and scalable techniques for computing different set opera-
tions, particularly on large data sets.

1.2 Our contributions

We first address the void in efficient PSU protocols by developing a new two-
party construction, secure against semi-honest adversaries. The design is based
on an inverted representation of Bloom filters alongside the usage of an additively
homomorphic encryption scheme. We extend previous works by [16, 17, 19] by
utilising a similar encryption technique but make use of the optimal data struc-
ture provided by Bloom filters to gain better complexities for computation. Our
PSU protocol is the first to demonstrate both linear computation and communi-
cation complexities. Furthermore, similar to previous private union protocols of
[2, 17, 26], we show in the appendix how to adapt our protocol to retain security
in the malicious model, whilst retaining the linear complexities that we achieved
in our semi-honest design. To do this we require an authorisation step by a third
party for authorising the client’s set (similar to the APSI designs highlighted in
[10, 11, 13]), and a homomorphic signature scheme that allows for polynomial
operations and satisfies a context-hiding privacy requirement.

Moreover, we show how the simplicity of our PSU proposal means that we can
adapt our protocol to compute other fundamental set operations, such as PSI or
PSI/PSU-CA. These constructions also have linear complexities putting them in
line with current practical solutions in the wider research area. These adaptations
are achieved with minimal changes in the design structure and result in a suite
of protocols that enables computation of all the major PSOs. Consequently we
have devised an easily implementable technique that allows developers to create
a library of PSOs with very similar functional requirements. We see this as
an advantage for privacy-preserving data mining applications that require the
running of multiple efficient instantiations of PSOs.

Our adaptable construction can be seen as an extension of previous work
by [26] and subsequent attempts by [2, 13, 19] to provide multiple PSOs. Our
work is the first to provide a scalable solution to this problem, with the first
PSU protocol with linear asymptotic efficiency, along with very similar designs
for PSI and PSI/PSU-CA with almost identical efficiency. Our design plausibly

3

lends itself to further extensions for computing more complex set operations
while retaining efficiency and security, for instance it seems likely that we could
implement the more granular threshold designs shown in [2, 26]. We consider
this an interesting area of future work. The simplicity of our toolkit lies in the
need for just an instantiation of an additive and a multiplicative homomorphic
encryption scheme alongside a Bloom filter implementation.

1.3 Layout of work

In Section 2 we provide a summary of the current standard of PSO protocols
along with the tools we use to develop our solution. Section 3 presents our PSU
protocol, while Section 4 demonstrates how to adapt our PSU design to compute
PSI and PSI/PSU-CA with similar performance. Finally, it should be noted that
in Appendix G we discuss the alterations that can be made to realise malicious
security for our PSU design (resulting in an authenticated variant i.e. APSU)
and then in Appendix H we give a proof of our maliciously secure protocol.

2 Background

2.1 Notation

We will primarily consider two-party protocols with players P1 and P2 who own
sets S1 and S2, respectively. We commonly denote the cardinalities of the private
sets by n = |S1| and m = |S2|. We denote the domain of elements by E, the
security parameter by λ and, for multi-party protocols, the number of players
by N , where c < N denotes the number of corrupted players in a protocol
instantiation. We refer to B as the length of the Bloom filters that we use, while
k refers to the number of corresponding hash functions. Appendix B provides an
explanation of how Bloom filters work and how they are constructed, including
how to optimally choose parameters for efficiency. When discussing the use of
homomorphic operations over ciphertexts, we use +H when invoking additions
and ×H on the invocation of multiplication. Appendix C fully describes our
notation regarding partially homomorphic encryption (PHE) schemes.

2.2 Current methods for PSOs

PSI protocols Freedman et al. were the first to develop a protocol for specifi-
cally tackling PSI in [16]. Their design was based on oblivious polynomial eval-
uation (OPE) where they use additively homomorphic encryption in order to
realise the OPE functionality. Their initial design has communication of O(n)
bits and computation of O(n2) exponentiations, however they leverage a hashing
optimisation to get computation complexities of O(n log log n). While works such
as [12, 19, 26] followed with newer designs based on OPE, all the constructions
have been shown to require at least a sub-quadratic amount of exponentiations.

Since then research has focused on achieving PSI with more efficient con-
structions. De Cristofaro et al. were the first to demonstrate the possibility of

4

a practical design in [10, 11], notably featuring linear complexities of O(n+m)
in both computation of exponentiations and in communication. Their protocols
were based on a public-key technique that they called ‘blind-RSA’, and was
shown to be secure with respect to semi-honest and malicious adversaries.

Later, Huang et al. showed in [21] that using garbled circuits they could
achieve a semi-honest secure protocol that ran in comparably quick times to
[11], and quicker in settings where very large keys were used (e.g. 256 bits). The
focus on experimentation was carried over by Dong et al. in [14] who used a
technique named ‘Garbled Bloom filters’ to construct a PSI protocol achieving
complexities favourable to [11, 21], with runtime performance several orders of
magnitude faster for both short and long security levels. Their protocol utilises
parallelisation and fast operations to make significant gains in runtimes, with
good performance even when sets contain ∼ 2 million elements.

The most recent and efficient works have come from Pinkas et al. in [30] (with
a further optimisation in [31]). Their protocols are based on oblivious transfer
(OT) and makes usage of the fact that OT extension allows for a polynomial
amount of OTs to be generated from an initial much smaller amount of OTs
(see [22]). Using various external hashing optimisations, they show that their
protocols run faster than any previous designs. Tables 4 and 5 in Appendix A
display values taken from [30] demonstrating the runtimes and communication
demands of these protocols when run on the same platforms over sets of sizes
210 − 218. The low run-times of the protocols coupled with the minimal effect
of scaling set sizes, especially for the works of [14] and [30], establishes the
applicability of these protocols to real-world scenarios.

PSU protocols Work on PSU protocols has been relatively scarce in compar-
ison, with most protocols being derived as part of a generic construction for
multiple PSOs. The work of [26] was the first to develop multi-party protocols
for all of the main set operations, additionally including some more specific prim-
itives that included thresholds into multi-set union and intersection protocols.
Their work is based on OPE and demonstrates communication of O(cNn log |E|)
with quadratic computation O(nm). Both of these complexities are unfavourable
and highlight the scalability problem with OPE-based protocols.

Additionally, Brickell and Shmatikov [8] devise two PSU protocols, although
both require communication and computation of O((n+m) log |E|) and are thus
too inefficient to be considered as practical for large set sizes. Their most effi-
cient design requires O((n+m) log |E|) garbled circuit evaluations for computing
the minimum of two values across a total of O((n + m) log |E|) communication
rounds. Furthermore it requires that both parties assign an ordering to the entire
universe of set elements E which requires the universe to be polynomially-sized
which is a limitation on the design. It should be noted however that the PSU
protocol that the authors design hides the set cardinality of both players (unlike
the other constructions that we consider here) and additionally the output of the
union is provided for both players, standing in contrast to our protocol alongside
other PSU designs such as [17].

5

Since then Frikken [17] proposed a OPE-based PSU protocol very similar to
the design of [16], with identical complexities. Hazay et al. in [19] make use of an
oblivious pseudorandom function to build on the protocol of [16] and generate a
maliciously secure protocol, however the complexities are not competitive with
semi-honest protocols.

More recently Blanton et al. [2] focus on multi-party PSO protocols that
meet composability guarantees. Their work achieves only quadratic complexities
for both communication and computation, using similar techniques to the work
of [8] except that the ordering of elements in the universe is no longer required.
The protocols also achieve PSU and other operations where the elements are
unknown to the computing parties (the inputs are secret shared), therefore the
technique is better suited to an outsourced computation setting.

Table 6 in Appendix A compares the complexities of these main construc-
tions, the works [26] and [2] display complexities that are relevant in the multi-
party case. Other constructions for constructing PSU protocols, such as [32], do
exist but none of these have managed to capture linear complexities in their
design.

PSI/PSU-CA protocols Two of the most efficient protocols for computing
set cardinality are the public-key based design by De Cristofaro et al. in [9]
and the multi-party Bloom filter based construction by Egert et al. in [15]. The
complexities of the designs for the two-party case are shown in Table 7. Both
designs showcase linear complexities and can therefore be thought of as practical
designs for PSI/PSU-CA. The reason for this efficiency is undoubtedly the usage
of techniques such as those shown in [11, 14] to aid the construction.

Encrypted Bloom filters Our constructions rely on the encryption of each
entry in a Bloom filter (see Appendix B for an explanation) with a partially
homomorphic encryption scheme that allows another player to obliviously cal-
culate the status of their elements regarding the original set. The creator of the
Bloom filter can then decrypt these computations and learn elements depending
on the functionality of the protocol.

The work of [1] defined a form of encrypted Bloom filter where the encryption
was applied to the output of the hash functions. Boneh et al. presented their own
work detailing how encrypted Bloom filters could be used for private information
retrieval in [5] using the encryption scheme of [4].

Kerschbaum later developed a PSI protocol (secure in the semi-honest and
malicious settings) in [23] along with a work guaranteeing supply chain integrity
in [24]. Both works use encrypted Bloom filters, with [23] using the Goldwasser-
Micali (GM) scheme to perform these encryptions. To test for intersection, the
server is required to compute k multiplications for each of the m elements in their
set. The design incurs a ciphertext element expansion of k, and P1 is required to
perform a total of km decryptions. We avoid these overheads in our protocols.
It should also be noted that the malicious designs of [23] do not protect against
the possibility of a malicious server preventing P1 from receiving the correct

6

output. Our malicious protocol in Section G ensures that correctness of output
is achieved as well as privacy for both players.

The most recent work to involve the use of encrypted Bloom filters is by
Debnath et al. in [13]. The scheme that they propose uses GM encryption in
the same way as [23] to encrypt each entry of an inverted Bloom filter. They
then show how it is possible to build PSI-CA and PSI protocols for two parties.
Their work requires that the set of both parties be represented as a bit string
(since GM encryption operates over single bits) resulting in very large strings
for large sets. Coupling this with the requirement for a quadratic number XOR
operations in the string length leads to unfavourable computational demands.
Moreover, their protocol is not proven secure for a malicious server (i.e. P2 in our
case). It should be noted that none of the previous designs using this technique
have addressed PSU protocols or versatile tools for computing all of the main
PSOs detailed here.

2.3 Security model for PSOs

Protocols for computing PSOs can be proven secure with respect to either semi-
honest or malicious adversaries. Before we show what this means we first define
the notion of computational indistinguishability for probability distributions:

Definition 1. Let X = {Xλ}λ∈S and Y = {Yλ}λ∈S be probability ensembles
indexed by S. We say that these ensembles are computationally indistinguishable
for all probabilistic polynomial time (PPT) algorithms, {Dn}n∈N, if there exists
a negligible function negl : N 7→ [0, 1] where

|Pr[Dn(λ,X) = 1]− Pr[Dn(λ,Y) = 1] | < negl(n)

and we write X ' Y to denote this.

Semi-honest security Now assume that we have a protocol π that is required
to securely represent a specific polynomial-time functionality f . Let Si be the
input set of Pi for i ∈ {1, 2} and let auxi be a set of auxiliary information that Pi
holds (we specifically consider the case where f computes an operation over input
sets). For each Pi define the view of the protocol for Pi to be viewπi (S1, S2) =
(Inpi, ri,msgi, π(S1, S2)) where Inpi = (Si, auxi) is the combined input of Pi to
π, ri are the internal coin tosses of Pi, msgi is the messages viewed by Pi in the
protocol and π(S1, S2)i is the output witnessed by Pi. Then we can formulate
the following definition for semi-honest adversaries.

Definition 2. Protocol π securely computes the functionality f in the pres-
ence of static semi-honest adversaries if there exists polynomial-time simulators
Sim1, Sim2 where

{Sim1(Inp1, f(S1, S2))} ' {viewπ1 (S1, S2)}

{Sim2(Inp2, f(S1, S2))} ' {viewπ2 (S1, S2)}

7

Intuitively, this states that each party’s view of the protocol can be simulated
using only the input they hold and the output that they receive from the protocol.
Therefore a corrupted P1 or P2 is unable to learn any extra information that
cannot be derived from the input and output explicitly.

Malicious security For the malicious case we have to argue slightly differently.
Let Realπi (S1, S2) be the view of Pi in the real execution of the protocol π and
let Idealπi (S1, S2) be the view of Pi in the ideal execution where all inputs Inpi
are submitted to directly to the functionality f by a trusted party who then
returns the output f(S1, S2) to the relevant player. Informally we need to show
that any attack that a corrupted Pi can perform in the real execution can also
be performed in the ideal world and thus we get the following definition

Definition 3. Protocol π securely computes the functionality f in the presence
of malicious adversaries if we have that

{Realπ1 (S1, S2)} ' {Idealπ1 (S1, S2)}

{Realπ2 (S1, S2)} ' {Idealπ2 (S1, S2)}

3 PSU protocol

The current designs in Section 2.2 highlight certain ways of developing protocols
that lead to practical designs. One of these ways was to use Bloom filters where
[14] and [15] used the data structure to develop protocols with linear complexities
and, in the PSI case, with demonstrably quick run-times even with large set sizes.

Our protocol is the first to use Bloom filters to retrieve PSU on two sets. We
achieve this by encrypting the Bloom filter using an additively homomorphic
encryption (AHE) scheme, appendices C and D give descriptions of an AHE
scheme and in particular the Paillier encryption scheme that allows for these
operations over ciphertexts. This form of encryption allows receiving parties to
obliviously evaluate their elements with respect to the Bloom filter.

We also use a non-standard representation of a Bloom filter by inverting
each entry prior to encryption. This allows us to compute PSU without the
need for fully homomorphic operations which require heavy computation and
large parameters in practice for current encryption schemes. In the following we
formalise the notions of encrypted and inverted Bloom filters. Both techniques
are crucial to our protocol design.

Definition 4. Let (P, C,K, E,D) be a public-key cryptosystem and (pk, sk)←
K be generated at random from the key space K. Let the Bloom filter calculated by
Pi for the set Si be denoted as BFi and have B entries such that ∀ b ∈ {1, . . . , B}
we have BFi[b] ∈ {0, 1}. The corresponding encrypted Bloom filter is denoted by
EBFi

1 and has B entries where each entry is defined in the following way:

EBFi[b] = Epk(BFi[b])

1 When referring to an encrypted and inverted Bloom filter we will write EIBFi.

8

where Epk(x) denotes the encryption of x ∈ P with respect to the public key
pk. In the following we define EBFi = {C[1], . . . , C[B]} and for yj ∈ Si, then

EBFi[hu(yj)] = C
(j)
u for u = {1, . . . , k} and where hu is the uth hash function

used in computing the original Bloom filter.

Definition 5. Let BFj be a Bloom filter that represents the set of party Pj. We
define the corresponding inverted Bloom filter to be IBFj where

IBFj [i] =

{
1 if BFj [i] = 0
0 otherwise.

The premise of the encrypted Bloom filter is that if we encrypt with an IND-
CPA encryption scheme then another party will be unable to distinguish from
an encrypted ‘0’ or ‘1’ entry. To make the encryption of the Bloom filter well-
defined we use 0 and 1 entries (where 1 is the identity element) from a ring
instead of using bits, this allows us to use Paillier encryption where we use the
plaintext ring ZN for N = p · q for primes p, q. We provide a more thorough
discussion of the scheme in appendix D and we will denote these ring elements
by 0 and 1 throughout. The usage of this encryption method allows the creator
of the Bloom filter to send out EBF/EIBF and not have to worry about the
receiver being able to infer anything from it. In the next section we will show
how our PSU protocol, πEBF

∪ , uses the security of the encryption to prevent the
server from learning extra information about the client’s set.

3.1 Preliminaries

Both parties are given the k hash functions which are chosen to evaluate the
Bloom filter for elements in the sets. The elements yj ∈ S2 are assumed to be
represented by elements in ZN as they are in the work of [17]. We reiterate here
that we will be using the optimal Bloom filter parameters detailed in Appendix B
in Equations (6) and (7).

Additionally we assume that P1 has a public key pk which is made available
to P2. P1 also has a secret key sk that she uses for decryption. Both parties also
have access to sources of internal randomness that they can use for computing
any tasks that require it such as encryption and sampling random values. We
additionally only assume that P1 is aware of the size of S2, meaning that P2

(the server) remains unaware of |S1|. The following is a description of how the
protocol works; in Figure 1 in Appendix A we provide an overview of our design.

3.2 Protocol steps

Inputs - P1: [(pk, sk), S1, |S2|], P2: [pk, S2]

1. P1 calculates BF1 representing S1 by evaluating h1, . . . , hk on their set of
elements. She then inverts each entry in BF1 to retrieve IBF1.

9

2. P1 separately encrypts each element IBF1[l] of the inverted Bloom filter,
where 1 ≤ l ≤ B, using pk. P1 now possesses EIBF1, where EIBF1[l] = C[l].
She sends EIBF1 to P2.

3. P2 evaluates each element yj ∈ S2 using the k hash functions and retrieves

{C(j)
1 , . . . , C

(j)
k } where C

(j)
d = EIBF1[hd(yj)] for j ∈ {1, . . . ,m}.

4. P2 computes cj = (C
(j)
1 +H . . .+H C

(j)
k) and sends (p̃j = cj · yj , cj) to P1.

5. P1 receives (p̃j , cj). First she checks the value of cj by computing Dsk(cj) =
qj . If qj = 0 then Dsk(cj · yj) = 0 so nothing can be learnt and she does not
decrypt. Else Dsk(cj · yj) = zj · yj = pj , where she does decrypt.

6. P1 computes zj
−1 for qj 6= 0 and then calculates pj · zj−1 = yj

7. P1 adds all yj to the set V where the corresponding qj 6= 0 and outputs the
set S1 ∪ V .

Remark 1. As we describe in Appendix D, we adopt the notation cj ·yj for scalar
multiplication with scalar yj . This preserves the generality of the protocol rela-
tive to the AHE scheme used, for Paillier encryption however this multiplication
would usually be invoked via an exponentiation, i.e. c

yj
j

Remark 2. It should be noted that the protocol leaks the size of the intersection
cardinality between the players P1 and P2, however this is similar to the previous
PSU designs of [2, 17, 19].

3.3 Protocol correctness

Since the Bloom filter is inverted before encryption then for any yj ∈ S1 ∩ S2

we have that Dsk(cj) = 0, therefore any message cj · yj that is received for such
a yj also decrypts to 0 and so cannot be learnt. For a value yj /∈ S1 then we
have that Dsk(cj) = zj ∈ N, then decrypting cj · yj reveals zj · yj and then P1

can add all values yj to V by multiplying by z−1j . Since V contains all values
(yj ∈ S2) ∧ (yj /∈ S1) then S1 ∪ V = S1 ∪ S2. Clearly correctness is not perfect
due to the possibility of false positives occurring in the Bloom filter though we
can make this negligible in k as discussed in Appendix B.

3.4 Protocol security

We show that this protocol is secure with respect to the ideal functionality of a
PSU computation defined by F∪ as in definition 2. For two parties P1 and P2

with sets S1, S2 respectively we define the functionality for the definition to be:

F∪(S1, S2) = S1 ∪ S2 (1)

As the definition suggests we need to show that it is impossible to derive anything
from the execution of the protocol that is not implied by possession of the input
and output of the corrupted player in question.

Theorem 1. Suppose that the protocol, πEBF
∪ , is instantiated with an IND-CPA

secure AHE scheme. Then πEBF
∪ securely realises F∪, as in Equation (1), in the

presence of static semi-honest adversaries.

Proof. See Appendix E.1.

10

3.5 Performance analysis

Communication complexity Firstly we note that the protocol requires two
rounds (assuming the messages from P2 are sent in parallel). Once when P1

sends EIBF1 to P2 and again when P2 sends (cj · yj , cj) back to P1.
In the first round of communication P1 sends over the encrypted values of

the Bloom filter that she computed. Therefore P1 sends over B ciphertexts in
total as we have one ciphertext for each entry in the Bloom filter.

In the second round P2 sends m different sets of (p̃j , cj), where m = |S2|.
Both p̃j and cj are ciphertexts and so in this round we send over 2m ciphertexts.
Overall the communication complexity is equal to sending a total of (2m+B) ci-
phertexts. By choice of optimal Bloom filter parameters as shown in Appendix B
in Equations (5) and (6) and by choice of n = m (i.e. equal set sizes) we get that
the communication is O(n) bits and so linear in the size of the sets.

Our protocol outperforms those shown in [2, 26] where the communication
scales quadratically as the size of the sets held by the parties is increased. It
is comparable with the communication complexity of the two-party protocol in
[17] that is also O(n).

Computational complexity P1 computes B encryptions and 2m decryptions
(in the worst case). P1 must also compute m inverses of group elements, though
techniques for doing this are very efficient. In practice, we can also reduce the
number of decryptions by not computing Dsk(cj · yj) if Dsk(cj) = 0. On average
this will lead to savings that are proportional to the size of the intersection.

Alternatively, P2 will compute m(k − 1) homomorphic additions which cor-
responds to computing m(k − 1) exponentiations. It is clear that work done by
both parties is linear in m = |S2| and by assuming that n = m we get that com-
putation is O(n) exponentiations. We know this because the value k depends
only on the desired false-positive probability of the Bloom filter (see Equation
(5)) and so it is a constant factor. The protocols of [2, 8, 17, 19, 26] all exhibit
computational complexity which is quadratic in the sizes of the sets and so these
protocols will not scale as well as our protocol for larger set sizes. Table 1 high-
lights the comparison between our protocol and the previous designs in terms of
computational and communication efficiency.

Communication Computation

Kissner et al. [26] O(N2n log |E|) O(n2)
Frikken [17] O(n) O(n log logn)

Brickell et al.[8] O((n+m) log |E|) O((n+m) log |E|)
Blanton et al. [2] O(N2M logM) O(N2M logM)

πEBF
∪ O(n) O(n)

Table 1. Comparison of πEBF
∪ complexities with prior designs. All designs apart from

[2] refer to the amount of exponentiations in terms of computation.

11

4 Adaptations to PSI and PSI/PSU-CA

An interesting outcome of our simple protocol construction is the ease that we
can adapt the design to securely compute different set operations. Here we con-
sider the widely used operations PSI and PSI/PSU-CA and how we can adapt
our technique for securely computing PSU to compute these functionalities in-
stead. These adaptations highlight how our protocol design resembles a plausible
technique for being able to compute multiple set operations, in the same vein as
[26], while achieving linear asymptotic overheads. We define the ideal function-
alities for PSI (F∩) and PSI-CA (F|∩|) as:

F∩(S1, S2) = S1 ∩ S2 (2)

F|∩|(S1, S2) = |S1 ∩ S2| (3)

(with F|∪| defined analogously). We will prove the security of our designs with
respect to these functionalities.

4.1 PSI protocol

Our PSI protocol (πEBF
∩) operates without requiring the inverted Bloom filter

that we require for our PSU protocol πEBF
∪ . For this design we require the usage

of a multiplicatively homomorphic encryption (MHE) scheme (such as ElGamal)
where the multiplication operation, ×H , is defined analogously to +H . P2 now

computes cj = C
(j)
1 ×H . . .×H C

(j)
k for each yj ∈ S2 after receiving EBF1 from

P1. Since P1 no longer computes an inversion before encryption we have the
following property for cj :

cj =

{
Epk(0) if yj /∈ S1

Epk(1) if yj ∈ S1

Now P2 can compute the message cj ×H Epk(yj) for each yj to send back to P1.
Thus P1 can decrypt and retrieve yj if and only if it belongs to the intersection of
S1 and S2 (except for negligible chance of false-positives occurring). It is clear to
see that we now only need homomorphic multiplication operations to complete
these messages instead of the addition operations, fortunately there are many
schemes that allow for this operation with the computation of exponentiations
still the only necessity (e.g. ElGamal). We provide an overview of our protocol
πEBF
∩ in Figure 2 in Appendix A.

For this scheme to be well-defined we need to also encrypt the element yj
before we multiply which incurs extra computation per element. The effect of
this is captured by the asymptotic performance of the protocol on the whole
however. Alternatively, we could define this protocol with an additive homomor-
phic scheme by using Bloom filter inversion and calculating cj in the same way
as the PSU protocol before adding an encryption yj . However, in this setting we
would need to use randomness to mask values that are not in the intersection.
Nevertheless, this could be preferable in a situation where an implementer would
favour instantiating these set operations with only a single AHE scheme.

12

Protocol correctness The correctness of the protocol follows since P1 outputs
those yj such that cj = Epk(1) after decrypting cj , since this allows for P1 to
decrypt p̃j to retrieve yj . This follows since Dsk(p̃j) = yj if Dsk(cj) = 1. We
know these values form the intersection of the sets by the construction of BF1.

Protocol security Like our proof for the protocol πEBF
∪ we need to prove

that this protocol securely realises the ideal functionality. Therefore we give the
following theorem and provide a proof in Appendix E.2 (the framework is very
similar to the proof of Theorem 1).

Theorem 2. Suppose that the protocol, πEBF
∩ , is instantiated with an IND-CPA

secure, MHE scheme. Then πEBF
∩ securely realises F∩ as in Equation (2) in the

presence of static semi-honest adversaries.

Proof. See Appendix E.2.

4.2 PSI/PSU-CA protocol

We can make use of the fact that by calculating one of PSI-CA or PSU-CA then
we can calculate the other using the following relation:

|X ∩ Y | = |X|+ |Y | − |X ∪ Y | (4)

and thus we can concentrate on only computing one of the operations. We can
create a secure protocol, πEBF

|∩| , for calculating PSI-CA by adapting the protocol

πEBF
∪ to have P2 to just send the message (cj) where cj is calculated in the same

way as the previous protocols. Like the PSU protocol πEBF
∪ we can use Paillier’s

scheme to compute cj additively. If we compute cj multiplicatively then we can
use a scheme like ElGamal. Both schemes lead to computation of a linear number
of exponentiations and so it comes down to the implementer’s discretion.

The protocol proceeds in the same way except that P1 only decrypts cj . If
Dsk(cj) = 0 then increments a counter c by one. Once all cj have been decrypted
then P1 outputs c as the answer. For PSU-CA we compute the number, c, of cj
that do not decrypt to 0 and then output |S1|+ c.

Protocol correctness Correctness is satisfied since Dsk(cj) = 0 if and only if
yj ∈ S1 (and thus yj ∈ S1 ∩ S2) with all but the negligible probability of a false
positive occurring.

Protocol security

Theorem 3. Suppose that the protocol, πEBF
|∩| , is instantiated with an IND-CPA

secure AHE scheme. Then πEBF
|∩| securely realises F|∩|, as in Equation (3), in

the presence of static semi-honest adversaries.

Proof. See Appendix E.3.

13

4.3 Performance evaluation of protocols

Both of the adaptations can be instantiated with an MHE or AHE scheme.
This allows for greater degrees of freedom for implementations which makes it
easier for the designs to be realised in practical environments. In terms of oper-
ations required for our PSI protocol, P1 must compute B encryptions as before
and then a maximum of 2m decryptions. P2 must compute km exponentiations
to satisfy the k multiplications needed for each element yj ∈ S2 (we require
slightly less than in the additive case though there is no effect on the complexi-
ties). Since k is essentially a constant, by optimal choice as shown in Equation
(5), then the number of exponentiations is O(n) for n = m and is thus linear.
The communication remains as 2m + B ciphertexts and is thus also O(n) bits.
These complexities coupled with an efficient cryptosystem like ElGamal place
the scheme in line with currently practical options for PSI such as [10, 11] which
use public-key based operations. The design provides better asymptotic perfor-
mance than the schemes of [16, 19] that require quadratic computation even
after hashing optimisations have been leveraged. Since we primarily make use of
public-key operations here it is clear that our protocol will not run in as practical
parameters and timings as the schemes provided in [14, 30, 31]

For the PSI/PSU-CA construction we only need a total of m decryptions
now (since we only send over m ciphertexts), while requiring the same amount
of encryptions and homomorphic operations as our PSI protocol, therefore the
computational complexity of the protocol is O(n) for n = m and the communi-
cation is similarly O(n) bits. Consequently our design demonstrates favourable
complexities compared with the design of [15] in the two-party case and compa-
rable with those of [9] (see Table 2).

Communication Computation

De Cristofaro et al. [9] O(n) O(n)
Egert et al. [15] O(B) O(B)
πEBF
|∩| /π

EBF
|∪| O(n) O(n)

Table 2. Comparison of our PSI/PSU-CA protocols with [9, 15]. Computation refers
to number of exponentiations.

Both of these designs, along with our PSU protocol, give favourable results
in the form of a library of easily implementable protocols with instantiations
differing only in the message P2 sends followed by the simple processing that is
required by P1. It is of great importance that we make designs easy to implement
as we can undermine security by trying to construct a protocol that is very
complex as implementers may take shortcuts to make it simpler. Furthermore,
all the protocols can be proven secure in the semi-honest model in the standard
model, this guarantees users of the protocol security under realistic constraints.
We show how to guarantee malicious security in Appendix G.

14

Our work is the first to design multiple PSOs, all with linear complexities,
and so it is worth comparing our work with that of Kissner et al. in [26] who
were the first to demonstrate ways of computing different set operations from
a singular underlying concept. Table 3 highlights how our protocols outperform
these protocols considerably in an asymptotic sense.

Communication Computation

[26]
PSI O(cNn log |E|) O(n2)
PSU O(N2n log |E|) O(n2)

PSI/PSU-CA O(N2n log |E|) O(n2)

πEBF
PSI 2n+B O(n)
PSU 2n+B O(n)

PSI/PSU-CA n+B O(n)

Table 3. Comparison of our complexities with the protocols of [26]. Computation refers
to number of exponentiations.

5 Conclusion

In this paper we have devised a new method of computing the main private
set operations with linear complexities. Our PSU protocol is the first construc-
tion that demonstrates both linear computation and communication, while our
adapted PSI and PSI/PSU-CA protocols have complexities that are comparable
with current practical designs. Our method appears to allow the computation of
more complex set operations with relatively simple changes in the computation
and without compromising security. In addition, it is possible to realise mali-
cious security for our protocols using existing homomorphic signature schemes
and while keeping the linear overheads. This provides a new interesting dimen-
sion to the efficiency of PSOs in the malicious setting, since practical, homomor-
phic signature schemes will have immediate implications for the efficiency of our
protocols.

Our work contains therefore the first tool for computing the main set opera-
tions, with linear complexities, and with the possibility of extending to compute
other more complex functionalities. Interesting future work would concretely es-
tablish the efficiency of our protocols via experimental work. This will result in
the open-source implementation of our toolkit that will allow developers to use
these constructions as part of applications that require multiple efficient PSO
functionality.

15

References

[1] Steven M. Bellovin and William R. Cheswick. “Privacy-Enhanced Searches
Using Encrypted Bloom Filters”. In: IACR Cryptology ePrint Archive 2004
(2004), p. 22.

[2] Marina Blanton and Everaldo Aguiar. “Private and oblivious set and mul-
tiset operations”. In: 7th ACM Symposium on Information, Compuer and
Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012.
2012, pp. 40–41.

[3] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors”. In: Commun. ACM 13.7 (1970), pp. 422–426.

[4] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF Formulas
on Ciphertexts”. In: Theory of Cryptography, Second Theory of Cryptogra-
phy Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings. 2005, pp. 325–341.

[5] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E. Skeith III.
“Public Key Encryption That Allows PIR Queries”. In: Advances in Cryp-
tology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings. Ed. by Alfred
Menezes. Vol. 4622. Lecture Notes in Computer Science. Springer, 2007,
pp. 50–67.

[6] Dan Boneh, David Mandell Freeman, Jonathan Katz, and Brent Waters.
“Signing a Linear Subspace: Signature Schemes for Network Coding”. In:
Public Key Cryptography - PKC 2009, 12th International Conference on
Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March
18-20, 2009. Proceedings. 2009, pp. 68–87.

[7] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin,
Jason Morrison, Michiel H. M. Smid, and Yihui Tang. “On the false-
positive rate of Bloom filters”. In: Inf. Process. Lett. 108.4 (2008), pp. 210–
213.

[8] Justin Brickell and Vitaly Shmatikov. “Privacy-Preserving Graph Algo-
rithms in the Semi-honest Model”. In: ASIACRYPT. Vol. 3788. Lecture
Notes in Computer Science. Springer, 2005, pp. 236–252.

[9] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. “Fast and Private
Computation of Cardinality of Set Intersection and Union”. In: Cryptology
and Network Security, 11th International Conference, CANS 2012, Darm-
stadt, Germany, December 12-14, 2012. Proceedings. 2012, pp. 218–231.

[10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. “Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model”. In: Ad-
vances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings. 2010, pp. 213–231.

[11] Emiliano De Cristofaro and Gene Tsudik. “Practical Private Set Intersec-
tion Protocols with Linear Complexity”. In: Financial Cryptography and
Data Security, 14th International Conference, FC 2010, Tenerife, Canary
Islands, January 25-28, 2010, Revised Selected Papers. 2010, pp. 143–159.

16

[12] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. “Ef-
ficient robust private set intersection”. In: IJACT 2.4 (2012), pp. 289–303.

[13] Sumit Kumar Debnath and Ratna Dutta. “Secure and Efficient Private Set
Intersection Cardinality Using Bloom Filter”. In: Information Security -
18th International Conference, ISC 2015, Trondheim, Norway, September
9-11, 2015, Proceedings. 2015, pp. 209–226.

[14] Changyu Dong, Liqun Chen, and Zikai Wen. “When private set inter-
section meets big data: an efficient and scalable protocol”. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013. 2013, pp. 789–800.

[15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker,
and Jörn Tillmanns. “Privately Computing Set-Union and Set-Intersection
Cardinality via Bloom Filters”. In: Information Security and Privacy -
20th Australasian Conference, ACISP 2015, Brisbane, QLD, Australia,
June 29 - July 1, 2015, Proceedings. 2015, pp. 413–430.

[16] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient Pri-
vate Matching and Set Intersection”. In: Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Pro-
ceedings. 2004, pp. 1–19.

[17] Keith B. Frikken. “Privacy-Preserving Set Union”. In: Applied Cryptog-
raphy and Network Security, 5th International Conference, ACNS 2007,
Zhuhai, China, June 5-8, 2007, Proceedings. 2007, pp. 237–252.

[18] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. “Leveled
Fully Homomorphic Signatures from Standard Lattices”. In: Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015. 2015, pp. 469–477.

[19] Carmit Hazay and Kobbi Nissim. “Efficient Set Operations in the Presence
of Malicious Adversaries”. In: J. Cryptology 25.3 (2012), pp. 383–433.

[20] Farhad Hormozdiari, Jong Wha J. Joo, Akshay Wadia, Feng Guan, Rafail
Ostrovsky, Amit Sahai, and Eleazar Eskin. “Privacy preserving protocol
for detecting genetic relatives using rare variants”. In: Bioinformatics 30.12
(2014), pp. 204–211. doi: 10.1093/bioinformatics/btu294. url: http:
//dx.doi.org/10.1093/bioinformatics/btu294.

[21] Yan Huang, David Evans, and Jonathan Katz. “Private Set Intersection:
Are Garbled Circuits Better than Custom Protocols?” In: 19th Annual
Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012. 2012.

[22] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. “Extending
Oblivious Transfers Efficiently”. In: Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings. 2003, pp. 145–161.

[23] Florian Kerschbaum. “Outsourced private set intersection using homomor-
phic encryption”. In: 7th ACM Symposium on Information, Compuer and

17

Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012.
2012, pp. 85–86.

[24] Florian Kerschbaum. “Public-Key Encrypted Bloom Filters with Appli-
cations to Supply Chain Integrity”. In: Data and Applications Security
and Privacy XXV - 25th Annual IFIP WG 11.3 Conference, DBSec 2011,
Richmond, VA, USA, July 11-13, 2011. Proceedings. Vol. 6818. Lecture
Notes in Computer Science. Springer, 2011, pp. 60–75.

[25] M. H. R. Khouzani, Viet Pham, and Carlos Cid. “Strategic Discovery and
Sharing of Vulnerabilities in Competitive Environments”. In: Decision and
Game Theory for Security - 5th International Conference, GameSec 2014,
Los Angeles, CA, USA, November 6-7, 2014. Proceedings. 2014, pp. 59–78.

[26] Lea Kissner and Dawn Xiaodong Song. “Privacy-Preserving Set Opera-
tions”. In: Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings. 2005, pp. 241–257.

[27] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. “BotGrep: Finding P2P Bots with Structured Graph Anal-
ysis”. In: 19th USENIX Security Symposium, Washington, DC, USA, Au-
gust 11-13, 2010, Proceedings. 2010, pp. 95–110.

[28] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael
Hamburg, and Dan Boneh. “Location Privacy via Private Proximity Test-
ing”. In: Proceedings of the Network and Distributed System Security Sym-
posium, NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011. The Internet Society, 2011.

[29] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Advances in Cryptology - EUROCRYPT ’99, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding. 1999,
pp. 223–238.

[30] Benny Pinkas, Thomas Schneider, and Michael Zohner. “Faster Private Set
Intersection Based on OT Extension”. In: Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014. 2014,
pp. 797–812.

[31] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. “Phas-
ing: Private Set Intersection using Permutation-based Hashing”. In: IACR
Cryptology ePrint Archive 2015 (2015), p. 634.

[32] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. “Constant-Round
Multi-party Private Set Union Using Reversed Laurent Series”. In: Public
Key Cryptography - PKC 2012 - 15th International Conference on Practice
and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-
23, 2012. Proceedings. 2012, pp. 398–412.

[33] Giulia Traverso, Denise Demirel, and Johannes Buchmann. Homomor-
phic Signature Schemes - A survey. Cryptology ePrint Archive, Report
2015/653. http://eprint.iacr.org/. 2015.

18

A Diagrams from the main body

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [11] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1982.1

Huang et al.[21]* 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4

Dong et al.[14]* 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6
Pinkas et al.[30] 0.13 0.2 0.8 3.3 13.5 0.26 0.3 0.9 3.7 13.8

Table 4. Runtimes (seconds) taken from [30]

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [11] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0

Huang et al.[21]* 18.8 90.0 420.0 1920.0 8640.0 30.0 144.0 672.0 3072.0 13824.0

Dong et al.[14]* 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7
Pinkas et al.[30] 0.2 0.8 3.3 13.4 54.3 0.3 1.2 4.8 19.4 78.3

* With optimisations from [30]

Table 5. Communication costs (MB) taken from [30]

Communication Computation Multi-party?

Kissner et al.[26] O(N2n log |E|) O(n2) Y
Brickell et al.[8] O((n+m) log |E|) O((n+m) log |E|) N

Frikken [17] O(n) O(n log log n) N
Blanton et al.[2] O(N3n log(Nn)) O(N3n log(Nn)) Y

Table 6. Complexities for previous PSU protocols.

Communication Computation

De Cristofaro et al.[9] O(n) O(n)
Egert et al.[15] O(B) O(B)

Table 7. Complexities for the protocol of [9] and the two-party variant of [15].

19

P1 P2

S1 = {xi}1≤i≤n S2 = {yj}1≤j≤m

BF1

IBF1

EIBF1

EIBF1

For j = 1, . . . ,m

retrieve {C(j)
1 , . . . , C

(j)
k }

cj = (C
(j)
1 +H . . .+H C

(j)
k)

p̃j = cj · yj

(p̃j , cj)j∈{1,...,m}

Dsk(cj) = qj

Dsk(p̃j) = pj

Let V =
{
pj · qj−1 | cj = 0

}
Output S1 ∪ V

Fig. 1. An overview of our πEBF
∪ protocol that uses encrypted, inverted Bloom filters

P1 P2

S1 = {xi}1≤i≤n S2 = {yj}1≤j≤m

BF1

EBF1

EBF1

For j = 1, . . . ,m

compute {C(j)
1 , . . . , C

(j)
k }

cj = (C
(j)
1 ×H . . .×H C

(j)
k)

p̃j = cj ×H Epk(yj)

(p̃j , cj)j∈{1,...,m}

Let V = {Dsk(p̃j) | Dsk(cj) = 1}
Output V = S1 ∩ S2

Fig. 2. A protocol that securely realises F∩ in a similar way to πEBF
∪ .

20

B Bloom filters

Bloom filters were first introduced by Bloom in [3] as a lightweight data struc-
ture that allows for the representation data sets and checking of inclusion us-
ing only hash function evaluations. A Bloom filter is initially represented by
a string of B bits that are all initialised to 0. There are k hash functions
hl : {0, 1}λ 7→ {1, . . . , B} for l ∈ {1, . . . , k} published alongside the Bloom
filter. We then represent set elements x ∈ X in the Bloom filter by evaluating
h1(x), . . . , hk(x) and changing each index that these hash functions point to from
0 to 1. If a value has already been changed to 1 then it is left alone.

The resulting Bloom filter can then be checked against to see if different
elements lie in the set by evaluating the k hash functions and checking if all the
positions are set to 1. The following definition establishes some notation that we
shall carry forward throughout.

Definition 6. We say that an element, e, is represented in the Bloom filter,
BF, if we have that

BF[hi(e)] = 1, ∀i ∈ {1, . . . , k}

where {h1, . . . , hk } are the hash functions used in conjunction with BF. We say
that the set S is represented by BF if every element e ∈ S is represented in BF.

We can then query whether an element y is contained in S by checking if y
is represented in the corresponding Bloom filter BF. This construction clearly
lends itself to fast set intersection computation since only hash functions are
used to evaluate whether an element is part of the underlying set.

One constraint on Bloom filters is that they can lead to false positives when
checking membership, i.e. an element y /∈ X may appear to be inX after checking
all the hash outputs if all the values have been set to 1 beforehand. However, as
shown in [14], if p = 1−(1−1/B)kn is the probability that a particular bit in the
Bloom filter is set to 1, then the upper bound of the false-positive probability is
given by

ε = pk ×

(
1 +O

(
k

p

√
lnB − k ln p

B

))
which is negligible in k, the number of hash functions. In practice one will select
the values of k and B when building a Bloom filter for a set of size n such
that ε is capped at a specific low value (e.g. 2−100). In [14] it is claimed that
performance optimality is achieved when

k =
B

n
ln 2 (5)

B ≥ n log2 e · log2 1/ε (6)

where e is the base of the natural logarithm. By minimising B we get the optimal
value of k to be

k = log2 1/ε. (7)

We will assume (as in [14]) that these parameters are always chosen optimally
in this way. The proofs that these values are optimal can be found in [7].

21

C Partially homomorphic encryption

To preserve secrecy of the client’s set we require that the Bloom filter be en-
crypted with a partially homomorphic encryption (PHE) scheme. This allows the
server to compute operations over the client’s data without compromising pri-
vacy of the client’s set. We use the following to informally define a homomorphic
encryption scheme

Let (P, C,K, E,D) be a public key cryptosystem with public key pk and
secret key sk where x̃ = Epk(x) and ỹ = Epk(y) are ciphertexts of the scheme for
plaintexts x and y. We say that the encryption scheme is partially homomorphic
if we have one of the following properties:

– There is a homomorphic addition operation, +H , over x̃ and ỹ such that
Dsk(x̃ +H ỹ) = x + y. A scheme satisfying this is known as an additively
homomorphic encryption (AHE) scheme.

– There is a homomorphic multiplication operation,×H , over x̃ and ỹ such that
Dsk(x̃×H ỹ) = x× y. A scheme satisfying this is known as a multiplicatively
homomorphic encryption (MHE) scheme.

One of the most popular AHE schemes is the one devised by Paillier in [29], we
use such a scheme for our PSU and PSI/PSU-CA protocols. A popular MHE
scheme is ElGamal, we could use this for our PSI protocol. Both schemes incur
one exponentiation per homomorphic operation which we note in the analysis of
our protocols.

D Paillier cryptosystem

Paillier’s encryption scheme is introduced in [29], the scheme is a semantically
secure public key encryption scheme and allows for additively homomorphic
operations over the ciphertexts. It operates in the following way:

– Key generation: Sample two large random primes p, q and set N = pq.
Let λ = lcm(p − 1, q − 1) i.e. λ is the Carmichael number of N . Sample
g ∈ Z∗N2 and ensure that N divides the order of g by checking the existence
of µ = L(gλ mod N2)−1 mod N where L(x) = x−1

N . The public key is
pk = (N, g) and the secret key is sk = (λ, µ).

– Encryption: Let m ∈ ZN be a plaintext. Randomly sample r ∈ Z∗N and
compute C = gm · rN mod N2.

– Decryption: m = L(Cλ mod N2) · µ mod N
– Homomorphic evaluation: Suppose that we have ciphertexts c1 and c2

from a Paillier encryption of two plaintexts m1 and m2, then we have the
following property:

Dsk(c1 × c2) = m1 +m2. (8)

We also have the possibility of multiplying the underlying plaintext by a
scalar k ∈ Z, i.e.

Dsk(c1
k) = k ·m1. (9)

22

We require both of these properties in our PSU protocol of Section 3. To
maintain encryption agnosticism in our protocol we make use of property
(8) while denoting the additive homomorphic operation as +H and thus
stating that Dsk(c1 +H c2) = m1 + m2. For property (9) we state that
Dsk(k · c1) = k ·m1.

E Proofs from main body

E.1 Proof of Theorem 1

We will show that the protocol is secure when P2 is corrupted first due to the
relative simplicity of the proof relative to the P1 corruption case. Note that -
similarly to the previous PSU protocols in [2, 17, 26] - our protocol reveals the
cardinality of the intersection to P1. Therefore, we define the input for player Pi
to be Inpi = (Si, auxi = |Sj |) for i ∈ {1, 2} and ((j ∈ {1, 2}) ∧ (j 6= i)).

P2 corrupted It is fairly trivial to construct a simulator in this case since P2

does not receive any output from the protocol. That being said, the simulator
must construct a random, encrypted, inverted Bloom filter for the view of P2

that is indistinguishable from the real Bloom filter that P2 receives. Here we use
the IND-CPA security of the encryption scheme to argue that it is impossible
for P2 to distinguish between the real Bloom filter and the simulated version.

P1 corrupted The simulation here is significantly more nuanced since P1 re-
ceives the output S1∪S2 from the protocol. Firstly the simulator can derive |S1∩
S2| = I from S1 and |S2|, which is present from the input of the party, by calcu-
lating |(S1∪S2)\S1| = |S2\S1| = U and subsequently |S2|−|(S2\S1)| = I. They

then construct I encryptions, cg, of 0 and U encryptions cj = C
(j)
1 +H . . .+HC

(j)
k

computed as in the original protocol using the elements yj ∈ (S1 ∪ S2) \ S1 con-
structed via the output and the input set. The simulator then sends m = I +U
messages in total where I messages are represented by (Epk(0), Epk(0)) and U
messages are represented by (cj · yj , cj) as in the real execution.

The view of P1 in the real protocol is indistinguishable from the view of P1

constructed by the simulator since they can still decrypt and learn the values of
yj that they should be able to, and the I encryptions of 0 in the simulation are
indistinguishable from the values that shouldn’t be learnt (from the intersection)
in the real protocol by the IND-CPA security of the encryption scheme.

ut

E.2 Proof of Theorem 2

The security when P2 is corrupted follows from the same arguments as before
due to the use of an IND-CPA encryption scheme for encrypting BF1. We do
not compromise security by not inverting as the encryption renders EIBF1 and
EBF1 indistinguishable by the same argument in the proof of Theorem 1.

23

For the corruption of P1 we note that the security relies now on P1 not being
able to learn elements y′j /∈ S1∩S2 in order to realise F∩ securely. This is trivially
stopped since

Dsk(p̃j) =

{
yj if cj = Epk(1)
0 if cj = Epk(0)

and by definition cj is an encryption of 1 if yj ∈ S1 ∩ S2 and 0 otherwise except
for negligible chance of failure.

ut

E.3 Proof of Theorem 3

Security when P2 is corrupted follows exactly from the previous cases. For secu-
rity when P1 is corrupted we just have to prove that the adversary cannot learn
anything about the sets from the values cj that they receive. Since cj is the sum
of encrypted inverted bloom filter entries then we know that all elements in the
intersection will have Dsk(cj) = 0 and so it is impossible to learn anything from
these values. For elements not in the intersection we have Dsk(cj) = zj for some
zj ∈ N as before, which does not reveal anything about the elements yj that are
represented in the Bloom filter.

ut

F Homomorphic signature scheme

We give a general construction of a homomorphic signature scheme that al-
lows our protocol to ensure security against malicious adversaries. For a specific
scheme that meets our requirements see the work of Gorbunov et al. [18].

SIGKEYGEN(1λ) Samples ssk, spk
$←− K from a keyspace K. The key ssk is a

secret key that is used to authenticate messages, spk is a public key allowing for
verification and homomorphic evaluation of signatures.

AUTH(ssk,m) Outputs a signature σ correctly authenticating the message m.

EVAL(spk, f, (σ1, . . . , σl)) Outputs a signature σ∗ authenticating the message
m = f(m1, . . . ,ml). Where σi is a valid signature on mi for 1 ≤ i ≤ l

VRF(spk,m∗, σ∗, f) Outputs 1 if σ∗ is a valid signature on m = f(m1, . . . ,mn)
where the mi’s are messages with corresponding signatures σi for 1 ≤ i ≤ l. It
is also possible to verify direct signatures on elements where no evaluation has
taken place. In these cases we do not specify a function f .

For a scheme to be appropriate for our protocol we require that it is correct and
satisfies unforgeability requirements (see [33] for concrete definitions). We also
need that the signing function f allows for computation of polynomial opera-
tions over the pieces of data that are input to it. An instantiation of Paillier’s

24

encryption scheme in our protocol requires signed ciphertexts to be multiplied to
invoke the additive homomorphic properties. Existing signature schemes allow
for linear, polynomial or fully homomorphic operations. In addition we need that
the signature scheme is context-hiding implying that the derived signatures σ∗

reveal nothing about the underlying pieces of data m1, . . . ,ml with signatures
σ1, . . . , σl (aside from what m∗ reveals naturally). We require this in our proto-
col since the adversary may be able to piece together elements that they should
not be able to learn if the signatures reveal which components are used in the
derivation of each cj .

The only scheme that currently satisfies these requirements is detailed in
[18]. This scheme allows for leveled fully homomorphic operations (i.e. circuits
of depth d that is specified before computation takes place) and security can
be reduced to the hardness of the SIS problem on lattices. Since the number of
homomorphic operations that we need is calculable based on the set sizes, this
does not pose a problem for our protocol. An AHE scheme that didn’t invoke
each +H with a multiplication would allow us to use a linearly homomorphic
scheme such as [6].

G Achieving malicious security

We discuss, somewhat informally, how to protect our PSU protocol against a
malicious adversary, a formal proof of our malicious design is contained in Ap-
pendix H.2 By definition a malicious adversary can interact with the protocol
in any possible manner and so our construction needs to demonstrate that the
adversary cannot deviate in a way that will leave the computation insecure. In
fact, we construct a stronger variant, namely APSU, similar to the APSI designs
covered in [10, 11] where the input sets are authenticated by a third party to also
prevent the usage of badly formed inputs that could contravene the security of
the corresponding input set. For instance, P1 could encrypt the inverted Bloom
filter that is simply initialised with all entries set to 1 allowing her to learn all the
elements in S2. Analogously, she could set entries in her Bloom filter to 0 before
encrypting in the PSI computation resulting in her learning the full set S2. It is
interesting to note that these concerns are not considered in PSO protocols that
only guarantee security against malicious adversaries without authentication.

Secondly, though P2 learns no output, he can still influence the output of P1 in
some guaranteed ways. For example, P2 can alter the value of cj so that P1 does
not learn a particular element in the PSU computation (i.e. set cj = Epk(0)).
This would allow him to hide particular elements if he didn’t want P1 to learn
these and so there is quite strong motivation for doing this. We discuss below
how to mitigate these situations in order to realise security for πEBF

∪ with respect
to a malicious adversary. As stated previously, a proof of security can be found
in Appendix H, where it should be noted that we require that the hash functions
are now modelled as random oracles.

2 The similarity of the designs means that it is simple to further derive maliciously
secure PSI and PSI/PSU-CA.

25

G.1 Bloom filter manipulation

Work to address the first concern is prevalent in PSO literature. One of the ways
suggested in [10, 11] is to have the set of the client authorised before computation
takes place. This is done by a trusted certificate authority who ‘signs’ the set of
P1 before computation takes place so that P2 can be sure of the legitimacy of the
computation. Thus we refer to the construction as authenticated PSU (APSU).

We apply the technique by making the client send their inverted Bloom filter,
IBF1, to a trusted signing authority (SA).3 SA receives IBF1 and checks if it
meets certain requirements on the size of the set represented and then encrypts
each entry of IBF1 using pk and sends the resulting EIBF1 back to P1. The
main requirement is that, since we have n elements and k hash functions, the
number of ones in IBF1 cannot become higher than kn. With optimal choice of
parameters 1.44kn = B so SA can just check that this is the case and that the
number of zeros is above some pre-determined threshold (agreed with P2) before
computing and authorising EIBF1. The authorisation consists of SA signing
EIBF1 after it has performed encryption. P2 will then verify this signature
when it receives EIBF1 from P1 and will abort the protocol if it does not verify
successfully.

G.2 Output manipulation

To protect against the second concern we need to prevent the ability of a cor-
rupted P2 from having an effect on the output of the protocol beyond their
actual input. This means that we need to stop P2 from being able to create their
own versions of cj via exploitation of public-key encryption to hide elements of
their choice. We choose to counter this by introducing a homomorphic signature
scheme that satisfies standard unforgeability requirements.4 Such a signature
scheme has the property that; for messages m1, . . . ,ml with signatures σ1, . . . , σl
then we can compute a valid signature σ for the message m = f(m1, . . . ,ml)
where f is a polynomial. A public verify algorithm VRF can check the validity
of the signature with respect to f .

For our malicious protocol, SA will also sign each individual ciphertext (com-
puting σ[l] for each ciphertext C[l]) in EIBF1 and return these to P1. When P1

sends EIBF1 to P2 she will also send the signatures σ (signing the whole Bloom
filter) and σ[1], . . . , σ[l] to P2. Now, when P2 computes cj he will also have to
homomorphically evaluate new signatures σj and θj that sign cj and p̃j respec-
tively. P2 will send these signatures back with the computation of each message
(p̃j , cj) to P1 who will then be able to verify that both ciphertexts have been
computed correctly and thus stopping P2 from being able to alter the output
maliciously. It is important to ensure that the signature σ on the whole Bloom
filter is generated as a standard digital signature. Otherwise if this was also ho-
momorphic then BF1 would retain malleability since P1 could alter values in the

3 P1 sends IBF1 since we are referring to the PSU functionality.
4 See [33] for unforgeability definitions.

26

structure and generate valid signatures using the homomorphic properties. The
signature σ is therefore integral to ensuring that P1 cannot change BF1 before
sending it to P2. Signature schemes that are compatible with our requirements,
i.e. allow additions over the signed data, include [6, 18].5

G.3 Efficiency

Communication is increased due to the extra signatures that have to be sent
between the parties. P1 sends B + 1 extra signatures on top of the encrypted
Bloom filter that they send to P2, P2 sends over a total of 2m extra signatures
to P1 for verifying their computation.

Computation complexities are now directly affected by the need to sign and
verify data during the protocol. If we were to use the scheme of [18] then the
signatures have length that is polynomial in the depth, d, of circuits that we use
to evaluate the homomorphic operations. This is favourable as this value will
depend only on the number of multiplications that we need per element in S2

which is k rather than the size of the data sets or the size of the circuit required.
The verification procedure for this scheme also allows for the pre-computation of
the same homomorphic evaluation function f if we are verifying over it multiple
times. This perfectly fits our scenario where f is fixed, so P1 can perform this
pre-computation and only performs work proportional to the size of f once. P1

is then able to verify arbitrary amounts of signatures based on this function f ,
making verification of each σj and θj much more efficient.

These complexities mean that the malicious scheme is in line with previous
solutions such as [10, 14] that also have linear complexities. We also have the
first maliciously secure APSU protocol to have linear complexities. We view this
construction as an important example of new techniques that can be used to
prove protocols secure in the malicious model rather than using the ZK proofs
that [17, 19, 26] do. Further advances in the efficiency of homomorphic signature
schemes will directly improve the efficiency of our protocol.

H Proof of security in malicious model

In this section we first give our updated PSU construction before proving that
this protocol retains security and correctness in the presence of malicious ad-
versaries. Our construction relies on a trusted certificate authority (SA) who
carries out the encryption and signing of IBF1. The signatures σ are gener-
ated by an unforgeable signature scheme, while (σ1, . . . , σB) are generated by a
fully homomorphic signature scheme satisfying unforgeability and maintaining
context-hiding privacy such as [18]. Unlike our previous proof the hash function
evaluations are modelled as calls to non-programmable random oracles so that
the simulator can extract the queries made to the oracles during the execution.

5 We also require that the schemes also satisfy a context-hiding requirement in order
to ensure the privacy of the ciphertexts that are used to construct are kept hidden.

27

We can avoid this requirement for this model by making P1 send S1 along with
IBF1 to SA.

Below we provide a description of the protocol with security against malicious
adversaries along with a diagrammatic overview in Figure 3. In the description we
reference functions f and g below when we evaluate new signatures, the function
f evaluates f(x1, . . . , xk) = x1 +H . . .+H xk and g evaluates g(x, y) = y · x.

P1 P2

S1 = {xi}1≤i≤n S2 = {yj}1≤j≤m

BF1

IBF1

SA(IBF1) 7→ SEIBF1, σ

where SEIBF1 =

(EIBF1, {σ[1], . . . , σ[B]})

(SEIBF1, σ)

If VRF(EIBF1, σ) 6= 1

Abort

For j = 1, . . . ,m

compute {C(j)
1 , . . . , C

(j)
k }

cj = (C
(j)
1 +H . . .+H C

(j)
k)

σj = EVAL(spk, f, (σ
(j)
1 , . . . , σ

(j)
k))

θj = EVAL(spk, g, σj , yj)

p̃j = yj · cj

(p̃j , cj , σj , θj)

If VRF(spk, cj , σj , f) 6= 1

Abort

If VRF(spk, p̃j , θj , g) 6= 1

Abort

Dsk(cj) = qj

Dsk(yj · cj) = pj

Let V = {pj · qj−1|cj = 0}
Output S1 ∪ V

Fig. 3. An overview of our maliciously secure PSU protocol

H.1 Protocol steps

Inputs - P1: [(pk, sk), S1, |S2|], P2: [pk, S2, |S1|]

1. P1 calculates BF1 using h1, . . . , hk and their set S1 and then inverts each
entry to retrieve IBF1.

2. P1 sends IBF1 to SA and receives back EIBF1 and a standard signa-
ture σ computed over EIBF1, and homomorphic signatures σ[l] for each
EIBF1[l] = C[l].

28

3. P1 sends (EIBF1, {σ[1], . . . , σ[B]}, σ) to P2.
4. P2 checks that VRF(spk,EIBF1, σ) = 1, if this fails then P2 aborts the

protocol.
5. He then evaluates each element yj ∈ S2 using the k hash functions and

receives {C(j)
1 , . . . , C

(j)
k } where C

(j)
d = EIBF1[hd(yj)] for j ∈ {1, . . . ,m}.

6. He then computes cj = f(C
(j)
1 , . . . , C

(j)
k) and σj = EVAL(spk, f, (σ

(j)
1 , . . . , σ

(j)
k))

for each j where σ
(j)
d authenticates C

(j)
d .

7. P2 computes p̃j = g(cj , yj) and θj = EVAL(spk, g, σj , yj) and sends (p̃j , cj , σj , θj)
to P1.

8. P1 receives (p̃j , cj , σj , θj) and checks VRF(spk, cj , σj , f) = 1 and that VRF(spk, p̃j , θj , g) =
1. If either of these checks fail then P1 aborts the protocol.

9. P1 reveals the value of cj by computing Dsk(cj) = qj . If qj = 0 then Dsk(yj ·
cj) = 0 so she does not decrypt. If qj = zj then Dsk(yj · cj) = yj · zj = pj ,
where 1 ≤ zj ≤ k.

10. P1 computes zj
−1 for qj 6= 0 and calculates pj × zj−1 = yj . She adds each

yj to the set V and outputs S1 ∪ V .

H.2 Correctness/security analysis

The correctness of our protocol trivially follows from the fact that our semi-
honest PSU protocol is also correct, since we do not change the computation
that is performed aside from verifying and computing signatures. For proving our
PSU protocol secure in the presence of malicious adversaries we have to alter the
security model that we use. Specifically we need to show that definition 3 holds
for our protocol and thus that a simulator with access to an ideal functionality
can simulate the real world with access to the ideal functionality.

Our security analysis starts by showing the privacy of P2 is maintained when
P1 is corrupted. In both proofs we assume that the simulators have access to the
values sent to SA.

Theorem 4. The protocol above, when instantiated with an IND-CPA secure
encryption scheme and unforgeable signature schemes, securely realises the ideal
functionality in Equation (1) in the presence of malicious adversaries.

Proof. When Pi is corrupted we denote the simulator by Simi and the adversary
by Ai.

P1 corrupted. Sim1 can learn the set S′1 of all elements that are queried to
the random oracles h1, . . . , hk by A1 using the extractable property, where the
actual set used to compute BF1 is S1 ⊆ S′1. Sim1 constructs the actual set S1

by querying the elements of S′1 on the inverted Bloom filter IBF1 that is sent
to SA. Sim1 now inverts, encrypts and signs both the full Bloom filter (with an
unforgeable digital signature) and each individual ciphertext (with a unforgeable
homomorphic signature) and sends everything back to P1. Sim1 can now send
S1 to the ideal functionality and receive back S1∪S2 and can use this to compute
the messages that P2 would send back to P1 so that P1 learns the union.

29

This is indistinguishable from the original game since A1 is unable to alter
the contents of the Bloom filter once it has been sent to SA by the unforgeability
of the signature scheme and cannot distinguish the messages they receive by the
semantic security of the encryption scheme.

P2 corrupted. As in Section 3 this case is slightly easier since P2 receives no
output in the protocol. Our aim here is to make sure that A2 cannot alter mes-
sages in a way that would mean that the output is no longer correct. Since each
ciphertext is signed we know that cj for each element must be constructed in a
certain way, Sim2 constructs an admissible encrypted Bloom filter EIBF1 that
consists of all ones and sends this along with the signatures to A2. When it
receives the result back it checks the homomorphic signatures for cj and cj · yj
verify correctly. Sim2 then proceeds in the normal way and decrypts the values
and learns the entire set S2 and submits this to the ideal functionality to learn
S1∪S2. The simulation now finishes and outputs nothing to P2. this is clearly in-
distinguishable from real for A2 since the semantic security of encryption means
that A2 cannot distinguish the messages they receive and the unforgeability of
the signature scheme means that they cannot trick the simulator into outputting
an incorrect union.

ut

30

