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Abstract
A Fuzzy Extractor (Dodis et al., Eurocrypt 2004) is a two-step protocol that turns a noisy

secret into a uniformly distributed key R. To eliminate noise, the generation procedure takes
as inputs an enrollment value w to output R and an helper string P that will enable further
reproduction of R from some close reading w′. Nevertheless, Boyen fast highlighted the need
for reusable fuzzy extractors (CCS 2004) that remain secure even when numerous calls to the
generation procedure are made on the same fuzzy secret. Only recently has been proposed such
a fuzzy extractor by Canetti et al. (Eurocrypt 2016). Even if not explicitly mentioned in their
work, their main construction based on Hamming distance can also handle the set difference
metric, an important metric also used for fuzzy extractors.

In this work, we propose a new and generic framework to solve the reusability problem.
Our approach is simple, reaps benefits of any nonreusable fuzzy extractor and naturally applies
to set difference metric. When the universe size is polynomial in the set size, our work permits
to handle, in polynomial time, the case where the number of errors is linear in the length
of the code, when the recent work of Canetti et al. can only handle a sublinear number of
errors in polynomial time. This last point makes our construction more efficient than previous
constructions since the practical efficiency of a fuzzy extractor depends on its capacity to handle
errors. Our scheme has also benefits better storing capacities. Now when the universe size is
superpolynomial in the set size, our work enjoys satisfying complexities of existing and efficient
nonreusable Fuzzy Extractors while the approach of Canetti et al. does not apply.

Besides considering the reusability issue, we also propose the field of browser and device
fingerprinting as a new and promising playground for Fuzzy Extractors. Philosophically close
to biometrics, this burgeoning field of fingerprinting mainly considers list of features but comes
with deeper variations over time while still enabling users’ identification. We then define Adap-
tive Fuzzy Extractors, meant to handle these changes. More precisely, such a Fuzzy Extractor
enables to recover a key R from a reading w′ as long as w′ has naturally drifted from w.

1 Introduction

As cryptography traditionally relies on uniformly distributed and reproducible long-term secrets
often dedicated to authentication or key derivation, reality comes with basic concerns about creating
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and storing such values. Numerous randomness sources such as biometrics and human-generated
data [13, 20], Physically Unclonable Functions (PUFs) [27] or even quantum information [6] have
long been studied.

1.1 Fuzzy Extractors

The field of information reconciliation enables retrieving identical values from data subject to geni-
une variations while privacy amplification [6] aims at converting these values into uniform random
strings. Fuzzy Extractors (FEs), introduced by Dodis et al. [15]1, consist in a non-interactive
two-step protocol (Gen, Rep) both fulfilling information reconciliation and privacy amplification.
Taking as input ω from a random source, primitive Gen, used at enrollment, outputs a uniformly
distributed key R and some public helper string P while Rep, later given the helper string and ω′,
can reproduce the secret key as long as ω′ is close enough to ω relatively to a certain metric. En-
abling key generation from noisy data without requiring sensitive storage, FEs fast appeared as an
elegant solution to a wide set of applications such as key generation, key manipulation, exploitation
and protection of private randomness sources such as biometrics or PUFs.

1.1.1 Different Metrics

If Hamming distance may appear as the most natural metric to study, Dodis et al. proposed numer-
ous constructions also satisfying set difference and edit distances, either as original constructions or
adaptations of previous works [21, 20]. The Set difference metric focuses on the case where inputs
w are subsets of size s a universe U of cardinal n. For these metric, Dodis et al. distinguished two
settings, respectively referred as the small and large universe settings. In the former case, we have
that n = poly(s) while in the latter one n is superpolynomial in s. The large universe setting is the
more natural and frequent case to consider: for examplew can be a list of book titles, a list of movies
(movie lover’s problem due to [20]) or even a list of features coming from an unsamplable universe.
The small universe setting benefits a straightforward reduction with binary vectors, referred as the
bin-set equivalence that is described in Section 2.

1.1.2 Reusable Fuzzy Extractors

Boyen then fast exhibited the need for reusable fuzzy extractors [9] for which numerous helper
string generations from the same fuzzy secret do not impact user’s security and privacy. Indeed, he
designed some FEs fitting the definition of [14] that leak the fuzzy secret ω when numerous, but
polynomially bounded, calls to Gen were made. Follow-up works showed that all existing fuzzy
extractors were prone to this weakness [33, 7]. Apart from the restrictive and unlikely model of
Boyen [9] for which the exclusive or of user’s fuzzy secrets should not leak any information, there
existed no reusable fuzzy extractor before the recent work of Canetti et al. [10] based on Hamming
distance. Making use of a particular encryption scheme, referred as digital lockers, for which the
decryption can indicate if the decrypted value is the expected plaintext, they design a simple and
elegant FE that fulfills computational security. Considering distributions with high entropy samples
instead of global min-entropy, their scheme benefits lower entropy rates compared to existing con-
structions. Their main binary construction can be extended through bin-set equivalence to a FE

1In the following, we will refer to the expanded version [14].
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in the set difference based metric but only in the small universe setting. Plus, in such a case, their
scheme only allows to correct errors sublinear in n and if one wants to improve the error correction,
it leads to improve some constant c which will then imply time and storage complexities linear in
nc. On the other hand, when instantiated with efficient error correcting codes such as LDPC, our
scheme will benefit both error correction and time complexity linear in n.

1.2 Randomness sources and FEs

Because of aforesaid properties, fuzzy extractors have fast gained interest, notably in the fields of
PUFs and biometrics. Indeed, both fields suffer the common issue of noisy errors that prevent stable
and cryptographic key generation.

PUFs. A physically unclonable function is a physical entity that is easy to evaluate but hard to
predict. Unique by manufacturing process, PUFs aim at implementing challenge-response authenti-
cation. Nevertheless, environmental variations may impact their quality so that FEs were proposed
to correct response errors. Unhappily, numerous attacks on PUFs [30, 31] may deter the use of such
an hardware solution.

Biometrics. Biometrics are systems that recognize individuals based on their biological and/or
their behavioral characteristics. To be considered as a biometric traits, such characteristics have to
be assessed in regard of: uniqueness, collectability and permanence [19] where this later represents
the period in which those traits are stable.

Beyond ethical concerns [28], privacy of biometric templates is often questioned from a techni-
cal point of view [28, 34]. Contrary to static data such as passwords, they suffer inevitable but minor
variations that have to be handled. FEs then appeared well-fitted for their protection [14, 25, 18].
As stated by Dodis et al. [14], Hamming distance looked like the "most natural metric to consider"
so that many constructions rely on it [21, 14, 10]. Nevertheless, with the exception of iris [13],
Hamming distance does not adjust to biometric matchers [25, 18].

On the contrary, the set difference metric appears well fitted whenever the noisy secret is a set
of features such as for digital fingerprints or even the exotic movie liker problem [34, 25, 14, 20].
Unfortunately, Blanton and Aliasgari [7] have shown that available set difference-based construc-
tions [14] do not fulfill reusability [9] so that, at this time, the only way to handle set difference
metric is to adapt the work of Canetti et al. [10] using the equivalence recalled earlier. This could
lead to a problematic state of affairs when set elements belong to a large universe.

Now, in addition to these theoretical constraints, some more practical considerations have to
be taken into account. Current industrial authentication solutions tend to be both smartphone and
(only) software based solutions. As an illustration, the very trendy use case of HCE-based payment
solution [2] requires a strong authentication.In most cases, strong authentication is achieved by
fulfilling both knowledge (e.g. knowing a password) and owning (e.g. owning a chip card) factors.
Because of this purely software constraint, new authentication scenarios have to be found. Related
specifications [1] suggest to exploit biometric fingerprints. Besides biometric related limitations
recalled above, only brand new devices handle such signals while the smartphone fleet of the general
public remains non-equipped.

Finally, for both theoretical and practical reasons, it is worth looking for an alternative ran-
domness source that could be both be an answer to industrial needs and appears as an effective
playground for FEs.
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1.3 Fingerprinting as a new playground

FEs can theoretically apply to any noisy and identifying kind of data. We then propose the the
burgeoning field of fingerprinting as an application. In our knowledge, no previous study mentions
this context for FEs.

Brought to light by the seminal work of eckersley [16], browser fingerprinting consists in issuing
a fingerprint from a browser (user agent, list of fonts, list of plug-ins,. . . ). By visiting the associated
website [16], anyone can be revealed the entropy contained in its browser configurations. Accessing
this data enables to compare different values and to detect returning browsers even when some
features may have changed over time. As consequent studies [8, 24, 26, 3], this solution was suitable
for computers but looses its interest in the case of mobile devices. Later on, some solutions for
mobile devices have been proposed but were either too resources demanding [23, 11] or focused on
Identifying the device but did not take user’s behavior into consideration [12, 36]. While the list
of installed applications had already been considered to identify users [32, 4], this is only with the
comprehensive work of [22] that a device oriented study equivalent to [16] has been provided. Under
apple’s iOS, Kurtz et al. show how to compute a device fingerprint using 29 different configuration
features. From a dataset of 13,000 fingerprints, they show that all these fingerprints are unique
and detected returning devices with an accuracy of 97%. Along their work, the list of installed
applications and the top 50 songs appear are the most identifying values present on a device. This
recent accumulation of such studies exhibits the great amount of entropy mobile devices may wear.
Hence, these fingerprints, revealing user’s habits and behavior, appear as a credible factor when
designing a strong authentication protocol. Many of these device/browser fingerprints constitute list
of features coming from potentially unsamplable universes (e.g. songs, applications, plug-ins, . . . )
and then naturally fit with the large universe. This enhances the need for a reusable FE in the large
universe setting.

1.3.1 With new playground comes new problematic

However, a new limitation fast appears when dealing with such fingerprints: even if identifying, they
may undergo deep variations over time so that extracted keys could suffer shorter lifetime when the
stated goal of FEs is to generate stable keys. Drawing a parallel with behavioral biometrics, we then
a propose a new definition for FEs that aims at addressing this latter limitation.

Physiological biometrics undergo minor and genuine differences which, as we saw, caught the
attention of FEs. More precisely, if we consider an enrollment value ω, it is very likely that any new
reading w′ will stay within a certain distance. While these latter enjoy a comfortable permanence
(even if concerned by intrinsic aging), some of the behavioral biometrics can suffer from a shorter
permanence period that has to be handled. Moreover biometric systems are constrained to enroll the
user with as few as possible learning templates (from 1 to 10). To solve both of the previous issues,
the notion of adaptive biometric system has been introduced in [35] for which template database is
updated whenever a successful authentication occurs.

From these behavioral biometric problematic, one could draw a a parallel with device and
browser fingerprints. In the purpose of exhibiting privacy threats, recent studies highlight how
identifying fingerprinting can be [16, 3, 4, 22]. To fairly identify users, current solutions have to
handle variability of such fingerprints (cookies, canvas fingerprint, installed applications,. . . ). This
leads to the problematic of uniquely identifying users where the goal is to decide if a given profile
is a former one that has undergone variations or is a new one [16, 3, 22].
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To avoid any ambiguity, we will talk about instability of physiological biometrics to indicate that
they may undergo minor differences while variability of behavioral, device and browser fingerprints
indicates that these latter ones may suffer deeper changes.

Coping with the terminology of adaptive biometric systems, we define adaptive fuzzy extractors
meant to output a stable key even if the authentication value w′ is not that close to the enrollment
one W , as long as w′ has somewhat naturally drifted from w.

1.4 Our contribution

The contribution of this work is threefold:

1. We propose a generic framework to address reusability that can be instantiated with any non-
reusable FE. The idea is to pre-process fuzzy secrets while maintaining distances between two
noisy readings. More precisely, when ρ enrollments have to be done from the fuzzy secret w,
such a process will output ρ unrelated values Ω1, . . . ,Ωρ that can then be securely used once
by any nonreusable FE. Now, if a user wants to authenticate herself toward provider j from a
noisy reading w′, our pre-processing function will generate Ω′j such as the distance between
Ω′j and Ωj is the same as between w and w′. We formalize this fingerprint randomization by
defining Fingerprint derivation Functions (FDFs).

2. Relying on the previously introduced framework, we design the first practical set difference-
based reusable FE in the large universe setting that will enjoy efficient time and storage com-
plexities of the best nonreusable FEs. Moreover, our instantiation in the small universe set-
ting, with n denotes universe size, comes up with both time complexity and error correction
in O(n) while adapting Hamming-based construction of Canetti et al. through bin-set equiv-
alence leads to time complexity of order ω(nc.logn) and error correction only sublinear in n.
Plus, by design of their scheme, increasing the correction capacity leads to increasing c.

3. Considering fingerprints with deeper variations (e.g. behavioral, device and browser finger-
prints) but still identifying [35, 16, 3, 22] led us to define Adaptive Fuzzy Extractors (AFEs)
that aim at recovering a stable key R from noisy readings even if these noisy readings are
not that close. Taking into consideration more variable but still identifying fingerprints, AFEs
enable the key recovery as long as the authentication value has naturally drifted from the en-
rollment one. In addition to primitives Gen and Rep, an update primitive Upd is introduced.
We propose a generic methodology to design an AFE out of an FDF and a nonreusable FE.
Once again, an efficient instantiation for the set difference is proposed.

2 Preliminaries

2.1 Notation

For a vector u, we denote supp(x)
def
= {i : xi 6= 0}. log denotes the logarithm in basis 2. GF (n)

denotes the finite field of n elements. x ← f(.) denotes that x is an output of a function f . If f
is randomized, we use the semicolon to make the randomness explicit. f(x;µ) is the result of f
computed on x with randomness µ.
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Let H denotes a cryptographic hash function modeled as a random oracle H : {0, 1}∗×{0, 1}l1 →
{0, 1}κ For any entity E , we denote by E(z) the fact that E has knowledge of z. Ul denotes the uni-
formly distributed random variable on {0, 1}l. For a distinguisher D (or a class of distinguishers
D), we write the computational distance between X and Y as δD(X,Y ) = |E[D(X)]−E[D(Y )]|.
When X and Y indistinguishable given security parameter sec (δD(X,Y ) 6 εsec), we denote
X ≈ Y . Dssec denotes the class of randomized circuits which output a single bit and have site
at most ssec. We say W 1, . . . ,Wn random variables are correlated by subset if it exists p 6 n such
as {i1, . . . , ip} ⊂ {1, . . . , n} and W i1 , . . . ,W ip are correlated. Let λ denotes a security parameter.
Except stated otherwise, we have l = l(λ), κ = κ(λ), m = m(λ), ssec = poly(λ) and ε = negl(λ).

2.2 Background

Metric Spaces A metric space is a finite set M equipped with a distance d : M×M → N
fulfilling classic properties of symmetry, triangle inequality and zero distance between equal points.

Set Difference Metric Let M consists in all subsets of a universe U . For two sets ω and ω′

belonging toM, their symmetric difference is defined as w∆w′
def
= {x ∈ w∪w′|x /∈ w∩w′}. The

set difference metric between w and w′ is the defined as d(w,w′)
def
= |w∆w′|.

We now present the bin-set equivalence. If w denotes a set of size s, it can be viewed a binary
vector in {0, 1}n, with 1 at position x if x ∈ w, and 0 otherwise.

Entropy Notions Entropy specifies the amount of information contained in some data. In security-
related contexts, the (non) ability (for an adversary) to guess the value of a random variable is
a measure of its quality. In the information-theoretic case, we often rely on the well-suited no-
tion of min-entropy. We say that a random variable A, has min-entropy m, denoted H∞(A)
= m, if A has predictability 2−m i.e. maxaPr [A = a] = 2−m. Put another way, we have

H∞(A)
def
= −log2maxa∈AP [A = a]. Another useful notion is the average (conditional) min-

entropy of A given B is H̃∞(A|B) = −log2(Eb∈BmaxaPr[A = a|B = b]). We do not recall com-
putational entropy notions since Fuller et al. [17] exhibited that no interest arises when considering
computational, instead of statistical, entropy in the field of Fuzzy Extractors.

Fuzzy Extractors Recalls

The original definition of FEs, due to Dodis et al. [14], was information theory-based. We focus on
the computational one introduced in [17]. While Fuller et al. voluntary extend their definition to any
family of distributions for a convenience purpose, we focus on distributions of given min-entropy
as it was the case in [14]. Relying on the original definition, we study the security over distributions
of min entropy m.

Definition 1 (Fuzzy Extractor). A pair of randomized procedures "generate" (Gen) and "repro-
duce" (Rep) is a (M,m, l, t)-computational fuzzy extractor (resp. average case) that is (ε, ssec)-
hard if Gen and Rep satisfy the following properties:

• The generate procedure Gen on input ω ∈ M outputs an extracted string R ∈ {0, 1}l and a
helper string P ∈ {0, 1}∗.
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• The reproduction procedure Rep takes an element ω′ ∈ M and a bit string P ∈ {0, 1}∗ as
inputs. The correctness property guarantees that if d(w,w′) 6 t and (R,P ) ← Gen(ω),
then Rep(ω′, P ) = R. If d(w,w′) > t, then no guarantee is provided about the output of
Rep.

• The security property guarantees that for any distribution W on M of min-entropy m, the
string R is pseudorandom conditioned on P i.e. δssec((R,P ), (Ul, P )) 6 ε.

Dodis et al. also define average-case FEs for which the security property requires that for any
auxiliary variable I such as H̃∞(W |I) > m, then ((R,P, I), (Ul, P, I)) appear indistinguishable.
As recalled in [17], any information-theory based FE [14] can be relaxed into a computational FE
with the same parameters. Along with their work, Dodis et al. design fuzzy extractors based on three
different metrics which are Hamming, set difference and edit distances. All their constructions rely
on secure sketches. Such a primitive is a pair of procedures (SS, Rec) such as on input ω, the
"sketch" SS procedure outputs a public string P . Later given ω′ and P , procedure Rec recovers ω
as long as ω′ is close to ω. Coupled with an average-case extractor, Dodis et al. design FEs out
of such a primitive. Since P enables to recover ω′ from ω, it necessarily leads to what the authors
define as entropy loss.

Reusable Fuzzy Extractor Reusability of fuzzy extractors [9] can be stated as the possibility
to call procedure Gen numerous times on the same fuzzy secret without impacting security or
privacy. Let us consider ρ readings ω1, . . . , ωρ of the same fuzzy secret from which the user
will be enrolled on ρ different authentication servers so that Gen will then generate ρ couples
(R1, P 1), . . . , (Rρ, P ρ). Recalling that P js are meant to be public and that different servers should
not trust each other, Canetti et al. [10] proposed an adapted security model for which a given Ri0 is
secure even if all the Rjs (for j 6= i0) are given to an adversary.

Definition 2 (Reusable Fuzzy Extractor [10]). Let (Gen, Rep) be a (M,m, l, t, ε)-FE andW 1,W 2,
. . . ,W ρ be ρ correlated random variables overM. Let D be an adversary. Define the following
game for all j = 1, . . . , ρ:

• Sampling The challenger C samples ωj ←W j and η ← {0, 1}l.

• Generation C computes (Rj , P j)← Gen(ωj).

• Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(R1, . . . , Rρ, {P j}16j6ρ) = 1]

−Pr[D(R1, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P j}16j6ρ) = 1]

(Gen, Rep) is (ε, ρ, ssec)-reusable if for all D ∈ D and for all j = 1, . . . , ρ, the advantage
Adv(D)ssec is at most ε.

2.3 Tools

In the work of Canetti et al. [10], the secret keyR outputted by Gen consists in a randomly generated
value while the helper string P contains numerous ciphertexts of R encrypted under substrings of
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the noisy secret ω. To securely encrypt numerous times the key R, they made use of digital lockers
that are reusable symmetric encryption schemes with correlated and weak keys. The reusability of
digital lockers implies the FE reusability. We now describe the tools demanded to design reusable
FEs fitting our methodology.

Symmetric encryption scheme We will also require the use of a symmetric encryption scheme
that will be denoted (Enc, Dec). Correctness ensures that Dec(K,Enc(K,D)) = D. From a
security point of view, we require (Enc, Dec) to fulfill the "find-then-guess" chosen plaintext attack
(FTG-CPA) security due to Bellare et al. [5]. This notion is the closest notion to the classic CPA
security defined for public key schemes. Since an adversary cannot encrypt messages on its own in
the private key paradigm, the FTG-CPA security let her access to an encryption oracle. The ensuing
game then consist for an adversary with such a polynomially bounded oracle access to send m0 and
m1 to a challenger that will compute cb for b ∈ {0, 1}. (Enc, Dec) is said to be FTG-CPA if any
computational adversary has negligible advantage in guessing b.

Fingerprint Derivation Function Fingerprint Derivation Functions (FDFs), that can be seen as
one-way isometry functions, constitute a new direction to solve FEs’ reusability. Given a fuzzy
secret w, a FDF aims at randomly deriving Ω retaining much of the entropy of w and enabling to
maintain distances between inputs and outputs. More precisely, a FDF is as a couple of randomized
procedures (DerGen, DerRep) working as follows:

• DerGen on input ω randomly returns some unrelated Ω and some public string F .

• DerRep on input a noisy version ω′ and some F returns Ω′ such the distance between Ω and
Ω′ is equal to the distance between ω and ω′.

This notion could be related to secure sketches and biometric embeddings both used in [14].
In fact, a biometric embedding projects any fingerprint value into a metric space where a FE exists
while loosely maintaining distances. On the other hand, a secure sketch enables to recover ω from
ω′ and some public helper string. The idea here is to precisely maintain distances while not enabling
any recovery of original fingerprint values.

Adapting definition of secure sketches [14], the security property requires that both original and
derived distributions to be of high entropy even in presence of the outputted public string F .

Definition 3 (Fingerprint Derivation Function). Let (M1, d1) and (M2, d2) be two metric spaces.
A (M1,M2,
m1,m2)-fingerprint derivation function (FDF) with error is a pair of randomized procedures (Der-
Gen, DerRep) with the following properties:

1. DerGen on input ω ∈M1 outputs Ω ∈M2 and some F ∈ {0, 1}∗.

2. DerRep takes an element ω′ ∈ M1 and a bit string F ∈ {0, 1}∗ as inputs to output Ω′ ∈
M2. The correctness property guarantees that if (Ω, F ) ← DerGen(ω), then d2(Ω,Ω′) =
d1(w,w′). Else, no guarantee is provided about Ω′.

3. Let W a distribution, DerGen(W) is denoted (U, V ). If ω $← W and (Ω, F ) = DerGen(ω),

we denote (Ω, F )
$← (U, V ). The security property guarantees that for any distribution W of
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min-entropy m1, the values of W and U can be recovered by the adversary who observe V
with probability no greater than 2−m2 .

That is, we have H̃∞(W |V ) > m2 and H̃∞(U |V ) > m2.

The intuition behind FDF-reusability is that the knowledge of previous derived fingerprints will
not help any computational adversary D to distinguish a random value from a newly derived finger-
print obtained via DerGen. Relying on the reusability of FEs (Definition 2), we define a reusable
FDF as follows.

Definition 4 (Reusable FDF). Let W 1,W 2, . . . ,
W ρ be ρ correlated random variables overM1. LetD an adversary. Using notation of Definition 3,
we define the following game for all j = 1, . . . , ρ:

• Sampling The challenger C samples wj ←W j and u $←M1.

• Generation C generates (Ωj , F j)← DerGen(ωj) and (Ω∗, F ∗)← DerGen(u).

• Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(Ω1, . . . ,Ωρ, F 1, . . . , F ρ) = 1]

−Pr[D(Ω1, . . . ,Ωj−1,Ω∗,Ωj+1, . . . ,Ωρ, F 1, . . . , F ρ) = 1]

(DerGen, DerRep) is said to be (ε, ρ, ssec)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ,
the advantage Adv(D) is negligible in ssec.

3 From nonreusable to reusable Fuzzy Extractors

Before the recent work of Canetti et al., all Hamming-based [33] and set difference-based [7] con-
structions, were prone to reusability issue. In this section, we introduce a new and generic way to
address reusability. The idea is to first use a FDF to randomize fuzzy secrets and then apply a non-
reusable FE on unrelated derived fingerprints. Based on nonreusable FEs due to Dodis et al. [14],
we propose a reusable FE that enjoys better storage, time and correction complexities compared to
the work of Canetti et al. [10] adapted to the set difference metric.

3.1 High Level Overview

Let (Gen’, Rep’) denote a (average-case) nonreusable FE. Taking as input a fuzzy secret ω, the
generation procedure Gen’ implicitly draws a ball B(ω, t) centered in ω where the radius t consists
in the error tolerance of the fuzzy extractor. Whenever a noisy reading ω′ is given to procedure
Rep’, the secret key will be recovered as long as ω′ belongs to B(ω, t). In most cases and notably
for constructions based on secure sketches, if numerous helper strings P 1

ω , . . . , P
ρ
ω are generated

(Gen’) from the same fuzzy secret ∈ B(ω, t), all the P is inherently contain information about ω
which leads to reusability issue.

Let us consider the situation where a user wants to enroll its fuzzy secret ω on ρ authentication
servers. To address reusability, the key idea is to randomly project the ρ fuzzy versions of ω onto
unrelated values. By using an adapted ρ-reusable FDF, the user gets unrelated values Ω1, . . . ,Ωρ
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that will be each enrolled once, respectively toward servers 1, . . . , ρ. Now whenever she wants to
authenticate herself toward server j from ω′, the user uses the aforesaid FDF to get Ω′j verifying
d(Ω′j ,Ω′j) = d(w,w′). Since the Ωjs are -a priori- uncorrelated while each Ωj undergoes only
one generation procedure. Hence, one should be able to enroll herself from the same fuzzy secret
without fearing reusability issue. This idea is summed up in Figure 3.1.

Figure 1: Overview of reusability via FDF randomization

3.2 Generic methodology

In this subsection, we detail our generic methodology to design a reusable FE (Gen, Rep) out of a
nonreusable one and an adapted FDF. Let (DerGen, DerRep) be a (M1,M2,m1,m2)-FDF that
is (ε, ρ, ssec)-reusable. Let (Gen’, Rep’) be an average-case (M2,m2, l, t)-FE that is (ε, ssec) hard.

Designing a reusable FE out of these latter tools is rather straightforward. As depicted in Fig-
ure 3.1, FDF reusability will enable to generate numerous unrelated values that will imply FE
reusability. The generation procedure Gen will first call DerGen to randomize the input w into
Ω. The nonreusable FE is then applied on Ω. Because of the FDF reusability, numerous projected
fingerprints Ωjs can be derived without impacting security of the original fuzzy secret w. Finally,
the generated helper strings PΩis (PΩi ← Gen’(Ωi)) can be publicly revealed assuming security of
(Gen’, Rep’) in the single use case. The overall helper string consists in the helper strings of both
the FDF and the nonreusable FE.

Generation procedure Gen
Input: w ∈ M1,

1. (Ω, F )← DerGen(w).
2. (R,Q)← Gen’(Ω).
3. Set P = (F,Q).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: w′ ∈ M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F,Q)
2. Ω′ ← DerRep(w′, F ).
3. R← Rep’(Ω′, Q).
4. Return R.

Figure 2: A generic reusable FE

The FDF ensures that d2(Ω,Ω′) = d1(w,w′) while the correctness of the underlying non-
reusable FE ensures that Rep’ recovers R from Ω′ and the associated helper string as long as
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d2(Ω′,Ω) 6 t. Overall this leads to recovering R as long as d1(w,w′) 6 t. One should notice
that this methodology also applies to secure sketches.

Security Analysis Correctness and security properties rely on those of (DerGen, DerRep) and
(Gen’,Rep’).

Theorem 1. Figure 2 defines a (M1,m1, l, t)-FE that is (ε, ρ, ssec)-reusable.

Proof. The correctness is straightforward and follows from aforesaid explanations. To ensure secu-
rity, we first show that R appears pseudorandom even in presence of P and then treat reusability.

Under notation of Definition 3, we have that Ω and F respectively come from distribution U and
V such as H̃∞(U |V ) > m2. Now, with (Gen’,Rep’) an average-case FE, we have that (R,Q, I) ≈
(Ul, Q, I) for any distribution I such as H̃∞(U |I) > m2. In particular, δD((R,Q, F ), (Ul, Q, F )) 6
εsec which leads to δD((R,P ), (Ul, P )) 6 εsec denoting P = (F,Q).

Let W 1, . . . ,W ρ be correlated distributions over M1, all of min-entropy m1. Through a se-
quence of games, We will now demonstrate that the reusability of the FDF and security of the FE
(Gen’,Rep’) in the single use case lead to the overall reusability of (Gen, Rep). The following
games consist in a challenger C trying to fool a computationally bounded adversary D whose goal
is to attack the security of the key Ri0 .

G0 C honestly samples fingerprint values as prescribed in definition 2 and sends (F 1, Q1,K1), . . . ,
(F i0 , Qi0 ,Ki0), . . . , (F ρ, Qρ,Kρ) to D.

G1 In this game, there is one change compared to the previous one. C first honestly samples the
wjs and then uses DerGen to obtain Ω1, F 1, . . . ,Ωρ, F ρ. Now, C replaces wi0 with some

random w∗
$←M1. He computes (Ω∗, F ∗) ← DerGen(w∗) and (R∗, Q∗) ← Gen’(Ω∗) to

finally set P ∗ = (F i0 , Q∗). In the end, D is given with the actual P js and Rjs except for
j = j0 for which he receives P ∗, R∗. If D could distinguish this game from the previous one,
he would then be able to distinguish the distribution with Ωj0 from the one with Ω∗. This is
impossible assuming reusability of the FDF. Then, G1 appears indistinguishable G0.

G2 In this game, after computing, R∗, Q∗ ← Gen’(Ω∗), the challenger C discards the value

R∗ and replaces it with some η $← {0, 1}l randomly sampled. Now, assuming security of
the average case FE (Gen’, Rep’), we have that (Ul, P

∗) and (R∗, P ∗) are computationally
indistinguishable so that this game appears indistinguishable from the previous one.

G3 In the previous game, D was given finally (F 1, Q1,K1), . . . , (F i0 , Q∗, η), . . . , (F ρ, Qρ,Kρ)
where η is random and as such, does not depend on P ∗. Here, C will then send the ac-
tual Qi0 (obtained via computed Gen’Ωi0) instead of Q∗. If D can distinguish that Qi0 has
been given instead of Q∗ (obtained via computed Gen’Ω∗), he can in particular distinguish
Ωi0 from Ω∗. Hence, he can distinguish (F 1, . . . , F i0 , . . . , F ρ, ...,Ω1, . . . ,Ωi0 , . . . ,Ωρ) from
(F 1, . . . , F i0 , . . . , F ρ, ...,Ω1, . . . ,Ωi0−1,Ω∗,Ωi0+1, . . . ,Ωρ). In other words, D would have
finally broken reusability of the underlying FDF. Then G3 is indistinguishable from G2.

In the end of G3, D is given (P 1,K1), . . . , (P i0 , η), . . . , (P ρ,Kρ) where η was randomly sam-
pled. By transitivity, this latter game is indistinguishable from G0 . This latter indistinguishability
is exactly the one required by Definition 2.
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3.3 A Set Difference-based FDF

In this subsection, we present a set difference-based FDF that will enable us to instantiate our
generic methodology described in previous subsection. Our instantiation naturally fits both small
and large universe settings while the Hamming-based work of Canetti et al. can only be extended to
the small universe setting. We will see that even in this latter case, our work benefits better storage
and running time complexities.

Environment and Notation Set difference based fuzzy extractors presented in [14] take as inputs
subsets of a universe U such as n = |U|. We denote (MU , d), the metric space whereMU consist
in all the subsets of U and d is the set difference metric. Plus,MU ,s denotes the restriction ofMU
to s-elements subsets. In the following,Mκ denotes (GF (2κ), d) equipped with the set difference
metric d. SimilarlyMκ,s denotes the restriction to sets of sizes s. Let W be a probability distri-

bution over U with min-entropy m. Let W s be defined as W s def
= {{x1, x2, . . . , xs}|∀1 6 i 6

s, xi
$←W}; W s then represents a distribution overMU ,s and we denote its entropy m̃.

Proposition 1. With the above notation, the min-entropy m̃ of W s is such as:

m̃ > s.m− log(s!)

Proof. Since H∞(W ) = m, we have Pr[W = x] 6 2−m. Following the associated tree diagram,
any tuple (x1, . . . , xs) has probability to occur less than 2−s.m. When it comes to sets (no order
consideration), {x1, . . . , xs} has then an occurring probability less than 2−s.m.s!.

To design our set difference-based FDF, we will use the hash function H : {0, 1}∗×{0, 1}l1 →
{0, 1}κ. Modeled as a random oracle, its outputs appear uniformly distributed and contain all the
entropy of its input. In a nutshell, our set difference-based FDF, presented in Figure 3, consists in
randomizing each set element through the use of H.

Algorithm DerGen
Input: w = {w1, . . . , ws},

∀1 6 i 6 s, wi ∈ U .

1. salt $← {0, 1}l1 .
2. For i = 1 . . . s,
xi ← H(wi; salt).

3. Set Ω = {x1, . . . , xs}.
4. If |Ω| < s,

go to 1.
5. Return (salt,Ω).

Algorithm DerRep
Inputs: w′ = {w′1, . . . , w′s′},

∀1 6 i 6 s′, w′i ∈M,
salt ∈ {0, 1}∗.

1. For i = 1 . . . s,
x′i ← H(w′i; salt).

2. Set Ω′ = {x′1, . . . , x′s′}.
3. While |Ω′| < s′,

z
$← GF (2 κ).

Ω′ ∪ {z}.
4. Return Ω′.

Figure 3: A set difference-based FDF

Step 4 of Algorithm DerGen aims at avoiding collision. In such a case, a new seed salt is
chosen and the protocol starts again. Choosing κ big enough, one can be sure that the case with
no collision occurs with non negligible probability. In the same vein, Step 3 of Algorithm DerRep
enables to maintain distances between original values (w and w′) and randomly derived ones (Ω and
Ω′). Indeed, thank to step 4 of DerGen, a collision occurring while proceeding DerRep on w′ can
only be due to an element w′i that did not appear in w.
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Proposition 2. Figure 3 defines a (MU ,s,Mκ,m1,m2)-FDF for the set difference metric where
m1 = m̃ and m2 = s.m− log(s!).

Proof. We have to prove both isometric and security properties.

1. Isometry property. By design, Ω was derived from w ensuring that no collision occurs when
generating the xis belonging to Ω (Step 4). To prove the isometry of our FDF, there are two
cases to consider:

• If no collision occurs, isometry is straightforward: elements common to w′ and w lead
to common elements in Ω′ and Ω; elements that differ from w′ and w lead to different
elements in Ω and Ω′ so that distances are maintained.

• Else, we have that |Ω′| = s′ < s. It means that some collision occurred within during
step 1. By design of DerGen, every time a collision occurs, it can only be due to some
w′i not belonging tow. Hence, if |Ω′| < s′, missing elements of Ω′ are necessarily due to
differences between w′ and w so that adding the expected number of random elements
to Ω′ (Step 3 of DerRep) ensure isometry property of (DerGen, DerRep).

2. Security. Because of H modeled as a random oracle, we have that:

• It keeps all the entropy of its inputs. That is, if H∞(wi) = m and xi = H(wi; salt),
then H∞(xi) = m.

• Its outputs are uniform: if xi = H(wi; salt) ∈ {0, 1}κ, then its κ bits are randomly
distributed.

Thanks to the properties described above H, Pr[X = xi] 6 2−m. Relying on notation intro-
duced in Definition 3 and the reasoning of proposition 1, we have H∞(U) > s.m− log(s!).
With H a random oracle, the knowledge of the random salt does not impact any entropy loss:
∀ salt, H∞(X = xi|V = salt) = m. It leads to H∞(U = Ω|V = salt) > s.m − log(s!)
to finally give H̃∞(U |V ) > s.m − log(s!). Now, since the value salt is chosen randomly
and independently of distribution W (algorithm DerGen, Step 1) It leads to H̃∞(W |V ) =
H∞(W ) = m̃.

Proposition 3. Figure 3 defines a set difference-based FDF that is (ε, ρ, ssec)-reusable.

Proof. Outputs of algorithms DerGen and DerRep consist in sets of random elements belong-
ing to GF (2κ). By the use of H, these elements are uniformly distributed over Mκ. Let ρ ∈ N.
Let W 1, . . .W ρ be related distributions from which w1, . . . , wρ are respectively sampled (some
or all wjs could then be equal). Let us assume that one is given (salt1,Ω1), . . . , (saltρ,Ωρ) where
(saltj),Ωj ← DerGen(wj). Now, let us replace some (saltj0 ,Ωj0) with (salt∗,Ω∗)← DerGen(w∗)
where w∗, a priori unrelated to wjs, is randomly sampled fromMU . Since public salts saltjs are
generated randomly and independently from any other values, they can be replaced by other random
values. Plus derived values Ωjs are uniformly distributed over Mm,s through the use of H mod-
eled as a random oracle. Hence, none adversary D can distinguish aforesaid distributions assuming
security of H.
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Corollary 1. Let (Gen’, Rep’) be an average-case (Mκ,m1, l, t) nonreusable FE based for the
set difference metric that is (ε, ssec) hard. Let (DerGen, DerRep) be the (ε, ρ, ssec)-reusable
(M,Mκ,m1,m2)-FDF defined in Figure 3. From Theorem 1, one can design (Gen,Rep) a
(M,m1, l, t)-FE that is (ε, ρ, ssec)-reusable based on set difference metric.

This result is straightforward due to Theorem 1 and Propositions 2 and 3. Let us notice that with
previous notation, m1 = m̃ and m2 > s.m− log(s!).

3.3.1 Comparison with work of Canetti et al.

We now compare our construction with the work of Canetti et al. [10] adapted to set difference met-
ric. While the set-bin equivalence cannot be applied in the more interesting large universe setting,
we consider that it has no cost in the small universe setting where n = poly(s). Let t denotes the
number of errors tolerated by a FE. The work of Canetti et al only achieves a correction capacity
sublinear in n. If one wants to increase t, it is required to increase some constant c for which both
generation and reproduction procedures are linear in nc (O(nc)). For similar reasons, their storage
complexity is equivalent to ω(nc.log2(n)). From efficiency of our FDF, our asymptotic perfor-
mances are mainly due to the underlying nonreusable FE. Such efficient constructions are proposed
in [14] for which time and storage complexities are respectively of order t.logn and poly(n). Plus
the time complexity is the consequence of running the decoding algorithm of an error correcting
code [n, k, 2t+ 1]. With an instantiation based on LDPC codes [29], we get that both error correc-
tion and time complexity can be linear in n. Nevertheless, contrary to the work of Canetti et al.,
our construction is instantiated with secure skecthes implying some entropy loss, estimated around
tlogn.

One should notice that -still basing our instantiations on [14]- our work enjoys storage and time
complexities of order tlogn (with equivalent entropy loss) and poly(slogn) in the large universe
setting.

4 Adaptive Fuzzy Extractors

While Fuzzy Extractors were originally designed to handle any kind of noisy and keying material,
they fast gained a lot of interest in the field of biometrics and PUFs. Unhappily as exhibited in
Section 1, these applications suffer numerous limitations and in particular, biometrics still lack of
practicability with respect to existing fuzzy extractors. This state of affairs led us to consider the
burgeoning alternative of browser and device fingerprints [16, 3, 22] that will naturally derive over
time leading to changes much more important than genuine instability of classic biometrics. We
then define Adaptive Fuzzy Extractors, meant to address this drifting problematic.

4.1 Environment: Alternative randomness and Drift problematic

Device and browser fingerprints (e.g. list of installed applications, list of cookies, . . . ) are much
more versatile than biometrics. It raises the problematic of uniquely identifying users. More pre-
cisely, given a fingerprint value w′, the goal is to decide if this fingerprint value is a new user or
a previously encountered one that has undergone variations. In the latter case, the user has to be
recognized and should not be assimilated to a new profile. Recent works have come with satisfying
results with respect to this problematic [16, 3, 22]. Transposed in the context of authentication,
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this rises the problematic of authenticating users that might present numerous differences. Even
if important, these differences do not prevent fingerprint values to be reliable [16, 3, 22]. In our
context, this amounts to deal with a fuzzy extractor that can recover the actual key R even if the
authentication value w′ and the enrollment one w present more than t errors. The idea is to say
that w′ should have naturally drifted from w. Drawing a parallel with the concept drift problematic
of predictive analytics, we refer to these fingerprint derivation as fingerprint drift and formalize it
through the following definition

Definition 5. Let (M, d) a metric space. Let w1, . . . , wφ elements of M and an integer t. We
say that (M, w1, wφ, t) is a t-drift of length φ on M if for all j = 1, . . . , φ − 1, we have that
d(wj , wj+1) 6 t.

This definition is simple and may not capture all the subtleties a fingerprint may fit. This a
first stone that should be improved at the light of further studies on fingerprinting. In the context
of fuzzy extractors, a naive answer to the fingerprint drift issue could be frequent re-enrollments.
Nevertheless, in practice, enrollment sessions always constitute critical sessions that organizations
want to avoid. Plus, FEs were originally designed to enable the use of long term secrets so that
frequent re-enrollment sessions would annihilate their primary goal.

4.2 High Level Overview

To cope with this drifting paradigm, we define Adaptive Fuzzy Extractors (AFEs) that enjoy a
third primitive Upd compared to classic FEs. Without re-enrolling herself, a user should be able
reproduce the same secret R than the one computed by Gen as long as variations between the
enrollment value w and the authentication one w′ follow an expected t-drift (Definition 5). A
classic FE is meant to recover a previously extracted key R if and only if the reproduction value w′

belongs to B(w, t). In our context, we require an AFE to recover the actual key R as long as the
reproduction value w′ has somewhat naturally drifted from w although w′ does not belong B(w, t).
The terms naturally refers here to following a t-drift.

More precisely, given parameters 0 6 u 6 t, we propose AFEs to work according to two zones
:

• Updating Zone. It can update the helper string value P before too many errors occur i.e.
while w′ is still close enough to w (d(w,w′) 6 u).

• Recovering Zone. w′ is close enough to w to enable key recovery but too far away to enable
any helper string update (u < d(w,w′) 6 t); further reproduction values w′ should draw near
w to enable an update.

In particular, we have that an adaptive fuzzy extractor can recover R as long as the fuzzy finger-
printw defines an u-drift. Without representing updating zones for the sake of clarity, the philosophy
of adaptive fuzzy extractors is depicted in Figure 4.2.

4.3 Definition and Security Model

We now formally define Adaptive Fuzzy Extractors.
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Figure 4: Philosophy of Adaptive Fuzzy Extractors.

Definition 6 (Adaptive Fuzzy Extractor). A
triple of randomized procedures "generate" (Gen), "update" (Upd), "reproduce" (Rep) is an (M,m, l,
u, t, φ)-adaptive fuzzy extractor that is (ε, ssec) hard if the following holds:

1. The generation procedure Gen on input w ∈M outputs an extracted string R ∈ {0, 1}l and
an helper string P ∈ {0, 1}∗.

2. The updating procedure Upd takes as inputs some w′ ∈M and a bit string P ∈ {0, 1}∗. The
correctness guarantees that if either of conditions is satisfied:

(a) (K,P )← Gen(w) and d(w,w′) 6 u;

(b) there exists some (w∗, P ∗) such as P ← Upd(w∗, P ∗) while K ← Gen(w) and
(w∗, w′) 6 u,

then Upd outputs an updated helper string P ′. In any other case, no guarantee is provided
about the output of Upd.

3. The reproduction procedure Rep takes as inputs w′ ∈ M and a bit string P ∈ {0, 1}∗. The
correctness guarantees that if either of conditions is satisfied:

(a) (K,P )← Gen(w) and d(w,w′) 6 t;

(b) there exists some (w∗, P ∗) such as P ← Upd(w∗, P ∗) while K ← Gen(w) and
(w∗, w′) 6 t,

then Rep(w′, P ) = R. In any other case, no guarantee is provided about the output of Rep.

4. The security property guarantees that for correlated distributionsW 1, . . . ,W φ (or correlated
by subsets) onM with min-entropy m, the string R is pseudorandom even for those whose
observe the P is for i = 1 . . . φ where P i consists in one of the helper strings generated,

through Gen or Upd, from wi
$←W i. That is, DDsec((R, {P i}φi=1), (Ul, {P i}φi=1)) ≤ ε.
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Security Model

We now define reusability of AFEs. One can consider that the newly introduced drifting problematic
brings another dimension to the security model due to Canetti et al. By taking the previous scenario
where a user subscribes to ρ providers, this user should now be able to update φ times its profile
on each server to handle variations of its mercurial fingerprints. In such a context, helper strings
generations (via Gen or Update) can be made either on correlated or uncorrelated random variables
according to user’s activity:

• when she subscribes to different services on a short period of time, her fingerprint values are
close and belong to correlated variables. This scenario reduces to the previous one (Definition
2);

• she may have to update her fingerprints toward a particular subscriber. With a fingerprint fol-
lowing a u-drift, the user may then generate helper strings from correlated and/or uncorrelated
variables;

• when she subscribes to two different services at distant time periods for respective fingerprint
values wi0 and wi1 , these values may appear as providing from uncorrelated variables.

Adapting reusability definition of [10] (Definition 2), we propose the following game-based
definition for security of reusable AFEs.

Definition 7. Let (W 1,W 2, . . . ,W ρ) be -potentially correlated by subsets- random variables over
M. Let (Gen, Upd, Rep) be a (M,m, l, u, t, φ)-AFE that is (ε, ssec) hard. Let D an adversary.
Let the following game such as for all 1 6 j 6 ρ: and 1 6 i 6 φ respectively denoting the number
of calls to Gen and Upd.

• Sampling The challenger samples wj,1 ←W j , η ∈ {0, 1}l .

• Helper string Generation and Drifting The challenger computes helper strings via "genera-
tion" and "update" procedures.

– (P j,1, Rj)← Gen(wj,1)

– for 2 6 i 6 φ :

∗ chooses wj,i such as d(wj,i, wj,i−1) 6 u

∗ P j,i ← Upd(wj,i).

• Distinguishing The advantage of D is

Adv(D) = Pr[D(R0, . . . , Rρ, {P j,i}j6ρ,i6φ) = 1]− Pr[

D(R0, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P j,i}j6ρ,i6φ) = 1]

(Gen, Upd, Rep) is (ρ, ε, ssec)-reusable if for all D ∈ Dssec , the advantage is at most ε.

One should notice that taking φ = 0 and restricting the game to correlated variables W js leads
to the reusability game of classic FEs (Definition 2).
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5 From classic FE to Reusable AFE

In this section, we design a reusable AFE out of a FE, a FDF and a symmetric encryption scheme
(Enc, Dec)

5.1 Overview

To obtain a reusable AFE out of a classic FE, there are two key points to reach:

• computed helper strings should not leak information about user’s fuzzy secret(s). As already
seen in Section 3, FDFs address this point.

• a classic FE recovers an extracted K from w′ as long as this latter is close enough to the en-
rollment value w. When too many differences appear between the reproduction value and the
enrollment one, K cannot be recovered. To continuously recover a key in spite of fingerprint
derivation, the key idea is to generate a random stable key R that will be locked under keys
with shorter lifespan. In fact, we will see that such temporary keys will be the ones outputted
by a classic (i.e. non adaptive) FE.

Environment and Notation With notation of Subsection 3.3, we work with the following tools.
Let (Enc, Dec) be a symmetric encryption scheme fulfilling FTG-CPA security. We have that
Enc : {0, 1}∗×{0, 1}l → {0, 1}∗ and Enc : {0, 1}∗×{0, 1}l → {0, 1}∗. Let (DerGen, DerRep)
be a (M1,M2,m1,m2)-FDF that is (2ρ.φ, ssec) reusable . Let (Gen’, Rep’) be an average-case
(M2,m2, l, u(resp. t))-FE (ε, ssec) hard.

Next subsections are dedicated to precisely detail how to design a reusable AFE out of (Gen’,
Rep’), (DerGen, DerRep) and (Enc, Dec).

5.2 Generation procedure

Given an enrollment valuew, the first step of the generation algorithm is to use the FDF to randomly
project it onto two unrelated derived fingerprints Ωu and Ωt. Procedure Gen’ of the nonreusable FE
correcting u (resp. t) errors will then be applied on Ωu (resp. Ωt). Two temporary keys, Ku and
Kt will be extracted. The first one will be used to detect if a fingerprint still belongs to the updating
zone while the second one will be used to lock the randomly generated stable key R. This latter is
meant to be the key outputted by the AFE. In addition to helper strings outputted by DerGen and
Gen’, the overall helper string of our AFE contains encryptions of "1" and of R, respectively under
Ku and Kt. string.

5.3 Update procedure

The update procedure takes as inputs a fuzzy version w′ allegedly close to the enrollment value
w, some helper data P ∈ {0, 1}∗ to be updated into P ′, meant to be more relevant relatively to
the current fingerprint value w′. Once again, the first step consists in deriving w′ into Ω′u and
Ω′t. Algorithm Gen implicitly defined updating and recovering zones from Ωu and Ωt. Hence,
successful decryption of cu under Ku recovers 1 and indicates that w′ is within distance u. It then
makes sense to call update. If so, R can be unlocked by re-generating Kt. Gen’ then randomizes
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w′ into Ψu and Ψt along with ensuing and new helper strings. Finally, new temporary keys K ′u and
K ′t are computed and R is re-encrypted under K ′t.

Generation and Update procedures are depicted in Figure 5.

Generation procedure Gen
Input: w ∈ M1,

1. Derivation Step
(Ωu, Fu)← DerGen(w).
(Ωt, Ft)← DerGen(w).

2. Use of a classical FE
(Ku, Qu)← Gen’(Ωu, u).
(Kt, Qt)← Gen’(Ωt, t).

3. Key Generation

R
$← {0, 1}l.

4. Helper Data Generation
cu = Enc(Ku, 1),
ct = Enc(Kt, R),

Set P = (Fu, Qu, cu), (Ft, Qt, ct).
5. Return (R,P ).

Update procedure Upd
Inputs: w′ ∈ M1, P ∈ {0, 1}∗

1. Fingerprint Check
Parse P = (Fu, Qu, cu), (Ft, Qt, ct).
Ω′u ← DerRep(w′, Fu).
Ω′t ← DerRep(w′, Ft).
Ku ← Rep’(Ω′u, Qu).
Kt ← Rep’(Ω′t, Qt).
b← Dec(Ku, cu)

If b 6= 1, return ⊥.
R← Dec(Kt, ct).

2. Helper Data Re-generation
(Ψu, F

′
u)← DerGen(w′).

(Ψt, F
′
t)← DerGen(w′).

(K ′u, Q
′
u)← Gen’(Ψu, u).

(K ′t, Q
′
t)← Gen’(Ψt, t).

c′u = Enc(K ′u, 1), c′t = Enc(K ′t,K).

3. Set P ′ = (F ′u, Q
′
u, c
′
u), (F ′t , Q

′
t, c
′
t).

Return P ′.

Figure 5: Generation and Update procedures

5.4 Reproduction procedure

The reproduction procedure presented in Figure 6 is straightforward. Taking as inputs w′, DerRep
generates the corresponding Ω′t as previously described. If Ω′t is within distance t of the previously
and implicitly enrolled Ωt, then Rep’ recovers Kt which enables to finally unlock R.

Reproduction Procedure Gen
Input: w′ ∈M1, P ∈ {0, 1}∗.

1. Parsing Helper Data
Parse P = (Fu, Pu, cu), (Ft, Pt, ct).
Ω′t ← DerRep(w′, Ft).

2. Key Reproduction
Kt ← Rep’(Ω′t, Pt).
R← Dec(Kt, ct).

3. Return R.

Figure 6: Reproduction procedure

Theorem 2. Figures 5 and 6 define a (M1,m1, u, t, φ)-AFE that is (ε, ρ, ssec)-reusable.
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Remark 1. Enabling 2.ρ.φ reusability for a FDF means that it exists 2.ρ.φ balls of radius t that
lead (or have led during a certain period of time) to a successful authentication. Parameters have
to be chosen so that such values remain very unlikely to be randomly predicted by any adversary.

Proof. The correctness is straightforward given those of (DerGen, DerRep), (Gen’,Rep’) and
(Enc, Dec). There are to security notions to prove: pseudorandomness of the extracted key R even
in presence of related helper strings P js and reusability.

We begin with the pseudorandomness of the extracted key (point 4 of Definition 6). LetW 1, . . . ,
W φ random variables overM with min-entropym1 either correlated or correlated by subsets. Now
let w1, . . . , wφ respectively sampled from W 1, . . . ,W φ and defining a u-drift.

G0 In this game, the challenger C first computes (Ωi, F i) ← Gen’(wi) for all 1 6 i 6 φ. C
then enrolls Ω1: he computes (P ′1t ,K

1
t ) ← Gen’(Ω1), randomly samples R ← {0, 1}l and

sets c1
t = Enc(K1

t , R). He also computes (P ′1u ,K
1
u, c

1
u) as defined in Figure 5. Now, for

all 2 6 i 6, C computes P i ← Upd(wi, P i−1) where P i = (F it , P
′i
t , c

i
t), (F

i
u, P

′i
u , c

i
u). He

finally sends the P is and R to D.

G1 In this game, the challenger C makes one modification compared to G0. Indeed, C makes the
exact same computations but does not send R to D in the end. More precisely, he sends the
actual P is computed as in previous game but he replaces the key R by a randomly sampled

value η $← {0, 1}l. Let us recap: in previous game,D was given cits constituting φ encryptions
of R under φ different secret keys Ki

t and R. In the end of G1, D is given the same cits and
η. Now, let us assume that D can distinguish these two games. In particular, it means that it
exists i0 such as given ci0t = Enc(Ki0

t , R) and η, D can tell that ci0t is not the encryption of
η which leads to breaking FTG-CPA of the underlying encryption scheme.

Hence G0 and G1 are indistinguishable to D’s view. This terminates the proof for pseudorandom-
ness.

Reusability The proof for reusability consists in adapting the methodology used for Theorem 1
to our adaptive context. Modifications mainly consist in technical details while the reasoning itself
relies in combining proofs of Theorem 1 and of the previous security of R. We refer the reader to
Appendix 7 for a detailed proof.

Instantiation for the set difference metric

Let (DerRep, DerGen) be the (M1,M2,m1,m2) FDF defined through Figure 3 that is (ε, 2.φ.ρ, ssec)-
reusable. Let (Gen’, Rep’) be an average-case nonreusable (M2,m2, l, u(resp. t))-FE (ε, ssec)-
hard and based on set difference metric. Such FEs can be found in [14].

Corollary 2. Figure 5 and 6 define a (M1,m1, l, u, t, φ)-adaptive fuzzy extractor that is (ε, ρ, ssec)-
reusable.

Proof. This is straightforward assuming Theorem 2.
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6 Conclusion and Future Works

In this work, we solve the reusability issue of Fuzzy Extractors for the set difference metric. In
particular, our work is the first to handle the frequent case where set elements are sampled from a big
universe (i.e. when the universe size is superpolynomial in the set size). While Canetti et al. recently
designed the first reusable FE based on Hamming metric (Eurocrypt 2016), their main construction
can be extended to the set difference metric but only in the small universe setting of lesser interest.
In fact, our set difference-based solution is an instantiation -relying on a hash function modeled as
a random oracle- of a more general framework in which we propose to randomize fuzzy secrets
before applying Fuzzy Extractors. Since fuzzy secrets may come from correlated distributions, the
idea is to decorrelate them while maintaining distances between original and randomized values:
we introduced the concept of Fingerprint Derivation Functions (FDFs) for such a purpose. We then
designed Reusable Fuzzy Extractors out of any efficient nonreusable Fuzzy Extractors and adapted
FDFs. Consequently, our work benefits satisfying asymptotic complexities both in small and large
universe settings. As a comparison, the work of Canetti et al. extended to set difference metric
in the small universe setting can only correct a number of errors sublinear in n while their time
complexity is equivalent to ω(nc.log(n)), where n is the universe size (or equivalently the length of
binary vectors in Hamming case) . Now instantiating nonreusable constructions of Dodis et al. with
LDPC codes lead to time and correction complexities in O(n). Furthermore, in the large universe
setting where t can be considered as negligible with respect to n, our work enjoys time complexity
in O(poly(slogn)).

In addition to tackling reusability issue, we also propose the notion of Adaptive Fuzzy Extrac-
tors, particularly well-fitted in the burgeoning context of device and browser fingerprinting. Finger-
printing is an expanding field for which values (e.g. favorite songs, installed applications, plug-ins,
general settings, fonts, . . . ) often appear in the form of lists with elements coming from a big uni-
verse strengthening, if needed, our previous result. Such an application raises the problematic of
identifying values with shorter lifetime period. We then defined Adaptive Fuzzy Extractors meant
to capture these variations while still enabling generation of a long-term stable key. While defining
Adaptive Fuzzy Extractors increase the scope of Fuzzy Extractors, this could also lead to sharper
studies about such device and browser fingerprints. Indeed, our t-drift definition is a first stone that
should not be seen as an ultimate goal. Better understanding of such fingerprints should lead to
more accurate and fair models. Hence, one might expect a better knowledge of such fingerprints to
predict when update procedures will have to be called.
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7 Proof of Reusability of Theorem 5.1

In the following we prove that Figures 5 and 6 define an AFE that is (ε, ρ, ssec)-reusable.

Proof. Let W 1, . . . ,W ρ ∈ W , potentially correlated by subsets and of min-entropy m. Through a
sequence of games, we will prove reusability of (Gen, Upd, Rep) according to Definition 7.

G0 From Definition 7, the challenger C acts as follows. For 1 6 j 6 ρ, we have :

– C samples wj,1 ←W j .

– C computes helper strings via "generation" and "update" procedures.

∗ (P j,1, Rj)← Gen(wj,1)

∗ for 2 6 i 6 φ : C chooses wj,i such as d(wj,i,
wj,i−1) 6 u and computes P j,i ← Upd(wj,i).

In the end, D is given all the helper strings P j,is along with the secret keys Rjs.

G1 In this game, C will challenge D on some index j0. A close look to Figure 5 ensures that P j,1

and P j,i (i > 2) are generated the same way. To begin, the value wj,i (i > 1) is randomized
twice via a FDF to get some Ωj,i

u and Ωj,i
t . FE (Gen’,Rep’) is then applied to get respectively

(K ′j,iu , Q′j,iu ) and (K ′j,it , Q′j,it ). The role ofK ′j,it is to encrypt the secret outputted or unlocked
key Rj . C chooses to cheat when generating an helper string related to Rj0 . He then chooses

a random index i0 to attack Rj0 . Now, he samples w∗ $←M1 to obtain Ω∗t ← DerGen(w∗)
and finally computes (P ∗,K∗) ← Gen’(Ω∗). The actual value P j0,i0 is then replaced with
P ∗ = (F j0,i0u , Q′j0,i0u , cj0,i0u ), (F j0,i0t , P ∗, c∗ = Enc(K∗,
Rj0)). C finally transmits P ∗ instead of P j0,i0 along with the Rjs and the other P j,is. As-
suming FDF 2.ρ.φ-reusability, G1 is indistinguishable from G0 to D’s view.

G2 In this game, C replaces K∗ with a random value η $← {0, 1}l. Under security of the classic
and nonreusable FE (Gen’, Rep’), we have that (K∗, P ∗) ≈ (Ul, P

∗). This game then
appears indistinguishable from the previous one. Note that this replacement leads to getting
Enc(η,Rj0) instead of Enc(K∗, Rj0) as part of the corrupted helper string P ∗.
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G3 In this game,D has received actual secret keys Rjs and helper strings P j,is except for (i0, j0)
for which the right part of P ∗ is (F j0,i0t , P ∗, c∗ = Enc(η,Rj0)). Since η and Rj0 were
randomly and generated independently from any values, C could then then replaces Rj0 by

some η $← {0, 1}l when sending the secret keys. If D can distinguish this game from the
previous one, he is in particular able to attack the FTG-CPA security notion since he would be
able to distinguish (Enc(η,Rj0), Rj0) from (Enc(η,Rj0), η). Assuming FTG-CPA security,
D cannot distinguish and these two games appear indisinguishable.

G3 C can now replaces P ∗ and η by values Q′j0,i0 and Kj0,i0 . Assuming again 2.ρ.φ reusability
of the underlying FDF, this game is indistinguishable of the previous one. In the end of this
game, D has been given all the actual helper strings P j,is and the secret Rjs except for index
æ0 which is replaced with some random η

The sequence of indistinguishable games permits to conclude that G0 and G3 are indistinguishable.
This terminates the proof for reusability.
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