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Abstract

Revoking corrupted users is a desirable functionality for cryptosystems. Since Boldyreva,
Goyal, and Kumar (ACM CCS 2008) proposed a notable result for scalable revocation method in
identity-based encryption (IBE), several works have improved either the security or the efficiency
of revocable IBE (RIBE). Currently, all existing scalable RIBE schemes that achieve adaptively
security against decryption key exposure resistance (DKER) can be categorized into two groups;
either with long public parameters or over composite-order bilinear groups. From both practical
and theoretical points of views, it would be interesting to construct adaptively secure RIBE
scheme with DKER and short public parameters in prime-order bilinear groups.

In this paper, we address this goal by using Seo and Emura’s technique (PKC 2013), which
transforms the Waters IBE to the corresponding RIBE. First, we identify necessary require-
ments for the input IBE of their transforming technique. Next, we propose a new IBE scheme
having several desirable properties; satisfying all the requirements for the Seo-Emura technique,
constant-size public parameters, and using prime-order bilinear groups. Finally, by applying
the Seo-Emura technique, we obtain the first adaptively secure RIBE scheme with DKER and
constant-size public parameters in prime-order bilinear groups.

Keywords: Revocable identity-based encryption, static assumptions, asymmetric pairings.

1 Introduction

Identity-Based Encryption (IBE) scheme is a public key cryptosystem enabling one to use arbitrary
bit-string as her/his public key. In dynamic cryptosystem, user registration and revocation are
important functionalities. When Boneh and Franklin proposed the first realization of IBE [BF01],
they already explained how to revoke corrupted users; for an identity I of a non-revoked user at
time T , I∥T is regarded as the identity, and Key Generation Center (KGC) issues a secret key

∗The preliminary version will appear in CT-RSA 2017 [WES17]. This is the full version.
†The first author is supported by JSPS Research Fellowships for Young Scientists.
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for I∥T to a non-revoked user I for each time period. Even though this simple identity-encoding
method can successfully revoke users from the system, KGC’s huge overhead (linear computational
complexity in the number of users per each time period) is an inherent problem. To resolve
this problem, Boldyreva, Goyal, and Kumar [BGK08] proposed a scalable revocation method by
using the symmetric key broadcast encryption technique, so-called the Complete Subtree (CS)
method [NNL01]. They called IBE with such the efficient revocation Revocable IBE (RIBE).

After the seminal work by Boldyreva, Goyal, and Kumar [BGK08], several RIBE schemes
have been proposed so far. Almost all such subsequent works basically follow Boldyreva et al.’s
revocation methodology. Let us briefly explain Boldyreva et al.’s approach; as in IBE, each user has
a (long-term) secret key skI. At each time T , KGC broadcasts key update information kuT which
is constructed by the Complete Subtree (CS) method [NNL01]. Remark that no secure channel is
required to send kuT to users. A user can compute a decryption key dkI,T from kuT and own skI
if the user is not revoked at T . Due to the CS method, the size of kuT is O(r log(n/r)), where
n is the number of maximum users and r is the number of revoked users. Thus, Bolyreva et al.
RIBE scheme is scalable. The first adaptively secure RIBE scheme was proposed by Libert and
Vergnaud [LV09]. Seo and Emura extended the Boldyreva et al.’s security notion to consider more
practical threats; decryption key exposure resistance (DKER) [SE13b, SE14b]. Intuitively, this
notion considers the case where several decryption keys dkI∗,T for the target identity I∗ are leaked
to an adversary but the target decryption key dkI∗,T ∗ is not exposed. This notion is important
where the secret key is stored in physically secure devices such as USB pen drives to be isolated
from the Internet but decryption keys are stored in weaker device such as a smart phone. They
also proposed the first scalable RIBE scheme with adaptive security with DKER. The Seo-Emura
RIBE is based on the Waters IBE [Wat05], so that long public parameters are inevitable. Since
there exist several efficient IBE schemes, it is quite natural to ask

whether we attain an adaptively secure RIBE scheme with DKER, which achieves similar perfor-
mance to efficient IBE schemes, in particular, short public parameters in prime-order groups.

Although several RIBE schemes are proposed so far [CLL+12a, CLL+12b, CZ15, LLP14, IWS15,
PLL15, SE14c, SLLW14], none of them achieves adaptive security against decryption key exposure
and short parameters (in the sense of constant public parameters and prime-order groups) at the
same time. We found that the answer is not trivial due to the following reasons. Basically, there are
two approaches to achieving constant-size public parameter IBE: One is to use strong assumptions
such as static ones in composite-order groups and q-type ones (e.g., [Gen06, Wee16]); and the other
is to apply the dual system encryption methodology [Wat09] in either prime-order or composite-
order groups. Therefore, if we want to realize an RIBE scheme with constant-size public parameter
under static assumptions in prime-order groups, it is quite natural to apply the latter approach for
our purpose.

Unfortunately, there exists a subtle obstacle in applying the dual system encryption methodol-
ogy for adaptive security with decryption key exposure resistance. In fact, Lee observed such an
obstacle [Lee16] and also, basing on his observation, pointed out a flaw of an Revocable Hierar-
chical IBE (RHIBE) scheme [SE15a]. Let us briefly review such an obstacle. In the dual system
encryption framework, ciphertexts and secret keys can be transformed into semi-functional ones.
Normal ciphertexts can be decrypted with either a normal or semi-functional key, whereas semi-
functional ciphertexts can be decrypted with only a normal secret key. In the security proof, a
normal challenge ciphertext and secret keys are transformed into their semi-functional forms one
by one. In the process of changing some normal key (called a target key) into its semi-functional
form, a simulator has to embed some function f into public parameters. Thus, the simulator can
generate randomness rC := f(I∗) for the challenge ciphertext, as well as randomness rK := f(I)
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for the target key, where I∗ is the target identity and I is an identity such that I ̸= I∗. The
proof goes well since f is a pairwise independent function and I ̸= I∗, i.e., rC is independent of rK
from an adversarial view in the information-theoretic sense. To the best of our knowledge, such a
pairwise independent function f is necessary for proving security of all of the currently-known IBE
schemes using the dual system encryption methodology. On the other hand, an adversary against
the security game of RIBE can get not only a challenge ciphertext for I∗ but also a secret key for
I∗ (see Definition 1). Therefore, we cannot argue that randomness rC for the challenge ciphertext
and randomness rK for the secret key are independent of each other from the view point of the
adversary, since it holds rC = rK = f(I∗).

Lee [Lee16] introduced a way to circumvent the above obstacle and also proposed provably secure
RHIBE scheme in the adaptive adversary model. Since we can consider a 1-level HIBE as an IBE
scheme, Lee’s RHIBE can be considered as an adaptively secure RIBE with DKER and short public
parameters. We note that, however, his approach essentially used composite-order bilinear groups.
Moreover, there are other RHIBE schemes [ESY16, LP16, RLPL16, SE13a, SE14a, SE15b, SE16],
but none of them satisfies both adaptive security with decryption key exposure resistance and short
parameters (i.e., short public parameters in prime-order groups) at the same time. Therefore,
designing an adaptively secure RIBE scheme with DKER and short parameters (possibly through
the dual system encryption approach) is still open.

1.1 Our Contribution

In this paper, we propose the first adaptively secure RIBE scheme with constant size public param-
eters in asymmetric bilinear groups of prime order. Our RIBE scheme also supports decryption key
exposure resistance (i.e., our scheme meets the strong security notion for RIBE). The security of
our scheme is proved under static assumptions, which are mild variants of the symmetric external
Diffie-Hellman (SXDH) assumption.

We overcome the difficulty mentioned above by the following strategy: Taking the Seo-Emura
approach [SE13b]. Seo and Emura proposed an adaptively secure RIBE scheme based on the
Waters IBE [Wat05], and showed a security reduction from the Waters IBE to their RIBE scheme.
Note that the Waters IBE does not use the dual system encryption methodology, and requires long
public parameters which depend on the bit-length of identities. Therefore, by taking the Seo-Emura
approach we want to avoid the randomness correlation problem specific to dual system encryption-
based RIBE schemes. Namely, we want to make a security reduction from some IBE scheme using
the dual system encryption methodology to our RIBE scheme. However, the Seo-Emura technique
essentially requires the secret-key re-randomization1 of the underlying IBE scheme, but almost
all of the dual system encryption-based IBE schemes in prime-order groups (e.g., [Wat09, Lew12,
CLL+14]) do not have this property.

Therefore, we employ the Jutla-Roy IBE [JR13] (and its variant [RS14]) as a promising candi-
date of our basic IBE scheme since it allows one to publicly re-randomize the secret key. However,
the public parameter of the Jutla-Roy IBE lacks some important elements for simulating secret keys
in the security proof. In the security proof taking the Seo-Emura approach, a simulator extracts the
master key of the underlying IBE scheme by using the Boneh-Boyen technique [BB04], and creates
a secret key skI∗ or decryption key dkI∗,T for any T , where I∗ is the challenge identity and T is a
time period such that it is not the challenge one. The Boneh-Boyen technique requires some group
elements that contain the master key in the exponent in the public parameter of the underlying
IBE, however the original Jutla-Roy IBE does not contain them (For details, see Section 3). Hence,

1It means that each secret key can be re-randomized with fresh randomness.
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Table 1: Efficiency Comparison among adaptively secure RIBE schemes with decryption key expo-
sure resistance.

Scheme #mpk #msk #C

Seo-Emura [SE13b, SE14b] (6 + ℓ)|Gp| |Gp| 3|Gp|+ |Gsym
T |

Lee [Lee16] (L = 1) 8|GN |+ 3|Gcomp
T | |GN | 4|GN |+ |Gcomp

T |
Proposed Scheme 7|G1|+ 11|G2|+ |Gasym

T | 2|G2| 4|G1|+ |Gasym
T |+ |Zp|

Scheme #sk #ku #dk Assumption

Seo-Emura [SE13b, SE14b] (2 log n)|Gp| (2r log(n/r))|Gp| 3|Gp| DBDH

Lee [Lee16] (L = 1) (2 log n)|GN | (2r log(n/r))|GN |+ 2|ZN | 4|GN | Static

Proposed Scheme (5 log n)|G2| (3r log(n/r))|G2| 6|G1| ADDH1, DDH2

Let |G1|, |G2|, and |Gasym
T | be the bit-length of an element of asymmetric bilinear groups G1, G2, and GT

respectively. Let |Gp| and |Gsym
T | be the bit-length of an element of symmetric bilinear groups Gp and

GT employed in [SE13b, SE14b], respectively. Let |GN | and |Gcomp
T | be the bit-length of an element of

symmetric bilinear groups GN and GT of composite order N = p1p2p3, where p1, p2, and p3 are distinct

prime numbers, employed in [Lee16], respectively. Let |Zp| and |ZN | be the bit-length of an element of

Zp and ZN , respectively. On 256-bit Barreto-Naehrig curve [BN06], |G1| = 256, |G2| = |Gp| = 512, and

|Gasym
T | = |Gsym

T | = 3072 due to [CLL+14]. Note that |GN | and |Gcomp
T | should be much larger so that N

cannot be factored. L is the hierarchy depth, n is the maximum number of users, r is the number of revoked

users, and ℓ is the bit-length of identity. For example, if 32 byte e-mail address is regarded as identity, then

ℓ = 256.

we modify the Jutla-Roy IBE so that the Seo-Emura technique can be applied to it, and we prove
the security under the Augmented Decisional Diffie-Hellman on G1 (ADDH1), which is a new static
assumption, and Decisional Diffie-Hellman on G2 (DDH2) assumptions. The ADDH1 assumption
is newly introduced in this paper, and therefore it is a non-standard one. However, this assumption
is not so complicated and similar to the previously used assumption in [RCS12a]. The security of
the ADDH1 assumption is proved in the generic bilinear group model.

We then propose an RIBE scheme based on the Jutla-Roy IBE, and the security is proved by
making a security reduction from the modified Jutla-Roy IBE to the RIBE scheme.2 As a result, we
obtain the first RIBE scheme that achieves adaptive security with decryption key exposure resis-
tance and constant-size public parameters in prime-order asymmetric bilinear groups. Furthermore,
our proof technique provides a better reduction loss, which is elaborated in the next paragraph.

Efficiency Comparison: We give an efficiency comparison in Table 1. All of the schemes meet
adaptive security with decryption key exposure resistance. We use the KUNode algorithm for
efficient revocation as in previous RIBE schemes (For details, see Section 2 or [NNL01]). Therefore,
the sizes of secret keys and key updates in every scheme are O(log n) and O(r log(n/r)), respectively,
due to the KUNode algorithm. Lee’s scheme [Lee16] is less efficient than the others since it is
constructed over composite-order bilinear groups. Our scheme is more efficient than the Seo-Emura
RIBE in terms of constant-size public parameters and asymmetric pairings, and other parameters
are comparable to those of the Seo-Emura RIBE. In addition, our proof technique provides a better

2This situation is the same as that of Ishida et al.’s construction [IWS15]. Since the Kiltz-Galindo IB-KEM [KG09]
is not directly applicable due to the same reason, they constructed a variant of the Kiltz-Galindo IB-KEM, and then
showed a security reduction from the variant scheme to their scheme.
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reduction loss than that of the Seo-Emura RIBE. More precisely, the reduction loss of our scheme is
O(q1q|T |), whereas that of the Seo-Emura RIBE is O(ℓq2|T |), where ℓ is the bit-length of identity,
q is the maximum number of queries in the security game, q1 is the maximum number of queries
before the challenge phase in the security game, and |T | is the number of time periods in the
schemes.

1.2 Paper Organization

In Section 2, we describe notation and definitions throughout this paper. In Section 3, we propose
an IBE scheme, which is used as the underlying IBE scheme of our RIBE scheme, based on the
Jutla-Roy IBE. In Section 4, we show the first adaptively secure RIBE scheme with DKER and
short public parameters in prime-order groups, and some extensions are discussed in Section 5. We
finally conclude in Section 6.

2 Preliminaries

Notation. In this paper, “probabilistic polynomial-time” is abbreviated as “PPT”. For a prime
p, let Zp := {0, 1, . . . , p − 1} and Z×

p := Zp \ {0}. If we write (y1, y2, . . . , ym) ← A(x1, x2, . . . , xn)
for an algorithm A having n inputs and m outputs, it means to input x1, x2, . . . , xn into A and to
get the resulting output y1, y2, . . . , ym. We write (y1, y2, . . . , ym) ← AO(x1, x2, . . . , xn) to indicate
that an algorithm A that is allowed to access an oracle O takes x1, x2, . . . , xn as input and outputs

(y1, y2, . . . , ym). If X is a set, we write x
$←X to mean the operation of picking an element x of X

uniformly at random. We use λ as a security parameter. M, I, and T denote sets of plaintexts,
IDs, and time periods, respectively, which are determined by the security parameter λ.

Bilinear Groups. A bilinear group generator G is an algorithm that takes a security parameter
λ as input and outputs a bilinear group (p,G1,G2,GT , g1, g2, e), where p is a prime, G1, G2, and
GT are multiplicative cyclic groups of order p, g1 and g2 are (random) generators of G1 and G2,
respectively, and e is an efficiently computable and non-degenerate bilinear map e : G1×G2 → GT

with the following bilinear property: For any u, u′ ∈ G1 and v, v′ ∈ G2, e(uu
′, v) = e(u, v)e(u′, v)

and e(u, vv′) = e(u, v)e(u, v′).
A bilinear map e is called symmetric or a “Type-1” pairing if G1 = G2. Otherwise, it is called

asymmetric. In the asymmetric setting, e is called a “Type-2” pairing if there is an efficiently
computable isomorphism from G2 to G1. If no efficiently computable isomorphism between G1 and
G2 is known, then it is called a “Type-3” pairing. Throughout this paper, we focus on the Type-3
pairing. Type-3 is the most efficient setting since compared to Type-1, the size of representation of
G1 in the Type-3 setting is smaller and whole operations in the Type-3 setting are more efficient;
and compared to Type-2, the size of representation of G2 in the Type-3 setting is smaller and group
operations in G2 in the Type-3 are more efficient. For details, see [GPS08].

KUNode Algorithm. To reduce costs of a revocation process, we use a binary tree structure and
apply the following KUNode algorithm as in the previous RIBE schemes [BGK08, LV09, SE13b].
KUNode(BT, RL, T ) takes as input a binary tree BT, a revocation list RL, and a time period T ∈ T ,
and outputs a set of nodes. When η is a non-leaf node, then we write ηL and ηR as the left and
right child of η, respectively. When η is a leaf node, Path(BT, η) denotes the set of nodes on the
path from η to the root. Each user is assigned to a leaf node. If a user who is assigned to η is
revoked on a time period T ∈ T , then (η, T ) ∈ RL. KUNode(BT, RL, T ) is executed as follows.
It sets X := ∅ and Y := ∅. For any (ηi, Ti) ∈ RL, if Ti ≤ T then it adds Path(BT, ηi) to X (i.e.,
X := X ∪ Path(BT, ηi)). That is, KUNode adds at most r log n nodes to X where r = |RL| and n is
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the number of leaves of BT. Then, for any η ∈ X , if ηL /∈ X , then it adds ηL to Y. If ηR /∈ X , then
it adds ηR to Y. That is, KUNode adds at most r log n nodes to Y. Actually, due to the result of
[NNL01], the size of Y is O(r log(n/r)), and the time complexity is O(log log n). Finally, it outputs
Y if Y ̸= ∅. If Y = ∅, then it adds root to Y and outputs Y.

Revocable Identity-based Encryption. An RIBE scheme Π consists of seven-tuple algorithms
(Setup, SKGen, KeyUp, DKGen, Enc, Dec, Revoke) defined as follows: For simplicity, we omit a
public parameter in the input of all algorithms except for the Setup algorithm.

– (mpk,msk,RL, st) ← Setup(λ,N): A probabilistic algorithm for setup. It takes a security
parameter λ and the maximum number of users N as input and outputs a public parameter
mpk, a master secret key msk, an initial revocation list RL = ∅ and a state st.

– (skI, st)← SKGen(st, I): An algorithm for private key generation. It takes st and an identity
I ∈ I as input and outputs a secret key skI and updated state information st.3

– kuT ← KeyUp(msk, st, RL, T ): An algorithm for key update generation. It takes msk, state
st, a current revocation list RL, and a time period T as input, and then outputs key update
kuT .

– dkI,T or ⊥ ← DKGen(skI, kuT ): A probabilistic algorithm for decryption key generation. It
takes skI and kuT as input and then outputs a decryption key dkI,T at T or ⊥ if I has been
revoked by T .

– CI,T ← Enc(M, I, T ): A probabilistic algorithm for encryption. It takes M ∈ M, I ∈ I, and
T ∈ T as input and then outputs a ciphertext CI,T .

– M or ⊥ ← Dec(dkI,T , CI,T ): A deterministic algorithm for decryption. It takes dkI,T and
CI,T as input and then outputs M or ⊥.

– RL← Revoke(I, T,RL, st): An algorithm for revocation. It takes (I, T ) ∈ I ×T , the current
revocation list RL, and a state st as input and then outputs an updated revocation list RL.

In the above model, we assume that Π meets the following correctness property: For all security pa-
rameter λ ∈ N, all (mpk,msk,RL, st)← Setup(λ,N), allM ∈M, all I ∈ I, all T ∈ T , if I is not re-
voked on T ∈ T , it holds thatM = Dec(DKGen(SKGen(st, I),KeyUp(msk, st, RL, T )),Enc(M, I, T )).

We describe the notion of indistinguishability against chosen plaintext attack (IND-RID-CPA).
Note that this notion also captures decryption key exposure resistance, which was introduced by
Seo and Emura [SE13b], and this security model is the strongest known one. Let A be a PPT
adversary, and A’s advantage against IND-RID-CPA security is defined by

AdvIND-RID-CPA
Π,A (λ,N) :=

∣∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

(mpk,msk,RL, st)← Setup(λ,N),
(M∗

0 ,M
∗
1 , I

∗, T ∗, state)← AO(find,mpk),

b
$← {0, 1},

C∗
I∗,T ∗ ← Enc(M∗

b , I
∗, T ∗),

b′ ← AO(guess, C∗
I∗,T ∗ , state)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
.

Here, O is a set of oracles {SKGen(·), KeyUp(·), Revoke(·, ·), DKGen(·, ·)} defined as follows.

3We consider the SKGen algorithm in the sense of history-free RHIBE [SE15b, SE16], i.e., the algorithm takes st,
rather than msk, as input.
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SKGen(·): For a query I ∈ I, it stores and returns SKGen(st, I).

KeyUp(·): For a query T ∈ T , it stores and returns KeyUp(msk,RL, st, T ).

Revoke(·, ·): For a query (I, T ) ∈ I×T , it updates a revocation listRL by running Revoke(I, T,RL, st).

DKGen(·, ·): For a query (I, T ) ∈ I × T , it finds skI and kuT generated by the SKGen and
KeyUp oracles, respectively (If skI has not been generated yet, DKGen executes (skI, st)←
SKGen(st, I)).4 DKGen returns DKGen(skI, kuT ) and stores it unless it is ⊥.

The above oracles represent the following realistic threats and situations: SKGen represents the
collusion among users as in ordinary IBE. A can access KeyUp since key updates are broadcasted
by the KGC. The reason why A can access Revoke is an RIBE scheme should be secure against
any situations in terms of the revocation list. DKGen represents decryption key exposure.

We then impose the following restrictions on A. Specifically, the first three restrictions are
placed to take into account practical situations, and we circumvent some trivial attacks by the
other restrictions.

1. KeyUp(·) and Revoke(·, ·) can be queried at a time period which is later than or equal to that
of all previous queries.

2. Revoke(·, ·) cannot be queried at a time period T after issuing T to KeyUp(·).

3. DKGen(·, ·) cannot be queried at T before issuing T to KeyUp(·).

4. If I∗ was issued to SKGen(·) at T ′, then (I∗, T ) must be issued to Revoke(·, ·) such that
T ′ ≤ T ≤ T ∗.

5. (I∗, T ∗) cannot be issued to DKGen(·, ·).

Definition 1. An RIBE scheme Π is said to be IND-RID-CPA secure if for all PPT adversaries
A, AdvIND-RID-CPA

Π,A (λ,N) is negligible in λ.

3 The Basic IBE Scheme

We begins with reviewing Seo and Emura’s approach for transforming IBE to RIBE [SE13b].
Although their approach is not generic, it seems quite broadly applicable to the other IBE schemes.
We find some requirements for applying their technique. Then, we propose an IBE scheme satisfying
such the requirements, which has short public parameters and over prime-order bilinear groups.

Seo and Emura constructed an RIBE scheme based on the Waters IBE [Wat05] and provided a
security reduction from the Waters IBE. In the reduction, almost all queries can be easily simulated
due to the adaptive security of the underlying IBE. The most non-trivial part in the reduction is
simulating decryption keys for (I∗, T ), where I∗ is the target identity, since the security of usual
IBE scheme does not handle this case related to I∗. To this end, Seo and Emura employed two
techniques; the Boneh-Boyen technique [BB04] and secret-key re-randomization.

The Boneh-Boyen technique is originally for selectively secure scheme5; that is, if the simulator
knows the target (time T ∗ in our case) in advance, then the simulator embeds it into public param-
eters so that the simulator can simulate all the other queries not related to T ∗.6 The Boneh-Boyen

4Contrary to skI, kuT is already stored by the KeyUp oracle due to the restrictions on the oracles.
5Although our goal is adaptive security, the polynomial reduction loss enables one to use the selective security

technique in terms of (polynomial-size) time period.
6Although the decryption key (I∗, T ) is related to the target identity I∗, it is not related to T ∗ so that the

Boneh-Boyen technique is applicable.
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technique enables the simulator to compute decryption keys for (I∗, T ) with biased distribution,
where T is not the target time. The secret-key re-randomization can resolve the biased distribution
by forcing that all decryption keys have uniform randomness.

From the above interpretation, we find two requirements for the input IBE; (1) the secret-
key re-randomization property and (2) applicability of the Boneh-Boyen technique. The latter
requirement can be further segmentalized. (2-1) Each component of a secret key contains at most
one component of a master key and (2-2) each component of the master-key is available in the public
parameters in some form of elements in source-groups (of bilinear groups). The former is due to
that the Boneh-Boyen technique can extract at most one master-key component from each secret-
key component. The latter is due to that in the security reduction the master-key is embedded into
key updates that consist of only elements in source-groups by using the master-key-related public
parameters.7

The Waters IBE satisfies all the above requirements, but most of dual-system-encryption-based
IBE schemes in prime-order groups do not. For example, the first scheme by Waters [Wat09] and
almost all of the IBE schemes using dual pairing vector spaces (DPVS) (e.g.,[Lew12, CLL+14]) do
not satisfy any requirement, in particular, the public re-randomization requirement.

3.1 Modified Jutla-Roy IBE

We employ a modified version of the Jutla-Roy IBE [JR13] (and its variant [RS14]). The original
scheme satisfies two requirements (1) and (2-1). In this subsection, we modify the Jutla-Roy IBE
to additionally satisfy the requirement (2-2).

The master key of the Jutla-Roy IBE is (y0, x0) ∈ Z2
p. To get a basic IBE scheme for our RIBE

scheme based on the Jutla-Roy IBE, we add the master key in the forms of elements in G1 and G2

with a random mask β ∈ Z×
p , respectively, to the public parameters. Specifically, we add four group

elements (χ1 := g
β(−x0α+y0)
1 , gx0β

2 , gy0β2 , g
1/β
2 ) to the original public parameter. However, we then

cannot apply the original security proof of the Jutla-Roy IBE, and so we add a new twist to the
proof. The modified Jutla-Roy IBE Πjr =(Init, KeyGen, IBEnc, IBDec) is constructed as follows.8

- Init(λ): It runs (G1,G2,GT , p, g1, g2, e) ← G. It chooses x0, y0, x1, y1, x2, y2, x3, y3
$← Zp and

α, β
$← Z×

p , and sets

z = e(g1, g2)
−x0α+y0 , u1 := g−x1α+y1

1 , w1 := g−x2α+y2
1 , h1 := g−x3α+y3

1 , χ1 := g
β(−x0α+y0)
1 .

It outputs

PP := (g1, g
α
1 , u1, w1, h1, χ1, g2, g

x1
2 , gx2

2 , gx3
2 , gy12 , gy22 , gy32 , z, gx0β

2 , gy0β2 , g
1
β

2 ),

MK := (gy02 , g−x0
2 ).

- KeyGen(PP,MK, I): Parse MK as (d′1, d
′
2). It chooses r

$← Zp and computes

D1 := (gy22 )r, D′
1 := d′1

(
(gy12 )Igy32

)r
,

D2 := (gx2
2 )−r, D′

2 := d′2

(
(gx1

2 )Igx3
2

)−r
, D3 := gr2.

7In (usual-but-not-all) pairing-based IBE schemes, private keys consist of elements in source-groups. Since both
key updates and secret keys of RIBE are materials for decryption keys, they also should consist of source-group
elements.

8Due to space limitation, we omit the syntax of IBE.
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It outputs SKI := (D1, D
′
1, D2, D

′
2, D3).

- IBEnc(PP, I,M): It chooses t, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzt, C1 := gt1, C2 := (gα1 )
t, C3 :=

(
uI1w

tag
1 h1

)t
.

It outputs C := (C0, C1, C2, C3, tag).

- IBDec(PP, SKI, C): Parse SKI and C as (D1, D
′
1, D2, D

′
2, D3) and (C0, C1, C2, C3, tag),

respectively. It computes

M =
C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)
.

We show the correctness of Πjr. Suppose that skI = (D1, D
′
1, D2, D

′
2, D3) and C = (C0, C1, C2, C3,

) are correctly generated. Then, we have

C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)

= Me(g1, g2)
(−x0α+y0)t e(g

t(I(−x1α+y1)+tag(−x2α+y2)−x3α+y3)
1 , gr2)

e(gt1, g
y2rtag+y0+r(y1I+y3)
2 )e(gαt1 , g

−x2rtag−x0−r(x1I+x3)
2 )

= Me(g1, g2)
(−x0α+y0)t 1

e(gt1, g
y0
2 )e(gαt1 , g−x0

2 )
= M.

3.2 Proof of Security

We describe complexity assumptions used for proving the security proof of the modified Jutla-Roy
IBE.

First, we give the definition of the decisional Diffie-Hellman (DDH) assumption in G1 and
G2, which are called the DDH1 and DDH2 assumptions, respectively. We say that the SXDH
assumption holds if both the DDH1 and DDH2 assumptions hold. Let A be a PPT adversary and
we consider A’s advantage against the DDHi problem (i = 1, 2) as follows.

AdvDDHi
G,A (λ) :=

∣∣∣∣∣∣∣∣∣Pr
 b′ = b

D := (p,G1,G2,GT , g1, g2, e)← G,
c1, c2

$← Zp, b
$← {0, 1},

if b = 0 then Z := gc1c2i , else Z
$← Gi,

b′ ← A(λ,D, gc1i , gc2i , Z)

− 1

2

∣∣∣∣∣∣∣∣∣ .
Definition 2 (DDHi Assumption). The DDHi assumption relative to a generator G holds if for all
PPT adversaries A, AdvDDHi

G,A (λ) is negligible in λ.

Definition 3 (SXDH Assumption). We say that the symmetric external Diffie-Hellman (SXDH)
assumption relative to a generator G holds if both the DDH1 and DDH2 assumptions relative to G
hold.

We then introduce a new assumption based on the DDH1 assumption, which is called Augmented
DDH1 (ADDH1) assumption. Let A be a PPT adversary and we consider A’s advantage against

9



the ADDH1 problem as follows.

AdvADDH1
G,A (λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

D := (p,G1,G2,GT , g1, g2, e)← G(λ),
d, c1, c2

$← Zp, c3
$← Z×

p , b
$← {0, 1},

if b = 0 then Z := gc1c21 , else Z
$← G1,

b′ ← A(λ,D, gc11 , gc21 , gdc31 , gd2 , g
c2c3
2 , gdc32 , g

1
c3
2 , Z)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

Definition 4 (ADDH1 Assumption). The ADDH1 assumption relative to a generator G holds if
for all PPT adversaries A, AdvADDH1

G,A (λ) is negligible in λ.

This assumption is similar to the DDH2v assumption (“v” stands for “variant”), which was
used for constructing the Lewko-Waters IBE [LW10] in prime-order groups in [RCS12a]. Similarly,
we can also consider the DDH1v assumption.9 The authors of [RCS12a] argued that the DDH2v
(resp., DDH1v) assumption is the minimal assumption when one tries to put some information
about c1 or c2 in an instance of DDH1 (resp., DDH2) while staying in the hardness of the problem.
We define the ADDH1 problem by removing gd1 from the DDH1v problem and adding gdc31 and

g
1/c3
2 . Therefore, we may say this new assumption is also a not-so-strange one. Actually, we prove
the security of this assumption in the generic bilinear group model as follows (For the formal proof,
see Appendix B).

Theorem 1 (Informal). Let A be an algorithm that attempts to solve the ADDH1 problem in the
generic group model. A makes at most q queries to the oracles computing the group actions in G1,
G2, and GT , and the bilinear map e. Then, the advantage ϵ of A in solving the problem is bounded
by ϵ ≤ 3(q + 11)2/4p.

We prove the security of Πjr under the above assumptions.

Theorem 2. If the ADDH1 and DDH2 assumptions hold, then the resulting Jutla-Roy IBE Πjr is
IND-ID-CPA secure.

Proof. Our security proof is the same as that of the Jutla-Roy IBE except that we have to care the

extra terms (χ1, g
x0β
2 , gy0β2 , g

1/β
2 ) that was added to their scheme. We replace the DDH1 assumption

of Jutla-Roy’s proof with “DDH1 with the additional instance”, the ADDH1 assumption, in order
to treat these extra terms. More specifically, we need the ADDH1 assumption in the proof of
indistinguishability of the semi-functional challenge ciphertext and the random element in the
ciphertext space (see Lemma 3 for details).

We first describe how semi-functional ciphertexts and secret keys are generated as follows.

Semi-functional Ciphertext: Parse a normal ciphertext C as (C0, C1, C2, C3, tag). A semi-
functional ciphertext C̃ := (C̃0, C̃1, C̃2, C̃3, t̃ag) is computed as follows:

C̃0 := C0e(g1, g2)
−x0µ = Me(g1, g2)

−x0(αt+µ)+y0t,

C̃1 := C1,

C̃2 := C2g
µ
1 = gαt+µ

1 ,

C̃3 := C3

(
(gx1

1 )I(gx2
1 )taggx3

1

)−µ
= C3g

−µ(x1I+x2tag+x3)
1 = g

−(αt+µ)(x1I+x2tag+x3)
1 g

t(y1I+y2tag+y3)
1 ,

and t̃ag := tag, where µ
$← Z×

p . Note that the master key g−x0
2 is needed to generate the

semi-functional ciphertext.

9We give the formal definition of the DDH2v and DDH1v assumptions in the full version of this paper.
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Semi-functional Secret Key: Parse a normal secret key SKI as (D1, D
′
1, D2, D

′
2, D3). A semi-

functional secret key S̃KI := (D̃1, D̃
′
1, D̃2, D̃

′
2, D̃3) is computed as follows:

D̃1 := D1g
γ
2 = gy2r+γ

2 ,

D̃′
1 := D′

1g
γϕ
2 = g

y0+r(Iy1+y3)+γϕ
2 ,

D̃2 := D2g
− γ

α
2 = g

−rx2− γ
α

2 ,

D̃′
2 := D′

2g
− γϕ

α
2 = g

−x0−r(Ix1+x3)− γϕ
α

2 ,

D̃3 := D3,

where ϕ
$← Zp and γ

$← Z×
p . Note that in order to generate the semi-functional secret key,

g
1
α
2 is needed in addition to the public parameter.

A semi-functional ciphertext for I can be decrypted with a secret key for I. This fact can be easily
checked by

e(g1, g2)
−x0µe(g

−µ(x1I+x2tag+x3)
1 , D3)

e(gµ1 , D
tag
2 D′

2)
= 1GT

,

where 1GT
is an identity element of GT . Also, a normal ciphertext can be decrypted with a semi-

functional secret key since it holds

e(C1, g
γtag
2 gγϕ2 )e(C2, g

− γ
α
tag

2 g
− γϕ

α
2 ) = 1GT

.

We define the following games:

GameReal: This is the same as the IND-ID-CPA game.

Game0: This is the same as GameReal except that the challenge ciphertext is semi-functional.

Gamek (1 ≤ k ≤ q): This is the same as Game0 except for the following modification: Let q be
the maximum number of identities issued to the KeyGen oracle, and Ii (1 ≤ i ≤ q) be an
i-th identity issued to the oracle. If queries regarding the first k identities I1, . . . , Ik are
issued, then semi-functional keys are returned. The rest of keys (i.e., keys for Ik+1, . . . , Iq)
are normal.

GameFinal: This is the same as Gameq except that the challenge ciphertext is a semi-functional one
of a random element of GT .

Let SReal, Sk (0 ≤ k ≤ q), and SFinal be the probabilities that the event b′ = b occurs in GameReal,
Gamek, and GameFinal, respectively. We have

AdvIND-ID-CPA
Πjr,A (λ) ≤ |SReal − S0|+

q∑
i=1

|Si−1 − Si|+ |Sq − SFinal|+
∣∣∣∣SFinal −

1

2

∣∣∣∣ .
The rest of the proof follows from the following lemmas.

Lemma 1. |SReal − S0| ≤ 2AdvDDH1
G,B (λ).
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Proof. At the beginning, a PPT adversary B receives an instance (g1, g
c1
1 , gc21 , g2, Z) of the DDH1

problem. Then, B randomly chooses x0, y0, x1, y1, x2, y2, x3, y3
$← Zp and β

$← Z×
p , and creates

z := e(gc11 , g2)
−x0e(g1, g2)

y0 , u1 := (gc11 )−x1gy11 , w1 := (gc11 )−x2gy21 ,

h1 := (gc11 )−x3gy31 , χ1 := (gc11 )−x0βgy0β1 .

B sends mpk := (g1, g
α
1 , u1, w1, h1, χ1, g2, g

x1
2 , gx2

2 , gx3
2 , gy12 , gy22 , gy32 , z, gβx0

2 , gβy02 , g
1
β

2 ) to A. Note that
B knows a master key msk := (gy02 , g−x0

2 ) and we implicitly set α := c1.

KeyGen oracle. B can simulate the oracle since B knows the master key.

Challenge. B receives (M∗
0 ,M

∗
1 , I

∗) from A. B chooses d
$← {0, 1}. B chooses tag∗

$← Zp and
computes

C∗
0 := M∗

d e(Z, g2)
−x0e(gc21 , g2)

y0 , C∗
1 := gc21 , C∗

2 := Z,

C∗
3 := Z−x1I

∗−x2tag
∗−x3(gc21 )y1I

∗+y2tag∗+y3 .

B sends C∗ := (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , tag

∗) to A.
If b = 0, then the above ciphertext is normal by setting t := c2. If b = 1, then the above

ciphertext is semi-functional since it holds

C∗
0 = M∗

d e(g1, g2)
−x0(c1c2+µ)+y0c2 = M∗

d e(g1, g2)
−x0(αt+µ)+y0t,

C∗
2 = gc1c2+µ

1 = gαt+µ
1 ,

C∗
3 = g

−(c1c2+µ)(x1I
∗+x2tag

∗+x3)
1 g

c2(y1I∗+y2tag∗+y3)
1

= g
−(αt+µ)(x1I

∗+x2tag
∗+x3)

1 g
t(y1I∗+y2tag∗+y3)
1 .

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH1 problem if d′ = d.
Otherwise, B sends b′ = 0 to the challenger.

Lemma 2. |Sk−1 − Sk| ≤ 2AdvDDH2
G,B (λ) for every k ∈ {1, 2, . . . , q}.

Proof. At the beginning, a PPT adversary B receives an instance (g1, g2, g
c1
2 , gc22 , Z) of the DDH2

problem. Then, B randomly chooses x′0, y0, x
′
1, y

′
1, y

′′
1 , x

′
2, x

′
3, y

′
3, y

′′
3

$← Zp and α, β
$← Z×

p , and
(implicitly) sets

x0 :=
x′0 + y0

α
, x1 :=

x′1 + y1
α

, where y1 := y′1 + c2y
′′
1 ,

x2 :=
x′2 + c2

α
, y2 := c2, x3 :=

x′3 + y3
α

, where y3 := y′3 + c2y
′′
3 .

B creates

z := e(g1, g2)
−x′

0 , u1 := g
−x′

1
1 , w1 := g

−x′
2

1 , h1 := g
−x′

3
1 , χ1 := g

−x′
0β

1 ,

gx1
2 := g

x′1+y′1
α

2 (gc22 )
y′′1
α , gy12 := g

y′1
2 (gc22 )y

′′
1 ,

gx2
2 := g

x′2
α
2 (gc22 )

1
α , gy22 := gc22 , gx3

2 := g
x′3+y′3

α
2 (gc22 )

y′′3
α , gy32 := g

y′3
2 (gc22 )y

′′
3 .

B sends mpk := (g1, g
α
1 , u1, w1, h1, χ1, g2, g

x1
2 , gx2

2 , gx3
2 , gy12 , gy22 , gy32 , z, gβx0

2 , gβy02 , g
1
β

2 ) to A. Note that
B knows a master key msk := (gy02 , g−x0

2 ).

KeyGen oracle. Let Ii (1 ≤ i ≤ q) be an i-th identity issued to the oracle. B creates k − 1
semi-functional keys, and embeds Z into the k-th keys. The rest of keys are normal.
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Case i < k: B creates and returns semi-functional keys. Since B knows the master key and α, B
can create semi-functional keys.

Case i = k: B creates a semi-functional key by embedding Z as follows: B computes

D1 := Z,

D′
1 := gy02 (gc12 )Iky

′
1+y′3ZIky

′′
1+y′′3 ,

D2 :=
(
(gc12 )x

′
2Z

)− 1
α
,

D′
2 := g

−x′0
α

2 (gc12 )−
Ik(x′1+y′1)+x′3+y′3

α g
− y0

α
2 Z− Iky′′1 +y′′3

α ,

D3 := gc12 .

B sets SKIk := (D1, D
′
1, D2, D

′
2, D3). If b = 0, then it is easy to see that the above keys are

normal by setting r := c1. If b = 1, then the above ciphertext is semi-functional since it holds

D1 :=Z = gc1c2+γ
2 = gy2r+γ

2 ,

D′
1 :=gy02 (gc12 )Iky

′
1+y′3ZIky

′′
1+y′′3

=g
y0+c1(Ik(y

′
1+c2y′′1 )+y′3+c2y′′3 )

2 g
γ(Iky

′′
1+y′′3 )

2 = g
y0+r(Iky1+y3)
2 gγϕ2 ,

D2 :=
(
(gc12 )x

′
2Z

)− 1
α
= g

− c1(x
′
2+c2)

α
2 g

− γ
α

2 = g−rx2
2 g

− γ
α

2 ,

D′
2 :=g

−x′0
α

2 (gc12 )−
Ik(x′1+y′1)+x′3+y′3

α g
− y0

α
2 Z− Iky′′1 +y′′3

α

=g
− (x′0+y0)+c1(Ik(x′1+y′1+c2y

′′
1 )+(x′3+y′3+c2y

′′
3 ))

α
2 g

− γ(Iky′′1 +y′′3 )

α
2

=g
−x0−r(Ikx1+x3)
2 g

− γϕ
α

2 ,

where Z := gc1c2+γ
2 , r := c1, and ϕ := Iky

′′
1 + y′′3 . Since y′′1 and y′′3 are chosen uniformly at

random, ϕ is also uniformly distributed.

Case i > k: B creates and returns normal keys by using the master key.

Challenge. B receives (M∗
0 ,M

∗
1 , I

∗) from A. B chooses d
$← {0, 1}. However, B cannot create a

semi-functional ciphertext for I∗ without knowledge of c2 (and hence y1 and y3). To generate the
semi-functional ciphertext without the knowledge, B sets

t̃ag
∗
:=− I∗y′′1 − y′′3 .

Since y′′1 and y′′3 are chosen uniformly at random, probability distribution of t̃ag
∗
is also uniformly

at random from A’s view. Then, B chooses t
$← Zp and µ

$← Z×
p , and computes

C̃∗
0 :=M∗

d z
te(g1, g2)

−x0µ = M∗
d e(g1, g2)

−x0(αt+µ)+y0t,

C̃∗
1 :=gt1,

C̃∗
2 :=gαt+µ

1

C̃∗
3 :=

(
uI

∗
1 w

t̃ag
∗

1 h1

)t
g
− µ

α
(I∗(x′

1+y′1)+x′
2t̃ag

∗
+x′

3+y′3)
1
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=
(
uI

∗
1 w

t̃ag
∗

1 h1

)t
g
− µ

α
(I∗(x′

1+y′1)+x′
2t̃ag

∗
+x′

3+y′3)
1 g

− c2µ
α

(I∗y′′1+t̃ag
∗
+y′′3 )

1

=
(
uI

∗
1 w

t̃ag
∗

1 h1

)t
g
µ(I∗x1+x2t̃ag

∗
+x3)

1 .

B sends C̃∗ := (C̃∗
0 , C̃

∗
1 , C̃

∗
2 , C̃

∗
3 , t̃ag

∗
) to A.

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH2 problem if d′ = d.
Otherwise, B sends b′ = 0 to the challenger.

Lemma 3. |Sq − SFinal| ≤ 2AdvADDH1
G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance (g1, g
dc3
1 , gc11 , gc21 , g2, g

d
2 , g

c2c3
2 , gdc32 , g

1
c3
2 , Z)

of the ADDH1 problem. Then, B randomly chooses x1, x2, x3, y
′
1, y

′
2, y

′
3

$← Zp and α
$← Z×

p , and
(implicitly) sets

x0 := c2, y′0 := d, y0 := x0α+ y′0, y1 := x1α+ y′1, y2 := x2α+ y′2,

y3 := x3α+ y′3, β := c3, βx0 := c2c3, βy0 := β(x0α+ y′0) = αc2c3 + dc3.

Then, B creates

z := e(g1, g
d
2) = e(g1, g2)

y′0 , u1 := g
y′1
1 , w1 := g

y′2
1 , h1 := g

y′3
1 , χ1 := gdc31 = g

βy′0
1 ,

gβx0
2 := gc2c32 , gβy02 := (gc2c32 )αgdc32 , g

1
β

2 := g
1
c3
2 .

B sends mpk := (g1, g
α
1 , u1, w1, h1, χ1, g2, g

x1
2 , gx2

2 , gx3
2 , gy12 , gy22 , gy32 , z, gβx0

2 , gβy02 , g
1
β

2 ) to A. Note that
B does not know a master key msk := (gy02 , g−x0

2 ).

KeyGen oracle. When receiving a query I, B chooses r, ϕ′ $← Zp and γ
$← Z×

p , and (implicitly) sets

ϕ′ := x0 + (x1I+ x3)r +
γϕ

α
.

Then B computes

D1 := gy2r+γ
2 ,

D′
1 := gd2g

(y′1I+y′3)r+αϕ′

2 = g
x0α+y′0+((x1α+y′1)I+x3α+y′3)r+γϕ
2 = g

y0+(y1I+y3)r+γϕ
2 ,

D2 := g
−x2r− γ

α
2 ,

D′
2 := g−ϕ′

2 = g
−x0−(x1I+x3)r− γϕ

α
2 ,

D3 := gr2.

B sends SKI := (D1, D
′
1, D2, D

′
2, D3) to A.

Challenge. B receives (M∗
0 ,M

∗
1 , I

∗) from A. B chooses d
$← {0, 1}. B chooses t, tag∗

$← Zp and
computes

C∗
0 := M∗

d · e(g1, gd2)te(Z, g2)−1, C∗
1 := gt1, C∗

2 := gαt1 gc11 ,

C∗
3 := (uI

∗
1 w

tag∗

1 h1)
t(gc11 )−x1I

∗−x2tag
∗−x3 .

B sends C∗ := (C∗
0 , C

∗
1 , C

∗
2 , C

∗
3 , tag

∗) to A.
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If b = 0, then the above ciphertext is semi-functional one of M∗
d by setting µ := c1. If b = 1,

then the above ciphertext is semi-functional one of a random element of GT since it holds

C∗
0 = M∗

d · e(g1, g2)y
′
0t−x0µ−η

= M∗
d · e(g1, g2)−x0αt+y0t−x0µ−η

= M∗
d · e(g1, g2)−x0(αt+µ)+y0te(g1, g2)

−η

= R · e(g1, g2)−x0(αt+µ)+y0t,

where R = M∗
d e(g1, g2)

−η.

After receiving d′ from A, B sends b′ = 1 to the challenger of the ADDH1 problem if d′ = d.
Otherwise, B sends b′ = 0 to the challenger.

Proof of Theorem 2. From Lemmas 1–3, we have AdvIND-ID-CPA
Πjr,A (λ) ≤ 2AdvDDH1

G,B (λ) + 2q ·
AdvDDH2

G,B (λ) + 2AdvADDH1
G,B (λ) ≤ 4AdvADDH1

G,B (λ) + 2q ·AdvDDH2
G,B (λ).

4 Our Construction

We construct an RIBE scheme based on the original Jutla-Roy IBE, and prove that the security of
the proposed scheme relies on that of the modified Jutla-Roy IBE. An RIBE scheme Π =(Setup,
SKGen, KeyUp, DKGen, Enc, Dec, Revoke) is constructed as follows.

- Setup(λ,N): It runs (G1,G2,GT , p, g1, g2, e)← G. It chooses x0, y0, x1, y1, x2, y2, x3, y3, x4, y4,
x5, y5

$← Zp and α
$← Z×

p , and sets

z = e(g1, g2)
−x0α+y0 , u1 := g−x1α+y1

1 , w1 := g−x2α+y2
1 ,

h1 := g−x3α+y3
1 , v1 := g−x4α+y4

1 , v̂1 := g−x5α+y5
1 ,

Let BT be a binary tree that has N leaves, where N is a power of two for simplicity. It outputs

mpk := (g1, g
α
1 , u1, w1, h1, v1, v̂1, g2, g

x1
2 , gx2

2 , . . . , gx5
2 , gy12 , gy22 , . . . , gy52 , z),

msk := (gy02 , g−x0
2 ),

st := BT, and RL := ∅.

- SKGen(st, I): Parse st as BT. It randomly chooses an unassigned leaf η from BT, and stores
I in the node η. For each node θ ∈ Path(BT, η), it recalls Pθ if it was defined. Otherwise, it

chooses Pθ
$← G2 and stores Pθ in the node θ. Then, it chooses rθ

$← Zp and it computes

SK1,θ := (gy22 )rθ , SK′1,θ := Pθ

(
(gy12 )Igy32

)rθ
,

SK2,θ := (gx2
2 )−rθ , SK′2,θ := Pθ

(
(gx1

2 )Igx3
2

)−rθ
, SK3,θ := grθ2 .

It outputs skI := {(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Path(BT,η).

- KeyUp(msk, st, RL, T ): Parse msk as (MK1, MK2). For each node θ ∈ KUNode(BT, RL, T ), it

recalls Pθ if it was defined. Otherwise, it chooses Pθ
$← G2 and stores Pθ in the node θ. It

chooses sθ
$← Zp and computes

KU′1,θ := P−1
θ MK1

(
(gy42 )T gy52

)sθ
, KU′2,θ := P−1

θ MK2

(
(gx4

2 )T gx5
2

)−sθ
, KU3,θ := gsθ2 .

It outputs kuT := {(KU′1,θ, KU′2,θ, KU3,θ)}θ∈KUNode(BT,RL,T ).
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- DKGen(skI, kuT ): Parse skI and kuT as {(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Θsk and {(KU′1,θ, KU′2,θ,
KU3,θ)}θ∈Θku , respectively. It outputs ⊥ if Θsk ∩Θku = ∅. Otherwise, for some θ ∈ Θsk ∩Θku,

it computes as follows. It chooses R,S
$← Zp and computes

DK1 := SK1,θ(g
y2
2 )R, DK′1 := SK′1,θKU

′
1,θ

(
(gy12 )Igy32

)R(
(gy42 )T gy52

)S
,

DK2 := SK2,θ(g
x2
2 )−R, DK′2 := SK′2,θKU

′
2,θ

(
(gx1

2 )Igx3
2

)−R(
(gx4

2 )T gx5
2

)−S
,

DK3 := SK3,θg
R
2 , DK4 := KU3,θg

S
2 .

It outputs dkI,T := (DK1, DK
′
1, DK2, DK

′
2, DK3, DK4).

- Enc(M, I, T ): It chooses t, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzt, C1 := gt1, C2 := (gα1 )
t, C3 :=

(
uI1w

tag
1 h1

)t
, C4 := (vT1 v̂1)

t.

It outputs CI,T := (C0, C1, C2, C3, C4, tag).

- Dec(dkI,T , CI,T ): Parse dkI,T and CI,T as (DK1, DK
′
1, DK2, DK

′
2, DK3, DK4) and (C0, C1, C2, C3, C4, tag),

respectively. It computes

M =
C0e(C3, DK3)e(C4, DK4)

e(C1, DK
tag
1 DK′1)e(C2, DK

tag
2 DK′2)

.

- Revoke(I, T,RL, st): Output RL := RL ∪ {(I, T )}.

We show the correctness of our RIBE scheme Π.
First, we show the correctness of the DKGen algorithm. Parse skI and kuT as {skθ}θ∈Θsk =

{(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Θsk and {kuθ}θ∈Θku = {(KU′1,θ, KU′2,θ, KU3,θ)}θ∈Θku , respectively.
Suppose that rθ and sθ denotes internal randomnesses of skI and kuT , respectively. Then, for any
θ ∈ Θsk ∩Θku, we have

DK1 := SK1,θ(g
y2
2 )R = (gy22 )R+rθ = (gy22 )R̂,

DK′1 := SK′1,θKU
′
1,θ

(
(gy12 )Igy32

)R(
(gy42 )T gy52

)S

= gy02

(
(gy12 )Igy32

)R+rθ
(
(gy42 )T gy52

)S+sθ
= gy02

(
(gy12 )Igy32

)R̂(
(gy42 )T gy52

)Ŝ
,

DK2 := SK2,θ(g
x2
2 )−R = (gx2

2 )−(R+rθ) = (gx2
2 )−R̂,

DK′2 := SK′2,θKU
′
2,θ

(
(gx1

2 )Igx3
2

)−R(
(gx4

2 )T gx5
2

)−S
,

= g−x0
2

(
(gx1

2 )Igx3
2

)−(R+rθ)
(
(gx4

2 )T gx5
2

)−(S+sθ)

= g−x0
2

(
(gx1

2 )Igx3
2

)−R̂(
(gx4

2 )T gx5
2

)−Ŝ
,

DK3 := SK3,θg
R
2 = gR+rθ

2 = gR̂2 ,

DK4 := KU3,θg
S
2 = gS+sθ

2 = gŜ2 ,

where R,S
$← Zp, R̂ := R+ rθ, and Ŝ := S + sθ.
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We then show the decryption correctness. Suppose that dkI,T is correctly generated as above.
Parse dkI,T and CI,T as (DK1, DK

′
1, DK2, DK

′
2, DK3, DK4) and (C0, C1, C2, C3, C4, tag), respectively. Then,

we have

C0e(C3, DK3)e(C4, DK4)

e(C1, DK
tag
1 DK′1)e(C2, DK

tag
2 DK′2)

=
Me(g1, g2)

(−x0α+y0)te(g
t(I(−x1α+y1)+tag(−x2α+y2)−x3α+y3)
1 , gR̂2 )

e(gt1, g
y0+y2R̂tag+y0+R̂(Iy1+y3)+Ŝ(Ty4+y5)
2 )

· e(g
t(T (−x4α+y4)−x5α+y5)
1 , gŜ2 )

e(gαt1 , g
−x0−x2R̂tag−x0−R̂(Ix1+x3)−Ŝ(Tx4+x5)
2 )

=
Me(g1, g2)

(−x0α+y0)t

e(gt1, g
y0
2 )e(gαt1 , g−x0

2 )
= M.

The security of the above construction is given as follows.

Theorem 3. If the ADDH1 and DDH2 assumptions holds, then the resulting RIBE scheme Π is
IND-RID-CPA secure.

We show the following lemma, and we obtain Theorem 3 as a corollary of the lemma.

Lemma 4. The proposed RIBE scheme Π is IND-RID-CPA secure as long as the modified Jutla-
Roy IBE Πjr, which is described in Section 3.1, is IND-ID-CPA secure.

Proof. We construct a PPT algorithm B which breaks the IND-ID-CPA security of the modified
Jutla-Roy IBE Πjr using a PPT adversary A which breaks the IND-RID-CPA security of Π.

At the beginning, B receives a public parameter PP = (g1, g
α
1 , u1, w1, h1, χ1, g2, g

x1
2 , gy12 , gx2

2 , gx3
2 ,

gy32 , z, gx0β
2 , gy0β2 , g

1
β

2 ). B guesses what time period T ∗ will be submitted from A in the challenge
phase, and it holds with probability 1/|T |. Once B finds the guess wrong, it terminates the
simulation and outputs a random bit b′. We assume B’s guess is right in the rest of the proof. B
creates BT with N leaves. B chooses x̃, x̂, ỹ, ŷ

$← Zp and (implicitly) sets

x4 = βx0 + x̃, x5 = −T ∗βx0 + x̂,

y4 = βy0 + ỹ, y5 = −T ∗βy0 + ŷ,

− x4α+ y4 := −(βx0 + x̃)α+ βy0 + ỹ = β(−x0α+ y0)− αx̃+ ỹ,

− x5α+ y5 := −(−T ∗βx0 + x̂)α− T ∗βy0 + ŷ = −T ∗β(−x0α+ y0)− αx̂+ ŷ.

Then, B computes

gx4
2 := gβx0

2 gx̃2 , gx5
2 := (gβx0

2 )−T ∗
gx̂2 , gy42 := gβy02 gỹ2 , gy52 := (gβy02 )−T ∗

gŷ2 ,

v1 := g−x4α+y4
1 = χ1(g

α
1 )

−x̃gỹ1 , v̂1 := g−x5α+y5
1 = χ−T ∗

1 (gα1 )
−x̂gŷ1 .

B sends mpk := (g1, g
α
1 , u1, w1, h1, v1, v̂1, g2, g

x1
2 , gx2

2 , . . . , gx5
2 , gy12 , gy22 , . . . , gy52 , z) to A.

B guesses whether an adversaryA will issue the target identity I∗ to the SKGen oracle, and when
it will issue I∗ to the (SKGen and) DKGen oracle. More precisely, let q1 be the maximum number
of identities issued to the SKGen and DKGen oracles before the challenge phase. B randomly
guesses (k∗, i∗) ∈ {1, 2} × {1, 2, . . . , q1, q1 + 1}. k∗ = 1 denotes that A issues a query I∗ for skI∗ .
Note that when k∗ = 1, I∗ is revoked before the target time period T ∗. k∗ = 2 denotes that A
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never issues a query I∗ for skI∗ during the game. i∗ ∈ {1, 2, . . . , q1} denotes that A first issues I∗

to B at the i∗-th identity in their queries (before the challenge phase). i∗ = q1 + 1 denotes that
A issues a query I∗ for skI∗ after the challenge phase. In the following, for convenience we call a
type-k∗ adversary as in [SE13b]. Furthermore, we classify these adversarial types more specifically
according to the value of i∗: A is said to be a type-k∗-a adversary if i∗ ∈ {1, 2, . . . , q1}; and a
type-k∗-b adversary if i∗ = q1 + 1. Once B finds the guess wrong, it terminates the simulation
and outputs a random bit b′. In the rest of the proof, we assume B’s guess is right. It holds with
probability 1/2(q1 + 1).

Type-1-a and Type-1-b adversary. The difference of simulations between the type-1-a and
type-1-b adversaries is just a way of simulating the SKGen and DKGen oracles. When A is the
type-1-a or type-1-b adversaries, B simulates the oracles as follows. B first chooses a node η∗ for a
target identity I∗ of BT uniformly at random in advance.

SKGen and DKGen oracles for the type-1-a adversary. Suppose that B receives a j-th identity I as a
secret key query I or a decryption key query (I, T ) from A. B then returns a secret key skI or a
decryption key dkI,T as follows.

Case j < i∗: B first transfers I to the KeyGen oracle of the IND-ID-CPA game of Π, and gets
SKI := (D1, D

′
1, D2, D

′
2, D3), if B does not have it. B randomly chooses an unassigned leaf

η ( ̸= η∗) from BT and stores I in the node η if it is not done.

SKGen oracle: For each node θ ∈ Path(BT, η), B recalls Pθ if it was defined. Otherwise, it

chooses Pθ
$← G2 and stores Pθ in the node θ. For θ ∈ Path(BT, η), if θ /∈ Path(BT, η∗),

then B chooses rθ
$← Zp and computes

SK1,θ := D1(g
y2
2 )rθ , SK′1,θ := PθD

′
1

(
(gy12 )Igy32

)rθ
,

SK2,θ := D2(g
x2
2 )−rθ , SK′2,θ := PθD

′
2

(
(gx1

2 )Igx3
2

)−rθ
, SK3,θ := D3g

rθ
2 .

Otherwise, B chooses rθ
$← Zp and computes

SK1,θ := (gy22 )rθ , SK′1,θ := Pθ

(
(gy12 )Igy32

)rθ
,

SK2,θ := (gx2
2 )−rθ , SK′2,θ := Pθ

(
(gx1

2 )Igx3
2

)−rθ
, SK3,θ := grθ2 .

It stores and outputs skI := {(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Path(BT,η).
DKGen oracle: B creates and stores skI as above if I is first issued to the SKGen and

DKGen oracles (otherwise, B uses the stored skI), and runs DKGen algorithm. Note
that A had to issue T to the KeyUp oracle before issuing the decryption query, and
hence kuT was already generated at that time. It outputs dkI,T .

Case j = i∗: Then, B regards the received identity I as a target identity, and creates a secret key
for I∗ := I as follows. B first stores I∗ in η∗.

SKGen oracle: For each node θ ∈ Path(BT, η∗), B recalls Pθ if it was defined. Otherwise, it

chooses Pθ
$← G2 and stores Pθ in the node θ. For θ ∈ Path(BT, η∗), B chooses rθ

$← Zp

and computes

SK1,θ := (gy22 )rθ , SK′1,θ := Pθ

(
(gy12 )Igy32

)rθ
,
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SK2,θ := (gx2
2 )−rθ , SK′2,θ := Pθ

(
(gx1

2 )Igx3
2

)−rθ
, SK3,θ := grθ2 .

It outputs skI∗ := {(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Path(BT,η).
DKGen oracle: B creates and stores skI as above if I is first issued to the SKGen and

DKGen oracles (otherwise, B uses the stored skI), and runs DKGen algorithm.

Case j > i∗: If I ̸= I∗, then B performs the same procedure in the case j < i∗. Otherwise, B does
the same process in the case j = i∗.

SKGen and DKGen oracles for the type-1-b adversary. The type-1-b adversary A issues the target
identity I∗ only after the challenge phase. Therefore, B already knows what identity is a target
one when A sends the secret or decryption key query for I∗ to B. We show how B returns a secret
key skI or a decryption key dkI,T as follows.

Case I ̸= I∗: B performs the same procedure in the case j < i∗ of the simulation for the type-1-a
adversary.

Case I = I∗: B performs the same procedure in the case j = i∗ of the simulation for the type-1-a
adversary.

The rest of the simulations is the same for the both of the type-1-a and type-1-b adversaries.

KeyUp oracle. When B receives a query T from A, for each node θ ∈ KUNode(BT, RL, T ), B
recalls Pθ if it was defined. Otherwise, it chooses Pθ

$← G2 and stores Pθ in the node θ. For

θ ∈ KUNode(BT, RL, T ), if θ /∈ Path(BT, η∗), B then chooses sθ
$← Zp and computes

KU′1,θ := P−1
θ

(
(gy42 )T gy52

)sθ
, KU′2,θ := P−1

θ

(
(gx4

2 )T gx5
2

)−sθ
, KU3,θ := gsθ2 .

Otherwise, B then chooses sθ
$← Zp and computes

KU′1,θ := P−1
θ ((gy42 )T gy52 )sθ(g

1
β

2 )
− T ỹ+ŷ

T−T∗ ,

KU′2,θ := P−1
θ ((gx4

2 )T gx5
2 )−sθ(g

1
β

2 )
T x̃+x̂
T−T∗ , KU3,θ := gsθ2 (g

1
β

2 )
− 1

T−T∗ .

Note that the above can be always computed since there exists no θ such that θ ∈ Path(BT, η∗)
and θ ∈ KUNode(BT, RL, T ∗) since skI∗ is already revoked before T ∗. It finally outputs kuT :=
{(KU′1,θ, KU′2,θ, KU3,θ)}θ∈KUNode(BT,RL,T ).

The simulation goes well since it holds that

((gy42 )T gy52 )sθ(g
1
β

2 )
− T ỹ+ŷ

T−T∗ = ((gβy0+ỹ
2 )T g−T ∗βy0+ŷ

2 )sθg
− T ỹ+ŷ

(T−T∗)β
2

= gy02 (g
(T−T ∗)βy0+T ỹ+ŷ
2 )sθg

− T ỹ+ŷ
(T−T∗)β

2 g−y0
2

= gy02 (g
(T−T ∗)βy0+T ỹ+ŷ
2 )sθ(g

(T−T ∗)βy0+T ỹ+ŷ
2 )

− 1
(T−T∗)β

= gy02 (g
(T−T ∗)βy0+T ỹ+ŷ
2 )

sθ− 1
(T−T∗)β

= gy02 (g
(T−T ∗)βy0+T ỹ+ŷ
2 )s

′
θ

= gy02 ((gy42 )T gy52 )s
′
θ ,
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((gx4
2 )T gx5

2 )−sθ(g
1
β

2 )
T x̃+x̂
T−T∗ = ((gβx0+x̃

2 )T g−T ∗βx0+x̂
2 )−sθg

T x̃+x̂
(T−T∗)β
2

= g−x0
2 (g

(T−T ∗)βx0+T x̃+x̂
2 )−sθg

T x̃+x̂
(T−T∗)β
2 gx0

2

= g−x0
2 (g

(T−T ∗)βx0+T x̃+x̂
2 )−sθ(g

(T−T ∗)βx0+T x̃+x̂
2 )

1
(T−T∗)β

= g−x0
2 (g

(T−T ∗)βx0+T x̃+x̂
2 )

−sθ+
1

(T−T∗)β

= g−x0
2 (g

(T−T ∗)βx0+T x̃+x̂
2 )−s′θ

= g−x0
2 ((gx4

2 )T gx5
2 )−s′θ ,

gsθ2 (g
1
β

2 )
− 1

T−T∗ = g
sθ− 1

(T−T∗)β
2 = g

s′θ
2 ,

where s′θ = sθ − 1
(T−T ∗)β .

Challenge. When B receives (M∗
0 ,M

∗
1 , I

∗, T ∗) from A, then it sends (M∗
0 ,M

∗
1 , I

∗) to the challenger
in the IND-ID-CPA game of Πjr. After receiving (C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 , tag

∗) from the challenger, B sets

C∗
4 := (C∗

2 )
−(T ∗x̃+x̂)(C∗

1 )
T ∗ỹ+ŷ. This is well-formed since C∗

4 = (vT
∗

1 v̂1)
t = g

t(−T ∗x̃α+T ∗ỹ−x̂α+ŷ)
1 =

g
−tα(T ∗x̃+x̂)+t(T ∗ỹ+ŷ)
1 . B sends (C∗

0 , C
∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , tag

∗) to A.

When A outputs b′, then B transfer it. We can show the distribution of all the above transcrip-
tions between A and B is identical to the real experiment from the viewpoint of A as in [SE14b,
Claim 1], and therefore we omit it.

Type-2-a and Type-2-b adversary. The difference of simulations between the type-2-a and
type-2-b adversaries is also a way of simulating the DKGen oracle. Before describing the difference,
we show how B simulates the SKGen and KeyUp oracles.

SKGen oracle. B first transfers I to the KeyGen oracle of the IND-ID-CPA game of Π, and gets
SKI := (D1, D

′
1, D2, D

′
2, D3) if B does not have it. B randomly chooses an unassigned leaf η from

BT and stores I in the node η if it is not done. For each node θ ∈ Path(BT, η), B recalls Pθ if it was

defined. Otherwise, it chooses Pθ
$← G2 and stores Pθ in the node θ. For θ ∈ Path(BT, η), B chooses

rθ
$← Zp and computes

SK1,θ := D1(g
y2
2 )rθ , SK′1,θ := PθD

′
1

(
(gy12 )Igy32

)rθ
,

SK2,θ := D2(g
x2
2 )−rθ , SK′2,θ := PθD

′
2

(
(gx1

2 )Igx3
2

)−rθ
, SK3,θ := D3g

rθ
2 .

It stores and outputs skI := {(SK1,θ, SK′1,θ, SK2,θ, SK′2,θ, SK3,θ)}θ∈Path(BT,η).

KeyUp oracle. When B receives a query T from A, for each node θ ∈ KUNode(BT, RL, T ), B
recalls Pθ if it was defined. Otherwise, it chooses Pθ

$← G2 and stores Pθ in the node θ. For

θ ∈ KUNode(BT, RL, T ), B chooses sθ
$← Zp and computes

KU′1,θ := P−1
θ

(
(gy42 )T gy52

)sθ
, KU′2,θ := P−1

θ

(
(gx4

2 )T gx5
2

)−sθ
, KU3,θ := gsθ2 .

It outputs kuT := {(KU′1,θ, KU′2,θ, KU3,θ)}θ∈KUNode(BT,RL,T ).

DKGen oracle for the type-2-a adversary. Let qd (≤ q1) be the maximum number of identities made
queries to the DKGen oracle before the challenge phase. Suppose that B receives a j-th identity I

as the decryption key query (I, T ) from A. B then returns a decryption key dkI,T as follows.
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Case j < i∗: B creates and stores skI as above if I is first queried to the SKGen and DKGen
oracles (otherwise, B uses the stored skI), and runs DKGen algorithm.

Case j = i∗: Then, B regards the received identity I as a target identity, and creates a decryption

key for I∗ := I as follows. B chooses r, s
$← Zp and computes

DK1 := (gy22 )r, DK′1,θ :=
(
(gy12 )I

∗
gy32

)r
((gy42 )T gy52 )s(g

1
β

2 )
− T ỹ+ŷ

T−T∗ ,

DK2 := (gx2
2 )−r, DK′2 :=

(
(gx1

2 )I
∗
gx3
2

)−r
((gx4

2 )T gx5
2 )−s(g

1
β

2 )
T x̃+x̂
T−T∗ ,

DK3 := gr2, DK4 := gs2(g
1
β

2 )
− 1

T−T∗ .

Case j > i∗: If I ̸= I∗, then B performs the same procedure in the case j < i∗. Otherwise, B does
the same process in the case j = i∗.

DKGen oracle for the type-2-b adversary. The type-2-b adversary A issues the target identity I∗ only
after challenge phase. Therefore, B does not have to guess which identity issued to the oracle is a
target one. We show how B returns a decryption key dkI,T as follows.

Case I ̸= I∗: B performs the same procedure in the case j < i∗ of the simulation for the type-2-a
adversary.

Case I = I∗: B performs the same procedure in the case j = i∗ of the simulation for the type-2-a
adversary.

Challenge. B creates the challenge ciphertext as in the challenge phase for the type-1-a and type-1-b
adversary.

When A outputs b′, then B transfer it. We can also show the distribution of all the above
transcriptions between A and B is identical to the real experiment from the viewpoint of A as
in [SE14b, Claim 2], and therefore we omit it.

We estimate the reduction loss. Let E1 be an event that B correctly guesses the target time
period, and E2 be an event that B’s guess (k∗, i∗) is right, respectively. We then have

AdvIND-ID-CPA
Πjr,B (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[b′ = b ∧ E1] + Pr[b′ = b ∧ ¬E1]−
1

2

∣∣∣∣
=

1

|T |

∣∣∣∣Pr[b′ = b | E1]−
1

2

∣∣∣∣
=

1

|T |

∣∣∣∣Pr[b′ = b ∧ E2 | E1] + Pr[b′ = b ∧ ¬E2 | E1]−
1

2

∣∣∣∣
=

1

2|T |(q1 + 1)

∣∣∣∣Pr[b′ = b | E1 ∧ E2]−
1

2

∣∣∣∣
=

1

2|T |(q1 + 1)
AdvIND-RID-CPA

Π,A (λ).

Therefore, we have AdvIND-RID-CPA
Π,A (λ) ≤ 8|T |(q1 + 1)AdvADDH1

G,B (λ) + 2|T |q(q1 + 1)AdvDDH2
G,B (λ),

where q is the maximum number of queries issued to the KeyGen oracle in the IND-ID-CPA game
of Πjr.
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5 Extensions

5.1 CCA Security

Remark that the Ishida-Watanabe-Shikata scheme [IWS15] has not only above three desirable
properties but also CCA security. They proposed two schemes. The first one employs the BCHK
transformation [BCHK07], and the second one is constructed via the KEM/DEM framework. We
notice that still the size of public parameter depends on the length of identity. By employing their
construction to our scheme, we can construct a CCA-secure RIBE scheme with constant-size public
parameter.

5.2 Server-Aided RIBE

Qin et al. [QDLL15] proposed server-aided RIBE. In their scheme, almost all of the workloads
on users are delegated to an untrusted server who does not have any secret value. Briefly, their
server-aided RIBE scheme is explained as follows. A master secret key of the Seo-Emura RIBE
scheme is divided to two values via two-out-of-two secret sharing, say α and β. A ciphertext has
two blinding factors according to α and β such as M · e(g, g)αe(g, g)β. KGC computes a secret key
of the Seo-Emura RIBE scheme for I by using the master secret α, and sends it to the server as
public key of I, say PKI. Since PKI is generated by employing the CS method, the size of PKI is
O(r log(N/r)). Moreover, KGC issues a long-term secret key to a user I by using the master secret
β, say SKI. It is particular worth noting that the size of SKI is constant, and SKI is independent
of time t. Moreover, the user can compute the decryption key, say DKI,t which removes the β-part
blinding factor of a ciphertext, from SKI and t regardless of whether he/she is revoked or not. At
time t, KGC computes key update information kut, and broadcasts it. If a user ID is not revoked
at time t, then the server can compute a (partial) decryption key of I from PKI and kut. They
call this key transformation key, say TKI,t, which removes the α-part blinding factor e(g, g)α of a
ciphertext. The server partially decrypts a ciphertext by using TKI,t, and sends the result to the
user I. The user can obtain the plaintext by removing the β-part blinding factor e(g, g)β of the
partially-decrypted ciphertext by using DKI,t.

This construction methodology can be employed to our RIBE scheme. Then, we can construct a
server-aided RIBE scheme with the same advantages of our RIBE scheme, i.e., constant-size public
parameter and asymmetric pairing settings.

6 Concluding Remarks

In the context of identity-based encryption schemes, it is natural to employ dual system encryption
methodology. However, as aforementioned in the introduction, if we consider revocation functional-
ity in the identity-based cryptosystem, there is a subtle obstacle in an approach using dual system
encryption methodology, in particular, in prime-order groups. To circumvent this obstacle, we re-
visited the proof of Seo-Emura RIBE scheme [SE13b], which does not uses dual system encryption
methodology, but give a reduction to the IND-CPA security of the underlying IBE scheme. We
extract several important requirements for Seo-Emura approach, and then construct a new IBE
scheme satisfying all such the requirements, based on Jutla-Roy IBE scheme. Then, we construct
an RIBE based on the proposed modified Jutla-Roy IBE scheme. We prove the IND-RID-CPA
security of the proposed scheme under mild variants of the SXDH assumption, which are static and
generically secure.
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A Omitted Description

A.1 Identity-based Encryption

An IBE scheme Π consists of four-tuple algorithms (Init, KeyGen, IBEnc, IBDec) defined as follows.
For simplicity, we omit a public parameter in the input of all algorithms except for the Init algorithm.
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– (PP,MK)← Init(λ): A probabilistic algorithm for setup. It takes a security parameter λ as
input and outputs a public parameter PP and a master secret key MK.

– SKI ← KeyGen(MK, I): An algorithm for private key generation. It takes MK and an
identity I ∈ I as input and outputs a secret key SKI.

– C ← IBEnc(M, I): A probabilistic algorithm for encryption. It takes M ∈ M and I ∈ I as
input and then outputs a ciphertext C.

– M or ⊥ ← IBDec(SKI, C): A deterministic algorithm for decryption. It takes SKI,T and C
as input and then outputs M or ⊥.

In the above model, we assume that Π meets the following correctness property: For all secu-
rity parameter λ ∈ N, all (PP,MK) ← Init(λ), all M ∈ M, all I ∈ I, it holds that M =
IBDec(KeyGen(MK, I), IBEnc(M, I)).

We describe the notion of indistinguishability against chosen plaintext attack (IND-ID-CPA).
Let A be a PPT adversary, and A’s advantage against IND-ID-CPA security is defined by

AdvIND-ID-CPA
Π,A (λ) :=

∣∣∣∣∣∣∣∣∣∣∣
Pr

 b′ = b

(PP,MK)← Init(λ),

(M∗
0 ,M

∗
1 , I

∗, state)← AO(·)(find, PP ),

b
$← {0, 1},

C∗ ← IBEnc(M∗
b , I

∗),

b′ ← AO(·)(guess, C∗, state)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣
.

A.2 Complexity Assumptions

We describe the DDH2v assumption, which was introduced in [RCS12a]. The authors proved the
security of it in the generic bilinear group model. We furthermore describe the DDH1v assumption.
This is analogous to the DDH2v assumption, and therefore its security can be proved in the same
way as the DDH2v assumption.

The DDH2v assumption. Let A be a PPT adversary and we consider A’s advantage against
the DDH2v problem as follows.

AdvDDH2v
G,A (λ) :=

∣∣∣∣∣∣∣∣∣Pr
 b′ = b

D := (p,G1,G2,GT , g1, g2, e)← G(λ),
d, c1, c2, c3

$← Zp, b
$← {0, 1},

if b = 0 then Z := gc1c22 , else Z
$← G2,

b′ ← A(λ,D, gd1 , g
c2c3
1 , gdc31 , gc12 , gc22 , Z)

− 1

2

∣∣∣∣∣∣∣∣∣ .
Definition 5 (DDH2v Assumption [RCS12a]). The augmented DDH2v assumption relative to a
generator G holds if for all PPT adversaries A, AdvDDH2v

G,A (λ) is negligible in λ.

The DDH1v assumption. Let A be a PPT adversary and we consider A’s advantage against
the DDH1v problem as follows.

AdvDDH1v
G,A (λ) :=

∣∣∣∣∣∣∣∣∣Pr
 b′ = b

D := (p,G1,G2,GT , g1, g2, e)← G(λ),
d, c1, c2, c3

$← Zp, b
$← {0, 1},

if b = 0 then Z := gc1c21 , else Z
$← G1,

b′ ← A(λ,D, gd1 , g
c1
1 , gc21 , gd2 , g

c2c3
2 , gdc32 , Z)

− 1

2

∣∣∣∣∣∣∣∣∣ .
Definition 6 (DDH1v Assumption). The augmented DDH1v assumption relative to a generator G
holds if for all PPT adversaries A, AdvDDH1v

G,A (λ) is negligible in λ.
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B ADDH1 Problem in Generic Bilinear Groups

We show a security proof of the ADDH1 assumption in the generic bilinear group model to provide
confidence in the assumption. The generic group model is introduced by Shoup [Sho97] to derive
a lower bound on computational complexity of solving certain computational problems without
looking into the actual groups structure used in a scheme. Let e : G1 × G2 → GT be the Type-3
pairing. Elements of groups G1, G2, and GT are encoded into uniform random strings so that
equality of group elements can be only tested by the adversary. We assume four oracles. Three of
them simulate the group actions in G1, G2, and GT , respectively, and the fourth one simulates the
bilinear map e. The encoding of group elements in G1 is modeled as an injective map σ1 : Zp → Σ1,
where Σ1 ⊂ {0, 1}∗. σ1 maps all x ∈ Zp to its string representation σ(x) of gx1 ∈ G1. Similarly,
σ2 : Zp → Σ2 and σT : Zp → ΣT are defined, where Σ2,ΣT ⊂ {0, 1}∗. An upper bound on the
advantage of an adversary solving the ADDH1 problem in a generic bilinear group model is given
by the following theorem.

Theorem 1. Let A be an algorithm that attempts to solve the ADDH1 problem in the generic
group model. Assume that σ1, σ2, and σT are random encoding functions for G1, G2, and GT , and
A makes at most q queries to the oracles computing the group actions in G1, G2, and GT , and

the bilinear map e. If d, c1, c2, c3, c4
$← Z×

p and b
$← {0, 1} with zb := c1c2 and z1−b := c4, then

given σ1(1), σ1(c1), σ1(c2), σ1(dc3), σ1(z0), σ1(z1), σ2(1), σ2(d), σ2(c2c3), σ2(dc3), σ2(1/c3) the
advantage ϵ of A in solving the problem is bounded by

ϵ ≤ 3(q + 11)2

4p
.

Proof. We consider an algorithm B that simulates the generic bilinear group for A. Let Fi,j be
polynomials over Zp[C1, C2, C3, D, Z0, Z1] with 6 variables C1, C2, C3, D, Z0, Z1, and σi,j be ar-
bitrary distinct strings from {0, 1}. B maintains three lists of pairs, Li := {(Fi,j , σi,j) : j =
0, 1, . . . , τi−1} (i ∈ {1, 2, T}) such that at each step τ of the game the relation τ1+τ2+τT = τ +11
holds. At the beginning of the game (i.e., τ = 0), the lists are initialized by setting τ1 = 6, τ2 = 5,
τT = 0, F1,0 = 1, F1,1 = C1, F1,2 = C2, F1,3 = DC3, F1,4 = Z0, F1,5 = Z1, F2,0 = 1, F2,1 = D,
F2,2 = C2C3, F2,3 = DC3, and F2,4 = 1/C3. The corresponding strings are set to arbitrary distinct
strings in {0, 1}∗. We assume that A only queries the oracles on strings previously obtained from
B, and B can easily determine the index j of any given string σi,j in the list Li. B then starts
the game by sending strings σ1,0, σ1,1, . . . , σ1,5, σ2,0, σ2,1, . . . , σ2,4, to A. B simulates the oracles as
follows.

Group actions in G1, G2, and GT : First, we consider G1. After receiving two strings σ1,j1
and σ1,j2 with a selection bit indicating multiplication or division from A, B computes F1,τ1 :=
F1,j1±F1,j2 . If there exists an index i with 0 ≤ i < τ1 such that F1,τ1 = F1,i, then B sets σ1,τ1 := σ1,i.
Otherwise, it sets σ1,τ1 to a uniform random string from {0, 1}∗ \ {σ1,0, σ1,1, . . . , σ1,τ1−1}. B then
adds the pair (F1,τ1 , σ1,τ1) to L1, returns σ1,τ1 to A, and increments τ1 by one. B gives similar
simulations of group actions in G2 and GT .

Pairing: After receiving σ1,j1 and σ2,j2 from A, B computes FT,τT := F1,j1 ·F2,j2 . If there exists an
index i with 0 ≤ i < τT such that FT,τT = FT,i, then B sets σT,τT := σT,i. Otherwise, it sets σT,τT to
a uniform random string from {0, 1}∗ \{σT,0, σT,1, . . . , σT,τT−1}. B then adds the pair (FT,τT , σT,τT )
to LT , returns σT,τT to A, and increments τT by one.

After at most q queries, A terminates and outputs a bit b′ ∈ {0, 1}. At this point, B chooses

d∗, c∗1, c
∗
2, c

∗
3, c

∗
4

$← Z×
p and b

$← {0, 1}, and sets z∗0 := c∗1c
∗
2 and z∗1 := c∗4. B assigns c∗1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1
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to C1, C2, C3, D, Z0, Z1. The simulation provided by B is perfect unless this assignment causes any
of the following to hold.

1. F1,j1(c
∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1)− F1,j2(c

∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1) = 0 for some j1 ̸= j2 and F1,j1 ̸= F1,j2 .

2. F2,j1(c
∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1)− F2,j2(c

∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1) = 0 for some j1 ̸= j2 and F2,j1 ̸= F2,j2 .

3. FT,j1(c
∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1)− FT,j2(c

∗
1, c

∗
2, c

∗
3, d

∗, z∗0 , z
∗
1) = 0 for some j1 ̸= j2 and FT,j1 ̸= FT,j2 .

Let F be an event that at least one of the above holds. As in the security proof of the DDH2v
assumption in [RCS12b, Appendix B.1], which is the full version of [RCS12a], we use the following
result by Schwartz [Sch80]: Let p be a prime number and F (X1, X2, . . . , Xk) be a non-zero poly-
nomial in Zp[X1, X2, . . . , Xk] of degree m. Then, if x1, x2, . . . , xk are chosen from Zp uniformly at
random, the probability that F (x1, x2, . . . , xk) = 0 is at most m/p.

We show that the simulation is perfect when F does not occur, and then b is information-
theoretically hidden from the view point of A. We note that all variables except for Zb and Z1−b

are independent of b. Since Zb is C1C2 which is a polynomial of degree 2, A will win it produces
C1C2 using combinations of polynomials from L1 and L2. The only degree two polynomials that
can be constructed are DC1, DC2, DC3, C2C3 or a sum of these. A could also try to engineer
degree three polynomials in LT composed of C1C2. A can construct only C1C2C3 from σ1(c1) and
σ2(c2c3), however, it does not have σ2(c3), which is necessary for finding out b. Therefore, we have
Pr[b = b′ | F]− 1/2.

We then derive a bound on the probability that F occurs. For fixed j1 and j2, F1,j1 − F1,j2 is a
polynomial degree at most two and hence is zero at a random d∗, c∗1, c

∗
2, c

∗
3, z

∗
0 , z

∗
1 with probability at

most 2/p. Similarly, F2,j1 − F2,j2 vanishes at a random d∗, c∗1, c
∗
2, c

∗
3, z

∗
0 , z

∗
1 with probability at most

2/p for fixed j1 and j2. For fixed j1 and j2, FT,j1 − FT,j2 vanishes at a random d∗, c∗1, c
∗
2, c

∗
3, z

∗
0 , z

∗
1

with probability at most 3/p since degree of the polynomial is at most three. There are totally(
τ1
2

)
,
(
τ2
2

)
, and

(
τT
2

)
pairs of polynomials from L1, L2, and LT , respectively. We have τ1+ τ2+ τT =

τ + 11 ≤ q + 11 since there are at most q queries. Thus, we have

Pr[F] ≤
(
τ1
2

)
2

p
+

(
τ2
2

)
2

p
+

(
τT
2

)
3

p
≤ ϵ ≤ 3(q + 11)2

2p
.

Since Pr[b′ = b] ≤ Pr[b = b′ | ¬F](1 − Pr[F]) − Pr[F] ≤ 1/2 + Pr[F]/2 and Pr[b′ = b] ≥ Pr[b = b′ |
¬F](1− Pr[F])− Pr[F] = 1/2− Pr[F]/2, we have∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ≤ Pr[F]

2
≤ ϵ ≤ 3(q + 11)2

4p
.

We completed the proof.

28


