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Abstract

An Oblivious Parallel RAM (OPRAM) provides a general method to simulate any
Parallel RAM (PRAM) program, such that the resulting memory access patterns leak
nothing about secret inputs. OPRAM was originally proposed by Boyle et al. as
the natural parallel counterpart of Oblivious RAM (ORAM), which was shown to have
broad applications, e.g., in cloud outsourcing, secure processor design, and secure multi-
party computation. Since parallelism is common in modern computing architectures
such as multi-core processors or cluster computing, OPRAM is naturally a powerful
and desirable building block as much as its sequential counterpart ORAM is.

Although prior work (in particular, Circuit ORAM) has shown how to construct
ORAM schemes that are asymptotically tight under certain parameter ranges, the per-
formance of known OPRAM schemes still do not match their sequential counterparts,
leaving open two main questions: (i) whether one can construct an OPRAM scheme
whose performance is competitive relative to known sequential counterparts; and (ii)
whether one can construct OPRAM schemes that are asymptotically optimal.

Our paper answers the first question positively and gives partial answers to the
second question. Specifically, we construct Circuit OPRAM, a new OPRAM scheme
that makes the following contributions:

1. We achieve asymptotical improvement in terms of both total work and parallel run-
time in comparison with known OPRAM schemes. More specifically, we improve the
total work by a logarithmic factor and parallel runtime by poly-logarithmic factors.

2. We show that under sufficiently large block sizes, we can construct an OPRAM
scheme that is asymptotically optimal both in total work and parallel runtime when
the number of CPUs is not too small.

3. Our construction features a combination of novel techniques that enable us to (i)
have asymptotically tight stochastic processes that do not suffer from worst-case
and average-case discrepancies; and (ii) temporally reallocate work over offline and
online stages of the algorithm such that we can achieve small parallel runtime overall.
These techniques can be of independent interest in the design of of parallel oblivious
algorithms in general.
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1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [15, 16], is a powerful
primitive that allows oblivious accesses to sensitive data, such that access patterns during the
computation reveal no secret information. Since its original proposal [16], ORAM has been shown
to be promising in various application settings including secure processors [10–12, 23, 27], cloud
outsourced storage [17,30,31,37] and secure multi-party computation [13,14,18,20,22,34].

Although ORAM is broadly useful, it is inherently sequential and does not support parallelism.
On the other hand, parallelism is universal in modern architectures such as cloud platforms and
multi-core processors. Motivated by this apparent discrepancy, in a recent seminal work [3], Boyle
et al. extended the ORAM notion to the parallel setting. Specifically, they define Oblivious Parallel
RAM (OPRAM), and demonstrated that any PRAM program can be simulated obliviously while
incurring roughly O(log4N) blowup in both total work and parallel runtime, where N is the total
memory size. The result by Boyle et al. [3] was later improved by Chen et al. [6], who showed
a logarithmic factor improvement, attaining O(log3N) blowup in both total work and parallel
runtime.

Before this work, we still know of no OPRAM algorithm whose performance can “match” the
state-of-the-art sequential counterparts (e.g., Circuit ORAM [33], Path ORAM [32], or the KLO
ORAM [21]). In particular, state-of-the-art ORAM schemes achieve O(log2N/ log logN) [21] run-
time blowup for general block sizes (i.e., assuming that each memory block can store its own
address). For large enough block sizes, the best known scheme Circuit ORAM [33] achieves
O(α logN) runtime blowup1 for any super-constant α = ω(1). Since Goldreich and Ostrovsky
proved a Ω(logN) ORAM lower bound [15, 16], Circuit ORAM additionally demonstrates the ex-
istence of a (somewhat) tight ORAM scheme in the sequential setting [33]. Therefore, two natural
questions arise.

• Can we construct an OPRAM scheme whose asymptotical performance matches the best known
sequential counterpart?

• Can we show a tight OPRAM scheme?

1.1 Our Results and Contributions

We now describe our contributions and how to interpret our results in light of prior work and known
lower bounds.

Asymptotically more efficient OPRAM. We construct a novel OPRAM scheme called Circuit
OPRAM. Circuit OPRAM shows that any PRAM that runs in parallel time T and performs
a total work of W can be simulated by an equivalent OPRAM that runs in parallel time T ·
O(logN log logN), performs W · O(α log2N) total work, and requires that each CPU store only
O(1) blocks. The above result makes no assumption about the block size except that the block
must be able to store its own memory address2, and holds even if the PRAM uses a varying
number of CPUs in different time steps. Since Circuit OPRAM is based on the tree-based ORAM
framework [29], we achieve statistical security, i.e., security against computationally unbounded
adversaries.

Circuit OPRAM achieves significant performance improvement relative to the prior state-of-
the-art [6]. Specifically, in comparison with the prior best known OPRAM scheme [6], we achieve a

1In this paper, when we say that a scheme achieves O(αf(N)) cost, we mean that for any α = ω(1), there exists
a scheme that achieves O(αf(N)) cost.

2Note that all previous ORAM/OPRAM works, including those based on hierarchical ORAMs [15,16,21], implicitly
assume that the block must be able to at least store its own memory address; or else all previous ORAM/OPRAM
schemes will incur an extra multiplicative logN factor in cost.
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Scheme Total work blowup Para. runtime blowup Varying CPUs

Prior work
BCP [3] O(α log4N) O(α log4N)

√

CLT [6]† O(α log3N log logN) O(α log3N log logN) ×
This paper

Circuit OPRAM
O(α log2N) O(logN log logN)

√

O(log2+εN) O(logN)
√

Table 1: Our contributions. Here we state asymptotic bounds assuming O(1) blocks of CPU
cache, general block sizes, and that the failure probability is at most 1

NΘ(α) , where N denotes the
total number of memory blocks and α = ω(1).
†: CLT [6] describes their result assuming O(log2N) CPU cache. For O(1) CPU cache, their bounds would

incur an extra O(log logN) factor (since we will need oblivious sort to implement the eviction algorithm [34]).

We state the bounds for O(1) CPU cache here for a fair comparison.

multiplicative O(logN) improvement in terms of total work, and a O(log2N) factor improvement
in parallel runtime. Further, Chen et al. [6] assumes that the PRAM must use a (somewhat) fixed
number of CPUs each time step — otherwise, their scheme can incur an extra (super-) linear in m
blowup where m is the maximum number of CPUs employed by the PRAM. By contrast, we can
handle varying number of CPUs efficiently while preserving all asymptotic overheads.

Table 1 summarizes our contributions relative to prior works. Most of the table is self-explanatory.
We remark that Chen et al. [6] considers CPU-to-memory communication and CPU-to-CPU com-
munication as two separate metrics, but we consider the more general PRAM model where CPU-
to-CPU communication is implemented by shared memory reads and writes. Therefore, we coalesce
the two metrics into one (i.e., the maximum of the two metrics).

Theorem 1 (OPRAM for general block sizes). For any α = ω(1) and block size B = Ω(logN),
there exists an OPRAM scheme that has failure probability at most 1

NΘ(α) and achieves O(α log2N)
total work blowup and O(logN log logN) parallel runtime blowup.

Furthermore, our scheme can accomodate the case where each PRAM step involves a different
number of CPUs, whereas the scheme by Chen et al. [6] can incur up to Ω(m) loss in total work
when the PRAM has a varying number of CPUs across time.

Tightness under large block sizes. Table 1 shows only the results for general block sizes. We
show that for sufficiently large block sizes B ≥ N ε and for an arbitrarily small constant ε > 0,
Circuit OPRAM achieves O(α logN) total work blowup and O(logN) parallel runtime blowup.
This suggests the asymptotical optimality of Circuit OPRAM under certain parameter ranges:

• Optimality in total work. Goldreich and Ostrovsky showed that any ORAM scheme must incur
Ω(logN) total work blowup — and their bound is directly applicable to the parallel setting. In
this sense, Circuit OPRAM is asymptotically optimal in terms of total work for large enough
blocks.

• Optimality in parallel runtime. Chan et al. [5] recently showed an Ω(logm) lower bound for any
OPRAM’s parallel runtime blowup, where m is the number of CPUs and N is the total number
of memory blocks. In light of this, Circuit OPRAM is asymptotically optimal for large enough
blocks and when m ≥ N ε for any constant ε > 0. With some (non-trivial) additional work, we
construct another variant called Circuit OPRAM∗ that achieves O(logN log logN) total work
blowup and O(logm+ log logN) parallle runtime — this variant suffers from a slight log logN
loss in total work, but is optimal in parallel runtime for a broader range, that is, m = Ω(logN).
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We remark that achieving O(logN) parallel runtime is trivial if no requirement is imposed on
the total work blowup — one can simply leverage Θ(N) CPUs, one for each memory location, to
obliviously route data to the request CPUs. However, the total work blowup is ω(Nm) in this case.

Theorem 2 (OPRAM for large block sizes). For any constant ε > 0 and block size B ≥ N ε, the
following holds.

• For any α = ω(1), there exists an OPRAM scheme that has failure probability at most 1
NΘ(α)

and achieves O(α logN) total work blowup and O(logN) parallel runtime blowup.

• There exists an OPRAM scheme that has failure probability negligible in N and achieves O(logN log logN)
total work blowup and O(logm+ log logN) parallel runtime blowup.

1.2 Technical Highlights

We introduce several novel techniques to achieve these asymptotic improvements.

Improving total work: avoid worst-case and average-case discrepancy. We observe that
earlier OPRAM constructions often suffer from a worst-case and average-case discrepancy. We
abuse the terminology slightly here: by worst case of a random variable, we mean an upper bound
derived from some tail inequality beyond which the probability is negligible. When a secret random
variable’s worst-case value is asymptotically worse than its expectation, previous schemes had to
pad the random variable to the worst-case value, since disclosing its true value would result in
information leakage. For example, in Chen et al. [6], in expectation only O(1) blocks are assigned
to each subtree; but in the worst case there can be as many as Θ(α logN) assuming a negligible in
N failure probability. To hide the number of blocks assigned to each subtree, Chen et al. [6] had
to make Θ(α logN) evictions per subtree.

Our Circuit OPRAM also relies on the disjoint subtrees approach similar to Chen et al. [6]. We
solve the aforementioned worst-case and average-case discrepancy by making only O(1) evictions
per subtree per access. This, however, introduces overflowing blocks. We have to handle the
overflowing blocks in non-trivial manners to allow the read phase of the algorithm to be efficient
(in terms of parallel runtime). Specifically, we introduce a new data structure called group stashes,
where each group stash is shared by every Θ(α logN) consecutive subtrees. The design of the
group stashes again features the core idea of avoiding worst-case and average-case discrepancies.
Specifically, having every Θ(α logN) subtrees share a stash allows us to ensure that each group
stash’s worst-case occupancy is only O(1) factor larger than its average occupancy; and therefore
padding to the worst case would only introduce a constant factor penalty.

Achieving small parallel runtime: online/offline routing. Achieving small parallel runtime
turns out to be rather non-trivial. In particular, since we adopt the standard approach of recursive
tree-based ORAMs [29], the fetch phase must be conducted sequentially over Θ(logN) recursion
levels. In particular, metadata fetched must be routed to the O(m) fetch CPUs at the next recursion
level, before the next level can begin its fetch.

To achieve O(logN log logN) parallel runtime overall, this means that we can afford only
O(log logN) parallel runtime per (metadata) recursion level during the online fetch phase. This
requirement immediately rules out approaches that involve global oblivious sorting (over many el-
ements) during the online fetch phase — recall that oblivious sorting is a standard building block
in designing (parallel) oblivious algorithms; but to sort m elements in parallel would immediately
incur Θ(logm) parallel runtime which is too expensive for our purpose, e.g., when m =

√
N .

One of our core ideas in achieving small parallel runtime is through temporal reallocation of
work. During an offline phase, we perform preparation work to set up auxiliary data structures
that will facilitate the online phase. Since the offline preparation work can be parallelized across all
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recursion levels, we can afford to rely on oblivious-sorting-based techniques during the offline stage.
In this way, we obliviously construct the “routing permutation” between any two adjacent levels
during the offline phase, such that the online phase simply needs to apply this routing permutation
such that the next recursion level can receive the metadata fetched at the previous level. Applying a
pre-determined permutation to an array can be trivially parallelized and takes only a single parallel
step. Interestingly, as we explain in Sections 2.7 and 6, for the offline phase to construct the level-
to-level routing permutations, it basically has to “emulate” the online fetch phase but leaving the
fetched metadata fields blank.

Achieving small parallel runtime: localized work. We also encounter another difficulty:
as we explain later in Sections 2.7 and 6, the fetched metadata must be compressed obliviously
first (by removing a subset of the dummy entries) before being routed to the next recursion level.
Compression can be done näıvely through oblivious sorting. However, as explained earlier, during
the online stage, we cannot afford to perform global oblivious sorting over all the Θ(m) entries of
fetched metadata at a recursion level. Instead, we devise a new algorithm that localizes the work
by performing compression over every Θ(α logN)-sized group. Provided that the entries have been
randomly permuted, the ratio of real and dummy elements within each group is close to the overall
ratio over all elements. Since we now perform compression over much smaller groups, we can afford
to perform oblivious sorting within each small group and incur only O(log logN) parallel runtime.

Additional techniques. Our final scheme is rather sophisticated and involves numerous addi-
tional techniques and building blocks. For example, we devise a new algorithm for performing
parallel removal of fetched blocks from the OPRAM’s data structure. We devise a lazy adaptation
technique for adjusting our OPRAM’s number of subtrees if the number of PRAM CPUs varies
over time. To achieve asymptotically optimal parallel runtime for large blocks, we devise non-trivial
techniques for parallelizing Circuit ORAM’s eviction algorithm.

1.3 Organization

Our final construction is rather sophisticated, and we use the following structure to break down
the complexity in our presentation.

Section 2 contains an overview of our scheme described in the order of our thought process:
we start by reviewing Chen et al. [6] scheme and observing why their scheme is inefficient. Since
our final construction has many inter-related components, we first describe a much simpler (but
nonetheless non-trivial) warmup scheme (Section 2.4) that improves the total work by a logarithmic
factor in comparison with Chen et al. [6], but does not guarantee small parallel runtime. Using
the warmup scheme as a stepping stone, we then introduce non-trivial techniques to asymptotically
improve the parallel runtime of the online stage (Section 2.7), by performing appropriate prepara-
tion work in the offline stage. For clarity, Section 2 makes a few simplifying assumptions, e.g., the
number of PRAM CPUs is fixed.

Then, Sections 4, 5, and 6 spell out the details of the full scheme and proofs, and generalize the
description to allow the number of PRAM CPUs to vary. We suggest that the reader read Section 2
first to understand the high-level intuition before looking for the details of concrete building blocks
and subroutines in Sections 4, 5, and 6.

Besides those presented earlier in this section, additional related work is provided in Section 2.10.
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2 Technical Roadmap

2.1 Background: Circuit ORAM

We review tree-based ORAMs [7, 29, 32, 33] originally proposed by Shi et al. [29]. We specifically
focus on describing the Circuit ORAM algorithm [33] which we build upon.

We assume that memory is divided into atomic units called blocks. We first focus on describing
the non-recursive version, in which the CPU stores in its local cache a position map henceforth
denoted as posmap that gives information on the position for every block.

Data structures. The memory is organized in the form of a binary tree, where every tree node is
a bucket with a capacity of O(1) blocks. Buckets hold blocks, where each block is either dummy or
real. Throughout the paper, we use the notation N to denote the total number of blocks. Without
loss of generality, we assume that N = 2L is a power of two. The ORAM binary tree thus has
height L.

Besides the buckets, there is also a stash in memory that holds overflowing blocks. The stash
is of size O(α logN), where α = ω(1) is a parameter related to the failure probability. Just like
buckets, the stash may contain both real and dummy blocks. Henceforth, for convenience, we will
often treat the stash as part of the root bucket.

Main path invariant. The main invariant of tree-based ORAMs is that every block is assigned to
the path from the root to a randomly chosen leaf node. Hence, the path for each block is indicated
by the leaf identifier or the position identifier, which is stored in the aforementioned position map
posmap. A block with virtual address i must reside on the path indicated by posmap[i].

Operations. We describe the procedures for reading or writing a block at virtual address i.

• Read and remove. To read a block at virtual address i, the CPU looks up its assigned path
indicated by posmap[i], and reads this entire path. If the requested block is found at some
location on the path, the CPU writes a dummy block back into the location. Otherwise, the
CPU simply writes the original block back. In both cases, the block written back is re-encrypted
such that the adversary cannot observe which block is removed.

• Remap. Once a block at virtual address i is fetched, it is immediately assigned to a new path.
To do this, a fresh random path identifier is chosen and posmap[i] is modified accordingly. The
block fetched is then written to the last location in the stash (the last location is guaranteed
to be empty except with negligible probability at the end of each access). If this is a write
operation, the block’s contents may be updated prior to writing it back to the stash.

• Evict. Two paths (particularly, one to the left of the root and one to the right of the root)
are chosen for eviction according to an appropriate data independent criterion. Specifically, we
recommend using the reverse lexicographical order approach initially proposed by Gentry et
al. [13] and later adopted in other schemes such as Circuit ORAM [33].

For each path chosen (that includes the stash), the CPU performs an eviction procedure along
this path. On a high level, eviction is a maintenance operation that seeks to move blocks along
tree paths towards the leaves — and importantly, in a way that respects the aforementioned
path invariant. The purpose of eviction is to avoid overflow at any bucket.

Specifically in Circuit ORAM, this eviction operation involves making two metadata scans of
the eviction path followed by a single data block scan.

A useful property of Circuit ORAM’s eviction algorithm. For the majority of this paper
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with the exception of Section A, the reader needs not know the details of the eviction algorithm.
However, we point out a useful observation regarding Circuit ORAM’s eviction algorithm.

Fact 1 (Circuit ORAM eviction). Suppose Circuit ORAM’s eviction algorithm is run once on some
path denoted path[0..L], where by convention we use path[0] to denote the root (together with the
stash) and path[L] is the leaf in the path. Then, for every height i ∈ {1, . . . , L}, it holds that at most
one block moves from path[0..i− 1] to path[i..L]. Further, if a block did move from path[0..i− 1] to
path[i..L], then it must be the block that can be evicted the deepest along the eviction path (and if
more than one such block exists, an arbitrary choice could be made).

Recursion. So far, we have assumed that the CPU can store the entire position map posmap
in its local cache. This assumption can be removed using a standard recursion technique [29].
Specifically, instead of storing the position map in the CPU’s cache, we store it in a smaller ORAM
in memory — and we repeat this process until the position map is of constant size.

As long as each block can store at least two position identifiers, each level of the recursion will
reduce the size of the ORAM by a constant factor. Therefore, there are at most O(logN) levels of
recursion. Several tree-based ORAM schemes also describe additional tricks in parametrizing the
recursion for larger block sizes [32,33]. We will not describe these tricks in detail here, but later in
Section 8 we will recast these tricks in our OPRAM context and describe further optimizations for
large block sizes.

Circuit ORAM performance. For general block sizes, Circuit ORAM achieves O(α logN)
blowup (in terms of bandwidth and the number of accesses) in the non-recursive version, and
O(α log2N) blowup across all levels of recursion. The CPU needs to hold only O(1) blocks at any
point in time.

2.2 Simplifying Assumptions and Notations

To aid understanding, let us first make a few simplifying assumptions — all these assumptions are
not needed in our final scheme, we make them here only for ease of exposition.

• Every PRAM step contains m access requests, where m is a power of 2. For the time being, we
consider that m is fixed. We will also assume that all these m access requests ask for distinct
logical addresses — if not, as Boyle et al. pointed out [3], we can easily adopt a conflict resolution
algorithm to suppress and replace duplicate requests with dummy ones, and after data has been
fetched, oblivious multicast techniques can send fetched data to all request CPUs. Boyle et al. [3]
showed that such conflict resolution and multicast can be implemented obliviously with total
O(m logm) work and O(logm) parallel runtime.

• Initially, it will help the reader to think of the special case where m =
√
N (or m = N ε for any

constant 0 < ε < 1). Note that in this case, O(logm) and O(logN) are the same. In some sense,
only intermediate values of m are interesting. When m is as large as Θ(N), we can simply have N
CPUs perform oblivious routing [3] to serve m simultaneous requests. On the other hand, when
m is as small as O(1), the OPRAM basically degenerates to the sequential case of ORAM.

In our formal scheme description later, we will express our bounds for general m and N .

2.3 Pre-Warmup: The CLT OPRAM Scheme

We outline the approach of Chen et al. [6] which achieves O(log3N) blowup in both total work
and parallel runtime. We describe a variant of their scheme [6] that uses Circuit ORAM instead of
Path ORAM, but in a way that captures all the core ideas of Chen et al. [6].
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Suppose we start with Circuit ORAM [33], the state-of-the-art tree-based ORAM. Circuit
ORAM is sequential, i.e., supports only one access at a time — but we now would like to sup-
port m simultaneous accesses.

Challenge for parallel accesses: write conflicts. A strawman idea for constructing OPRAM
is to have m CPUs perform m ORAM access operations simultaneously. Reads are easy to handle,
since the m CPUs can read m paths simultaneously. The difficulty is due to write conflicts, which
arise from the need for m CPUs to 1) each remove a block from its bucket if it is the requested
one; and 2) to perform eviction after the reads. In particular, observe that the paths accessed by
the m CPUs overlap, and therefore it may be possible that two or more CPUs will be writing the
same location at the same time. It is obvious that if such write conflicts are resolved arbitrarily
where an arbitrary CPU wins, we will not be able to maintain even correctness.

Subtree partitioning to reduce write contention. Chen et al.’s core idea is to remove buckets
from smaller heights of the Circuit ORAM tree, and start at a height with m buckets. In this way,
we can view the Circuit ORAM tree as m disjoint subtrees — write contentions can only occur
inside each subtree but not across different subtrees.

Now since there are m CPUs in the original PRAM, each batch contains m memory access
requests — without loss of generality, we will assume that all of these m requests are distinct —
had it not been the case, it is easy to apply the conflict resolution algorithm of Boyle at al. [3] to
achieve distinctness.

Each of these m requests will look for its block in a random subtree independently. By the
Chernoff bound, each subtree receives O(α logm) requests with all but negligible probability. Chen
et al.’s algorithm proceeds as follows, where performance metrics are for the non-recursive version.

1. Fetch. A designated CPU per subtree performs the read phase of these O(α logm) requests
sequentially, which involves reading O(α logm) paths in the tree. Since each path is O(logN)
in length, this step incurs O(αm logm logN) total work and O(α logm logN) parallel runtime.

2. Route. Obliviously route the fetch results to the requesting CPUs. This step incurs O(m logm)
total work and O(logm) depth.

3. Remap. Assign each fetched block to a random new subtree and a random leaf within that
subtree. Similarly, each subtree receives µ = O(α logm) blocks with extremely high probability.
Now, adopt an oblivious routing procedure to route exactly µ blocks back to each subtree, such
that each tree receives blocks destined for itself together with padded dummy blocks. This step
incurs incurs O(αm log2m) total work and O(logm) parallel runtime.

4. Evict. Each subtree CPU sequentially performs µ = O(α logm) evictions for its own subtree.
This step incurs O(αm logm logN) total work and O(α logm logN) parallel runtime.

Note that to make the above scheme work, Chen et al. [6] must assume that each subtree CPU
additionally stores an O(α logN)-sized stash that holds all overflowing blocks that are destined for
the particular subtree — later in our scheme, we will get rid of this CPU cache, such that each
CPU only needs O(1) blocks of transient storage and does not need any permanent storage.

Recursive version. The above performance metrics assumed that all CPUs get to store, read,
and update a shared position map for free. To remove this assumption, we can employ the standard
recursion technique of the tree-based ORAM framework [29] to store this position map. Assuming
that each block has size at least Ω(logN) bits, there can be up to logN levels of recursion.

Therefore, assuming m =
√
N , the total work across all levels of recursion is O(αm log3N), and

the parallel runtime is O(α log3N) for Chen et al. [6].
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2.4 Warmup: Achieve O(log2 N) Blowup in Total Work and Parallel Runtime

As a warmup exercise, we describe a basic scheme that achieves O(log2N) blowup in total work
and parallel runtime. Since this is not our final construction, we will not formalize this warmup
scheme later.

We stress that even this warmup scheme already achieves asymptotic savings in comparison
with the state-of-the-art OPRAM: as mentioned, the best existing scheme Chen et al. [6] achieves
O(log3N) blowup in both total work and depth; and thus our warmup scheme saves a logarithmic
factor in both metrics. To achieve this, we introduce a few new techniques on top of Chen et al. [6]
— although the warmup scheme is not the most technically sophisticated part of our work, these
new techniques are nonetheless non-trivial and interesting in their own right.

A pool and 2m subtrees: reduce write contention by partitioning. Following the approach
of Chen et al. [6], we reduce write contention by partitioning the Circuit ORAM into 2m subtrees3.
However, on top of Chen et al. [6], we additionally introduce the notion of a pool, a data structure
that we will later utilize to amortize evictions across time4.

We restructure a standard Circuit ORAM tree in the following manner. First, we consider a
height with 2m buckets, which gives us 2m disjoint subtrees. All buckets from smaller heights,
including the Circuit ORAM’s stash, contain at most O(m+α logN) blocks— we will simply store
these O(m+α logN) blocks in an unstructured fashion in memory, henceforth referred to as a pool.

Fetch. Whenever there are m CPUs requesting (distinct) blocks, we now need to look up the
blocks in two places:

• Subtree lookup: Each of the m requests will go to a random subtree. Clearly each subtree gets
O(1) number of requests in expectation. Further, by a simple Chernoff bound, each subtree gets
O(α logN) requests with all but negligible probability in N . Note that this already serves to
reduce write contention, since each subtree now gets O(α logN) contention, as opposed to m,
had had we used m disjoint subtrees. The best existing scheme by Chen et al. [6] stops here and
does not further parallelize within each subtree but we will. It is easy to observe that reading up
to O(α logN) paths can easily be parallelized by assigning each path to a designated path-CPU.
This way, in O(logN) steps, each path-CPU fetches the requested block (or dummy) from its
own path — for the time being, we do not need to parallelize reads over a path, but we will later.

All fetched blocks are merged into the central pool. Notice that at this moment, the pool size
has grown by a constant factor, but later in a cleanup step, we will compress the pool back to its
original size. Also, at this moment, we have not removed the requested blocks from the subtrees
yet, and we will remove them later in the maintain phase.

• Pool lookup: At this moment, all requested blocks must be in the pool. We now rely on oblivious
routing to route blocks back to each requesting CPU. More specifically, we assign O(m) auxiliary
CPUs, one to each block in the pool. Now, using blivious routing (described in Section 2.2), the
m request CPUs can each get back the item requested, or output ⊥ if not found. This results in
O(m logm) total work and O(logm) parallel runtime.

Maintain. In the maintain phase, we must 1) remove all blocks fetched from the paths read; and
2) perform eviction on each subtree.

• Efficient simultaneous removals. After reading each subtree, we need to remove up to µ :=
O(α logN) blocks that are fetched. Such removal operations can lead to write contention when

3Although we choose 2m for concreteness, any c ·m for a constant c > 1 would work.
4In our final scheme, this (flat) pool will be replaced with (semi-structured) group stashes — an ingredient (among

several others) necessary to achieve small parallel runtime.
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done in parallel: since the paths read by different CPUs overlap, up to µ := O(α logN) CPUs
may try to write to the same location in the subtree.

Therefore, we propose a new oblivious parallel algorithm for efficient simultaneous removal. Our
algorithm allows removal of the m fetched blocks across all trees in O(m logN) total work and
O(logm) parallel runtime.

We defer the detailed description of this simultaneous removal algorithm to Section 5.1.

• Lazy evictions. Simultaneous evictions are even trickier to handle than simultaenous removals.
Recall that after the reads and the simultaneous removals, each block fetched is now assigned to
a new random subtree (and a random new leaf). Similarly due to a simple Chernoff bound, we
can show that with all but negligible probability, each subtree receives at most µ := O(α logN)
blocks to be evicted into that subtree. Notice that to retain obliviousness, the number of blocks
getting reassigned to any subtree must be kept secret.

A naive approach therefore is to perform µ := O(α logN) evictions per subtree per access.
Unfortunately, this clearly incurs an extra logN factor in total work. In particular, observe
that in expectation each subtree gets reassigned only O(1) number of blocks from the current
batch fetched, but we would be making every subtree suffer from an extra α logN if we made µ
evictions per subtree.

Our solution is lazy eviction. Instead of making µ := O(α logN) evictions per access, we
amortize evictions over time: with each access, we stipulate that each subtree gets to evict
exactly once, i.e., on exactly one eviction path chosen according to some data independent
criterion. Any block assigned to the subtree that cannot be evicted or simply overflows from
the subtree is entered into the central pool. As we mention later, it is not hard to see that the
pool size can be upper bounded by O(m) with all but negligible probability.

• Efficient pool-to-subtree routing. At this moment, it helps to think of the pool as the union of
all subtrees’ stashes, where each subtree’s stash is the union of overflowing blocks destined for
the subtree. Suppose an eviction CPU is in charge of evicting on a particular path in subtree i.
A naive approach would require the CPU to extract the stash for subtree i from the pool.

Recall that with Circuit ORAM, each subtree’s stash is O(1) in expectation but more than
Ω(α logN) in the rare case. To retain obliviousness, we cannot reveal how many blocks in the
pool are destined for each subtree. Therefore, a naive approach is to rely on oblivious routing,
such that we start out with the pool of O(m) blocks, and at the end of the routing, every
subtree’s eviction CPU obtains O(α logN) possibly dummy blocks. Unfortunately, this naive
approach incurs an extra O(α logN) blowup due to an average-case rare-case discrepancy —
effectively we are padding to the worst-case for obliviousness, and we thus incur the rare-case
cost rather than the average-case.

Fortunately, this need not be the case. Here we leverage a special property of the Circuit ORAM
algorithm: due to Fact 1, each eviction on a path will move at most one block — particularly the
deepest block with respect to the eviction path — from the stash into the tree. Since we perform
O(1) evictions per subtree per access, it suffices to route O(1) blocks from the pool to each
subtree rather than routing the entire subtree’s stash which can be as large as O(α logN). We
can achieve such routing in O(m logm) total work and O(logm) parallel runtime by oblivious
sorting. The routing algorithm will need to use the Circuit ORAM’s deepest criterion for selecting
the blocks for each subtree.

• Pool cleanup. At the end of the maintain phase, we must compress the pool back to c ·m blocks
for some fixed constant c. Otherwise, the pool will keep growing as we place more fetched blocks
in them. Such compression can easily be achieved through oblivious sorting.
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To make this work, we need to prove a concentration bound that the pool size will be bounded
by O(m) with all but negligible probability — despite lazy eviction and possibly more blocks
overflowing into the pool as a result. Since each of the 2m subtrees in expectation gets back
only 1

2 block with each batch of accesses, as long as we perform at least one eviction per subtree
per access,it is not hard to show that at any time, the pool size is bounded by O(m) except with
negligible probability.

Later in our paper, we will also form semi-structured group stashes from this flat pool for
reasons we shall explain. Therefore, rather than proving the above bound on the pool, our
formal sections will instead bound the group stashes.

Notable differences from Chen et al. [6]. In summary, even our warmup scheme asymptotically
improves the state-of-the-art OPRAM [6] through several non-trivial techniques. Specifically, the
key new ideas are the following:

1. We avoid suffering from the average-case rare-case discrepancy by amortizing evictions across
time. To enable this we need a couple techniques, including introducing an O(m)-sized pool to
hold overflowing blocks; and leveraging a special property of the Circuit ORAM algorithm as
mentioned above.

As a result, we perform only O(1) evictions per subtree per request, and we only need to
oblivious route O(1) blocks to each subtree for eviction. In comparison, Chen et al. [6] obliviously
routes O(α logm) blocks to each subtree and performs O(α logm) evictions per subtree. At the
moment, we can simply think that each eviction along a path is performed sequentially by a
single CPU as described in [33]. However, in Appendix A, we shall see that each path eviction
can be parallelized to reduce the asymptotic parallel runtime when the block size is large.

2. While Chen et al. [6] performs up to µ := O(α logm) read and remove operations within each
subtree sequentially, we parallelize the operations within each subtree. To do this, we need to
design a novel simultaneous removal algorithm to avoid write conflicts (see Section 5).

Performance. When we count all O(logN) recursion levels, the above warmup scheme achieves
O(log2N) blowup in both total work and parallel runtime.

Bound on pool occupancy. To obtain a bound on the pool occupancy at the end of each batch
of accesses, we need to prove the following. First, to analyze the stochastic process, we imagine that
there is an imaginery big ORAM tree where levels log2(m) or above correspond to our OPRAM’s
subtrees, and all smaller levels correspond to the pool. Our stochastic process is very similar to
that of Circuit ORAM, but with the following difference. In Circuit ORAM, we always read and
remove a block, and then perform exactly one eviction. Here, we perform m read and remove
operations and then m evictions. We henceforth refer to the latter stochastic process Batched
Circuit ORAM. Modulo the parallelism, the stochastic process of the warmup OPRAM scheme
is identical to that of Batched Circuit ORAM. We then show that Circuit ORAM stochastically
dominates Batched Circuit ORAM in terms of the number of blocks in the smaller log2(m) levels
of the tree (see Section 5.6). We can then bound the pool size of the warmup scheme by bounding
the total number of blocks in the smaller log2(m) levels of a Circuit ORAM tree. It is not hard to
see that the pool occupancy does not exceed O(m) + α logN except with negligible probability.

Remark 1. We remark that when the block size is large enough, i.e., B = N ε, the warmup
scheme already achieves asymptotic optimality in terms of both total work and parallel runtime
when m = N ε, where m denotes the number of PRAM CPUs and N denotes the total number of
memory blocks. In the remainder, we consider a model where the OPRAM is allowed to consume
more CPUs than the original PRAM. We show that in this case, the parallel runtime can be further
reduced asymptotically.
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2.5 Achieve Small Parallel Runtime: The Challenges

Previous works on OPRAM assume that the OPRAM must consume the same number of CPUs as
the PRAM, and they aim to use a small number of OPRAM steps to simulate each PRAM step.
In this case, the parallel runtime and total work are the same.

We consider a new OPRAM model where the OPRAM can consume more CPUs than the
PRAM. We show that in this case, the parallel runtime blowup of the OPRAM can be further
reduced. from O(log2N) to O(logN log logN) while preserving total work. Achieving this turns
out to be highly non-trivial. We also remark that the Ω(logm) parallel runtime lower bound by
Chan et al. is for this more permissive model, i.e., even when the OPRAM can consume more
CPUs than the PRAM, there is still an Ω(logm) lower bound in parallel runtime. It turns out that
reducing the parallel runtime incurs significant challenges.

To distinguish between different levels of recursion, we refer to the highest-level OPRAM holding
the N original blocks as data-OPRAM. For each 1 ≤ i < log2N − 1, we refer to the level-i ORPAM
as pos-OPRAMi, which holds 2i blocks.

In Section 2.4, we saw that each level of the recursion is a non-recursive OPRAM that has a fetch
phase and a maintain phase. The fetch phase is inherently sequential across all recursion levels: one
must look up the leaf identifier of the next level before proceeding to read the next recursion level.
On the other hand, the maintain phase is trivially parallelizable across all recursion levels: after
m blocks are fetched, the data-OPRAM and all pos-OPRAMs can perform the write-back process
simultaneously. Therefore, over all recursion levels, the maintain phase’s parallel runtime does not
blow up due to recursion, but the fetch phase’s parallel runtime must be multiplied by an O(logN)
factor that is the depth of the recursion.

Goals. Henceforth we will focus on how to reduce the parallel runtime of the fetch phase of each
non-recursive OPRAM. Our goals include the following:

1. For each pos-OPRAM, we would like to achieve O(log logN) parallel runtime for the fetch phase.

2. However, we allow the (highest-level) data-OPRAM’s fetch phase to have O(log logN + logm)
parallel runtime — the data-OPRAM is special because requests must be routed to the request
CPUs at the end, and this routing step will incur O(logm) parallel runtime.

3. We would like to achieve the reduction in parallel runtime while maintaining the same asymptotic
total work.

Dissecting the challenges. We now dissect our warmup scheme described in Section 2.4, par-
ticularly focusing on what it takes to reduce the parallel runtime of the fetch phase. The fetch
phase of the warmup scheme involves three major steps (all other operations such as simultaneous
removal of fetched blocks, routing from pool to subtrees, and evictions are non-blocking and are
considered part of the maintain phase):

• Subtree lookup (easy): First, the warmup scheme involves reading m tree paths. This step
can be quite trivially parallelized achieving O(log logN) parallel runtime and without blowing
up total work. First, we we assign logN CPUs per path to read each physical location on all
paths simultaneously. Then we run an instance of the parallel oblivious select algorithm (see
Section 3.3) per path to aggregate each path’s fetch result to a designated CPU.

• Pool lookup (hard): In the warmup scheme, the fetch phase also involves looking for the m
requested blocks in the pool. This may be achieved with oblivious routing, which unfortunately
takes Θ(logm) = Θ(logN) parallel runtime (when m =

√
N for instance). At this moment,

it is not straightforward how to reduce the parallel runtime incurred in this step — in fact, as
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Figure 1: Circuit OPRAM data structure and operations. f(N) := α logN for some
α = ω(1).

we describe later, new techniques are required, involving replacing the (flat) pool with (semi-
structured) group stashes instead.

• Route position identifiers fetched in one level to the next level’s fetch CPUs (hard): Another
notable difficulty is how to route the fetched position identifiers in one recursion level to the
next level’s fetch CPUs, who need to know which tree paths to look for the blocks. For simplicity,
let us imagine that in the d-level of recursion, a pos-OPRAMd block with address addr ∈ {0, 1}d
stores two position identifiers for the (d+ 1)-level addresses (addr||0) and (addr||1) ∈ {0, 1}d+1.
At the next level of recursion, there are 1 or 2 fetch CPUs waiting for the corresponding leaf
identifiers. Routing fetched results to the next level’s fetch CPUs must be done obliviously,
e.g., without revealing whether both (addr||0) and (addr||1) are consumed by the next level of
recursion, or only one of them is (and if so, which one).

Again, a naive approach is to rely on oblivius routing, but again this would incur Θ(logm)
parallel runtime which is too expensive for our purpose.

In the next two subsections, we will describe how to address each of the above challenges
identified. We will start by describing how to avoid using oblivious routing for the pool reads.
Next, we will describe how to route fetched results to the next recursion level’s fetch CPUs in small
parallel runtime.

2.6 From Flat Pool to Semi-Structured Group Stashes

Two extremes. As mentioned earlier, reading the (structured) tree paths requires O(log logN)
parallel runtime whereas fetching from the flat pool takes Θ(logm) parallel steps due to oblivious
routing. Previously, we have described two approaches at two ends of the spectrum:

1. The OPRAM scheme by Chen et al. [6] routes all fetched blocks back to each subtree during the
offline phase. Thus, for every access, their scheme requires routing O(α logN) blocks to each
subtree and performing O(α logN) evictions per subtree. Each subtree has a stash of O(α logN)
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in size. Therefore, this approach is inefficient during the maintain phase but the fetch phase can
be done in O(log logN) parallel time for each recursion level.

2. By contrast, our warmup scheme (Section 2.4) routes only 1 block back to each subtree and
performs 1 eviction per subtree for each access. However, our warmup scheme requires an O(m)
flat pool to store overflowing blocks. In comparison, our warmup scheme is more efficient than
Chen et al. [6] in the maintain phase by a logarithmic factor, but unfortunately the introduction
of the flat pool causes reads in the fetch phase to take Θ(logm) parallel time.

Our approach: seek middle ground. Our approach seeks a middle ground between these two
extremes. At the end of the maintain phase, we convert the pool to 2m

α logN group stashes where
each group stash is the shared stash of α logN subtrees. Each group stash obtains α logN blocks
in expectation, and 2α logN blocks with all but negl(N) probability, because α = ω(1). Notably,
except with negligible probability , the group stash’s occupancy is only a constant factor larger
than is mean. Therefore, constructing the group stashes from the flat pool could be achieved
by obliviously routing 2α logN possibly dummy blocks to each group stash — and this incurs
O(m logm) total work and O(logm) parallel time. The advantage to incur O(logm) parallel time
in the maintain phase (as opposed to the fetch phase) is that the maintain phases across different
levels of recursion can be performed in parallel, whereas the fetch phases of different levels have to
be performed sequentially.

Observe that in the fetch phase of the next step, the group stashes are ready to be used. At
the beginning of the maintain phase, we just take the union of the group stashes and the fetched
blocks and treat it as a flat pool again.

Another way to view our scheme is the following: at the end of the maintain phase, we perform
some preparation work to restore some structure on the O(m) flat pool containing overflowing
blocks. With such preparation, during the batch of reads in the next fetch phase, each subtree
can view the corresponding group stash as part of its root bucket — we can therefore leverage the
aforementioned oblivious aggregation algorithm to perform reads in O(log logN) parallel steps.

At this moment, the most significant missing piece is how one can efficiently route the fetched
position identifiers to the next recursion level, which we shall explain in the next subsection.

2.7 Routing Fetched Position Identifiers to the Next Recursion Level

Recall that the problem is the following: m fetch CPUs at recursion level d have fetched position
identifiers to be sent to recursion level d + 1. We would like to route these position identifiers to
the corresponding fetch CPUs at level d + 1. A naive approach is to rely on oblivious routing —
but this would incur Θ(logm) parallel steps. Improving this in small parallel runtime turns out to
be rather challenging.

Notations. To understand our solution, it helps to introduce a few notations. We will henceforth
assume a fan-out of 2, i.e., each block holds exactly two position identifiers.

Let D := log2N denote the total number of recursion levels. Let addr〈D〉 ∈ {0, 1}D denote a
virtual address. We will use the notation addr〈d〉 to denote a truncated d-bit address at recursion
level d. If we access a block with virtual address addr〈d〉 in recursion level d, we can obtain the
position identifiers of the next-level addresses (addr||0)〈d〉 and (addr||1)〈d〉.

Suppose that at the beginning of each PRAM step, a preparation procedure is performed in
parallel across all recursion levels. This preparation procedure examines the batch of m virtual
addresses requested (again, without loss of generality, we assume that conflict resolution has already
been done and that the m virtual addresses are distinct). Then, at each recursion level d, the
preparation procedure writes down the following instruction array (at this moment we simply claim
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that such preparation can be done efficiently and we defer the detailed algorithm to Section 6.3):

Incomplete instruction array: Instr〈d〉 :=
{

(addr〈d〉, flag, ) | dummy
}

2m

Specifically, each entry of the instruction array is either a dummy element (denoted dummy) or is
a real instruction of the form (addr〈d〉, flag, ) where addr〈d〉 is a virtual address at level d, and flag
is a 2-bit indicator that indicates whether each child of the address addr〈d〉 (i.e., the level-(d + 1)
addresses (addr||0)〈d+1〉 and (addr||1)〈d+1〉 ) is requested at the next level. At this moment, each
instruction is incomplete, and the wildcard is an empty space left to later receive the position
identifier for addr〈d〉 — only when the position identifier is received, can a fetch CPU actually
execute the instruction. Finally, the subscript 2m denotes the length of the array. Even though
there are at most m requests per recursion level, for reasons explained later, we need to pad the
instruction array with dummy elements to size 2m. To ensure obliviousness, the entries of the array
are randomly permuted obliviously.

Now, each of the 2m fetch CPU at recursion level d reads a block that contains two next-level
position identifiers. We call the result of the read a fetched array whose size is 4m (note the factor-2
blowup in size)5:

Fetched position identifiers: Fetched〈d〉 :=
{

(addr〈d+1〉, pos) | dummy
}

4m
,

where pos denotes the current position identifier for the virtual address addr〈d+1〉 at recursion level
d+1. Since a complete instruction contains a flag that indicates whether each of the next-level child
address is needed, we assume that the Fetched〈d〉 array has suppressed all level-(d + 1) addresses
not requested and replaced them with dummy.

Problem statement. We now have to solve the following challenge: given the following arrays

Fetched〈d〉 :=
{

(addr〈d+1〉, pos) | dummy
}
4m

and Instr〈d+1〉 :=
{

(addr〈d+1〉, flag, ) | dummy
}
2m

perform routing to “complete” the instructions at recursion level d + 1 where each incomplete
instruction at recursion level d+ 1 receives the correct position identifier, thus forming a completed
instruction array denoted CInstr〈d+1〉:

Completed instruction array: CInstr〈d+1〉 :=
{

(addr〈d+1〉, flag, pos) | dummy
}

2m

As mentioned earlier, we would like to achieve this in a small number of (online) parallel steps.

Overview of our approach. Our approach involves two steps:

1. Localized compression. Compress the 4m-sized Fetched〈d〉 array back to size 2m, suppressing
dummy elements. We will henceforth refer to this compressed array as Send〈d〉 (whose type
declaration is below):

Compressed fetched position identifiers: Send〈d〉 :=
{

(addr〈d+1〉, pos) | dummy
}

2m

The challenge here is that we cannot resort to a global oblivious sort for compression. Instead,
we propose an algorithm that localizes the compression work to each smaller group of elements.

5In the real construction detailed in Section 6, each entry of the fetched array actually carries the current position
identifier pos, as well as the new (random) position identifier pos′ of the corresponding block. We omit this here for
clarity of exposition.
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2. Use an offline/online paradigm for routing. Observe that at each recursion level, a read cannot
be executed until the required position identifiers are received from the previous level.

Instead of performing all the work associated with one level before starting the next level, we
observe that in each level, part of the work can be performed without the knowledge of the
position identifiers from the previous level. We refer to this part of the work as the offline
phase, which can be performed in parallel across all levels. We shall see that in the offline phase,
for each level d, we pre-compute a permutation that will align the arrays Send〈d〉 and Instr〈d+1〉

with respect to the level-(d+ 1) addresses.

In contrast, the online phase refers to work that can be performed only when the position
identifiers are known, and hence is performed sequentially level by level. After the reads are
performed in level d to form the Send〈d〉 array, we can make use of the pre-computed permutation
in the offline phase to “send” the required position identifiers to the correct entries in Instr〈d+1〉

using only O(1) parallel runtime.

To accomplish either of the above would require non-trivial techniques as we explain below.

Localized oblivious compression. Suppose we have an array of 4m elements of which at most
m are real. How can we obliviously compress the array down to 2m elements such that all real
elements are preserved (i.e., 2m dummy elements are removed)? A naive idea is to rely on oblivious
sorting over these 4m elements, but this would incur Θ(logm) parallel runtime and would be too
expensive.

Our key idea is to “localize” the compression. Suppose that these 4m elements have been
randomly permuted. Then, every consecutive 2α logN group of elements can only have α logN
real elements with all but negligible probability6, where α = ω(1) is any super-constant function.
Since this is true, we can perform localized oblivious compression, by performing oblivious sorting
(where real elements have higher priority) on each non-overlapping group of 2α logN consecutive
elements and discarding half of the elements in each group with the lowest priorities. This incurs
only O(log logN) parallel runtime instead of O(logN).

Offline/online routing. After the oblivious compression phase, we obtain a send array of the form

Send〈d〉 :=
{

(addr〈d+1〉, pos) | dummy
}

2m
. This send array contains the fetched position identifiers

of the next recursion level. The next level’s instruction array Instr〈d〉 :=
{

(addr〈d〉, flag, ) | dummy
}

2m
must now receive these position identifiers such that the instructions can be completed. Again, we
would like to achive this without performing oblivious routing in the online phase.

Our idea is the following: what if, in the offline phase, it is possible to figure out the permutation
to align the arrays Send〈d〉 and Instr〈d+1〉 with respect the level-(d+ 1) addresses? In this way, the
online phase can simply apply the permutation in a single parallel step to align the two arrays, after
which “receiving” the position identifiers becomes a simple coordinate-wise copy. Below we describe
how to carry out this idea in a way that guarantees obliviousness. The offline phase performs the
following:

1. Oblivious random permutation of incomplete instruction arrays. First, in the offline preparation
phase, after generating the incomplete instruction array Instr〈d+1〉 at each recursion level d, we
permute this array at random obliviously, i.e., without revealing the random permutation.

2. Offline emulation of the online phase. Next, the offline preparation phase will emulate the online
execution but without filling in the actually fetched contents. Specifically, it will emulate the

6Recall that we need to pad each recursion level to 2m instructions. The reason is the following: for the oblivious
compression to cut half of the elements, the fraction of real elements in the array must be a constant smaller than 1

2
.

Here we set this fraction to be 1
4
.
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Fetched
〈d〉

array (while leaving the fetched position identifiers blank). Then, it will emulate the

oblivious compression which results in the send array Send
〈d〉

. We use the notational convention
arr to denote the offline, emulated version of arr — specifically, arr is the same as arr except that
it leaves the fetched position identifiers and contents blank.

3. Construction of the routing permutation. Finally, the offline phase will figure out the permutation

to apply to Send
〈d〉

such that it is aligned with Instr〈d+1〉. This step can be achieved through a
sequence of oblivious sorts as we describe in detail in Section 6.3.

It is not hard to see that the above offline operations can be parallelized across multiple re-
cursion levels. As a result, the offline phase can be completed in O(logm) parallel runtime, and
O(αm logm logN) total work — we defer a more detailed explanation to Section 6.3.

Given the above offline preparation, we quickly recap the online phase for clarity:

1. Let d denote the current recursion level. Assign 2m fetch CPUs, each of which read one com-
pleted instruction in CInstr〈d〉. The completed instruction specifies which path to read and what
address to look for. Each fetch CPU recruits logN auxiliary CPUs to read its path and aggregate
the result, which contains 2 position identifiers for the next level.

The result of this step is the fetched array Fetch〈d〉 of size 4m.

2. Apply the oblivious compression algorithm to compress Fetch〈d〉 down to size-2m array Send〈d〉.

3. In a single parallel step, apply the routing permutation that the offline phase has pre-computed
to align the arrays Send〈d〉 and Instr〈d+1〉 in order to construct the completed instruction array
CInstr〈d+1〉 in the next level.

It is not hard to see that the online phase incurs only O(log logN) parallel steps, since both
the parallel path read and the localized oblivious compression requires only O(log logN) parallel
steps.

Obliviousness. It is important to note why the above approach preserves obliviousness. The key
observation is that each Instr〈d+1〉 array is independently and randomly permuted in the offline
phase (without revealing the permutation). Therefore, every permutation from Send〈d〉 to Instr〈d+1〉

that is revealed to the adversary is an independent, random permutation. Therefore, the adversary
could have simulated these permutations itself without knowing the data contents.

2.8 Putting it Altogether

It is now a good time to give an overview of the resulting scheme (see Figure 1). Below we describe
what happens in a pos-OPRAM level. For the (highest-level) data-OPRAM, the operations are
almost the same, except that instead of routing position identifiers to the next level’s fetch CPUs,
the data-OPRAM would instead route fetched blocks to the requesting CPUs. For each of the
following steps, we indicate whether it is performed level-by-level sequentially or in parallel across
different recursion levels of pos-OPRAM.

• All levels in parallel: offline preparation. Given a batch of memory requests (assume distinct
addresses), perform offline preparation at all recursion levels. As mentioned in Section 2.7, the
offline preparation is necessary to allow the online fetch phase to have small parallel runtime.
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• Level-by-level: fetch. Given 2m fetch instructions at a recursion level among which at most m
are real7, in parallel perform 2m reads, each of which involves reading blocks from 1) a path in
the corresponding subtree; and 2) the subtree’s corresponding group stash. The parallel reads
can be accomplished in O(log logN) time for an appropriately small α = ω(1).

• Level-by-level: route position identifiers to next level (Section 2.7). Each of the 2m fetches
returns a block. Without loss of generality, suppose that each block contains 2 position identifiers
(for the next level). Among these resulting 4m position identifiers, at most m of them are
needed by the next recursion level (recall that the next recursion level will also have 2m fetch
instructions, of which at most m are real). Now, we leverage a special procedure to route position
identifiers to the next level’s fetch CPUs in O(1) parallel steps — see Section 2.7.

• All levels in parallel: simultaneous removal. Perform a parallel remove procedure to remove all
fetched blocks from their respective paths.

• All levels in parallel: eviction. Now, the fetched m blocks and the original group stashes are
merged into a flat pool. From this pool, obliviously route exactly one (possibly dummy) block to
each subtree for eviction, where the block is selected using Circuit ORAM’s “deepest” criterion,
where deepest is defined with respect to the current eviction path. Now, perform exactly one
eviction per subtree on a path chosen according to the Circuit ORAM algorithm.

• All levels in parallel: reconstruct group stashes and compress. After eviction, each subtree has
one (possibly dummy) block leftover. All eviction leftovers are merged into the pool. Now, we
leverage oblivious sorting to reconstruct group stashes from the pool. Although not made ex-
plicit, we in fact also perform a compression operation along with the reconstruction of the group
stashes: notice that the pool has grown due to the addition of the m fetched blocks. However,
the subtree evictions should in expectation have evicted O(m) blocks back into the subtrees.
Therefore, the total occupancy of the pool (or the group stashes) will not keep increasing.

2.9 Extensions

Varying number of CPUs. Our overview earlier assumes that the original PRAM always has
the same number of CPUs in every time step, i.e., all batches of memory requests have the same
size. We can further extend our scheme for the case when the number of PRAM CPUs varies over
time. Below we briefly describe the idea while leaving details to Sections 5 and 6. Without loss of
generality, henceforth we assume that in every time step, the number of requests in a batch m is
always a power of 2 — if not, we can simply round it up to the nearest power of 2 incurring only
O(1) penalty in performance.

Suppose that the OPRAM scheme currently maintains m̂ subtrees, but the incoming batch has
m > m̂

2 number of requests. In this case, we will immediately adjust the number of subtrees to
m̂ := 2m. This can be done simply by merging more heights of the tree into the flat pool (and at
the end of the maintain phase, the flat pool will be converted to the group stashes).

The more difficult case is when the incoming batch contains less than m < m̂
2 requests. In this

case, we need to decrease the number of subtrees m̂. However, instead of decreasing m̂ immediately
to 2m, we use a lazy strategy: every time we halve the value of m̂ — and to achieve this we only need
to reconstruct one extra height of the big ORAM tree, which can be achieved through oblivious
sorting in O(m̂ log m̂) total work and O(log m̂) parallel time. In comparison, had we immediately

7Although at most m fetch instructions are real, we pad the instruction array to 2m with dummy instructions —
the need arises due to the algorithms in Section 2.7 for routing fetched position identifiers to the next recursion level.
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changed m̂ to 2m, it would have been too expensive to reconstruct up to logN heights of the
ORAM tree (e.g., when m suddenly drops to 1).

Results for large block sizes. When the block size is sufficiently large, we show the following
results:

• Circuit OPRAM achieves O(α logN) total work blowup, and O(logN) parallel runtime. In
light of Goldreich and Ostrovsky’s Ω(logN) lower bound [15, 16], Circuit OPRAM is therefore
asymptotically optimal in terms of total work

• We introduce a variant of the scheme called Circuit OPRAM∗ that achieves O(logN log logN)
total work blowup, and O(logm + log logN) parallel runtime. In light of the Ω(logm) parallel
runtime lower bound by Chan et al. [5], Circuit OPRAM∗ is asymptotically optimal in terms of
parallel runtime when m = Ω(logN). We stress that to construct this variant requires non-trivial
techniques for constructing a parallelized counterpart of Circuit ORAM’s eviction algorithm [33].

We defer the technical details and additional extensions and parametrization tricks to Section 8.

2.10 Related Work

In the introduction, we compared with some of the closely related works earlier. In this section, we
describe additional related work.

Oblivious RAM (ORAM). Oblivious RAM (ORAM) was initially proposed by Goldreich and
Ostrovsky [15,16] who showed that any RAM program can be simulated obliviously incurring only
O(α log3N) runtime blowup, while achieving a security failure probability that is negligible in N .
Numerous subsequent works [9, 17, 21, 25, 26, 29, 32, 33, 33–37] improved Goldreich and Ostrovsky’s
seminal result in different application settings including cloud outsourcing, secure processor, and
secure multi-party computation.

Most of these schemes follow one of two frameworks: the hierarchical framework, originally
proposed by Goldreich and Ostrovsky [15, 16], or the tree-based framework proposed by Shi et
al. [29]. To date, some of the (asymptotically) best schemes include the following: 1) Kushilevitz
et al. [21] showed an ORAM scheme with O(log2N/ log logN) runtime blowup for general block
sizes; and 2) Circuit ORAM [33] achieves O(α log2N) runtime blowup for general block sizes and
O(α logN) runtime blowup for large enough blocks.

On the lower bound side, Goldreich and Ostrovsky [15, 16] demonstrated that any ORAM
scheme (with constant CPU cache) must incur at least Ω(logN) runtime blowup. This well-known
lower bound was recently shown to be tight (under certain parameter ranges) by the authors of
Circuit ORAM [33], who showed a matching upper bound for sufficiently large block sizes. We note
that while the Goldreich and Ostrovsky lower bound is quite general, it models each block as being
opaque — recently, an elegant result by Boyle and Naor [4] discussed the possibility of proving a
lower bound without this restriction. Specifically, they showed that proving a lower bound without
the block opaqueness restriction is as hard as showing a superlinear lower bound on the sizes of
certain sorting circuits. Further, the Goldreich-Ostrovsky lower bound is also known not to hold
when the memory (i.e., ORAM server) is capable of performing computation [2, 9].

Oblivious Parallel RAM (OPRAM). Given that many modern computing architectures sup-
port parallelism, it is natural to extend ORAM to the parallel setting. As mentioned earlier, Boyle
et al. [3] were the first to formulate the OPRAM problem, and they constructed a scheme that
achieves O(α log4N) blowup both in terms of total work and parallel runtime. Their result was
later improved by Chen et al. [6] who were able to achieve O(α log3N) blowup both in terms of
total work and parallel runtime under O(log2N) blocks of CPU cache. There results can easily
be recast to the O(1) CPU cache setting by applying a standard trick that leverages oblivious
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sorting to perform eviction [33,34]. We note that Chen et al. [6] actually considered CPU-memory
communication and inter-CPU communication as two separate metrics, and their scheme achieves
O(α log2N log logN) CPU-memory communication blowup, but O(α log3N) inter-CPU commu-
nication blowup. In this paper, we consider the more general PRAM model where all inter-CPU
communication is implemented through CPU-memory communication. In this case, the two metrics
coalesce into one (i.e., the maximum of the two).

Besides OPRAM schemes in the standard setting, Dachman-Soled et al. [8] considered a varia-
tion of the problem (which they refer to as “Oblivious Network RAM”) where each memory bank
is assumed to be oblivious within itself, and the adversary can only observe which bank a request
goes to. Additionally, Nayak et al. [24] show that for parallel computing models that are more
restrictive than the generic PRAM (e.g., the popular GraphLab and MapReduce models), there
exist efficient parallel oblivious algorithms that asymptotically outperform known generic OPRAM.
Some of the algorithmic techniques employed by Nayak et al. [24] are similar in nature to those of
Boyle et al. [3].

3 Preliminaries

3.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a shared memory denoted
mem indexed by the address space [N ] := {1, 2, . . . , N}. In this paper, we refer to each memory
word also as a block, and we use B to denote the bit-length of each block.

We support a more general PRAM model where the number of CPUs in each time step may vary.
Specifically, in each step t ∈ [T ], we use mt to denote the number of CPUs. In each step, each CPU
executes a next instruction circuit denoted Π, updates its CPU state; and further, CPUs interact

with memory through request instructions ~I(t) := (I
(t)
i : i ∈ [mt]). Specifically, at time step t,

CPU i’s instruction is of the form I
(t)
i := (op, addr, data), where the operation is op ∈ {read,write}

performed on the virtual memory block with address addr and block value data ∈ {0, 1}B ∪{⊥}. If
op = read, then we have data = ⊥ and the CPU issuing the instruction should receive the content
of block mem[addr] at the initial state of step t. If op = write, then we have data 6= ⊥; in this
case, the CPU still receives the initial state of mem[addr] in this step, and at the end of step t, the
content of virtual memory mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be executed concurrently
with other operations even if they visit the same address. However, if multiple concurrent write
operations visit the same address, a conflict resolution rule will be necessary for our PRAM be
well-defined. In this paper, we assume the following:

• The original PRAM supports concurrent reads and concurrent writes (CRCW) with an arbitary,
parametrizable rule for write conflict resultion. In other words, there exists some priority rule
to determine which write operation takes effect if there are multiple concurrent writes in some
time step t.

• The compiled, oblivious PRAM (defined below) is a “concurrent read, exclusive write” PRAM
(CREW). In other words, the design of our OPRAM construction must ensure that there are
no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule is among the most
powerful CRCW-PRAM model, whereas CREW is a much weaker model. Our results are stronger
if we allow the underlying PRAM to be more powerful but the our compiled OPRAM uses a weaker
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PRAM model. For a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [19].

CPU-to-CPU communication. In the remainder of the paper, we sometimes describe our al-
gorithms using CPU-to-CPU communication. For our OPRAM algorithm to be oblivious, the
inter-CPU communication pattern must be oblivious too. We stress that such inter-CPU commu-
nication can be emulated using shared memory reads and writes. Therefore, when we express our
performance metrics, we assume that all inter-CPU communication is implemented with shared
memory reads and writes. In this sense, our performance metrics already account for any inter-
CPU communication, and there is no need to have separate metrics that characterize inter-CPU
communication. In contrast, Chen et al. [6] defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU can only store
O(1) memory blocks. Further, we assume for simplicity that the runtime of the PRAM, the number
of CPUs activited in each time step and which CPUs are activited in each time step are fixed a priori
and publicly known parameters. Therefore, we can consider a PRAM to be a tuple

PRAM := (Π, N, T, (St : t ∈ [T ])),

where Π denotes the next instruction circuit, N denotes the total memory size (in terms of number
of blocks), T denotes the PRAM’s total runtime, and St denotes the set of CPUs to be activated
in each time step t ∈ [T ], where mt := |St|.

Without loss of generality, we assume that N ≥ mt for all t. Otherwise, if some mt > N , we
can adopt a trivial parallel oblivious algorithm (through a combination of conflict resolution and
oblivious multicast) to serve the batch of mt requests in O(mt logmt) total work and O(logmt)
parallel time.

Remark 2. In fact, for the orginal PRAM, we only need to assume that the number of CPUs
invoked per time step is publicly known, but not which CPUs — the latter can depend on the
secret input. Specificially, we make a slight modification to our OPRAM algorithm: after serving
each batch of requests, each CPU writes down its internal state and an invocation bit indicating
whether it thinks it needs to be invoked in the next PRAM step. Our OPRAM can now obliviously
sort this array of CPU internal states, such that the ones that want to be invoked in the next
PRAM step appear before those that do not want to be invoked. In this way, if the t-th PRAM
step requires mt CPUs, in the corresponding OPRAM, the first mt CPUs can always simulate the
PRAM’s request CPUs.

3.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs are allowed
to generate private, random numbers. For simplicity, we assume that a randomized PRAM has
a priori known, deterministic runtime, and that the CPU activation pattern in each time step is
also fixed a priori and publicly known.

Statistical closeness. We use the notation {XN}
ε(N)
≈ {YN} to mean that the statistical distance

between the probability distributions {XN} and {YN} is smaller than ε(N).

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total memory size N is
said to be statistically oblivious, iff there exists a negligible function ε(·) such that for any inputs
x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)
≈ Addresses(PRAM, x1),
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where Addresses(PRAM, x) denotes the joint distribution of memory accesses made by PRAM upon
input x. More specifically, for each time step t ∈ [T ], Addresses(PRAM, x) includes the memory
addresses requested by the set of active CPUs St in time step t along with their CPU identifiers,
as well as whether each memory request is a read or write operation. Henceforth we often use the
notation OPRAM to denote a PRAM that satisfies statistical obliviousness.

Although it is also possible to define a more relaxed, computational notion of security for
OPRAM, in this paper we will achieve the stronger notion of stastitical security. Further, following
the convention of most other ORAM and OPRAM works [15,16,21,32,33], we will require that the
access patterns for any two inputs have statistical distance that is negligible in the parameter N ,
that is, the PRAM’s total memory size.

Oblivious simulation and performance measures. We say that a given OPRAM simulates a
PRAM if for every input x ∈ {0, 1}∗, OPRAM(x) = PRAM(x), i.e., OPRAM and PRAM output the
same outcome on any input x.

Suppose that an OPRAM simulates a certain PRAM, where

PRAM := (Π, N, T, (St : t ∈ [T ])), OPRAM := (Π′, N ′, T ′, (S′t : t ∈ [T ′]))

We define the following performance measures that characterize the overhead incurred by such
oblivious simulation.

(a) Parallel runtime blowup. The ratio T ′

T is said to be the parallel runtime blowup of the oblivious
simulation.

(b) Total work blowup. Let mt := |St| for any t ∈ [T ] and m′t := |S′t| for any t ∈ [T ′]. The ratio∑
t∈[T ′]m

′
t∑

t∈[T ]mt
is said to be the total work blowup of the oblivious simulation.

3.3 Building Blocks

We now describe a set of standard building blocks that we use.

Oblivious sort. Parallel oblivious sort solves the following problem. The input is an array denoted
arr containing n elements and a total ordering over all elements. The output is a sorted array arr′

that is constructed obliviously. Parallel oblivious sorting can be achieved in a straightforward way
through sorting networks [1], consuming O(n log n) total work and O(log n) parallel steps.

Oblivious conflict resolution. Oblivious conflict resolution solves the following problem: given
a list of memory requests of the form In := {(opi, addri, datai)}i∈[m], output a new list of requests
denoted Out also of length m, such that the following holds:

• Every non-dummy entry in Out appears in In;

• Every address addr that appears in In appears exactly once in Out. Further, if multiple entries
in In have the address addr, the following priority rule is applied to select an entry: 1) writes
are preferred over reads; and 2) if there are multiple writes, a parametrizable function priority is
used to select an entry.

We will use the standard parallel oblivious conflict resolution algorithm described by Boyle et
al. [3], which can accomplish the above in O(m logm) total work and O(logm) parallel steps. More
specifically, Boyle et al.’s conflict resolution algorithm relies on a constant number of oblivious sorts
and oblivious aggregation.

Oblivious routing. Oblivious routing solves the following problem. Suppose n source CPUs
each holds a data block with a distinct key (or a dummy block). Further, n destination CPUs each
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requests a data block identified by its key. An oblivious routing algorithm routes the requested data
block to the destination in an oblivious manner. Boyle et al. [3] showed that through a combination
of oblivious sorts and oblivious aggregation, oblivious routing can be achieved in O(n log n) total
work and O(log n) parallel runtime.

Oblivious select. Parallel oblivious select solves the following problem: given an array containing
n values, v1, v2, . . . , vn, compute the minimum value min(v1, . . . , vn). Parallel oblivious select can
be achieved through an aggregation tree: imagine a binary tree where the leaves represent the
initial values. We assign one CPU to each node in the tree. Now for each height ` going from
the leaves to the root, in parallel, each internal node at height ` computes the minimum of its two
children. Clearly, oblivious select can be attained in O(n) total work and O(log n) parallel steps.

In a straightforward fashion, oblivious select can also be applied to the following variant problem:
suppose that each of n CPUs holds a value, and that only one CPU is holding a real value s (but
which one is not known), and all others hold the dummy value ⊥. At the end of the algorithm, we
would like a designated fetch CPU to obtain the real value s.

4 Overview of OPRAM Construction

4.1 Notations

Number of active CPUs in PRAM. In the PRAM model, the number mt of active CPUs in
each step can change — for convenience we assume that it is a power of 2 (if not, we can always
pad it up to the nearest power of 2 incurring only a constant factor blowup in costs). The OPRAM
internally keeps a parameter m̂t, which is the number of disjoint subtrees at the end of serving
the t-th batch of memory requests. The OPRAM will maintain the invariant m̂t ≥ 2mt where mt

denotes the size of the t-th batch of memory requests for the original PRAM (i.e., the PRAM’s
number of CPUs in the t-th step). Henceforth, without risk of ambiguity, we will write m and m̂
omitting the subscript t.

In general, since the PRAM can have a varying number of CPUs in each time step, our OPRAM
algorithm will (lazily) adjust its internal parameter m̂ accordingly to closely track the real m. Our
algorithm will be described for this more general scenario, but to aid understanding, the reader
may assume that m̂ = 2m and m stays constant during the first read.

Parameter α related to failure probability. Throughout the description, we use α = ω(1) to
denote an appropriately small super constant parameter such that the failure probability is at most

1
NΘ(α) , i.e., negligible in N .

4.2 Data Structures

Subtrees. On a high level, our OPRAM maintains a binary tree structure as in Circuit ORAM [33].
We refer the reader to Section 2.1 for a review of the Circuit ORAM algorithm. However, instead
of having a complete tree, our OPRAM scheme truncates the tree at height ` := log2 m̂ containing
m̂ buckets. In this way, we can view the tree data structure as m̂ disjoint subtrees.

In the Circuit ORAM algorithm, all buckets with heights smaller than ` contain at most O(m̂+
α logN) blocks. In our OPRAM scheme, these blocks are treated as overflowing blocks, and they
are held in an overflowing data structure called group stashes as described below.

Group stashes. Instead of having one stash per subtree like in Chen et al. [6], every min{m̂, α log2N}
subtrees share a group stash. In this way, when m̂ is sufficiently large, the worst-case occupancy of
a group stash is only a constant factor larger than the mean — in comparison, in Chen et al. [6],
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there is a logarithmic gap between the worst-case and average occupancy of each subtree’s stash,
causing them to suffer from an extra logarithmic factor in performance.

All group stashes together hold a total of O(m̂ + α logN) blocks. We use K to denote the
capacity of a group stash. When m̂ < α log2N , there is only one stash, and its capacity is
K = Θ(α logN); when m̂ ≥ α log2N , each stash has capacity K = Θ(α logN).

Position map. Our OPRAM scheme views each such stash as the parent of the corresponding
subtrees. For ease of description, we still think there is an imaginary root that is the parent of all
the stashes.

Now, just like in Circuit ORAM (see Section 2.1), each address addr ∈ [N ] is associated with
a random path, and the path is identified by a leaf node. We use a position map posmap[addr] to
store the position identifier for address addr. Recall that the path invariant states that if a block
with address addr is stored in the tree, then it must reside in one of the buckets on the path from
the (imaginery) root to the leaf posmap[addr]. When block addr is accessed (via read or write), its
position posmap[addr] will be updated to a new leaf chosen uniformly and independently at random.
As in previous works [29, 32, 33], the position map is stored in an OPRAM recursively. We use
the notation pos-OPRAMs to denote all recursion levels for storing the position map, and we use
data-OPRAM to denote the top recursion level for storing data blocks.

Request CPUs and auxiliary CPUs. The t-th batch contains mt memory requests. We assume
that in the OPRAM, there are mt request CPUs that are responsible for receiving the outcome of
the memory requests, and then emulate the original PRAM’s next instruction circuit based on the
fetched data.

Besides the request CPUs, our OPRAM algorithm will need to recruit the help of auxiliary
CPUs when serving each batch of memory requests. We will give meaningful names to these
auxiliary CPUs, such as fetch CPUs, stash CPUs, which indicate their functions.

4.3 Overview of One Simulated PRAM Step

To serve each batch of memory requests, a set of CPUs interact with memory in two synchronized
phases: in the fetch phase, the request CPUs receive the contents of the requested blocks; in the
second maintain phase, the CPUs collaborate to maintain the data structure to be ready for the
next PRAM step.

The description below can be regarded as an expanded version of Section 2.8. In particular, we
now spell out what happens if mt varies over time.

Fetch phase. At the beginning of this phase, each request CPU sends its instruction to the
corresponding fetch CPU. The fetch CPUs run the following synchronized steps.

(i) Offline preparation: all recursion levels in parallel. First, for each recursion level d in parallel,
write down all request addresses truncated to level d. Now, run an instance of the oblivious
conflict resolution algorithm to suppress duplicates of the requests at level d.

Now, given a list of m (possibly dummy) memory requests with conflicts resolved, an offline
preparation phase is conducted simultaneously across all recursion levels. As a result, each
recursion level d generates an “incomplete instruction array” denoted Instr〈d〉 of length 2m (of
which at most m instructions are real) as well as additional auxiliary data to later facilitate the
routing of position identifiers to the next recursion level. Later, when the incomplete instruction
array receives the position identifiers from the previous level of recursion, it becomes complete.
The specifics of the offline preparation algorithm are described in Sections 2.7 and 6.

(ii) Fetch and route: level by level. For each recursion level, we now start with a list of 2m (possibly
dummy) completed instructions. Now,
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• Parallel read. 2m fetch CPUs each obtain one instruction, and each instruction (if not dummy)
specifies a path to read and a block to look for. Now, each fetch CPU further recruits the
help of K := O(α logN) auxiliary CPUs; and the auxiliary CPUs in parallel read all locations
on the assigned path (containing the path in the corresponding subtree, as well as the group
stash) looking for the requested block. This step can be completed in O(K) = O(α logN)
total work per path and a single parallel step.

• Gather. Using the oblivious select algorithm described in Section 3.3, the auxiliary CPUs for
each path jointly route the fetched block back to the corresponding fetch CPU. This can be
achieved in O(K) = O(α logN) total work per path and O(logK) = O(log logN) parallel
runtime.

• Route. For a pos-OPRAM level, assume that each block contains two position identifiers. Then,
a total of 4m position identifiers have been fetched, among which at most m must be consumed
by the next recursion level.

We now rely on an efficient online routing algorithm to route the m position identifiers to
the next recursion level, and in the process we complete the instruction arrays of the next
recursion level. We stress that this step contains some of the most non-trivial techniques we
devise in this paper. In particular, we show that given appropriate offline preparation, the
online routing can be completed in O(log logN) parallel runtime. We defer the details of this
algorithm to Section 6.

(iii) Oblivious multicast: once per batch of requests. Finally, when the data-OPRAM has fetched all
requested blocks, we rely on a standard oblivious routing algorithm (see Section 3.3) to route
the resulting blocks to the request CPUs. This step takes O(logm) parallel time and O(m logm)
work.

Maintain phase. All of the following steps are performed in parallel across all recursion levels:

(i) Removing accessed blocks from group stashes and subtrees. The fetch CPUs collaboratively
remove the accessed blocks from the group stashes and the subtrees in an oblivious manner.
We devise an efficient algorithm (see Section 5.1) to perform such removals in parallel. In
our algorithm, each fetch CPU recruits O(K) = O(α logN) assistant CPUs, and the removal
procedure can be accomplished with O(logm) parallel runtime and O(mK) = O(αm logN)
total work.

(ii) Treating all the group stashes as a single pool. After the accessed blocks are removed, all the
group stashes are treated as a single pool without any particular structure. If m̂ < 2m, i.e., m̂
is too small, we then set m̂ := 2m and include all buckets with heights less than log2 m̂ in the
pool. Henceforth we may assume that m̂ ≥ 2m. The case when m̂ is too large will be dealt with
later.

(iii) Passing updated blocks to the pool. Each fetch CPU updates its fetched block and tags the block
with its new position identifier (recall that the position identifier was chosen by the previous
recursion level and passed down through the level-to-level routing). The updated blocks are
merged into the pool. The pool temporarily increases its capacity to hold these extra blocks,
but the extra memory will be released at the end of the maintain phase when we reconstruct
group stashes from the pool.

(iv) Selection of eviction candidates. Following the deterministic, reverse-lexicographical order evic-
tion strategy of Circuit ORAM [33], we choose the next 2m eviction paths (pretending that all
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subtrees are part of the same big ORAM tree). The 2m eviction paths go through 2m subtrees,
henceforth referred to as the evicting subtrees. Note that if m stays constant throughout, then
it always holds that m̂ = 2m, and all subtrees would then be evicting subtrees.

We devise an “oblivious eviction candidate selection” algorithm in Section 5.3 that leverages
oblivious sorting to select one candidate block for each of the evicting subtrees. For large m̂,
this step takes O(log m̂) parallel runtime and O(m̂ log m̂) total work.

(v) Eviction into substrees. In parallel, for each evicting subtree, the eviction algorithm of Circuit
ORAM [33] is performed for the candidate block the subtree has received. The straightforward
strategy takes O(logN) parallel runtime and O(m logN) total work over all the 2m subtrees.

After the eviction algorithm completes, if the candidate block fails to be evicted into the subtree,
it will be returned to the pool; otherwise if the candidate block successfully evicts into the
subtree, a dummy block is returned to the pool.

(vi) Adjusting the number of subtrees. If m̂ > 2m, i.e., the number of subtrees is too large, we will
halve the number of subtrees by letting m̂ := m̂

2 . This means that we must reconstruct one more
height of the big Circuit ORAM. Let Z be the bucket size of the ORAM tree. To reconstruct
a height of size m̂, we must reconstruct m̂ buckets each of size Z. This can be achieved by
repeating the eviction candidate selection algorithm Z number of times (see Section 5.4).

Note that when m̂ > 2m, we do not immediately adjust the value of m̂ to 2m, since if m̂ is much
larger than 2m, this would require us to reconstruct multiple heights of big Circuit ORAM tree
in one shot, and the cost of this can be too expensive. We therefore adopt a lazy adaptation
algorithm that only halves m̂ in each step should it ever be too large.

(vii) Cleanup: reconstructing the group stashes. Finally, we convert the flat pool back to m̂
α log2N

number of group stashes. To achieve this, we devise an algorithm based on oblivious sorting
that incurs O(m̂ log m̂) total work and O(log m̂) parallel runtime (for large m̂) — we defer its
detailed description to Section 5.4. Probabilistic analysis on the stash utilization in Section 5.6
ensures that no real blocks are lost during this reconstruction with all but negligible probability.

5 Details of the Maintain Phase

An overview of the maintain phase was provided in Section 4.3. In this section, we give the details
of each step of the algorithm. Recall that all the following steps are performed in parallel across
all recursion levels.

5.1 Removing Fetched Blocks from Subtrees and Group Stashes

Problem statement. In the fetch phase, 2m fetch CPUs each look for a block in both a group
stash and a subtree (where at most m of them are real blocks). One fetch CPU is responsible for
each request instruction that is associated with a fetch path. After completing the fetch operation,
each of the 2m fetch CPUs obtains the following tuple which serves as the CPU’s input to the
simultaneous removal algorithm described below.

• The block address that it is supposed to look for (which can be dummy).

• The fetch path scanned (i.e., the block’s old position identifier).

• The height of the bucket on the path from which the fetched block should be removed (if the
block was found on the path in the subtree).
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Now, in the maintain phase, we need to remove fetched blocks from the group stashes and
subtrees. We describe how the fetched blocks are removed from the subtrees, and the case for the
group stashes is similar. Even though the fetched blocks will be returned to the group stashes, we
still have to remove a block if it is found in the group stash. The reason is that the contents of the
block (such as its position identifier) have to be updated.

Challenge: write conflicts. The difficulty with simultaneous removal is write conflict resolution.
In particular, the fetch paths may intersect, i.e., multiple fetch CPUs may have read the same
bucket. Therefore, for each bucket that lies on multiple fetch paths (i.e., read by multiple fetch
CPUs), we must accomplish the following: 1) elect a representative CPU to perform removal for
this bucket; and 2) have all other fetch CPUs that read the bucket inform the representative CPU
whether a removal operation is necessary, and if so, which block to remove. A näıve way to achieve
the above is for the 2m fetch CPUs to perform oblivious sorting and aggregation for each height
of the tree (similar to the conflict resolution algorithm in Section 3.3) — but this approach would
cost O(m logm logN) total work, which is too expensive.

We observe, however, that the adversary can observe which paths in the subtrees are scanned.
Therefore, although we need to hide which CPU wants to remove a block from which bucket, the
topology of all the fetch paths are publicly known. This observation allows us to design a new
simultaneous removal algorithm that is more efficient.

Simultaneous removal algorithm. We describe our simultaneous removal algorithm in de-
tail. We will show that the entire removal algorithm completes in O(logm) parallel runtime and
O(αm logN) total work.

• Sorting fetch paths. Each of the 2m fetch CPU writes down its input tuple containing the fetch
path, the block to be removed, and the physical location of the block on the path. All input
tuples form an array of size 2m. We now obliviously sort this array by their fetch path such
that the leftmost fetch path appears first. This step takes O(m logm) total work and O(logm)
parallel steps.

• Table creation. In parallel, fill out a table Q where each row corresponds to a height in the tree,
and each column corresponds to a fetch path (in sorted order from left to right). Specifically,
Q[`][i] stores the following: 1) the identifier of the block that the i-th fetch CPU wants to
remove from height-` of its fetch path (or dummy if none exists); and 2) the identifier of the
corresponding fetch path; and 3) the height `.

Given the output of the previous step, it is not hard to see that this step can be completed in
O(1) parallel steps and in O(m logN) total work. We assume that a CPU is assigned to each
entry of the table Q, and hence sometimes treat an entry in Q as a CPU.

• Grouping. For each row ` of the table Q, multiple locations in the row Q[`] can correspond to
the same bucket. Since the fetch paths have been sorted, if a bucket appears multiple times
in some row Q[`], all these occurrences must be in adjacent locations — henceforth we refer to
locations that correspond to the same bucket as a group. The leftmost member of a group is
said to be the group representative.

The following algorithm is run for each row independently in parallel. The goal is to let each
entry know the indices of the leftmost and the rightmost entries in its group. Let J be an upper
bound on the number of entries in a group. Trivially, we have J ≤ m. However, since the
m requests are distributed randomly among m̂ ≥ 2m subtrees, each subtree receives at most
α logN requests with all but negligible probability. Hence, with all but negligible probability,
we have J ≤ min{m,α logN}; without loss of generality, we assume that J is a power of 2. It
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is not hard to see that this procedure in total requires O(m logN) total work and O(log J) =
O(min(log logN, logm)) parallel runtime over all rows of the table.

1. Recall that each entry in row Q[`] is equipped with a CPU. Each entry looks at its left
neighbor and right neighbor in Q and decides whether it is the leftmost entry in its group,
i.e., the group representative.

2. Each entry that is its group’s representative performs a binary search to identify the rightmost
member of the group. To achieve this, the entry looks at the element 1, 2, 4, . . . positions away
to its right, until it reaches the end of the row or an element that does not belong to the same
bucket. Then, the representative entry performs a binary search in the range identified above
to find the rightmost member of its group. Recall that each group has at most J elements.
Therefore, for each row, this step can be accomplished in O(log J) parallel time and O(m)
total work.

At this point, non-representative entries are asleep, and representative entries are awake. The
invariant is that an awake entry knows the indices of the leftmost and the rightmost entries
in its group.

3. For round from i = 0 to log2 J , the following happens. Each currently asleep entry whose
index j satisfies j mod J

2i
= 0 begins to wake up and waits for a message from an already

awake entry in its group. On the other hand, each entry i that is already awake sends a
message (containing the indices of the leftmost and the rightmost entries in its group) to an
entry j (if any) that satisfies the following condition: (i) j is the smallest index larger than i
such that j mod J

2i
= 0, (ii) entry j is beginning to wake up in this round, and (iii) entry j

is in the same group as entry i. After receiving a message, entry j becomes awake.

It follows that after the last round, every entry is awake and hence knows the leftmost and
the rightmost entries in its group. Apart from the representatives, each entry i = (2k+ 1) ·2r
will be awake for r rounds. Hence, the total work is O(m) for each row and the parallel
runtime is O(log J).

• Gathering removal instruction. The goal of this step is for all non-representative CPUs of a
bucket to inform the representative CPU whether it wants to remove a block from the bucket,
and if so, which block. To achieve this, we repeat the oblivious select algorithm (see Section 3.3)
Z = O(1) times, where Z denotes the bucket size. Hence, for each location in the bucket, the
representative CPU gathers information from all CPUs in its group on whether to remove the
block from that specific location.

Since each row has size 2m, at most 2m locations in the table Q can correspond to the same
bucket. Therefore, this step can be accomplished in O(logm) parallel steps and O(m logN)
total work.

• Removal. All representative CPUs perform the actual removal from the bucket it represents.

The above description did not take group stashes into account. However, we point out that
the case for removing blocks from the group stashes is similar, because each stash can be treated
like a path, where the index of a block within a stash behaves like a height in the path. When we
take the group stashes into account, effectively the height of the tree becomes O(α logN) instead
of O(logN). Therefore, overall, the simultaneous removal can be accomplished in O(logm) parallel
time and O(αm logN) total work.
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5.2 Convert Group Stashes to Pool

For completeness, we repeat two relatively simple steps that were described in the overview in
Section 4.3.

Interpreting the group stashes as a single pool. After the fetched blocks are removed, we
will treat all the group stashes as a single pool without any particular structure. If m̂ < 2m, i.e.,
the number of subtrees is too small, we set m̂ := 2m, and also treat all buckets at heights smaller
than log2 m̂ as part of the pool (by simply ignoring part of the tree structure). Note that the pool
has a capacity of O(m̂+ α logN) blocks.

If m̂ > 2m, i.e., the number of subtrees is too large, we do not change m̂ at this point; we
modify m̂ at the end of the maintain phase during cleanup.

Passing updated blocks to the pool. Each fetch CPU updates its fetched block and tags the
block with its new position identifier. The new position identifier was in fact chosen by the previous
recursion level and passed down during the level-to-level routing, when the next level’s instruction
array is being completed — the details of this will be presented in Section 6.

The updated blocks are merged into the pool. The pool temporarily increases its capacity to
hold these extra blocks, but the extra memory will be released at the end of the maintain phase
when we reconstruct group stashes from the pool.

5.3 Evictions

Recall that in the sequential Circuit ORAM [33], whenever a fetched (and possibly updated) block
is added to the root, two path evictions must be performed. The goal of Circuit OPRAM is
to simulate the stochastic process of Circuit ORAM. However, since Circuit OPRAM does not
maintain the tree structure for lower heights of the tree, we only need to partially simulate Circuit
ORAM’s stochastic process for the m̂ disjoint subtrees that Circuit OPRAM does maintain. Our
algorithms described below make use of certain non-blackbox properties of the Circuit ORAM
algorithm [33]. In our description below, we will point out these crucial properties as the need
arises, without re-explaining the entire Circuit ORAM construction [33].

Select 2m distinct eviction paths in 2m distinct subtrees. At this point, a batch of 2m
requests have been made, of which at m real blocks are fetched and possibly updated blocks
(together with the dummy blocks). All the 2m fetched (real or dummy) blocks have been added
back to the pool which is an overflowing structure containing all smaller heights of the big Circuit
ORAM tree. To perfectly simulate Circuit ORAM’s stochastic process, at this point we must
perform 2m evictions on 2m distinct paths. We leverage Circuit ORAM’s deterministic, reverse-
lexicographical order for determining the next 2m eviction paths. The specifics of the eviction path
selection criterion is not important here, and the reader only needs to be aware that this selection
criterion is fixed a priori and data independent. For more details on eviction path selection, we
refer the reader to Circuit ORAM [33].

Fact 2. Observe that at this point, m̂ ≥ 2m. Due to Circuit ORAM’s eviction path selection
criterion, all 2m eviction paths will not only be distinct, but also correspond to distinct subtrees
— henceforth we refer to these subtrees as evicting subtrees. For the special case when m stays a
constant over time, it always holds that m̂ = 2m. In this case, we have that all 2m subtrees are
evicting subtrees, and exactly one path is evicted in each subtree.

Select 2m eviction candidates. We will now leverage a special property of the Circuit ORAM’s
eviction algorithm described earlier by Fact 1 such that we perform a “partial eviction” only on
the subtrees maintained by our Circuit OPRAM. Recall that Fact 1 says the following:
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• For Circuit ORAM’s eviction algorithm, at most one block passes from path[: i] to path[i+ 1 :]
for each height i on the eviction path denoted path. In this case we also say that the block
passes through the boundary between height i and height i+ 1.

• Moreover, if a block does pass through the boundary between height i and height i+ 1, it must
be the block that is deepest with respect to the eviction path, where deepest is a criterion defined
by Circuit ORAM [33]. Since the specifics of the deepest function are not important here, we
simply refer the reader to Circuit ORAM [33] for details.

Therefore, we only need to elect one candidate block from the pool for each of the 2m eviction
paths on which we would like to perform eviction. We describe an algorithm for performing such
selection based on two different cases:

• Case 1: when m̂ > α logN . We devise an algorithm based on a constant number of oblivious
sorts. Since the pool contains O(m̂) blocks, the parallel runtime of this algorithm is O(log m̂)
and the total work is O(m̂ log m̂).

(a) In the beginning, each block in the pool is tagged with the block’s position identifier.

Now, assign one auxiliary CPU to each block in the pool, compute and tag the block with
the additional metadata (treeid, priority) which will later be used as a sort key, where treeid
denotes the block’s destined subtree if the destined subtree is an evicting subtree, otherwise
treeid := ⊥; further, priority denotes the block’s eviction priority within the subtree. The
block’s priority value can be computed using the deepest rule of Circuit ORAM algorithm [33],
using the eviction path (corresponding to the subtree identified by treeid), and the block’s
position identifier as input.

(b) We add 2m dummy blocks to the pool, each tagged with a distinct treeid from the 2m evicting
subtrees. The priority values of these dummy blocks are set to −∞, i.e., least preferred. These
dummy blocks are added only to make sure that in the end, every evicting subtree gets a block
even though the block may be dummy.

(c) In parallel, oblivious sort all blocks based first on their treeid, and second on their priority. In
other words, if we order all evicting subtrees from left to right, blocks destined for a smaller
evicting subtree occurs before blocks destined for a larger evicting subtree. Further, all blocks
not destined for an evicting subtree occurs at the end. For the same evicting subtree, a block
with a higher priority value occurs before a block with a lower priority value. If there are still
ties, we can adopt an arbitrary way to break the tie.

(d) Now assign one CPU to each block in this sorted list. Each CPU looks at its left neighbor to
determine if it is the top priority block for an evicting subtree. For any block that is not the
top priority block for an evicting subtree, the CPU changes the block’s metadata tag to ⊥.

The result of this step is an array containing all blocks in the original pool, such that only
those that are the final eviction candidates are tagged with a real tag (treeid, priority); all other
blocks are tagged with ⊥.

(e) Finally, oblivious sort the above list based on the block’s treeid, and moving all blocks tagged
with ⊥ to the end. Now, the first 2m blocks in the sorted list are the selected eviction
candidates for the 2m evicting subtrees respectively. The remaining blocks are returned to the
pool.

• Case 2: when m̂ ≤ α logN . In this case, the pool contains Θ(α logN) blocks, and performing
oblivious sort will cause a total work of Ω(logN log logN), which is too expensive if m̂ is small.
Instead, we perform the following, which can be accomplished in O(logm + log logN) parallel
runtime and O(αm logN) total work:
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(a) For each of the 2m eviction paths, we assign O(α logN) auxiliary CPUs, such that each
auxilary CPU looks at one block in the pool and computes its priority with respect to the
eviction path (if the block does not belong to the relevant eviction path, its priority is defined
to be −∞).

(b) Now, for each of the 2m eviction paths, its group of O(α logN) auxiliary CPUs perform an
oblivious select to determine the highest priority block with respect to the eviction path.

(c) Finally, for each block in the pool, the 2m CPUs that have looked at the block perform an
oblivious select operation to determine a bit indicating whether the block should be removed.
Then, we assign a CPU for each block in the pool that reads this bit, and performs removal if
necessary.

Evictions. At this point, each of the 2m eviction paths has received one candidate block (which
can be dummy). Hence, these 2m evictions can be carried out in parallel, each according to
the (sequential) eviction algorithm of Circuit ORAM [33]. More specifically, we first expand each
eviction path by one block that corresponds to the eviction candidate selected earlier (we henceforth
refer to this as the smallest block on the path); we then run Circuit ORAM’s (sequential) eviction
algorithm on each of these 2m (expanded) paths in parallel.

At the end, the smallest block on each eviction path is returned to the pool. Note that if the
eviction candidate has been successfully evicted into the path, then the smallest block on the path
would be dummy, and thus a dummy block is returned to the pool. In a final cleanup step described
later, we restore the group stashes from the pool, suppressing a subset of the dummy blocks in the
process, thus ensuring that the group stashes/pool data structures do not keep growing.

Doing this according to Circuit ORAM’s eviction algorithm [33] takes O(logN) parallel runtime
and (m logN) total work. This would suffice for our basic result for general block sizes. However, as
an optimization for larger block sizes, we will later describe how to reduce the parallel runtime of the
eviction algorithm to O(log logN), at the cost of increasing the total work to O(m logN log logN)
(see Section A).

5.4 Cleanup: Reconstructing the Group Stashes

Adjusting the number of subtrees. If m̂ > 2m, i.e., the number of subtrees is too large, we will
halve the number of subtrees by letting m̂ := m̂

2 . This means that we must reconstruct one more
height of the big Circuit ORAM. Let Z be the bucket size of the ORAM tree. To reconstruct a
height of size m̂, we must reconstruct m̂ buckets each of size Z. This can be achieved by repeating
the eviction candidate selection algorithm Z number of times (see Section 5.3).

Note that when m̂ > 2m, we do not immediately adjust the value of m̂ to 2m, since if m̂ is
much larger than 2m, this would require us to reconstruct multiple heights of big Circuit ORAM
tree in one shot, and the cost of this can be too expensive. We therefore adopt a lazy adaptation
algorithm that only halves m̂ should it ever be too large.

Convert pool back to group stashes. We now restore the d m̂
α logN e number of group stashes

from the pool. Each group stash is given K = Θ(α logN) space as given by Corollary 1. Although
the pool may contain more than K · d m̂

α logN e blocks, a subset of these blocks are dummy — we
prove later in Section 5.6 that no real block is removed during this pool to group stash conversion.
In other words, during the pool to group stash conversion, we also effectively suppress a subset of
the dummy blocks in the pool, thus releasing some extra space previously allocated to hold dummy
blocks in the pool.

We now describe the pool to group stash conversion algorithm. We consider two cases:
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• Case 1: when m̂ > α logN . The group stashes can be restored using a constant number of
oblivious sorts consuming O(log m̂) parallel time and O(m̂ log m̂) total work.

(a) Let K := Θ(α logN) denote the maximum capacity of each group stash as indicated by
Corollary 1. Assign one CPU per block of the pool, and in parallel tag each block with the
metadata stashid denoting which group stash the block belongs to. Note that the stashid of a
block can be computed from the block’s position identifier and any block always carries around
its position identifier. At this time, all dummy blocks are assigned stashid := ⊥.

(b) For each group stash i ∈ [d m̂
α logN e], add K dummy blocks to the pool whose stashid is set to

i. This step is necessary to ensure that later each group stash receives at least K possibly
dummy blocks.

(c) Oblivious sort all blocks in the pool based on their stashid. In this way, blocks with a smaller
stashid occurs before blocks with a larger stashid. All blocks with the same stashid occur
consecutively in a row.

(d) Now assign one auxiliary CPU to each block in the above sorted array. A CPU for the i-th
block looks at the (i−K)-th block: if i−K > 0 and the (i−K)-th block has the same stashid
as the i-th block, then CPU i overwrites its block’s stashid with ⊥. In this way, exactly K
blocks for each stashid will be preserved.

(e) Finally, oblivious sort the above array again based on each block’s stashid. Now, the first
K · d m̂

α logN e locations in the array correspond to the d m̂
α logN e group stashes respectively, each

of which has size exactly K.

• Case 2: when m̂ ≤ α logN . In this case, there is only one stash, and O(m) blocks of memory
is supposed to be released from the stash. We further consider two sub-cases.

(i) Case m ≥ log logN . In this case, we can release O(m) blocks from the stash by oblivious
sorting, which takes parallel runtime O(logK) = O(log logN) and total work O(K logK) =
O(mK).

(ii) Case m < log logN . In this case, oblivious sorting on the stash causes too much total work.
In this case, we do not release the extra O(m) blocks from the stash and just let it grow.

Observe that log logN << K = O(α logN). As long as there is some PRAM step in which
m is at least log logN , we can afford to perform oblivious sorting to reduce the capacity of
the stash. On the other hand, if m is small for consecutive log logN steps, then the stash will
grow by at most O(log logN)2 << K blocks. Then, at the end of the log logN steps, we can
perform oblivious sorting to clean up the stash, with total work O(K logK) = O(K log logN),
which causes only O(K) total work when amortized over log logN steps.

5.5 Performance of the Maintain Phase

Accounting for the cost of all of the above steps, we can easily derive the following lemma for the
performance of the maintain phase.

Lemma 1 (Performance of the maintain phase). Suppose that the block size B = Ω(logN), and at
the beginning of serving the batch of m requests the OPRAM has m̂ number of subtrees. Then, to
serve the batch of m requests, the maintain phase, over all O(logN) levels of recursion, incurs a
parallel runtime of O(logN) and a total work of O(αm log2N + m̂ log2N).

Remark 3. To be precise, the parallel runtime is O(logm+ log m̂+ log logN + logN), where the
O(logN) term comes from a sequential implementation of Circuit ORAM’s eviction procedure [33].
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This suffices for our basic result for generic block sizes. Later, as an optimization for large block
sizes, we shall see that Circuit ORAM’s eviction procedure can be carried out in parallel runtime
O(log logN), at the cost of increasing the total work of eviction to O(logN log logN).

5.6 Analysis of Stash Usage

Recall that in the maintain phase, the pool increases its capacity temporarily to receive the newly
updated blocks. However, after performing eviction and restoring the group stashes, the temporary
extra memory is released. We need to prove a stochastic bound to show that except with negligible
probability, none of the real blocks ever get lost during the process of rebuilding group stashes
(during which we effective compress the space).

Recall that in Circuit ORAM, for every updated block added to the root stash, evictions are
performed on two paths, each for the left and the right branch at the root. The details of the
eviction strategy are given in the Circuit ORAM paper [33]. To illustrate block utilization, the
non-oblivious Algorithm 1 in Section A shows what happens to the blocks during a path eviction.
Most of the details are not important for our proof, but the important point is the following result
on the stash usage of Circuit ORAM. We consider Circuit ORAM’s stash as part of the root bucket.

Fact 3 (Stash usage in Circuit ORAM [33]). Let R be an integer. After each oblivious access, the
probability that Circuit ORAM’s stash contains more than R blocks is at most O(e−R).

Batched Circuit ORAM. For the purpose of our stochastic analysis, it helps to think of an
alternative random process which we call “Batched Circuit ORAM”. Imagine that we run a variant
of the (sequential) Circuit ORAM algorithm. Specifically, there is a complete Circuit ORAM binary
tree. For a batch of m memory requests:

1. We first perform the read phase of all m requests sequentially following the Circuit ORAM
algorithm, placing all fetched blocks in the root bucket (and therefore the root bucket is allowed
to be larger).

2. Then, we perform 2m path evictions also following Circuit ORAM’s strategy of choosing eviction
paths and following its eviction algorithm.

In other words, Batched Circuit ORAM is almost identical to Circuit ORAM, except that Circuit
ORAM interleaves reads and evictions such that each read is followed by two evictions; however,
here we perform 2m evictions after every m reads, i.e., reads and evictions are batch-processed.

For Batched Circuit ORAM, Circuit ORAM, or Circuit OPRAM, an execution trace is defined
by the pair (ψ, ~S) where ψ is a random string that defines position identifiers for all accessed blocks

in temporal order, and ~S := {St : t ∈ [T ]} denotes the memory request sequence. Now consider an

execution trace defined by (ψ, ~S) for Batched Circuit ORAM. Imagine that after serving the t-th
batch of requests, we truncate the ORAM tree at a height `∗ := log2 m̂ that contains m̂ nodes,

which defines m̂ subtrees. We define BatchedORAMStasht,m̂,i,j(ψ, ~S) to be the set of blocks that
reside at a height smaller than `∗ := log2 m̂ but can legally reside in any subtree numbered k ∈ [i..j].

We now consider an execution defined by (ψ, ~S) of our Circuit OPRAM. Let OPRAMGrpStasht,i,j(ψ, ~S)
denote the set of blocks that can legally reside in a group stash that covers subtrees i to j at the
end of the t-th batch of memory requests.

Fact 4 (Stash equivalence between Circuit OPRAM and Batched Circuit ORAM). For any ψ,

any ~S, for any t, for any i..j that correspond to the subtrees covered by some group stash in the
OPRAM algorithm after serving t batches of requests, it holds that

OPRAMGrpStasht,i,j(ψ, ~S) = BatchedORAMStasht,m̂,i,j(ψ, ~S)
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where m̂ := m̂(ψ, ~S) is the number of subtrees in the OPRAM algorithm immediately after serving

the t-th batch of requests in the execution trace defined by (ψ, ~S).

More informally, the utilization of a particular group stash in our OPRAM exactly corresponds
to the blocks in the complete binary tree of the Batched Circuit ORAM that can reside in one of
the group stash’s subtrees and are currently at heights less than log2 m̂.

Circuit ORAM stochastically dominates Batched Circuit ORAM. As explained earlier,
in Batched Circuit ORAM, we perform m reads, add m blocks to the root, and then perform 2m
evictions. By contrast, in Circuit ORAM, each read is immediately followed by 2 evictions. We
now show that Circuit ORAM stochastically dominates Batched Circuit ORAM in terms of stash
usage. The intuition is that as opposed to eviction performed in a batch, a block added later in
Circuit ORAM cannot benefit from the eviction due to accessing an earlier block. This intuition is
formalized in the following Lemma 2.

Consider an execution trace defined by (ψ, ~S) of Batched Circuit ORAM, for any given t,

any path, any height i, let Xt,path,i(ψ, ~S) denote the number of blocks in path[: i − 1] that can
legally reside in path[i] after serving the t-th batch of requests in this execution trace Similarly, we

can define an analogous variable denoted X̃t,path,i(ψ, ~S) for an execution trace defined by (ψ, ~S) of
the (non-batched) Circuit ORAM.

Lemma 2 (Circuit ORAM stochastically dominates Batched Circuit ORAM). For any random

string ψ, any memory request sequence ~S := {St : t ∈ [T ]}, for any t, any eviction path, and any i,
it holds that

Xt,path,i(ψ, ~S) ≤ X̃t,path,i(ψ, ~S)

Proof. Henceforth we use the terms sequential eviction and batch eviction to differentiate the evic-
tion processes of the regular Circuit ORAM and the Batched Circuit ORAM, respectively. We
assume that the statement holds just before a batch eviction, and it suffices to show that the state-
ment holds again after a batch eviction corresponding to adding m blocks is performed. Observe
that the same 2m eviction paths are used in both the sequential and the batch cases. Hence, if
none of these paths intersect path[i], then the statement certainly holds.

According to the eviction strategy given in Algorithm 1, even when the eviction path intersects
path[0..i] and there is a block in path[0..i− 1] that can legally reside in path[i], no block might be
passed from path[0..i−1] to path[i] because there could be no available slots in some descendants of
path[i− 1]. To eliminate this complication in the analysis, another (imaginary) abstraction known
as the ∞-ORAM is often used in previous work as in [33].

The ∞-ORAM is a variant in which each bucket has infinite capacity. When it is applied, we
assume all other rules remain the same. A non-trivial result [33] is that when path eviction is
performed according to Algorithm 1, the bucket utilization of the ORAM with bounded bucket
capacity can be obtained exactly from a post-processing procedure applied to the corresponding
∞-ORAM.

The post-processing procedure repeatedly applies the following to the ∞-ORAM. If there is a
non-root bucket that contains more blocks than its capacity, then extra blocks are removed and
placed in the bucket’s parent. It is possible to select which blocks to remove to achieve the exact
configuration as the normal ORAM with bounded capacity. However, we just need to care about
how many blocks are in each bucket, and hence we can push back arbitrary extra blocks from a
bucket to its parent.

Therefore, we just need to prove the statement for the case of the ∞-ORAM variant. Observe
that in the case of batch eviction, all the newly added m blocks that can legally reside in path[i]
will be considered for each of the 2m eviction paths that intersect path[i]. For the sequential case,
because of the interleaving between block insertion at the root and path eviction, it is possible
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that a newly added block that can legally reside in path[i] might miss a previous eviction path that
intersects path[i]. Hence, the statement must also hold for ∞-ORAM after a batch eviction.

In the∞-ORAM variant, the statement actually holds for every height i. Hence, the statement
will still hold after applying the post-processing procedure. This completes the proof.

Utilization of a group stash. Let ORAMStasht,m̂,i,j(ψ, ~S) be defined in the same way as

BatchedORAMStasht,m̂,i,j(ψ, ~S), but for the (non-batched) Circuit ORAM instead.
To bound the random variable OPRAMGrpStasht,i,j which denotes the utilization of a group

stash in our OPRAM, due to Fact 4, we can bound BatchedORAMStasht,m̂,i,j . Now, due to Lemma 2,
we can instead bound the random variable ORAMStasht,m̂,i,j .

Lemma 3. For any request sequence ~S, any t, any m̂, any i, j ∈ [m̂] such that i < j, it holds that

Pr
ψ

[
ORAMStasht,m̂,i,j(ψ, ~S) > 2Z(j − i+ 1) + 2 logN +R

]
≤ O(e−R),

where Z = O(1) is the capacity of a on-root bucket.

Proof. Henceforth we consider Circuit ORAM’s stash to be part of the root. Let `∗ := log2 m̂
be a height of the ORAM tree containing m̂ buckets. We can thereby define m̂ disjoint subtrees
numbered 1, 2, . . . , m̂ respectively. For any t, after serving the t-th batch of requests, consider the
set of blocks that currently reside in any height smaller than `∗: if any block in this set can legally
reside in a subtree numbered k ∈ [i, j], it holds that this block currently must be in a bucket that
is an ancestor of the k-th node at height `∗.

Let Ωk be the set of buckets that are ancestors of the k-th node at height `∗. Let Ωi:j :=
∪k∈[i,j]Ωk. Note that all buckets have capacity of Z = O(1), except the root bucket which has a

capacity of R if we want the scheme’s failure probability to be O(e−R) — see Fact 3. It is not hard
to see that the capacity of all buckets in Ωi:j is upper bounded by

2Z(j − i+ 1) + 2 logN +R.

Corollary 1 (Utilization of a group stash). For any request sequence ~S, any t, for any group stash
corresponding to subtrees i to j := i+α logN − 1 at the end of serving the t-th batch of requests in
Circuit OPRAM, it holds that

Pr
ψ

[
OPRAMGrpStasht,i,j(ψ, ~S) > (2Z + 2)α logN

]
≤ e−Ω(α logN)

Proof. The proof is straightforward due to Fact 4, Lemma 2, and Lemma 3.

6 Details of the Fetch Phase

An overview of the fetch phase was presented in Section 4.3. In this section, we present the
details — specifically, we shall focus on how to efficiently route fetched position identifiers from
one recursion level to the next, and the offline preparation necessary to enable such efficient online
routing. All other steps of the fetch phase (see Section 4.3), including conflict resolution, parallel
read and gather are straightforward.

Notation. Let D := log2N be the total number of recursion levels, and we assume that each block
is large enough to store the position identifiers of two block addresses. For ease of exposition, we
assume that in each level of recursion, a block holds exactly two position identifiers, i.e., the fan-out

34



is two. Our solution easily generalizes to fan-out values up to O(logN)O(1). For large fan-out values
such as N ε, the number of recursion levels is O(1

ε ) and we can just perform operations level-by-level
sequentially.

The highest level D of the recursion refers to the original N logical addresses. In general, for
0 ≤ d < D, level d of the recursion stores 2d blocks with addresses in {0, 1}d. If a block has virtual
address addr at level d, we sometimes write addr〈d〉 to emphasize its level; if addr is a bit string of
length longer than d, then addr〈d〉 means that we truncate the string to include the d most significant
bits. Each block in a pos-OPRAM level d contains the position identifiers (i.e., leaf identifiers) for
two consecutive blocks in the level d+ 1. Specifically, the block addr ∈ {0, 1}d in level d stores the
leaf identifiers of blocks (addr||0)〈d+1〉 and (addr||1)〈d+1〉 in level d+ 1.

We say that addr||0 and addr||1 are siblings — two addresses are siblings if they differ only in
the last bit. We also say that addr〈d〉 is the parent of (addr||0)〈d+1〉 and (addr||1)〈d+1〉. Similarly, we
say that (addr||0)〈d+1〉 and (addr||1)〈d+1〉 are the left and the right child of addr〈d〉, respectively.

Fact 5. Observe that for a recursive tree-based ORAM/OPRAM, to access a data block with logical
address addr〈D〉, at level d of the recursion we would access a logical address addr〈d〉, i.e., the full
address addr〈D〉 truncated to the most significant d bits.

Main technical challenge. The main technical challenge addressed in this section is how to
route fetched position identifiers to the next recursion level. The routing must be oblivious: for
example, each block accessed in recursion level d contains the position identifiers for two blocks
(with adjacent addresses) in recursion level d + 1. For example, the block at addr〈d〉 in recursion
level d must be accessed if one or both of the blocks (addr||0)〈d+1〉 and (addr||1)〈d+1〉 need to be
accessed in level d+ 1. When we route position identifiers from recursion level d to d+ 1, we must
not reveal information such as whether one or both position identifiers are needed in the next level.

Routing position identifiers to the next recursion level can be trivially achieved through oblivious
routing (which in turn relies on a constant number of oblivious sorts), but this näıve approach takes
Θ(logm) parallel runtime and is too expensive for our purpose. Our goal is to achieve such level-
to-level routing in O(log logN) online parallel time, with appropriate offline preparation. In this
way, across all levels of recursion, we can ensure that the OPRAM’s parallel runtime is bounded
by O(logN log logN).

6.1 Basic Building Blocks Related to Permutations

To describe our ideas, we need a few basic building blocks as depicted in Figures 2, 3, and 4.

1. Apply a pre-determined permutation to an array. Figure 2 shows how to in parallel
apply a pre-determined permutation to an array in a single parallel step.

2. Permute an array by a secret random permutation. Figure 3 shows how to generate a se-
cret random permutation and apply it to an array obliviously, without revealing any information
about the permutation.

3. Obliviously construct a routing permutation that aligns source and destination ar-
rays. Figure 4 shows how to accomplish the following task: given a source array snd of length
k containing distinct real elements and dummies (where each dummy element contains unique
identifying information as well), and a destination array rcv also of length k containing distinct
real elements and dummies, with the guarantee that the set of real elements in snd are the same
as the set of real elements in rcv. Now, construct a routing permutation π : [k]→ [k] such that
for all i ∈ [k], if snd[i] contains a real element, then rcv[π[i]] = snd[i].
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Apply Permutation to Array

Inputs:

• An initial array A[0..k) of size k.

• A permutation π : [k]→ [k] written down as an array.

Outputs: A new array Â[0..k), where for each i ∈ [k], Â[i] = A[π−1(i)]; in other words, each

element A[i] is copied to Â[π(i)].

Algorithm: Parallel runtime O(1), total work O(k)

• Each CPU with index i reads A[i] and π(i), and then set Â[π(i)] := A[i].

Figure 2: Applying a pre-determined permutation to an array

Oblivious Random Permutation

Input: An array A of size k.

Outputs: An array Â which is obtained by applying a uniformly random permutation on array
A in an oblivious manner.

Algorithm: Expected parallel runtime O(log k), expected total work O(k log k).

(We remark that we can also prove that with probability at least 1− 1
Nα , the parallel runtime is

O(α log k) and the total work is O(αk log k).)

1. Each CPU with index i ∈ [k] copies A[i] and samples 3 log2N bits which form a key ki in
[3N3].

2. The k CPUs perform oblivious sorting on the data tuple (ki, A[i]) using ki’s to determine the
total order.

3. Each CPU can check whether there are any duplicated ki’s with CPUs having neighboring
indices. The process is repeated for each subarray of duplicated keys, until there are no more
duplicated keys.

4. When there is no more duplicated keys, each CPU with index i copies the second term of its
data tuple to Â[i].

Figure 3: Randomly permuting an array obliviously, without revealing the secret permutation.
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Construct a Permutation that Maps a Source to a Destination

Inputs:

• A source array snd of length k containing distinct real elements and dummies;

• A destination array rcv also of length k containing distinct real elements and dummies;

Assume:

• The real elements in snd are guaranteed to be the same as the real elements in rcv.

• The dummy elements in snd each has a unique label that decides their relative order; similarly,
the dummies in rcv each has a unique label too.

Outputs: The routing permutation π such that rcv[π(i)] = snd[i] for all i ∈ [k].

Algorithm: Parallel runtime O(log k), total work O(k log k)

1. Tag each element in both arrays with an index within the array. More specifically, in parallel,
write down the following two arrays:[

(1, snd[1]), (2, snd[2]), . . . , (k, snd[k])
]
,
[
(1, rcv[1]), (2, rcv[2]), . . . , (k, rcv[k])

]
2. Obliviously sort each of the above two arrays by the second value. Suppose the two output

arrays are the following where “ ” denotes a wildcard value that we do not care about.[
(s1, ), (s2, ), . . . (sk, )

]
,
[
(t1, ), (t2, ), . . . (tk, )

]
Now in parallel write down

[
(s1 → t1), (s2 → t2), . . . (sk → tk)

]
3. Now sort the above output by the si values, and let the output be[

(1→ t′1), (2→ t′2), . . . , (k → t′k)
]

The output routing permutation is defined as π(i) := t′i.

Figure 4: Obliviously construct a routing permutation that maps a source to a destination.

6.2 Oblivious Compression (Dummy Removal)

Recall that in each level, 2m fetch processors each fetch two (possibly dummy) next-level position
identifiers. Among the fetched 4m (possibly dummy) position identifiers, at most m are needed
by the next recursion level. For obliviousness, the level-to-level routing must hide whether one or
two position identifiers from a block in a level are needed in the next level. One näıve approach
is to forward all 4m position identifiers to the next level — but then the next level must have 4m
fetch CPUs receiving them, and the next level 8m, and so on. Clearly this approach will result in
exponential blowup in the number of recursion levels.

Our idea is to obliviously compress the 4m position identifiers back to 2m, suppressing dummies
in the process. A näıve way to perform the compression is through oblivious sorting which would
take Θ(logm) parallel runtime per recursion level, and O(logm logN) parallel runtime over all
recursion levels — clearly this would be too expensive for our purpose.

Localized work. Instead of performing oblivious sorting on the entire Θ(m)-sized array, our idea
is to use a random permutation to partition the array into groups each with size α logN , for some
ω(1) ≤ α ≤ logN . If at most 1

4 fraction of the items are real in the original array, it follows that
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Oblivious Compression

Inputs: A initial array of 2m randomly permuted entries, where each entry contains two items
(each of which can be real or dummy), such that the total number of real items is at most m.

Outputs: A array of 2m items that is a subset of the 4m items in the original array such that
all the real items in the initial array are preserved.

Algorithm: Parallel runtime O(log logN), total work O(m log logN)

1. Fix some ω(1) ≤ α ≤ logN . Partition the entries in the initial array such that each segment

of α logN
2 consecutive entries forms a group. Since each entry contains two items, each group

contains α logN items.

2. For each group of items, perform (in parallel) oblivious sorting where real items have priorities
over dummy items. After oblivious sorting, in each group, the lower priority half of the items
are removed.

Note that here we assume that 4m is a multiple of α logN . If not, we can simply pad the
array with dummy entries up to the nearest multiple of α logN .

3. Concatenate the remaining elements of all groups to form an array of size 2m.

Figure 5: Oblivious compression (dummy removal) algorithm with small (online) parallel runtime

with all but negligible in N probability, every group has at most 1
2 fraction of real items. Hence,

we can perform oblivious sorting on each group (in parallel) to remove 1
2 fraction of items in the

group while keeping all real items. The parallel runtime is only O(log logN). The details are given
in Figure 5, where we assume that a random permutation is given, which we shall see is generated
(in parallel) in an offline phase.

The reason that no real elements are removed is due to the following lemma.

Lemma 4. Let arr denote an array of 2m randomly permuted pairs, each of which contains two
items such that out of the 4m items, at most m are real and the rest are dummy.

Without loss of generality assume that 4m is a multiple of α logN (if not, we can pad the array
to the nearest multiple incurring only O(1) multiplicative overhead). Then, with probability at least

1− 1
NΘ(α) , a consecutive group of α logN

2 pairs contains at most α logN
2 real items.

Proof. We use the Hoeffding Inequality for sampling without replacement [28]. Consider 2m integers
a1, a2, . . . , a2m, where the integer ai denotes the number of real items contained in the ith pair in
the array. Hence, we have

∑2m
i=1 ai ≤ m.

Since the pairs are randomly permuted in the initial array, each group of consecutive α logN
2

pairs can be viewed as a sample of size n := α logN
2 without replacement from the 2m integers. Let

Z be the sum of the integers in the size-n sample. Then, E[Z] = n
2m

∑2m
i=1 ai ≤

α logN
4 .

Hence, the Hoeffding inequality for sampling without replacement [28] gives

Pr[Z > α logN
2 ] ≤ Pr[Z − E[Z] > α logN

4 ] ≤ exp{− (α
4
·logN)2

n·22 } = N−
α
32 , as required.

6.3 Offline Phase: Conflict Resolution and Preparation

Recall that at each level d = 0, 1, . . . , D, the level-d OPRAM needs the position identifiers of its
addresses to carry out its fetch phase. To make the online routing of position identifiers efficient,
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we must perform appropriate offline pre-processing to prepare auxiliary data that is used in the
online routing phase.

In the offline preparation phase, the following data structures are prepared in parallel for each
recursion level d:

1. An incomplete instruction array of size 2m denoted

Instr〈d〉 :=
{

(addr〈d〉, flag, ) | dummy
}

2m

where flag is a 2-bit indicator denoting whether each of the level-(d + 1) addresses addr||0〈d+1〉

and addr||1〈d+1〉 are needed at the next level; and denotes a blank space to later receive a
pair (pos, pos′), denoting the current and the new position identifiers respectively for the level-d
address addr〈d〉.

2. A routing permutation π(d→d+1) : [2m]→ [2m] that is applied later in the online phase, to route
fetched position identifiers from level d to d+ 1, and thus completing the instruction array.

Prepare the incomplete instruction array. At each recursion level d, an incomplete instruction
array Instr〈d〉 of size 2m will be constructed obliviously to later receive position identifiers from the
previous level.

Let {addr
〈D〉
i }i∈[m] the batch of m memory requests corresponding to the top recursion level D.

At each recursion level d in parallel, the following steps are performed.

1. For each i ∈ [m], assign one CPU to each address addr
〈D〉
i . If the address is dummy, the CPU

simply writes down dummy; otherwise, the CPU writes down the truncated address addr
〈d+1〉
i ,

which is the full address truncated to the d+1 most significant bits. The usual oblivious conflict
resolution is applied to the truncated addresses to suppress duplication of the truncated addresses
using oblivious sort. Duplicates after truncation are replaced by dummies after oblivious sorting
on the truncated addresses.

2. By comparing neighboring entries, we can further remove the least significant bit to produce an
address addr〈d〉 of d bits together with a flag of 2 bits indicating whether each of (addr||0)〈d+1〉

and (addr||1)〈d+1〉 is present in the previous step. (For a non-dummy entry, at least one of them
must be present.) Hence, each CPU either contains a tuple of the form (addr〈d〉, flag, ) or a
dummy such that there is no duplicate address in level d.

3. In parallel, append m dummy entries to form an array of size 2m.

4. In parallel, tag all dummy elements in the array with a unique label, e.g., representing the index
of the element within the array. The unique label is needed later to decide the relative order of
the dummy elements during the construction of the routing permutation (Figure 4).

5. The oblivious random permutation algorithm in Figure 3 is applied to the resulting array, to
produce an incomplete instruction array Instr〈d〉.

Prepare the routing permutation. For each recursion level 0 ≤ d < D, a permutation
π(d→d+1) : [2m] → [2m] to route data from level d to level d + 1 is constructed as follows. At
this point, both Instrd and Instrd+1 have been constructed, and hence, this step can be performed in
parallel across all levels. The following steps emulate the data flow in the online phase but leaving
the fetched position identifiers blank.
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1. Starting from Instr〈d〉 of size 2m, construct an array Fetched
〈d〉

of 2m pairs. Speficially, each
entry of the Instr〈d〉 array is converted to a pair.

• If the original entry is dummy, then a pair of dummies will be produced.

• Otherwise, the original entry is real and has the form (addr〈d〉, flag, ), a pair of the form(
(addr||0)〈d+1〉,

)
| dummy,

(
(addr||1)〈d+1〉,

)
| dummy

is produced, where the two bits in flag are used to determine whether each of the two items
will be dummy.

• We assume that whenever a dummy is written down, it is tagged with a unique label, e.g.,
representing its index within the array. This will be used to decide the relative order between
dummies during the construction of the routing permutation.

2. Note that the entries in Instrd have already been randomly permuted. Hence, oblivious com-
pression (dummy removal) in Figure 5 is applied to Fetchedd to produce an array Sendd of size
2m of the form

Send
〈d〉

:=
{

(addr〈d+1〉, ) | dummy
}

2m

where each entry is either dummy or contains an address at level d+ 1. The order of addresses
in this array will agree with the online version of this variable Send〈d〉 where the place-holders

denoted “ ” in Send
〈d〉

will be filled in with position identifiers.

3. Finally, the routing permutation π(d→d+1) is produced such that when applying π(d→d+1) to

Send
〈d〉

, the order of the addresses will be aligned with Instr〈d+1〉. This routing construction can
be constructed using the algorithm in Figure 4 in O(m logm) total work and O(logm) parallel
time.

Performance analysis. For block sizes where B = Ω(logN), there are in total O(logN) levels of
recursion. Since preparation can be done in parallel across all recursion levels, the parallel runtime
is O(logm), dominated by oblivious sorting. The total work is (m logm logN) over all recursion
levels.

6.4 Online Phase: Routing Position Identifiers to the Next Recursion Level

We now describe the online phase and how fetched position identifiers are routed from one recursion
level to the next. We highlight how the work performed in the offline phase can help ensure small
parallel runtime in the online phase.

1. Fetch for d = 0. The smallest recursion level d = 0 has O(1) number of blocks. Therefore, all
CPUs simply fetch all blocks in level d = 0 in a single parallel step.

2. Fetch for d > 0. For every other recursion level d > 0, assume that we start with a completed
instruction array CInstr〈d〉 of length 2m:

CInstr〈d〉 :=
{

(addr〈d〉, flag, pos〈d〉, p̃os〈d〉) | dummy
}

2m

where addr〈d〉 is the level-d address to read, flag is a 2-bit indicator representing whether each of
the two fetched addresses contained in a block is needed at the next recursion level d+ 1, pos〈d〉

is the current position identifier (i.e., which path should be read), and p̃os〈d〉 is the new position
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identifier to assign to the block after it is fetched. Notice that the new position identifier p̃os〈d〉

is chosen at random by the previous recursion level.

Now, 2m fetch CPUs each read one (possibly dummy) instruction. Next, each fetch CPU recruits
O(α logN) auxiliary CPUs to read the path specified by pos〈d〉 (including the group stash) in
a single parallel step. The requested block (along with metadata that is needed later in the
maintain phase such as the physical location where the block is found) is aggregated to the fetch
CPU through an oblivious select algorithm (see Section 3.3) in O(log logN) time and O(α logN)
total work. At this moment, the fetched block is not removed from the path yet — this will
be done in the offline maintain phase; moreover, after the block is removed later, its position

identifier should be updated to p̃os〈d〉. If the instruction is dummy, the fetch CPU simply chooses
a path at random to read.

3. Construct fetched array. Unless d = D (i.e., this is the final data-OPRAM), at this moment,

each of the 2m fetch CPUs has read either two position identifiers (pos
〈d+1〉
0 , pos

〈d+1〉
1 ) or dummy.

Now each fetch CPU will write down a pair of entries as follows:

• If the fetch CPU has read dummy, it writes down a pair (dummy, dummy).

• Else, the fetch CPU looks at the flag entry in its instruction to see whether the two fetched
position identifiers are needed in the next recursion level. Let addr〈d〉 be the level-d address
assigned to the fetch CPU. For b ∈ {0, 1}, if (addr||b)〈d+1〉 is needed in the next recursion

level, the fetch CPU writes down ((addr||b)〈d+1〉, pos
〈d+1〉
b ); observe that in this case, a fresh

random position identifier p̃os
〈d+1〉
b has to be generated, which is used to update the block in

level d fetched by the CPU. If (addr||b)〈d+1〉 is not needed, the fetch CPU simply writes down
dummy.

The result of this step is a Fetched〈d〉 array of size 4m of the form:

Fetched〈d〉 :=
{

(addr〈d+1〉, pos〈d+1〉) | dummy
}

4m

4. Compress. Next, we apply the oblivious compression procedure described in Figure 5 to compress
the Fetched〈d〉 array down to 2m entries, suppressing a subset of the dummies in the process.
For every non-dummy entry in the resulting array, we also append the fresh random position
identifier generated earlier to the entry (note that later the maintain phase will overwrite the
block back with these new position identifiers).

The result of this step is a send array denoted Send〈d〉 of the form:

Send〈d〉 :=
{

(addr〈d+1〉, pos〈d+1〉, p̃os〈d+1〉, ) | dummy
}

2m

5. Route to next level. Apply the routing permutation π(d→d+1) to the send array Send〈d〉 in a
single parallel step. At this moment, the addresses in Send〈d〉 are aligned with the addresses in
the next level’s incomplete instruction array Instr〈d+1〉.

In parallel, perform a coordinate-wise copy operation such that the next level’s instruction array
Instr〈d+1〉 is now completed, resulting in CInstr〈d+1〉. The next recursion level is now ready to be
executed.

6. Oblivious multicast. If d = D, i.e., this is the final data-OPRAM, we perform a standard oblivious
multicast procedure to route the fetched data blocks to the request CPUs. This can be attained
through a standard oblivious routing algorithm (see Section 3.3) in O(logm) parallel time and
O(m logm) total work.
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Performance analysis. For general block sizes where B = Ω(logN), there are in total O(logN)
levels of recursion. Therefore, it is not hard to see that the entire fetch phase can be completed in
O(logN log logN+logm) parallel time across all recursion levels, and with O(αm log2N+m logm)
total work across all recursion levels.

6.5 Performance of the Fetch Phase

Accounting for the cost of all the steps in the fetch phase, we can easily derive the following lemma
for the performance of the fetch phase.

Lemma 5 (Performance of the fetch phase). Suppose that the block size B = Ω(logN). Then, to
serve the batch of m requests, the fetch phase incurs a parallel runtime of O(logm+logN log logN),
and a total work of O(αm log2N +m logm logN). Observe that the performance of the fetch phase
does not depend on the number m̂ of subtrees kept by the OPRAM, even when m̂ is much larger
than m.

7 Performance and Security of Circuit OPRAM

7.1 Performance

Earlier in Sections 5 and 6, we analyzed the performance of the maintain and fetch phases respec-
tively for simulating each PRAM step. The following lemma describes the performance of both
phases.

Lemma 6 (Performance for simulating a single PRAM step). Suppose that the block size B =
Ω(logN), and at the beginning of serving a batch of m requests, the OPRAM has m̂ subtrees.
Then, our OPRAM takes O(logN log logN) parallel runtime and O(α(m + m̂) log2N) total work
to serve this batch of requests.

Proof. Straightforward by Lemmas 1 and 5.

Amortized work for varying m. Recall that the number m of CPUs in each PRAM step can be
different. In Section 5, we see that the OPRAM internally maintains m̂ subtrees and m̂ is meant
to track m. If m increases, m̂ immediately increases to m. However, when m decreases suddenly,
m̂ lazily tracks m each time decreasing only by a factor of 2. In Lemma 6, we see that the total
work has a dependence on m̂. However, since m̂ decreases geometrically at each simulation step,
we can consider amortized analysis and charge the part of the total work depending on m̂ to the
step before m decreases. This gives the following amortized result.

Theorem 3 (Performance of Circuit OPRAM for general block sizes). For a general block size
B = Ω(logN), Circuit OPRAM has an amortized total work blowup of O(α log2N), and a parallel
runtime blowup of O(logN log logN).

7.2 Security

Theorem 4 (Security of Circuit OPRAM). Circuit OPRAM satisfies obliviousness as formulated
in Section 3.2.

Proof. First, observe that the entire maintain phase has deterministic, a-priori known memory
access patterns. Next, observe that for the fetch phase, the offline preparation stage also has
deterministic, a-priori known memory access patterns. (In particular, any rearranging of sensitive
data is handled by oblivious sort, which has a deterministic access pattern.)
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Block size Total work blowup Parallel runtime blowup

Any∗ O(α log2N) O(logN log logN)
Any∗ O(log2+εN) O(logN)

Ω(log1+εN) O(α log2N/ log logN) O(logN)
Ω(N ε) O(α logN) O(logN)
Ω(N ε) O(logN log logN) O(logm+ log logN)

Table 2: Circuit OPRAM performance under different block sizes. Here we assume
that the OPRAM adopts consistent block size both for the pos-OPRAMs and the data-OPRAM.
Throughout this table, ε denotes an arbitrarily small positive constant. We also assume non-trivial
m ≤ N .
*: As in all prior ORAM/OPRAM works, we by default assume that a block is at least Ω(logN)
bits long such that the block can at least store its own address.

The only part of the OPRAM whose access patterns are not a-priori known is the online stage
of the fetch phase. Here, it is not hard to see that a simulator that does not know the inputs to
the OPRAM can simulate the access patterns as follows:

• For simulating all fetch paths, the simulator can simply pick a path at random;

• For simulating the online routing permutation, the simulator simply picks a random permutation.

It is not hard to see that conditioned on the fact that no bad event (e.g., stash overflow) happens, the
simulated access patterns are identically distributed as the real access patterns. More specifically,
the argument for simulating the fetch paths is the same as the security argument for all known tree-
based ORAMs [29,32,33] and tree-based OPRAMs [3,6] — whenever a block was last accessed, the
OPRAM algorithm chooses a random path for the block without revealing the position identifier.
Therefore, when the block is accessed next, an independent random position identifier is revealed
to the adversary. For simulating the online routing permutation, observe that each Instr〈d+1〉 is
permuted by an independent secret random permutation, and therefore regardless of what the
Send〈d〉 is, the routing permutation that maps Send〈d〉 to Instr〈d+1〉 is an independent random
permutation.

8 Extensions and Optimizations

8.1 Results for Large Block Sizes

Table 2 provides Circuit OPRAM’s asymptotical performance under various parametrizations.

Larger block sizes. When Circuit OPRAM’s block size is Ω(log1+εN) for an arbitrarily small
constant ε > 0, clearly in this case the depth of recursion becomes O(logN/ log logN) rather than
O(logN). Therefore, we have that the total work blowup is O(log2N/ log logN), and the parallel
runtime blowup is O(logN) — see Table 2.

When the block size is Ω(N ε) for an arbitrarily small constant ε > 0, the depth of recursion
becomes O(1) and so the fetch phase across different recursion levels can just be executed sequen-
tially. In Appendix A, we describe a technique that parallelizes Circuit ORAM’s eviction algorithm,
such that an eviction can be performed in O(log logN) parallel time, but with a slight O(log logN)
factor increase in total work. In this way, we have the following corollary for sufficiently large block
sizes.
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Corollary 2 (Result for sufficiently large blocks). Let ε > 0 be any positive constant. For any
sufficiently small α = ω(1),

• Circuit ORAM (under appropriate parameterizations) achieves O(α logN) total work blowup
and O(logN) parallel runtime blowup for block size B = Ω(N ε).

• There exists a Circuit ORAM variant (denoted Circuit ORAM∗) that achieves O(α logN log logN)
total work blowup and O(logm+ log logN) parallel runtime blowup for block size B = Ω(N ε).

Proof. The former result is straightforward by pointing out that the depth of recursion is O(1). The
result for Circuit ORAM∗ relies on a further optimization that parallelizes the eviction algorithm
as described below and in Appendix A.

We remark that Chan et al. [5] show a Ω(logm) lower bound for the parallel runtime blowup of
OPRAM; further, Goldreich and Ostrovsky’s Ω(logN) lower bound [15, 16] directly applies to the
total work of OPRAM. In this sense, Circuit OPRAM is tight in total work for large block sizes;
further, Circuit OPRAM∗ has tight parallel runtime for large blocks and when m = Ω(logN).

Parallelizing the path eviction algorithm. For our result on general block sizes, the depth
of recursion dominates the parallel runtime. Therefore, we can simply run Circuit ORAM’s path
eviction algorithm sequentially which completes in O(L) parallel time for a path length of O(L).
For blocks larger than N ε bits, the recursion depth becomes O(1). In this case, path eviction’s
runtime will dominate if we näıvely run the sequential version.

Therefore we propose a parallel variant of Circuit ORAM’s eviction algorithm. We give an
overview of the intuition here but defer the details of the parallel eviction algorithm to Ap-
pendix A. Recall that Circuit ORAM’s path eviction algorithm involves two metadata scans (the
PrepareDeepest and PrepareTarget algorithms in Circuit ORAM [33]) followed by a single data
scan (the EvictFast algorithm in Circuit ORAM [33]).

To parallelize these algorithms, our idea is to rely on the divide-and-conquer paradigm. More
specifically, to solve a problem instance of length n, we divide the problem into two sub-problems
each of length n

2 ; and we solve the sub-problems in parallel. Then, in O(1) parallel steps and O(n)
time, we reconstruct the solution to the length-n problem from the solutions of the two length-n2
sub-problems. Finally, this divide-and-conquer strategy is applied recursively.

In Appendix A, we show that all three algorithms PrepareDeepest, PrepareTarget, and
EvictFast of Circuit ORAM’s path eviction are amenable to such a divide-and-conquer paradigm.
It is therefore not difficult to calculate the total work and parallel runtime for the parallel version,
by solving the following recurrences, where T (n) denotes the parallel runtime for a problem instance
of length n, and W (n) denotes the total work for a problem instance of length n:

T (n) = T (
n

2
) +O(1), W (n) = 2W (

n

2
) +O(n)

We henceforth derive the following lemma.

Lemma 7 (Parallelizing the path eviction). Circuit ORAM’s path eviction algorithm can be paral-
lelized: for a path length of O(logN), the parallel variant completes in O(log logN) parallel runtime
with O(logN log logN) total work.

8.2 Additional Extensions

Trading off total work and parallel runtime. We describe a simple parametrization trick to
reduce Circuit OPRAM’s parallel runtime from O(logN log logN) to simply O(logN), with only
a slight increase in total work. The idea is to use block bundles for the position map levels. In
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particular, let ε > 0 be an arbitrarily small constant. We group logεN blocks into a bundle for the
position map levels. Of course, to read a block bundle would now require O(logεN) total work, but
can be trivially parallelized by having O(logεN) auxiliary CPUs. This block bundle trick allows
us to reduce the depth of the recursion by a Θ(log logN) factor. In particular, with each step of
the recursion, the total number of block bundles reduce by a factor of Θ(logεN), and therefore
the depth of the recursion is now O(logN/ log logN). The saving in parallel runtime comes at an
O(logεN) increase in total work.

It is not hard to observe that with this reparametrization trick, we will have an OPRAM
scheme with O(log2+εN) total work blowup and O(logN) depth, where ε > 0 is an arbitrarily
small constant.

Non-uniform block sizes and bandwidth blowup. So far, we focused on two metrics, total
work blowup and parallel runtime blowup. These metrics are the most general that we know of
for OPRAM. In certain application settings, such as cloud storage outsourcing, we may care about
other metrics, for example, bandwidth blowup. We define bandwidth blowup as the ratio of the total
number of bits transferred between the CPU (i.e., client) and memory (i.e., cloud server) in the
OPRAM case vs. the PRAM case. Under uniform block sizes, the total work metric immediately
implies the bandwidth blowup.

However, if the OPRAM is allowed to adopt different block sizes for the data-OPRAM and the
pos-OPRAMs, then as in earlier tree-based ORAM/OPRAM works [29,32,33], we can use the “big
data block, little metadata block” trick to reduce the bandwidth blowup to O(α logN) for data
blocks of only Ω(log2N) bits long. The idea is to let data blocks be Ω(log2N) bits long, but let
pos-OPRAM blocks to be only Θ(logN) bits long — in this way, fetching O(logN) pos-OPRAM
blocks costs the same (or less) bandwidth than fetching a data block.
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[1] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, New York,
NY, USA, 1983. ACM.

[2] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable oblivious
storage. In Public Key Cryptography, pages 131–148, 2014.

[3] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications.
In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel,
January 10-13, 2016, Proceedings, Part II, pages 175–204, 2016.

45



[4] Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA,
USA, January 14-16, 2016, pages 357–368, 2016.

[5] T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, Feng-Hao Liu, and Elaine Shi. New lower
bounds for oblivious simulation of PRAMs. Manuscript in preparation.

[6] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel RAM: improved efficiency
and generic constructions. In Theory of Cryptography - 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 205–234, 2016.

[7] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with Õ(log2 n)
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Algorithm 1 EvictSlow(path) A slow, non-oblivious version of the eviction algorithm, only for
illustration purpose [33]

1: i := L /* start from leaf */
2: while i ≥ 1 do:
3: if path[i] has empty slot then
4: (B, `) := Deepest block in path[0..i − 1] that can legally reside in path[i], and its corre-

sponding height in path.
/* B := ⊥ if such a block does not exist.*/

5: if B 6= ⊥ then
6: Move B from path[`] to path[i].
7: i := ` // skip to height `
8: else i := i− 1

[35] Peter Williams and Radu Sion. Usable PIR. In Network and Distributed System Security
Symposium (NDSS), 2008.

[36] Peter Williams and Radu Sion. Round-optimal access privacy on outsourced storage. In ACM
Conference on Computer and Communication Security (CCS), 2012.

[37] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: practical
access pattern privacy and correctness on untrusted storage. In CCS, pages 139–148, 2008.

A Optimizing Parallel Runtime for Path Eviction

We have so far used Circuit ORAM’s eviction algorithm [33] as a blackbox. For each eviction on a
path with L buckets, the procedure is sequential, and hence, both the total work and the parallel
runtime is O(L). To optimize the parallel runtime, we give a parallel version of the procedure that
takes O(logL) parallel runtime, but with a slightly larger total work of O(L logL).

Intuition. As mentioned earlier, the high-level idea is to adopt the divide-and-conquer paradigm.
To solve a problem instance of length n, we divide the problem into two sub-instances each of
length n

2 and solve them in parallel. Then, in O(1) parallel steps and O(n) time, we reconstruct
the solution to the length-n problem from the solutions of the two length-n2 sub-problems.

Notation. We first revisit the eviction strategy used in Circuit ORAM, which is performed on a
path of buckets path[0..L], where path[0] represents the (group) stash and path[L] is the leaf. In
our case, path[1] corresponds to the root of one of the m̂ subtrees. Recall that each block has a leaf
position, whose lowest common ancestor with path[L] gives the deepest height at which the block
can legally reside on path. We assume there is a total ordering imposed on the blocks determined
by the maximum depths they can legally reside in path, where ties are consistently resolved (for
instance by block addresses). The (non-oblivious) procedure in Algorithm 1 illustrates how the
blocks are supposed to be evicted along the path.

Metadata Scan. As in Circuit ORAM [33], we first scan the metadata to collect the relevant
information for moving the blocks in path. The difference here is that we give a parallel version for
scanning the metadata. Algorithm 3 is supposed to produce an array target[0..L], where the entry
target[i] = dsti means that if dsti 6= ⊥, the deepest block in path[i] will be moved to path[dsti].

Subroutine PrepareDeepest. A sequential version of this procedure was given in the Circuit
ORAM paper [33].

48



Algorithm 2 PrepareDeepest(path[i..j])
/*Make parallel metadata scan to prepare the deepest array.
After this algorithm, for each i < k ≤ j, deepest[k] stores the source height of the deepest block
in path[i..k − 1] that can legally reside in path[k], and goal[k] stores the deepest height that the
corresponding block can reside. Moreover, the procedure returns a pair (src, dst), where src is the
source height the deepest block in path[i..j] and dst is the deepest height the corresponding block can
reside.
Note: The procedure can be implemented in an oblivious way. For instance, for the case when the
condition of an “If” statement is false, dummy operations can access the corresponding variables
without actually modifying them. */

1: Initialize deepest[i..j] := (⊥,⊥, ...,⊥) and goal[i..j] := (⊥,⊥, ...,⊥).
2: if (i == j) then
3: if path[i] is non-empty then
4: dst := Deepest height that a block in path[i] can legally reside on path.

return (i, dst)
5: else return (⊥,⊥) . Assume ⊥ is smaller than any integer.

. i < j

6: p :=
⌊
i+j
2

⌋
7: Execute the following two statements in parallel:

• (src1, dst1) := PrepareDeepest(path[i..p])
• (src2, dst2) := PrepareDeepest(path[p+ 1..j])

8: for k = p+ 1 to j in parallel do
9: if dst1 ≥ goal[k] then

10: deepest[k] := src1, goal[k] := dst1

11: if dst1 ≥ dst2 then return (src1, dst1)
12: else return (src2, dst2)

After calling PrepareDeepest(path[0..L]), for 1 ≤ i ≤ L, the array entry deepest[i] stores the
source height of the deepest block in path[0..i− 1] that can legally reside in path[i] .

We will use the following monotone property.

Fact 6 (Monotone property of deepest). Suppose for some 1 ≤ i ≤ L, deepest[i] = j. Then, for
j < k ≤ i, deepest[k] = j.

Subroutine PrepareTarget. A sequential version was given in the Circuit ORAM paper [33] to
process the metadata. We assume PrepareDeepest(path[0..L]) has already been called to have
deepest[0..L] ready. For the parallel version, PrepareTarget(path[i..j], dst) takes a path segment
and a potential destination height dst ≥ j+1. It prepares two arrays target1[i..j] and target2[i..j]
and returns a pair (dst1, dst2) with the following properties.

For i ≤ k ≤ j, target1[k] indicates the destination height that the deepest block in path[k]
should be moved to, assuming that no block will be moved from path[0..j] to path[j + 1..L]; in this
case, if dst1 6= ⊥, then i ≤ dst1 ≤ j, and there should be a block moving from path[0..i − 1] to
path[dst1]. Similarly, target2[k] indicates the corresponding destination height, assuming that if
dst 6= ⊥, then deepest[j + 1] = deepest[dst] and the deepest block in path[deepest[j + 1]] will be
moved to path[dst]; similarly, in this case dst2 6= ⊥ implies that there should be a block moving
from path[0..i− 1] to path[dst2], where dst2 ≥ i and deepest[dst2] < i.

Hence, calling PrepareTarget(path[0..L],⊥) will give the desired array target[0..L] := target1[0..L]
for moving the actual blocks.
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Algorithm 3 PrepareTarget(path[i..j], dst)
/* Parallel version to prepare the target arrays. */

1: target1[i..j] := target2[i..j] := (⊥,⊥, . . . ,⊥), dst1 := dst2 := ⊥
2: if (i == j) then
3: if (path[i] has an empty slot) and (deepest[i] 6= ⊥) then
4: dst1 := dst2 := i

5: if (deepest[dst] == i) then target2[i] := dst
6: if deepest[i] 6= ⊥ then dst2 := i

7: else if deepest[dst] < i then dst2 := dst

8: return (dst1, dst2)

. i < j

9: p :=
⌊
i+j
2

⌋
10: Execute the following two statements in parallel:

• (dst1, dst2) := PrepareTarget(path[p+ 1..j], dst)
• (dst′1, dst′2) := PrepareTarget(path[i..p], p+ 1)

11: if dst2 6= ⊥ then . deepest[dst2] = deepest[p+ 1]
12: for k = i to p in parallel do
13: if deepest[p+ 1] == k then target2[k] := dst2

14: if dst1 6= ⊥ then . deepest[dst1] = deepest[p+ 1]
15: for k = i to p in parallel do
16: if (deepest[p+ 1] == k) then target1[k] := dst1

17: else target1[k] := target2[k]

18: if (dst′2 == p+ 1) then dst′1 := dst1

19: else dst′1 := dst′2
20: if (dst′2 == p+ 1) then dst′2 := dst2

. dst1 = dst2 = ⊥
21: if dst2 = ⊥ then
22: for k = i to p in parallel do target2[k] := target1[k]

23: dst′2 := dst′1
24: return (dst′1, dst′2)

Subroutine EvictFast. After the array target1[0..L] is prepared by running PrepareTarget(path[0..L],⊥),
we can run EvictFast, which moves the blocks in parallel, as opposed to doing a linear scan from
the root to the leaf. In particular, the effect of procedure EvictFast(path[i..j]) is to evict along the
path starting from the ith height down to height j, following target[i..j]; the procedure returns a
pair (B, dst), where (B, dst) is any block that is supposed to be moved from path[i..j] to path[dst],
where dst > j.

Hence, if suffices to call EvictFast(path[0..L]) to complete the eviction along the whole path.

Performance Analysis. All the algorithms are recursive and use a divide and conquer paradigm.
Specifically, for an instance of size L, each algorithm first solves instances with sizes

⌊
L
2

⌋
and

⌈
L
2

⌉
in

parallel. Then, the two solutions are combined to produce a solution to the original instance using
O(1) parallel runtime and and O(L) total work. Hence, each algorithm takes O(logL) parallel
runtime and O(L logL) total work.

Correctness. We next show that EvictFast (Algorithm 4) achieves the same effect on the locations
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Algorithm 4 EvictFast(path[i..j])
/* Evicts blocks along path[i..j] according to target[i..j] and return a pair (B, dst) for any block B
to be moved from path[i..j] down to height dst. */

1: if (i == j) then
2: if target[i] 6= ⊥ then
3: B := Deepest block in path[i].
4: Remove B from path[i].

return (B, target[i])
5: else return (⊥,⊥)

. i < j

6: p :=
⌊
i+j
2

⌋
7: Execute the following two statements in parallel:

• (B1, dst1) := EvictFast(path[i..p])
• (B2, dst2) := EvictFast(path[p+ 1..j])

8: for k = p+ 1 to j in parallel do
9: if (dst1 == k) then put block B1 in path[k].

10: if dst1 > j then return (B1, dst1)
11: else return (B2, dst2)

of the blocks as EvictSlow (Algorithm 1). The intuition is that the sequential version of the path
eviction consists of three linear scans along the path. Hence, using the divide-and-conquer strategy
in the parallel version, it suffices to keep track of what computation each sub-instance can perform
on its own, and what information needs to be passed from one sub-instance to the other in order
to complete the computation.

Lemma 8 (Correctness of EvictFast). EvictFast has the same effect on the locations of the blocks
in the eviction path as EvictSlow.

Proof. We show that each of the algorithms PrepareDeepest, PrepareTarget and EvictFast achieve
the effects in the above description. In particular, as seen from [33], in the sequential versions of
these algorithms, PrepareDeepest and EvictFast each performs a root-to-leaf scan, and PrepareTar-
get performs a leaf-to-root scan. We explain how the solutions to the two sub-instances in each
algorithm can be combined to give a solution to the larger instance.

1. PrepareDeepest. Since the effect of the algorithm can be achieved by a linear scan from the root
to the leaf in path, after the sub-instances [i..p] and [p+ 1..j] have been handled in parallel, we
just need to consider what information needs to be passed from the first instance to the second
one to get a solution for the larger instance [i..j].

Observe that for each k ∈ [p + 1..j], deepest[k] is supposed to store the source height of the
deepest block from path[i..k − 1] that can legally reside in path[k].

Starting from a solution for the sub-instance [p+1..j], we just need to know if where the deepest
block in path[i..p] can reside in path[p + 1..j], i.e., the source level src1 of the deepest block in
path[i..p] and the deepest height dst1 that it can reside. Equipped this information, the solution
for [p+ 1..j] can be updated accordingly as shown in Algorithm 2.

2. PrepareTarget. Assuming that PrepareDeepest has already been called to construct the array
deepest, Algorithm 3 performs a leaf-to-root scan. In the sequential version, we can imagine
that when the scan passes from height i + 1 to height i, the algorithm just needs to remember
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a destination level dst ≥ i + 1 that has an empty slot and is supposed to take a block from
deepest[dst]. However, the monotone property from Fact 6 implies that deepest[dst] = deepest[i+
1], which means the algorithm only needs to remember dst.

Now, suppose we break the larger instance [i..j] into two smaller sub-instances [i..p] and [p+1..j].
The difficulty is that if we try to solve the sub-instance [i..p], we do not know whether a block is
supposed to go from path[i..p] to path[p+ 1..j], without solving the sub-instance [p+ 1..j] first.
The important observation is that if a block is supposed to go from path[i..p] to some destination
height dst in path[p+ 1..j], even if we do not know what dst is, we know the source level of this
block is given by deepest[p+ 1] = deepest[dst].

This intuition suggest that we need to prepare for two scenarios. The first scenario is that no
block is supposed to go from path[i..p] to path[p + 1 :], and this corresponds to the solution in
target1[i..p]. The second scenario is that a block is supposed to go from path[i..p] to path[p+1 :],
and so we pretend that the destination height is p+ 1 for the time being to produce target1[i..p].

Once the solutions target1 and target2 have been produced for the sub-instance [p + 1..j], we
know whether a block is supposed to go from path[i..p] to path[p + 1 :] in each case, and we
also know the true destination of that block. Hence, we can use this information to correct the
solutions for the sub-instance [i..p] accordingly.

3. EvictFast. After PrepareTarget has been called, the sequential version just needs to perform a
root-to-leaf scan to move the blocks according to target1[0..L− 1].

After the sub-instances [i..p] and [p + 1..j] are solved, we just need to know if any block is
supposed to be moved from path[i..p] to path[p + 1 :]. If yes, the block can either be moved to
path[p+ 1..j] or passed to path[j + 1 :], as shown in Algorithm 4.
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