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Abstract

Akleylek et al. have proposed Ring-TESLA, a practical and efficient digital signature
scheme based on the Ring Learning With Errors problem. However we have identified there
are some problems with the parameters proposed for Ring-TESLA, as we believe they do
not ensure the correct operation of the scheme and do not provide the targeted levels of
security under either the provable Ring-TESLA reduction, or an assessment of practical
modern attacks such as lattice sieving.

We recommend new Ring-TESLA parameters that target more security levels and pro-
vide for correct, secure, and efficient instantiation. We describe the necessary preliminar-
ies, recap the Ring-TESLA scheme, and present our parameter recommendations, selection
methodology, and analysis.
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1 Introduction

Lattice-based cryptographic primitives are emerging as promising post-quantum alternatives
for classical asymmetric public key cryptography. There are now mature proposals for efficient
and secure Diffie Hellman-like key agreements such as [4, 6, 12, 13] which have strong security
guarantees and have been shown to work within real-world protocols. However practical post-
quantum alternatives to classical digital signature schemes are only now beginning to emerge,
such as [2, 5, 7].

A strong candidate for a post-quantum digital signature scheme is the Ring-TESLA signature
scheme by Akleylek et al. in [2], which is fast, compact, and provably secure with a tight
security reduction to the Ring Learning With Errors (Ring-LWE) problem. Because it uses
uniform samplying for signatures, Ring-TESLA is easier to implement than the BLISS proposal
of Ducas et al. BLISS uses discrete Gaussian sampling for signatures and so requires careful
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precision analysis, such as in a paper by Saarinen in [11], to preserve the security. Ring-
TESLA also avoids NTRU lattices, which may be vulnerable to emerging subfield lattice attacks
described by Kirchner and Fouque in [8].

However we have identified there are problems with the parameters proposed in [2] to instan-
tiate Ring-TESLA. We have observed empirical failure rates around one per-cent, where valid
signatures are incorrectly rejected by the verification algorithm. We have observed the proposed
parameters are also not fully secure as they violate constraints set out in [2] for the Ring-TESLA
security reduction and because, in the case of the parameters targeting 128 bits of security, the
practical security is insufficient against modern costing methodologies such in [6] by Ducas et al.

In this paper we shall recommend new parameters for use with Ring-TESLA to ensure that it is
correct, secure, and efficient1. In Section 2 we shall give the necessary background, establishing
cyclotomic rings, discrete Gaussian distributions and the Ring-LWE problem. In Section 3
we shall review the Ring-TESLA scheme, presenting the key generation, signing and signature
verification stages, and comment on its correctness. In Section 4 we shall describe and justify
our parameter recommendations. We suggest that our parameters are superior in terms of
efficiency, security and correctness to those proposed in the original paper [2]. We shall conclude
in Section 5.

We stress that although this paper highlights and resolves some problems with Ring-TESLA
parameter selection, this should not be interpreted as a criticism of the overall scheme. On the
contrary, when properly instantiated Ring-TESLA is an elegant, efficient, and secure digital
signature scheme, and we hope that our contribution will support its use in practice.

2 Preliminaries

In this section we shall recap preliminaries necessary to understand the Ring-TESLA signature
scheme.

2.1 Cyclotomic Rings

Let R = Z/ 〈Φm(x)〉 = Z[ζm] be the mth cyclotomic ring, where Φm(x) is the m-th cyclotomic
polynomial defined by xm − 1 =

∏
d|m Φd(x) and ζm is a primitive m-th root of unity. The

1We note a very recent paper [3] by Barreto et al. describing independent work on TESLA], a new algorithm
based on Ring-TESLA. There are several differences between our work and that in [3]. We address the Ring-
TESLA correctness concerns by careful parameter selection while [3] addresses them by modifying the algorithm.
We apply the more recent and conservative costing methodology in [6] to assess the security of our parameters
whereas [3] uses the approach by Albrecht et al. in [1]. Finally, we consider cyclotomic rings of degree p − 1
for prime p as well as the power of two case considered in [3]. In future work we intend to analyse parameter
selection for TESLA].
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degree n of R is the degree of Φm, which is given by the Euler totient function φ(m). In this
paper m shall be either a power of two, or shall be prime.

In the case where m is a power of 2, the situation is n = φ(m) = m/2 and Φm(x) = 1+xn. This
case has the advantage of practical efficiencies and simplifications, but has the disadvantage of
restricting to a narrow range of parameter sizes. A wider choice of parameter sizes is provided
when instead m is prime, from which n = φ(m) = m− 1, and Φm(x) = 1 + x+ x2 + . . .+ xn.

For any integer q we shall let Rq denote the quotient ring R/qR. Multiple bases for the rings
R and Rq are considered in the literature and used for efficient implementations, however
for ease of exposition we shall here consider only the natural basis for R and Rq given by{

1, ζ, ζ2, . . . , ζn−1
}

, also known as the power basis.

Elements of Rq are represented as
∑

i xi · ζi where the coefficients xi are integers in [0, q). For
any integer d, we shall define the rounding function roundd : Rq → Rq by

roundd

(∑
i

xi · ζi
)

=
∑
i

⌊xi
2d

⌋
· ζi.

We shall also consider coefficients modulo 2d, which should be interpreted by considering the
representation of the coefficient in [0, q) and computing its value modulo 2d in [0, 2d).

We shall also refer to coefficients that are negative mod q for consistency with the language in [2].
These shall be interpreted as the appropriate mod q representation in [0, q), for example −3 as
4 mod q in the simple case where q = 7. We shall also refer to the absolute value of a coefficient,
which shall mean the absolute value of its representation in [(1− q)/2, (q + 1)/2] mod q.

The variation in notation may appear perhaps confusing, but clarifies possible ambiguities
between the presentation in [2] and the accompanying software implementation; the paper [2]
reports that mod q coefficients are represented in [(1− q)/2, (q + 1)/2] but the implementation
makes clear that rounding and mod 2d computations are always applied to the representation
in [0, q).

For any integer ω, we define Sω the set of ω-sparse elements of Rq to be the 2ω
(
n
ω

)
elements for

which ω of the xi are ±1 mod q, and the remainder are zero2.

2.2 Discrete Gaussian Distributions

The discrete Gaussian distribution of standard deviation σ assigns to each x ∈ Z a probability
proportional to e−x

2/(2σ2), normalised by the factor S = 1 + 2
∑∞

k=1 e
−k2/(2σ2), given by

DZ,σ(x) =
1

S
e−x

2/(2σ2).

2The [2] presentation suggests non-zero coefficients are restricted to be 1 only. However, because of the
enumeration given, we believe that non-zero coefficients are intended to be ±1 mod q.
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The Gaussian parameter of the discrete Gaussian distribution DZ,σ is
√

2πσ.

2.3 The Ring-LWE Problem

We here recall the Ring-LWE distribution, and the associated decision and search problems:

Definition 1 (Ring-LWE Distribution). For an s ∈ Rq and a distribution χ over R, a sample
from the Ring-LWE Distribution As,χ over Rq × Rq is generated by sampling a uniformly at
random in Rq, sampling e from χ, and outputing (a, as+ e).

Definition 2 (Decision Ring-LWE). The Decision Ring-LWE Problem is to distinguish with
non-negligible advantage between independent samples from As,χ where s is chosen once and
for all, and the same number of uniformly random and independent samples from Rq ×Rq.

Definition 3 (Search Ring-LWE). The Search Ring-LWE Problem is to recover s with non-
negligible advantage from samples from As,χ where s is chosen once and for all.

We shall consider only the case where χ is the co-ordinate-wise discrete Gaussian distribution
(DZ,σ)n. If properly instantiated, the decision and search Ring-LWE Problems are known to
be hard so long as the Shortest Vector Problem in ideal lattices is hard. They benefit from a
reduction from average to worst cases [9], namely that if any instance of the problem is hard
then typical instances are hard as well.

For these hardness guarantees, the ring Rq must be instantiated so that q ≡ 1 mod m. When
as here χ is discrete Gaussian, Peikert in [10] explains that it must also be spherical in the dual
space with Gaussian parameter greater than or equal to two. Practically, this means that the
Gaussian parameter σ

√
2π must be greater than or equal to two if m is a power of two, and

greater than or equal to 2
√
n if m is prime.

The Ring-LWE problem is a special ideal-lattice case of the general Learning With Errors
(LWE) problem defined over lattices:

Definition 4 (LWE Distribution). For an s ∈ Znq and a distribution χ over Z, a sample from
the LWE Distribution Bs,χ over Znq × Zq is generated by sampling b uniformly at random in
Znq , sampling e from χ, and outputing (b,b · s + e mod q).

Definition 5 (Decision LWE). The Decision LWE Problem is to distinguish with non-negligible
advantage between independent samples from Bs,χ where s is chosen once and for all, and the
same number of uniformly random and independent samples from Znq × Zq.

Definition 6 (Search LWE). The Search LWE Problem is to recover s with non-negligible
advantage from samples from Bs,χ where s is chosen once and for all.

A single Ring-LWE sample (a, as+ e) corresponds to n LWE samples:

(b1,b1 · s + e1 mod q), . . . , (bn,bn · s + en mod q).
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Each bi is the vector of coefficients for the polynomial ζia, s is vector of coefficients from s,
and the ei are the coefficients of e. Therefore the bit-level hardness of Ring-LWE problems can
be calculated from the bit-level hardness of LWE problems.

Concrete assessments of LWE security are given by Albrecht et al. in [1], and most recently
and conservatively by Ducas et al. in [6], which analyses lattice sieving in conjunction with the
BKZ 2.0 algorithm.

3 The Ring-TESLA Signature Scheme

In this section we shall describe the Ring-TESLA signature scheme as presented in [2] and
analyse its correctness. The components of Ring-TESLA are Key Generation, Sign and Verify.
In addition to the parameters m,n, σ, q, d in Section 2, there are integer parameters L, ω, κ,B,U ,
and auxiliary functions H and F . To benefit from the supporting security proof, these must
satisfy constraints described in [2], which we shall now describe and place in context.

Ring-TESLA requires a κ-bit hash function H : {0, 1}∗ → {0, 1}κ and an encoding function
F : {0, 1}κ → Sω from the output of H to the sparse elements of Rq. This can be instantiated,
for example, using a pseudo-random number generator (PRNG) such as AES in counter mode,
seeded with the hash output, and setting coefficients from the output.

The output size κ of the hash function H must have at least the required security level λ of the
signature scheme, for instance κ could be 256 for up to 128 bits of security and H instantiated
as SHA256. It must be chosen so that the output space of H is larger than the number of
ω-sparse elements of Rq. The encoding function F must be chosen so that the probability of
mapping two hash outputs to the same sparse element is less than one in 2λ. This will be
satisfied if both the output space of the PRNG and the number of ω-sparse elements of Rq are
larger than 2λ.

The parameter L is used in checks during both the Key Generation and Sign stages. The
parameters B and U are used in uniform sampling and rejection sampling during the Sign
process. For secure sampling that does not leak private information through signatures, the
parameter B must be less than 2d, and greater than or equal to 14(n−1)

√
ω, and the parameter

U must be d14
√
ωσc. The number 14 chosen here by the authors of [2] corresponds to a ‘large

number’ of Gaussian standard deviations, and could plausibly be tuned to the exact security
level required although we do not do so here. The parameters must be picked so that q will be
greater than or equal to 4B and 22d+1+κ/n/B.

As per Section 2, we shall require q ≡ 1 mod m, and shall require the Gaussian parameter σ
√

2π
to be greater than or equal to two if m is a power of two, or greater than or equal to 2

√
n if m

is prime.

We now describe the operation of Ring-TESLA.
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Key Generation

Input: Uniformly-sampled public parameters3a1, a2 ∈ Rq.
Output: Private/public key pair (sk,pk).

1. Sample s, e1, e2 ∈ Rq with coefficients from DZ,σ mod
q.

2. If checkE(e1) or checkE(e2) returns Reject then
restart.

3. t1 ← a1s+ e1

4. t2 ← a2s+ e2

5. sk ← (s, e1, e2)

6. pk ← (t1, t2)

7. Return (sk,pk)

CheckE

Input: e ∈ Rq.
Output: Accept or Reject.

1. If the ω largest absolute values of coefficients from e
sum to more than L then return Reject.

2. Return Accept.

For efficient key generation the parameters L, ω, σ must be picked so that e1, e2 are accepted by
CheckE with high probability. In the original Ring-TESLA paper [2] this is at least 0.5; in our
Section 4 parameter recommendations we target at least 0.8 and in most cases achieve 0.99.

3These may be globally specified or chosen by each user.
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Sign

Input: Message m, private key (s, e1, e2), public parameters
a1, a2.
Output: Signature (z, c′).

1. Sample y ∈ Rq with coefficients uniform in
[−B,B] mod q.

2. v1 ← a1y

3. v2 ← a2y

4. c′ ← H (roundd(v1), roundd(v2),m)

5. c← F (c′)

6. z ← y + sc

7. w1 ← v1 − e1c

8. w2 ← v2 − e2c

9. If any coefficient w1 or w2 is within L of a multiple of
2d then restart.

10. If any coefficient of z is not in [−(B−U), B−U ] mod q
then restart.

11. Return (z, c′)

Restarting in steps 9 or 10 will reduce performance by extending the signing process. The
independent per-coefficient probability of restarting is L/2d−1 at step 9 and 2U/(2B + 1)
at step 10, so the overall probability of passing through these steps without restarting is(
1− L

2d−1

)2n (2(B−U)+1
2B+1

)n
.
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Verify

Input: Message m, public key (t1, t2), public parameters
a1, a2, signature (z, c′).
Output: Accept or Reject.

1. If any coefficient of z is not in [−(B−U), B−U ] mod q
then return Reject.

2. c← F (c′)

3. w1 ← a1z − t1c

4. w2 ← a2z − t2c

5. c′′ ← H (roundd(w1), roundd(w2),m)

6. If c′′ ← c′ then return Accept, otherwise return Reject.

We found it difficult to implement the parameter sets provided in the original Ring-TESLA
paper [2] because despite a valid key pair, Verify would sometimes reject signatures produced
by Sign. We observed this empirically with approximately one per-cent of signatures using
the ‘Ring-TESLA-2’ parameters from [2]. This is detrimental to the smooth operation of the
scheme, and could allow an active attacker to recover private key information by causing and
analysing rejections, although we stress that we do not know of any such practical attack.
We now explain the reason for these failures, and how we overcame it in our own parameter
selection.

For Verify to accept a signature, roundd(vi) must equal roundd(wi) for i = 1, 2. These are
related4 by wi = vi − eic. Step 9 of Verify ensures the coefficients of w1, w2 are not close to
multiples of 2d. CheckE from Key Generation ensures the coefficients of eic have small absolute
value. Therefore the outputs of roundd are not affected by eic when integer arithmetic is
considered.

Addition of coefficients is however modulo q so roundd may still give different outputs, which we
observed using the parameters in [2]. To prevent this, we shall impose an additional requirement
beyond [2] and require that q mod 2d is no greater than L, which we have found ensures correct
signature validation. For the mathematical reader we shall now give a proof.

Theorem 1. Provided that q mod 2d is in [0, L], Verify will return Accept when using a valid
key pair.

Proof. Verify will Accept if roundd(vi) equals roundd(wi) for i = 1, 2. They are related by
wi = xi + eic.

4This equation is equivalent to the alternate equation wi = aiz − t1c used in Verify.
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Coefficients of eic are in [−L,L] mod q because they are the sum of no more than ω coefficients
from ei. The sum of any ω absolute values of ei is no more than L as CheckE accepted ei in
Key Generation.

Let xij be the coefficients of vi and yij be the coefficients of wi, so that yij = xij + rij mod q
with rij in [−L,L]. Because wi was accepted by step 9 of Sign, yij is at least L away from a
multiple of 2d. Therefore by the Lemma below, yij is in [L, q−L). As rij is in [−L,L], it follows
that yij = xij + rij holds as an integer equation as well as modulo q.

Because yij is at least L from a multiple of 2d and because rij is in [−L,L], it follows that every⌊xij
2d

⌋
equals

⌊yij
2d

⌋
, so roundd(vi) equals roundd(wi).

Lemma 1. If y is an integer at least L from any multiple of 2d, and that lies in [0, q) for an
integer q such that q mod 2d < L, then it must follow that y is in [L, q − L).

Proof. y is at least L away from any multiple of 2d. As 0 is such a multiple, therefore y is
greater than or equal to L.

q = k2d + s for integer k and integer s in [0, L). As y is at least L away from any multiple of
2d, it follows that either y is greater than or equal to k2d +L, or that y is less than or equal to
k2d − L. It cannot be the first, because k2d + L equals q + L− s, which must be greater than
q, therefore it must be the second. Because k2d−L is equal to q− s−L and s is non-negative,
y is less than q − L.

4 Parameters

In this section we recommend several parameter sets for Ring-TESLA, targeting a variety of
security levels and performance characteristics.

4.1 Methodology

We select our parameters to satisfy the constraints given in [2] and documented in Section 2
and Section 3. However we use different methodology from [2], which we have found gives more
efficient parameters, for example signatures that are 0.5kB smaller than we would have found
when targeting 128 bits of security.

We now describe our methodology. For a target security level λ and choice of m we take
n = φ(m) and κ = 2λ. We pick σmin so that σmin

√
2π is at least 2 if m is a power of two and
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at least 2
√
n if m is prime. We choose ω so that the number 2ω

(
n
ω

)
of ω-sparse polynomials is

greater than 2λ and less that 2κ.

For each σ increasing from σmin we set U = d14σ
√
ωe and dmin = dlog2 (14(n− 1)σ

√
ω)e, and

loop through a range of b, d ≥ dmin with b ≤ d. We set Btemp to be 2b − 1, and try to pick L
maximal subject to obtaining desired Key Generation and Sign acceptance rates if we were to
choose B to equal Btemp. For any (b, d) where we succeed, we pick the least prime q that is
greater than both 4Btemp and 22d+1+κ/n/Btemp, and which satisfies q mod 2d no greater than
L. We pick finally B ≤ Btemp smallest subject to a desired Sign acceptance rate and subject to
exceeding 14(n− 1)σ

√
ω and q/22d+1+κ/n.

We output (m,n, σ, L, ω,B,U, d, q, κ) as a candidate parameter set and assess its security. The
various parameter constraints described in Section 3 are satisfied, therefore the security proof in
[2] means that forging a Ring-TESLA signature is at least as hard as solving the Decision Ring-
LWE problem for Rq with distribution DZ,σ. We assess the security of the Ring-LWE problem
afforded by the parameters n, q, σ, and retain the candidate parameter set if this exceeds the
target level.

In practice the Decision Ring-LWE problem is solved by solving the Search Ring-LWE problem,
hence our security assessments are based on the bit-level hardness of this problem, using the
conservative methodology proposed in [6]. From the secure candidate parameter sets, we select
those with desirable characteristics such as small signature or key sizes or good Sign and Verify
performance.

4.2 Recommendations

We provide three sets of parameters ‘A’, ‘B’ and ‘C’ targeting respectively 80, 128, and 192
bits of security against classical attacks. The ‘A’ parameters do not target a particular level of
security against a quantum attack, and the ‘B’ and ‘C’ sets target respectively 80 and 128 bits
of post-quantum security.

In each collection, a ‘1’ variant is optimised for computational efficiency, a ‘3’ variant is optimised
for compact signatures, and a ‘2’ variant targets a balance. For this reason, the ‘1’ variants use
m that are powers of two, because the Fast Fourier Transform used for multiplication in Rq is
more efficient in this case, and the ‘2’ and ‘3’ variants use prime m for greater flexibility. We
include the parameter sets ‘Ring-TESLA-1’ and ‘Ring-TESLA-2’ proposed in [2] for comparison.

Our recommendations are:
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m n σ L ω B U d q κ

A1 1024 512 59 3046 11 4192013 2741 23 50332673 160
A2 479 478 54 1733 11 4189552 2508 22 20972537 160
A3 449 448 34 948 11 1048088 1580 20 5243423 160

B1 2048 1024 2 109 16 509644 113 19 5767169 256
B2 827 826 23 1035 17 4190594 1329 22 33554699 256
B3 709 708 28 1297 17 2094584 1617 21 10486111 256

C1 2048 1024 162 14780 26 67103941 11566 26 335546369 384
C2 983 982 220 14482 26 67102911 15706 26 335549017 384
C3 929 928 212 16998 26 33550234 15135 25 167779258 384

Ring-TESLA-1 1024 512 30 814 11 2097151 993 21 8399873 160
Ring-TESLA-2 1024 512 52 2766 19 4194303 3173 23 39960577 256

We suggest that our recommendations have security superior to the proposals in [2]. They
satisfy all of the conditions specified in [2] for the Ring-TESLA security proof to hold, achieve
the target security bit levels, and satisfy the constraints described at the end of Section 3 to
ensure correct validation of signatures, and so are secure against an active attacker who might
cause and analyse validation failures.

Security Target Security Assessment Constraints
Classical Quantum Classical Quantum Satisfied?

A1 80 - 80 73 Yes
A2 80 - 80 72 Yes
A3 80 - 80 72 Yes

B1 128 80 135 123 Yes
B2 128 80 132 120 Yes
B3 128 80 128 116 Yes

C1 192 128 192 174 Yes
C2 192 128 192 174 Yes
C3 192 128 192 174 Yes

Ring-TESLA-1 80 - 87 79 No because U < 14
√
ωσ.

Ring-TESLA-2 128 - 80 73 No because q < 22d+1+ κ
n

B

Our recommendations also achieve competetive signature and key sizes:
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Size (kB) Accept. Prob.
Signature Public Key Private Key Key. Gen. Sign

A1 1.4 3.3 1.9 0.99 0.34
A2 1.4 2.9 1.8 0.99 0.34
A3 1.2 2.5 1.7 0.82 0.10

B1 2.5 6.5 1.8 0.99 0.34
B2 2.3 5.2 2.0 0.96 0.34
B3 1.9 4.5 2.3 0.99 0.10

C1 3.5 7.3 4.3 0.99 0.34
C2 3.3 7.0 4.3 0.99 0.34
C3 3.1 6.4 4.0 0.99 0.10

Ring-TESLA-1 1.4 3.1 1.7 0.50 0.35
Ring-TESLA-2 1.5 3.3 1.8 0.99 0.34

5 Conclusion

Lattice-based cryptography and the Ring-LWE problem are promising post-quantum alterna-
tives to classical public key cryptography. The Ring-TESLA algorithm is a competitive digital
signature scheme based on Ring-LWE. We have examined Ring-TESLA and explained how care-
ful parameter choices are necessary for correct and secure operation of the scheme. We have
recommended new practical Ring-TESLA parameter choices which we suggest improve upon
previous proposals because they ensure its correct, secure and efficient instantiation. In future
work we intend to further explore enhancements to Ring-TESLA and other digital signature
algorithms.
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