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Abstract

We device a general secret sharing scheme for evolving access structures (following [KNY16]).
Our scheme has (sub)exponentially smaller share complexity (share of i’th party) for certain
access structures compared to the general scheme in [4]. We stress that unlike [4]’s scheme,
our scheme requires that the entire evolving access structure is known in advance. Revising,
[4]’s scheme (in its most optimized form) is based on a representation of the access structure
by an ordered (possibly infinite) oblivious, read once decision tree. Each node is associated
with an output of the function (0 or 1). The tree is augmented to cut paths that reach a
node where f evaluates to 1 at that node (works for evolving access structures, in which the
descendants of all 1-nodes must be 1). Each party Pi receives a (single-bit) share for each
edge exiting a node labeled by xi.

Generally, the scheme of [4] has share complexity O(wT (i)), where wT (i) is the width of
layer i in a decision tree for the access structure (equivalently, monotone function). In general,
this width can reach Ω(2i). To get non trivial share complexity, en

o(1)

, a tree of width en
o(1)

is required.
Our scheme is based on a generalized (infinite) tree representation of the access structure.

The main difference is that vertices are labeled with sequences of variables, rather than a
single variable. As a result, we often get smaller trees, and the edges e are labeled by more
complex (non-evloving) monotone functions ge of the variables in the sequence. The share
associated with the edge is shared (among the parties in the relevant sequence). As a result,
the tree is smaller, while the shares received for every edge in it are bigger. Still, the tradeoff
is often on our side. Namely, for access structures with ordered read-once branching programs
with relatively small width, eO(ic) for c < 0.25, share complexity of en

o(1)

is achieved. More
specifically, the resulting share complexity is (iwBP (i

2))O(log i+logwBP (i2)). In particular, for
w = Ω(i), we get share complexity of wBP (i

2)O(logwBP (i2)).
Finally, a further improved variant of our scheme for a special class of “counting” access

structures yields polynomial share complexity. In particular, we obtain an evolving secret
sharing scheme for evolving majority with share complexity Õ(n6), answering an open question
of [4].

1 Introduction
In this paper, we continue the investigation of evolving secret sharing schemes (directly extending
the work of [4]). In such schemes, we only a-priori know the access structure, but not the number
of parties that will appear, or any bound on it. We assume that the access structure is such that
at the time of arrival of the i-th party, the qualification of all subsets of [i− 1] remains as before,
and only sets in 2[i] \ 2[i−1] are newly determined (so called evolving). Such access structures can
be handled in our setting where parties can only join, but not leave, and every newly joined party
Pi receives its share at the time of its arrival, which is never changed in the future. See [4] for
more motivation and previous work on the problem of secret sharing for unbounded sets.

We study the share complexity of such access structures, that is, the size |si| of the share
received by party Pi in a valid secret sharing scheme. This key complexity measure for secret
sharing schemes is far from understood for standard schemes as well, with upper bounds of 2Ω(n)

share complexity (size of biggest share) for n-party access structures, and only Õ(n/ log(n)) lower
bounds. Clearly, in the harder setting of evolving access, it is strictly harder to build schemes with
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small share complexity. More precisely, a scheme for an evolving access structure A that equals
a (standard) scheme B for n parties when restricted to sets in 2[n], then a scheme with the same
share complexity bound for B (for each party) trivially follows. The other direction is not clear.
Given a sequence of access structuresăA1, . . . ,Ai, . . . which are restrictions of a “proper” evolving
access structure and corresponding sharing schemes, S1, . . . , Si, . . . it is not clear how to combine
them into a single scheme for the evolving access structure with related share complexity.1

We focus on improving the known upper bounds for share complexity of schemes for general
evolving access structures (first devised in [4]). Unlike [4]’s scheme, our scheme requires that the
entire evolving access structure is known in advance.

Revising [4]’s solution, Their scheme is essentially a reduction to evolving undirected st-conn,
executed on an infinite tree computing A (augmented with a sink vertex t). Evolving ust-conn has
an easy (ideal) evolving scheme, pointed out by [4]. Each party is assigned a (finite) set of edges,
where the corresponding scheme hands a party a bit per edge. The evolving scheme takes care of
assigning each party the shares of relevant edges upon their arrival, in a straightforward manner.

On a high level, our scheme constructs an oblivious, ordered, generalized (augmented) tree as
above. The main generalization is that vertices are labeled by a sequence x = xi, xi+1, . . . , xj of
variables, rather then a single one. Each outgoing edge e is labeled by a monotone function ge(x).
Our scheme also manages the share distribution for the evolving ust-conn. Namely, the share se
assigned to an edge labeled by a given function value ge(xi, xi+1, . . . , xj) = l, is obtained by sharing
se among the parties Pi, . . . , Pj , and giving each a share upon arrival. The share se and its sharing
is only generated upon arrival of Pi. 2

The main efficiency gain is that for individual edges we apply standard secret sharing schemes,
which are often quite efficient. The longer we make the sequences, the smaller is the tree, but the
share sizes in the individual schemes grow, so there is a tradeoff. Our choice of tree parameters is
such, that the resulting access structure has share complexity ei

o(1)

if it has a branching program of
width eO(nc) for constant c < 0.25. We also point out a useful class of access structures, for which
we are able to further imporve our construction, so the resulting share complexity is polynomial.
This class includes the evolving majority function, answering an open problem by [4]. In this
access structure, a set X is qualified if |X ∩ [t]| > t/2 for some t.

Road map. In section 2 we recall the definitions of evolving access structures and evolving secret
sharing schemes. We also refer to several evolving and standard secret sharing schemes form the
literature that will be useful to us. In Section 3 we present our main result. It includes our definition
of monotone infinite branching programs (BP) (and trees as a special case), and present our general
secret sharing scheme based on a BP representation. It achieves non-trivial share complexity of
en

o(1)

for BP’s with non-trivially small (slightly smaller) width eO(nc) for c < 0.25. In Section 4
we devise a further improvement (of the analysis) of our scheme, to obtain a construction of an
interesting class of functions including evolving majority. We conclude with some open questions
in Section 5.

2 Preliminaries
Standard secret sharing. (See [2], for example.) An access structure is a monotone set A ⊆ 2[n]

(that is, if A ⊆ B,A ∈ A, then B ⊆ A). We identify A with its characteristic function fA, and use
the terms interchangeably. A secret sharing scheme for A for sharing secrets in a (finite) domain X
consists of a sharing algorithm Sh, and reconstruction algorithm Rec. Sh is a randomized mapping
Sh : X → S1 × S2 . . . × Sn, and Rec is defined via Rec : {(T, ST )|T ⊆ [n]} → X. The scheme
is private in the sense that for all pairs of secrets x1, x2 ∈ X, and all T /∈ A, the distributions
ST (x1), ST (x2) are identical. The scheme is correct in the sense that for all A ∈ A, x ∈ X,
Pr[Rec(A,Sh(x)A) = x] = 1.

1A “strict” hardness follows from a lower bound in [4] for the evolving 2-threshold access structure, which is
greater than log i+log log i. For standard access structures dlogne is achieved by Shamir’s scheme for (k, n)-threshold
for any k ≤ n.

2The idea of grouping parties into long subsequences is inspired by the (ad-hoc) efficient scheme of [4] for k-
threshold evolving access structures, where parties are divided into “generations”. One key difference between the
two approaches, is that the [4] construction relies on any evolving scheme for a related functionality in a black-box
way, while our evolving scheme is specifically tailored to the access structure.
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The share complexity of a secret sharing scheme is defined as the maximal possible (bit) length
of a share per secret bit: maxx∈X,i∈[n]support(|Sh(x))i|)/ log |X|. We say the share complexity of
an access structure A (denoted sc(fA)) is bounded by some g(n), if there exists a scheme for A with
share complexity O(g(n)). Unless stated otherwise, in this work we focus on X = {0, 1}, which is
wlog., as one can share each bit via a fresh application of Sh to every bit of the secret. There exists
a secret sharing scheme for all A, with share complexity O(MF (fA)) [2], where MF denotes the
monotone formula complexity of fA. Thus (by simple counting arguments), the approach yields
exponential (in n) share complexity for some access structures. In the sequel, we refer to this
construction as the ISN scheme.

Secret sharing for evolving access structures. We precisely follow the definitions and no-
tation of [4]. In particular, we define evolving access strcutures and secret sharing schemes for
such structures as in definitions 2.6, 2.8 in [4] respectively. Repeating briefly, an evolving ac-
cess structure A = ∪i≥1Ai where for each i ≥ 1 Ai ⊆ 2[i] is a (standard monotone) access
structure. Additionally, for all i ≥ 1 it holds that {Ai+1(i)} = Ai, where, for a (standard)
access structure B on some g ≥ i parties B(i) is defined as B(X ∩ [i]). In other words, A is
defined by its characteristic function f : S → {0, 1}, where S = {(s1, s2, . . . , si, . . .)i∈N+ |∀i si ∈
{0, 1},finitely many s′is equal 1}, which is monotone in the sense that f(s1) ≤ f(s2) iff. s1 ⊆ s2,
where the si’s are interpreted as subsets of N+ in the natural way. Note that not any function
f : {0, 1}∗ → {0, 1} monotone in the standard sense (that the restriction of f to {0, 1}n for each n
is monotone) corresponds to an f : S → {0, 1} as above. In particular, reinterpreting f using the
natural correspondence between {0, 1}∗ and S, padding vectors x ∈ {0, 1}∗ with 0’s to the right
does not generally work, as this mapping is not one-to-one. For evolving access structures, however,
it is the case that f|x|(x) = f|y|(y) for all x, y ∈ {0, 1}∗ mapping to the same value z ∈ S. Thus, for
such access structures, we will use x ∈ {0, 1}∗ and its padded version z ∈ S interchangeably. For
a string x ∈ {0, 1}∗ (or x ∈ S), let #1(x) (#0(x)) denote the number of 1’s (0’s) in x. For indices
i, j (xi, . . . , xj) is naturally defined to be the corresponding substring of x if 1 ≤ i ≤ j ≤ |x|. If
i > j we define it to be the empty string ε.

A secret sharing scheme for an evolving access structure A is comprised of a sharing and
reconstruction algorithms Sh,Recon. For each newly arriving party Pi, the sharing algorithm is
given the secret s, and the sequence of shares given to all previous parties s1, . . . , si−1, and gives
party Pi its share si, so that the resulting share distribution is consistent with a (standard) secret
sharing scheme’s requirements for Ai.3 As in standard secret sharing schemes, the reconstruction
algorithm is given x ∈ {0, 1}∗ corresponding to a finite set of parties, and the share vector held by
sx.

Secret sharing for ust-conn and st-conn. In the standard st-conn (family) access structure,
we are given a finite directed graph G(V,E), and s, t ∈ V is a pair of designated nodes. Each
party Pj (j ∈ [|E|]) is assigned a distinct edge ej in E. The access structure consists of all sets
of parties T such that the sub-graph G(V,ET ) contains an s-t path. The undirected version of
the access structure, ust-conn, is the same, except that G is undirected. We consider a slightly
modified version of the problem, where party Pi is assigned a non-empty subset m(i) = Ei ⊆ E.
The Ei’s may intersect. A set T is qualified if G(V,

⋃
i∈T m(i)) satisfies s-t connectivity. We denote

the corresponding access structures by ext− st− connG and ext− ust− connG respectively.
Consider an infinite graph G, nodes s, t ∈ V and an injective mapping m : N+ → E. As in the

non-evolving case, we define the evolving ust− connG access structure to contain all T ∈ {0, 1}∗,
for which Gx = G(V,

⋃
i∈T {m(i)}) has an s-t path.

There exists a simple scheme for ust-conn-family structures, giving a single bit to each party [1].
It was observed in [4], that the [1] construction readily extends to the case of evolving ust-conn
(not extended).

Claim 2.1 For all parameters (G,m), evolving ust-conn has an evolving secret sharing scheme
with share complexity sc(i) = 1.

For completeness, let us review the evolving ust-conn construction outlined in [4].
3When describing concrete schemes, it will often be convenient to assume that the sharing algorithm is not

only given the shares of previous parties, but that it also stores and passes on to the share function the (finite)
randomness used to generate all previous shares. This is wlog., as it can be resampled to be uniform over the
randomness consistent with the previous shares. In particular, this randomness is not counted towards the share
complexity of any of the parties.
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Proof sketch. Each node v 6= t, s in the graph is assigned a random bv ∈ F2, while t is assigned
the secret bit s, and s is assigned 0. The assignment is done lazily. That is, when party Pi touching
a new node arrives, that node is assigned its random bit bv. The party, corresponding to edge {u, v}
is given bv − bu as its share, upon arrival. Upon reconstruction, if parties forming a path from s
to t are present, adding up their shares indeed results in bs + bt = s (every bv along the path for
v 6= s, t cancels out). �
We will also use the following scheme for standard directed ext-st-conn.

Claim 2.2 For all (finite) G, and m, there exists a secret sharing scheme for ext− st− conn with
parameters (G,m) with share complexity nO(log(n)).

Proof sketch. The above result for the special case of st− conn follows simply by applying ISN
to the monotone formula of size nO(logn) for the problem of st-conn over G with |E| = n, which is
known to exist [3]. Now, for ext− st− conn, we run the scheme of the standard variant for graph
G, and give Pi the shares for all e ∈ Ei. The resulting share complexity is ssext ≤ |Ei|ssext ≤
n · nO(logn) = nO(logn). �

3 Our main result
Given a monotone function f : {0, 1}∗ → {0, 1}, we define a certain type of infinite branching
programs (BP’s) for evaluating the function.

Definition 3.1 Let f : S → {0, 1} denote a function corresponding to an evolving access structure
A, which is not identically 1. An inifinte monotone BP for evaluating f is an infinite directed
acyclic graph (DAG) G = (V = N+ ∪ {s, t}, E), where s, t is a pair of designated source and sink
nodes respectively.4 Also V/{t} = ∪∞

i=0Vi, where V0 = {s}, where the Vi’s are all finite and disjoint.
Every layer Vi has an associated a pair of indices pi < qi, so that p0 = 1, and pi+1 = qi + 1. We
refer to the range (pi, qi) as generation i + 1. Every vertex v ∈ Vi has a set of outgoing edges
Ev ⊆ Vi+1 ∪ {t}. Every edge (v, u) is labeled by a monotone function gv,u : {0, 1}qi−pi+1 → {0, 1}.
For technical reasons, edges of the form e = (v, t) are never labeled by ge ≡ 1 5. For a vector x ∈ S,
and v ∈ Vi, the evaluation of an edge (v, u) at x, val(v, u, x) equals gv,u(xpi , xpi+1, . . . , xqi). Define
a subgraph Gx = (V,Ex) of G, where Ex = {(v, u)|val(v, u, x) = 1}. The function fG computed by
G maps x to 1 iff. there is a path between s and t in Gx.

Throughout the paper, we refer to BP’s as in Definition 3.1 as an “infinite monotone BP”, or
simply BP, when there is no confusion. We say a BP is simple, if qi = pi +1 for all i ≥ 0. In other
words, every node is labeled by a single variable, as in the standard definition of BP. A bound on
the width of a BP w : N → N is a functions satisfying |Vi| ≤ w(i). We say an infinite monotone
BP G is an infinite monotone tree, if the undirected graph obtained from G \ {t} by ignoring edge
directions is cycle-free.6

By monotonicity of the gu,v’s, infinite monotone BP’s indeed compute only monotone functions
f : S → {0, 1}.

A starting point - the work of [4]. Consider the simple infinite monotone tree where each
node in layer Vi is labeled by a single variable xi and has two outgoing edges labeled by “0” and “1”
respectively, where some nodes output "1" and the rest output "0" (closer to the standard model of
decision trees). The "1" nodes have no child nodes. Casting such trees in our framework, the tree
is a simple one. The 0-edges are labeled by the function g(xi) ≡ 1 (capturing the fact that 0-edges
for monotone function are “for free”), and 1-edges are labeled by the function g(xi) = xi. Nodes
labeled with 1 are all "collapsed" into t, and erased from the tree (in line with the requirement
that no g(v,t) can equal 1).

The above tree GA(V,E) is used in [4] for their secret sharing scheme for general evolving access
structures ( [4],theorem 3.1). Essentially (with an additional small optimization we don’t get into
here), they apply (a generalization) of the scheme for evolving ust-conn from Claim 2.1, U to G.

4The current definition corresponds to a variant of such trees which are oblivious, ordered, and read once.
Possibly, more general definitions could be useful.

5All edges may be labeled by g(v,u) ≡ 0. We could as well not include edges labeled by g(v,u) ≡ 0, but this
makes the definition a bit simpler.

6Technically, as G need not be connected, the resulting graph may be a forest, but it won’t matter to us.
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This access structure generalizes evolving ust-conn in the natural way, with m : N → 2E mapping
only to finite sets. The assignment function m(i) outputs Ei = {(v, u) ∈ E|v ∈ Vi−1} ∪ {(v, u)|v ∈
Vj where j ≤ i, g(v,u) ≡ 1}. It is a subset of edges in Gei (where ei is the characteristic vector of
{i}).

It is crucial here that all Ei are finite, to achieve finite share complexity. Finiteness is
achieved by the small trick of not giving Pi edges with g(v,u) ≡ 1 that lie beyond layer Vi−1,
which does not hinder correctness. It is easy to see that indeed x is in ext − ust − connG,m iff.
G′

x = (V,
⋃

{i|xi=1} m(i)) has an s-t path for all x ∈ {0, 1}∗. Here G′
x is an undirected graph (so,

edge directions of the m(i)’s are ignored). The (almost) tree structure of G, allows us to model
acceptance by T by (evolving) ust-conn rather than by (evolving) st-conn.

A modification of the scheme U in Claim 2.1 working for the extended variant, proceed as
follows. Upon arrival of Pi, it gets all the (sub)shares for edges contained in previous shares
(e ∈ Ej for some j < i). New edges (v, u) it should receive, are assigned new shares generated as
in the non-extended variant U .

The share complexity of the resulting scheme is O(2i). Major gains can be sometimes made
when the complete, binary sub-tree of height i gets "pruned" due to strings x ∈ 0, 1i for which
fA(x) = 1. For instance, consider the evolving k-threshold scheme, where k is constant. Then, in
the corresponding tree,

(
i

k−1

)
edges (v, u) exit Vi−1, with at most i edges leading to each such v.

Thus, the share complexity of the scheme satisfies sci ≤
(

i
k−1

)
(1+ i) = O(ik). As another example,

the scheme for evolving majority resulting from [4]’s general scheme, Pi receives shares for at least
Ω(2n/2) edges (even with the optimization in [4]).

Our Construction. Our goal is to devise an approach for constructing schemes with better share
complexity for interesting classes of functions (while general share complexity remains exponential).
In particular, we obtain polynomial share complexity for a class containing evolving majority. The
idea is very simple: [4] have simple g(v,u)’s (1 or xi for some i) with very small share complexity
(1) per edge. On the other hand, the decision tree itself (when truncated up to the layer including
some party Pi) is large.

Our idea is to decrease the size of the tree, at the expense of labeling each layer with a large
sequence of bits, such that the degree of each vertex is relatively small. As a result, the share
complexity of the g(u,v)’s, each now depending on qi−pi+1 bits, increases. We still use the scheme
U for ust-conn in Claim 2.1 as the high level evolving scheme at the basis of our construction, but
we need to further generalize the access structure of ext-ust-conn. By the special structure of the
tree used in [4]’s construction above, we could indeed say that individual parties hold certain
subsets of the edges, and model the problem as a ext-ust-conn problem.

For more general trees, we have a mapping between sets of parties that are allowed to learn
certain sets of edges - according to the various g(v,u)’s. The idea is to share the resulting shares
s(v,u) among the parties which satisfy g(v,u) = 1. Following are details of the basic construction.

Lemma 3.1 Let A denote an evolving access structure where fA 6≡ 1. Then the scheme in Figure 1
is a correct evolving secret sharing scheme for A.

Proof Sketch. The lemma follows straightforwardly from the construction and our definition of
infinite monotone trees. That is, the parties learn the shares corresponding to edges in Gx, iff.
x ∈ A. To see this, we make several observations.

Observation 1 Gx has a directed s-t path iff. the underlying undirected graph G′
x has an s-t path.

This is the case because G \ {t} is a tree, so a simple s-t path in G′
x is in fact a path in Gx.

Next, we observe that the parties in x learn only the U-shares s(v,u) where g(v,u)(xpgen(v)
, . . . , xqgen(v)

) =
1, namely those in Gx. Otherwise, they learn nothing about the share. This is by correctness of
the (standard) schemes for the g(v,u)’s. Also, by construction, some of the shares se for e ∈ Gx are
not learned by x. Namely, let lx denote the last index of x at which x equals 1. The parties in x
learn shares for all of the edges in Gx except for those with g(v,u) ≡ 1 where v ∈ Vj for j ≥ gen(lx).
Clearly, if x /∈ A, then Gx does not contain an s-t path, the set of edges for which the parties can
reconstruct the U-shares is a subset of Gx, so it definitely does not contain an s-t path. If x ∈ A,
we need to show that the subset of sv,u’s learned contains an s-t path. By construction, in this
case G′

x (and thus Gx) has an s-t path. Removing the edges above from Gx still leaves an s-t path.
Assume the contrary, and consider a simple s-t path in Gx. As edges labeled by g(v,t) can not be
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• Let A denote an evolving access structure where fA is not identically 1. Let T denote
a tree for A.a Let m order the tree edges in some order where n edge (vi, u) always
preceeds an edge (vi+1, w) (that is, by order of tree layers, starting from s). Let U
denote the evolving ust-conn scheme for T (as in Claim 2.1) for (G,m).

• The parties are partitioned into generations as in T .

• Sh(s1, . . . , si−1) :

1. Assume Pi = Ppg
is the first party in generation g in T . Assign new shares to

all edges outgoing a vertex in layer Vg according to U (by the order in m). Use
previous U-shares from previous sj ’s for that matter. For v ∈ Vg, let sv,uj

denote
the share assigned to edge {v, uj}. Share sv,uj among Pi, . . . , Pqg according to some
standard secret sharing scheme for gv,uj . Give Pi each of its shares siv,uj

as part of
si. The shares of the following parties in generation g are stored by Sh for future
use. b

2. Otherwise, Pi is not the first party in its generation g. It gets the shares for all
edges (v, u) for v ∈ Vg, generated when the first party in generation g arrived, and
stored in si(v,u).

3. In any case, for j with gv,u ≡ 1, where v ∈ Vg′ for some g′ < g, s(v,u) is stored as
part of si. c

• Recon(x, sx) : Here sx is a vector of shares held by the (finite) set of parties represented
by x ∈ {0, 1}∗. If there exists a path p = (v0 = s, v1, v2, . . . , v`, v`+1 = t) in Gx, recover
all shares svi,vi+1 , using the g(vi, vi+1)-shares sjvi,vi+1

held by the parties.

aSuch a tree always exists, the simple tree used in [4] for example.
bAgain, for convenience of presentation, the dealer stores the shares for the other parties for future iterations.

We could as well resample based on previous parties’ shares.
cWe could also modify U a little, to make buj = bv in case gv,uj is identically 1, as done in [4]. This way,

nothing would need to be given to any party for that node, as the share sv,uj is always 0. However, that
would make the construction slightly less modular.

Figure 1: Main construction

the constant 1 function, the last edge (v, t) on the path satisfies g(v,t)(x) = 1, and thus it must be
the case that gen(v) ≤ gen(lx). By structure of G, the path is of the form p = (v0, . . . , vk = v, t),
where each vi is in layer Vi is an s-t path in Gx. The set x holds the shares of all of the edges in
p, as all of these edges exit levels g′ ≤ i− 1. �

We derive our main theorem by constructing trees resulting in en
o(1)

share complexity of Con-
struction 1 in case fA has branching programs of sufficiently small en

o(1)

size (e.g eO(n0.24)). Our
result is in fact stronger, providing a bound on achievable share complexity based on a bound on
the width of a BP computing fA.

Theorem 3.2 (Main theorem) Let A denote an evolving access structure, and B(V B , EB , sB , tB)
denote a simple monotone infinite BP computing A. Let w(i) denote a bound on the width of B
(assume w is a monotone function). Then A has an evolving secret sharing scheme with share
complexity max((w(i2)i)O(logw(i2)+log i).

Proof sketch We construct a suitable infinite monotone tree G evaluating A, and plug it into
Construction 1. The main idea is to replicate layer V B

qi as the set of children of every vertex (u, z)

in layer Vi in our graph. Here z is the name of the vertex in V B
qi−1

that (u, z) replicates. details
follow.

Lemma 3.3 Assume fA 6≡ is an evolving access structure. Then the tree on Figure 2 correctly
evaluates fA.

Now, an edge from (u, z) to ((u, z), w) evaluates to 1 iff. (xpi
, . . . , xqi) leads from z to w in

(V B , EB
0pi−1x

). Edges to t are handled similarly. Details follow in Figure 2.
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• Let A denote a non-trivial evolving access structure. We construct an infinite monotone
tree G evaluating it. Set qi = 22

i

(this defines the sequence of pi’s as well).

• We define G recursively. Namely, we define a sequence G0 ⊆ G1 ⊆ G2 . . . of (finite)
graphs and set G = (

⋃∞
i=0 Vi,

⋃∞
i=0 Ei) (that is, we add a tree layer Vi every step).

• Set V0 = {(⊥, s), t}, and G0 = (V0, φ).

• Assume we have defined Gj for all j < i. To define Gi, we add the layer Vi, and all
edges leaving Vi−1 to Gi−1. For each v = (u, z) ∈ Vi−1:

1. For each w ∈ V B
qi :

– Consider the ext − st − conn function fv,w on the graph Gv with Vv =
(
⋃qi

i=pi−1)V
B
i ∪ {tB} ⊆ V B , and Ev the set of edges induced in B by Vv. The

s, t nodes are z, w respectively. The access structure is defined on qi − pi + 1
parties. Set m(i) = EB

0pi−1−1x
∩ Ev. For each w ∈ V B

qi .
– Add a vertex u = (v, w) to Vi. Label the edge (v, w) by g(v,w) = fv,w(x).

2. Define f ′
v similarly to the fv,w’s above with the only exception that the t vertex

now equals tB . Add an edge (v, t) to Ei labeled by f ′
v.

Figure 2: Tree construction

As to complexity, the main point is that s− t connectivity has quite low share complexity. As
we manage to create a rather small tree, and the complexity of evaluating the shares for various
edges reduces to ext−st− conn in a small graph when w is small, the increase in share complexity
per edge is out weighted by the reduction in the number of edges in the (sub)tree relevant to Pi in
Construction 1.

Let us make to precise calculations. First, we estimate the size of the subtree for which Pi may
receive a share for an edge. Namely, it consists of the subgraph induced by

⋃gen(i)+1
j=0 Vj . That is,

Ggen(i)+1, as in the tree construction above. It is easy to see that the number of edges in the tree
is bounded by

|Ei| = Π
gen(i)
j=1 |Vj | = Π

gen(i)
j=1 (|Vj |+ 1) ≤ |w(qj) + 1|.

Note that w(qgen(i)) ≤ w(i2), as for our choice of parameters, qgen(i) = p2gen(i) ≤ i2. Thus, it is not
hard to see that

|Ei| ≤ Π∞
j=0w(i

21−j

) + 1 = (w(i2))O(log i). (1)

Next, let us bound the share size given to Pi for a single edge. At worst, Pi receives a share for
ext− st− conn on a graph with ≤ |w(i2)i2 +1| vertices (by monotonicity of w), and thus contains
as most O(w2(i2)i4) edges. By Claim 2.2, the share complexity per edge is

(w(i2)i)O(log i+logw(i2)) (2)

Multiplying the two, we obtain a bound of (w(i2)i)log i+logw(i2) on the resulting share complex-
ity.

4 A further improvement for “counting” access structures

We have obtained a scheme with en
o(1)

share complexity for access structures that posses efficient
BP’s. More precisely, access structures with simple monotone infinite BP’s with w(i) = eO(nc)

for c < 0.25 results in en
o(1)

share complexity. In particular, the evolving majority function has a
(simple) BP with width w(n) = n+1. Thus, Theorem 3.2 yields share complexity nO(logn), which
is a substantial improvement over Ω(2n

0.5

) when simple trees are used, as in [4]. However, it turns
out that for functions based on “counting” like evolving majority we can further improve the share
complexity to poly(n).

We define the class of evolving counting access structures as the set of non trivial monotone
functions f : S → {0, 1} for which there exists a function fcnt : N× N× {0, 1} → {0, 1} such that
for all x = (x1, . . . , xt) ∈ {0, 1}+ for which f(x) = 0, f(x) = fcnt(|x|,#1(x1, . . . , xt−1), xt).
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Theorem 4.1 Let A be an evolving counting access structure. Then it has share complexity of
Õ(n6).

The evolving majority function is of the type above, with fcnt(t, k, b) = 1 iff. 2(k + b) > t+ 1.

Corollary 4.2 The evolving majority access structure has share complexity of Õ(n6).

Proof Sketch of Theorem 4.1 Clearly, for this type of functions in each layer of a simple BP
B, we need to store only the number of 1’s encountered so far. That is, layer V B

i contains vertices
from {vi0, . . . , vii} where the semantics of vij is that Gx contains an s-vj path iff. #1(x1, . . . , xqi) ≥ j.
An edge (vij , v

i+1
k ) is thus marked by 1 if k ≤ j, by xi+1 if k = j+1 and 0 otherwise. Furthermore,

vi+1
k is included in V B

i+1 iff. vik ∈ V B
i or vik−1 ∈ V B

i and fcnt(i + 1, k − 1, 1) = 0. This is required
because we do not want to include a vertex for which g(v,t) ≡ 1. Also, for each vik ∈ V B

i , we add
an edge (v, t) iff. fcnt(i + 1, k, 1) = 1. It is not hard to see that B is indeed a monotone infinite
BP computing A. See the full version for a proof.

Now, consider the proof of Theorem 3.2. It proceeds by constructing a tree G (Construction 2)
for A based on B, and plugging it into Construction 1. In this construction, each party receives
a share of a (fresh) sharing for edge (v, u) according to a secret sharing scheme for g(v,u) (in G)
among qi − pi + 1 parties. By construction, each party Pi gets a share for at most |Ei| edges,
where |Ei| is bounded as in Equation 1. As w(i) ≤ i + 1 is a bound on the width of B, we get
|Ei = O(i4)|.

Now, in general we bound the share size of every edge according to Equation 2. Here we used
a general bound on ext-st-conn, as the g(v,u) can always be cast as an instance of this problem
(on at most i2 parties, and graphs of size ≤ i4w2(i2) edges). However, for our particular BP,
we could do much better. Consider e = ((w, vi), ((w, vi), vj)) in the tree Construction 2, where
(w, vi) ∈ Vl. If j ≤ i, ge ≡ 1. Otherwise ge(x) = 1 iff. #1(x) ≥ j − i. For this goal, we can use
Shamir’s scheme [5] for (j − i, ql − pl + 1)-threshold. As ql − pl + 1 ≤ i2 (to be relevant to Pi),
the resulting share complexity is O(log i). For edges of the form e = ((w, vi), ((w, vi), tB)), the
predicate is of the form

∨ql−pl+1
j=1 (#1(x1, . . . , xj) ≥ kj) ∧ xj . This type of secret sharing can use a

variant of the ISN scheme, for a monotone formula where leaves are not only variables xk, but can
also be threshold functions. The only difference is that random values for the leafs corresponding
to threshold functions are shares among the parties according to (kj , ql − pl +1) threshold scheme
(rather than given to the corresponding party) - see the full version for a detailed construction.
Overall, the resulting share complexity of a relevant (v, t) edge in G is O(i2 log i). We conclude
that the share complexity of our scheme is Õ(i6), as required. �

5 Future work
We have obtained general schemes for evolving secret sharing schemes with low BP complexity
for BP’s where all layers are labeled by consecutive, non-intersecting ranges of variables. Can we
sometimes do better for protocols based on more general classes of BP’s? How about BP’s that
read each variable more than once?

One simple modification of our scheme that could work for some schemes is playing with the
size of a generation.
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