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Abstract. A Fuzzy Extractor (Dodis et al., Eurocrypt 2004) is a two-step protocol that turns a noisy
secret into a uniformly distributed key R. To eliminate noise, the generation procedure takes as input an
enrollment value ω and outputsR and a helper string P that enables further reproduction ofR from some
close reading ω′.
Boyen highlighted the need for reusable fuzzy extractors (CCS 2004) that remain secure even when
numerous calls to the generation procedure are made on a user’s noisy secret. Boyen showed that any
information-theoretically secure reusable fuzzy extractor is subject to strong limitations. Recently, Canetti
et al. (Eurocrypt 2016) proposed a computationally secure reusable fuzzy extractor for the Hamming
metric that corrects a sublinear fraction of errors.
We propose a generic framework to solve the reusability problem. We introduce a new primitive called a
reusable pseudoentropic isometry that projects an input metric space in a distance and entropy preserving
manner even if applied multiple times. A reusable pseudoentropic isometry can be combined with a
traditional fuzzy extractor to provide a reusable fuzzy extractor.
To show the promise of our framework, we construct a reusable pseudoentropic isometry for the set
difference metric. Our work construction handles a linear fraction of errors and is secure in the nonpro-
grammable random oracle model. Furthermore it is efficient, requiring only hash function evaluations and
decoding an error correcting code.
Lastly, we propose browser and device fingerprints as new authentication sources. These fingerprints are
a list of features with entropy that undergo deeper variation over time than biometrics. However, they still
enable user identification (Eckersley, PETS 2010). We define adaptive fuzzy extractors to handle such
sources. An adaptive fuzzy extractor enables recovery of R from ω′ as long as ω′ has naturally drifted
from ω. We construct adaptive fuzzy extractors from reusable pseudoentropic isometries.

1 Introduction

Cryptography relies on uniformly distributed and reproducible long-term secrets to perform au-
thentication or derive keys. Numerous high entropy randomness sources exist, such as biometrics
and human-generated data [13,22], Physically Unclonable Functions (PUFs) [30] and quantum in-
formation [5]. Both PUFs and biometrics suffer the common issue of errors that prevent stable
cryptographic key generation.

1.1 Randomness sources

PUFs. A physically unclonable function is a physical entity that is easy to evaluate but hard to
predict. Unique by manufacturing process, PUFs are used to implement challenge-response authen-
tication. Recently, researchers have attacked PUFs, creating software models for the PUF behav-
ior [32,33]. These attacks can be avoided by first deriving stable cryptographic key from the PUF
output and then using this a function of this key.
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Biometrics. Biometrics are systems that recognize individuals based on their biological and/or their
behavioral characteristics. Biometrics are evaluated by their uniqueness, collectability and perma-
nence [21] where this last characteristic represents the period in which those traits are stable. Typical
systems create a template reading from an initial reading; subsequent readings are directly compared
to this initial template. These templates have privacy concerns [31,35]. Unlike passwords, biomet-
rics suffer inevitable but minor variations. This prevents the traditional approach of storing a hash
value in place of the original template. Dodis et al. [15] stated that Hamming distance looks like
the "most natural metric to consider" [10,15,23]. However, with the exception of iris [13], set dis-
tance better suits biometric matchers [27,20]. The set difference metric is appropriate when the
noisy secret is a set of features. Examples include digital fingerprints and the exotic movie liker
problem [14,22,35,27].

1.2 Fuzzy Extractors

The field of information reconciliation [5] enables retrieving identical values from noisy data. Pri-
vacy amplification [5] aims at converting these values into uniform random strings. Fuzzy Extractors
(FEs) [15]4, are a pair of non-interactive algorithms (Gen, Rep) that simultaneously perform in-
formation reconciliation and privacy amplification. The algorithm Gen, used at enrollment, takes
input ω from an entropy source and outputs a uniformly distributed key R and some public helper
string P . The algorithm Rep takes the helper string P and ω′ and reproduces the secret key R as
long as ω′ is close enough to ω relative to a predefined distance metric, say d(ω, ω′) ≤ t.

Metrics Dodis et al. proposed FE constructions for the Hamming, set difference and edit metrics,
sometimes adapting previous work [23,22]. In this work we focus on the set difference metric:
inputs ω are subsets of size s of a universe U whose cardinality is n. For this metric, Dodis et
al. distinguished two settings, respectively referred as the small and large universe settings. In the
former case, we have that n = poly(s) while in the latter one n is superpolynomial in s. The
large universe setting occurs in practice. For example, consider a list of book titles or a list of
movies (movie lover’s problem due to [22]). The small universe setting benefits from a reduction
to the Hamming metric, referred as the bin-set equivalence (described in Section 2). However, this
transform is not applicable in the large universe setting on which we concentrate.

Reusability Boyen exhibited the need for reusable fuzzy extractors [8] for which numerous helper
strings P j from a user’s fuzzy secret do not impact user’s security. Boyen showed that information-
theoretic FEs must leak substantial information about ω when numerous calls to Gen are made. On
the positive side, Boyen demonstrated reusable security when the exclusive OR of the user’s fuzzy
secrets reveal no sensitive information. This is a restrictive class of correlations and we have no
evidence that practical sources obey this condition. Subsequent works showed that existing fuzzy
extractors are prone to this reusability weakness in practice [6,34].

The recent work of Canetti et al. [10] constructs the first reusable fuzzy extractor that makes no
such assumption about how repeating readings are correlated. It works for the Hamming distance
and provides security against computationally bounded adversaries. It uses a strong form of sym-
metric encryption, called digital lockers [9]. Their construction is secure for distributions with high
entropy samples instead of global min-entropy. Their construction requires more structure of the

4 In the following, we will refer to the journal version [14].
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source but can be secure for lower entropy rates than existing constructions. Their main binary con-
struction can be extended through bin-set equivalence to a FE in the set difference based metric but
only in the small universe setting. Their scheme only allows to correct an error rate (t/n) sublinear
in n. Prior to this work, there were no known reusable fuzzy extractor correcting a linear error rate
for any common metric.

1.3 Browser fingerprints as authentication source

Current industrial authentication solutions tend to be both smartphone and software only solutions
(e.g. HCE payment [1]). While biometrics and PUFs have received attention in the authentication
literature, these solutions can not be implemented using only software. The need for a pure software
solution demands new authentication factors. We propose the burgeoning field of browser finger-
printing as an authentication factor.

Eckersley [16] showed how to create a fingerprint from characteristics of a web browser (user
agent, list of fonts, list of plug-ins,. . . ). Servers use this data to detect returning browsers even when
some features may have changed over time. Subsequent studies [7,26,29,2] show such a system is
deployable for personal computers. Early solutions for mobile devices were either too resources
demanding [25,11] or focused only on device identification and not individual users [12,37].

The recent work of Kurtz et al. provides a comprehensive analysis in the mobile setting [24].
On Apple’s iOS, they show how to compute a device fingerprint using 29 different configuration
features. Using a dataset of 13,000 fingerprints, they show that fingerprints are unique and detected
returning devices with an accuracy of 97%. In their work, the list of installed applications and the
top 50 songs are among the most identifying values present on a device. These fingerprints ap-
pear credible as factor in designing a strong authentication protocol. Many of these device/browser
fingerprints draw on features coming with large universes (e.g. songs, applications, plug-ins, . . . ).

Physiological biometrics undergo minor and genuine differences; more precisely, if we consider
an enrollment value ω, it is very likely that any new reading ω′ will stay within a certain distance.
Browser fingerprints are different: even though they are identifying, they undergo deep variations
over time. It is reasonable to expect each repeated reading ωj to be close, that is, d(ωj , ωj+1) ≤ t.
However, ωj will drift over time and d(ω, ωj) > t.

To fairly identify users, current solutions have to handle variability of browser fingerprints.
Some behavioral biometrics also suffer from a shorter permanence period. The notion of adaptive
biometric system was designed to solve this problem [36]. In an adaptive biometric system, the
template database is updated whenever a successful authentication occurs. Here, the goal is to decide
if a given profile is a former one that has undergone variations or is a new one [16,2,24].

To avoid ambiguity, we will talk about the instability of a physical biometric to indicate that
they undergo minor but stable differences and the variability of browser fingerprints to indicate that
these latter ones may suffer deeper changes over time.

1.4 Our contribution

1. We propose a generic framework to address reusability by combining any nonreusable FE and
a new primitive we call a reusable pseudoentropic isometric (RPI). Informally, a RPI pseu-
dorandomly projects fuzzy secrets while maintaining distances between two noisy readings.
When ρ enrollments have to be done from a fuzzy secret ω, the RPI outputs ρ unrelated values
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Ω1, . . . , Ωρ that can then be securely used once by any nonreusable FE. If a user wants to au-
thenticate herself toward provider j from a noisy reading ω′, the RPI will generate Ωj′ where
the distance between Ω′j and Ωj is the same as between ω and ω′.

2. We construct a RPI for the set difference metric and thus design the first reusable FE for linear
error rates. Our solution is for the set difference metric in the large universe setting.

3. We define Adaptive Fuzzy Extractors (AFEs) that recover a stable key R from noisy readings
even if readings drift naturally over time. In addition to primitives Gen and Rep, an update
primitive Upd is introduced. The reproduction algorithm should output R even if the authen-
tication value ωi is not close to the enrolled ω as long as ωi has drifted from ω and Upd has
been run regularly. We propose a generic methodology to design an AFE out of a RPI and a
nonreusable FE. Once again, an efficient instantiation for the set difference is proposed. We are
aware of no previous study that considers the problem of key derivation from drifting data such
as browser fingerprints.

2 Preliminaries

Notation log denotes the logarithm in basis 2. GF (n) denotes the finite field of n elements. x ←
f(.) denotes that x is an output of a function f . If f is randomized, we use the semicolon to make
the randomness explicit. f(x;µ) is the result of f computed on x with randomness µ.

Let H : {0, 1}∗ × {0, 1}l1 → {0, 1}κ denotes a cryptographic hash function modeled as a non-
programable random oracle [4]. For any entity E , we denote by E(z) the fact that E has knowledge
of z. U` denotes the uniformly distributed random variable on {0, 1}l. For a distinguisher D (or a
class of distinguishers D), we write the computational distance between X and Y as δD(X,Y ) =
|E[D(X)]− E[D(Y )]|. Dssec denotes the class of randomized circuits which output a single bit and
have size at most ssec. Let λ denote a security parameter. Except stated otherwise, we have l = l(λ),
κ = κ(λ), m = m(λ), m1 = m1(λ),m2 = m2(λ), ssec = poly(λ) and εsec = negl(λ). A metric
space is a finite set M equipped with a distance d : M ×M → N fulfilling the properties of
symmetry, triangle inequality and zero distance between equal points.

2.1 Background

Set Difference Metric LetM consists in all subsets of a universe U . For two sets ω and ω′ belonging

toM, their symmetric difference is defined as ω∆ω′
def
= {x ∈ ω∪ω′|x /∈ ω∩ω′}. The set difference

metric between ω and ω′ is the defined as d(ω, ω′)
def
= |ω∆ω′|. Recall the bin-set equivalence: if

ω denotes a set, it can be viewed a binary vector in {0, 1}n, with 1 at position x if x ∈ w, and 0
otherwise. Viewed in this way, set difference can be expressed as Hamming distance between these
associated vectors. This transform is not applicable when the universe size n is superpolynomial.

Entropy Notions Entropy specifies the amount of information contained in some data. In security-
related contexts, we care about the (non) ability (for an adversary) to guess the value of a random
variable. In the information-theoretic case, we often rely on the notion of min-entropy. A random
variableA has min-entropym, denotedH∞(A) = m, ifA has predictability 2−m i.e. maxaPr [A =

a] = 2−m. Put another way, we have H∞(A)
def
= − log(maxa∈A P [A = a]). The average min-

entropy of A given B is:

H̃∞(A|B) def
= − log(Eb∈BmaxaPr[A = a|B = b]).
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HILL entropy is a commonly used computational notion of entropy [18]. It was extended to the
conditional case by Hsiao, Lu, and Reyzin [19].

Definition 1. Let (W,S) be a pair of random variables.W has HILL entropy at least k conditioned
on S, denoted HHILL

εsec,ssec
(W |S) ≥ k if there exists a collection of distributions Xs giving rise to joint

distribution (X,S), such that H̃∞(X|S) ≥ k and δDssec ((W,S), (X,S)) ≤ εsec.

Fuzzy Extractors The original definition of FEs, due to Dodis et al. [14], was information theory-
based. We focus on the computational definition introduced in [17]. Fuller et al. extend their defini-
tion to any family of distributions and we adopt this convention.

Definition 2 (Fuzzy Extractor). A pair of randomized procedures "generate" (Gen) and "repro-
duce" (Rep) is a (M,W, l, t)-computational fuzzy extractor that is (εsec, ssec)-hard if Gen and
Rep satisfy the following properties:

– The generate procedure Gen on input ω ∈ M outputs an extracted string R ∈ {0, 1}l and a
helper string P ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element ω′ ∈ M and a bit string P ∈ {0, 1}∗ as
inputs.

– The correctness guarantees that if d(ω, ω′) 6 t and (R,P )← Gen(ω), then Rep(ω′, P ) = R.
If d(ω, ω′) > t, then no guarantee is provided about the output of Rep.

– The security property guarantees that for any distribution W ∈ W on M, the string R is
pseudorandom conditioned on P i.e. δssec((R,P ), (Ul, P )) 6 εsec.

Dodis et al. also define average-case FEs for which the security property requires that for any
auxiliary variable I , ((R,P, I), (Ul, P, I)) appear indistinguishable. We also refer to fuzzy extrac-
tors that are secure for all distributions of (average) min-entropy m, in this case we replaceW with
the parameter m.

Dodis et al. design fuzzy extractors based on three different metrics which are Hamming, set
difference and edit distances. All their constructions rely on secure sketches. Such a primitive is a
pair of procedures (SS, Rec) where, the “sketch” procedure SS takes in ω and outputs a public
string P . Later given ω′ and P , procedure Rec recovers ω as long as ω′ is close to ω. Coupled
with an average-case extractor, Dodis et al. design FEs out of such a primitive. Since P enables to
recover ω from ω′, it necessarily leads to what the authors define as entropy loss.

Reusable Fuzzy Extractor Reusability of fuzzy extractors [8] can be stated as the possibility to
call procedure Gen numerous times on the noisy readings of ω while retaining security. Let us
consider ρ readings ω1, . . . , ωρ of the same fuzzy secret from which the user will be enrolled on
ρ different authentication servers. Gen will then generate ρ couples (R1, P 1), . . . , (Rρ, P ρ) where
(Rj , P j) ← Gen(ωj). Recalling that P j’s are meant to be public and that different servers should
not trust each other, Canetti et al. [10] proposed a security model for which a given Ri0 is secure
even if all the Rjs (for j 6= i0) are given to an adversary.

Definition 3 (Reusable Fuzzy Extractor [10]). Let (Gen,Rep) be a (M,W, l, t)-FE that is (εsec,
ssec)-hard and W 1,W 2, . . . ,W ρ be ρ correlated random variables overM where W j ∈ W for all
1 ≤ j ≤ ρ. Let D be an adversary. Define the following game for all j = 1, . . . , ρ:
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– Sampling The challenger C samples ωj ←W j for all j and η ← {0, 1}l.
– Generation C computes (Rj , P j)← Gen(ωj) for all j.
– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(R1, . . . , Rρ, {P j}16j6ρ) = 1]

−Pr[D(R1, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P j}16j6ρ) = 1]

(Gen,Rep) is (εsec, ρ, ssec)-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, Adv(D) ≤ εsec.

2.2 Tools

Symmetric encryption We use a symmetric encryption scheme denoted (Enc, Dec).We require
(Enc, Dec) to fulfill the "find-then-guess" chosen plaintext attack (FTG-CPA) security due to Bel-
lare et al. [3]. This notion is analogous to public key CPA security and defines an encryption oracle
(Oencrypt) since one cannot encrypt messages on its own in the private key paradigm.
Let a challenger C with secret key k. Adversary D queries
encryptions of its choice to Oencrypt. At some point, he sends
m0,m1 to C that will encrypt mb. D is asked to recover b.
(Enc, Dec) is said to be (εCPA, sCPA)-hard if for all D ∈
DsCPA , AdvFTG-CPA

C,D (λ)
def
= Pr[D(ExpFTG-CPA-1

C,D (λ)) = 1] −
Pr[D(ExpFTG-CPA-0

C,D (λ)) = 1] 6 εCPA.

Experiment ExpFTG-CPA-b
C,D (λ)

1.(m0,m1)← D(Oencrypt(k,.))
2.cb ← Enc(k,mb)

3.b′ ← D(cb : Oencrypt(k,.))
4.Return b′.

Pseudoentropic Isometries We propose a new paradigm for designing reusable FEs. Given a fuzzy
secret ω, a pseudoentropic isometry aims at randomly deriving Ω that retains the entropy of ω and
the distances between inputs (at least locally). More precisely, a pseudoentropic isometriy consists
in two randomized procedures (DerGen, DerRep) defined as follows.

Definition 4 (Pseudoentropic isometry). Let (M1, d1) and (M2, d2) be two metric spaces. A
(M1,M2,W,m2, εsec, ssec)-pseudoentropic isometry is a pair of randomized procedures (Der-
Gen, DerRep) with the following properties:

1. DerGen on input ω ∈M1 outputs Ω ∈M2 and some F ∈ {0, 1}∗.
2. DerRep takes an element ω′ ∈ M1 and a bit string F ∈ {0, 1}∗ as inputs to output Ω′ ∈
M2. The correctness property guarantees that if (Ω,F ) ← DerGen(ω), then d2(Ω,Ω′) ≤
d1(ω, ω

′). Else, no guarantee is provided about Ω′.

3. LetW a distribution, DerGen(W) is denoted (U, V ). If ω $←W and (Ω,F ) = DerGen(ω), we

denote (Ω,F )
$← (U, V ). The security property guarantees that for any distribution W ∈ W ,

we have HHILL
εsec,ssec

(W |V ) > m2 and HHILL
εsec,ssec

(U |V ) > m2.

This notion is related to biometric embeddings used in [14]. A biometric embedding projects any
fingerprint value into a metric space where a FE exists while loosely maintaining distances. On their
own pseudoentropic isometries are not novel (the identity function is a pseudoentropic isometry).
A reusable pseudoentropic isometry or RPI is the key to our approach. In an RPI the knowledge
of previous derived values does not help D to distinguish a random value from a newly derived
projection obtained via DerGen. Drawing on the definition of reusability for FEs (Definition 3), we
define a RPI as follows.
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Definition 5 (RPI). Let W ∗ ∈ W be a fixed distribution. Let W 1,W 2, . . . ,W ρ be ρ correlated
random variables over M1. Let D an adversary. Using notation of Definition 4, we define the
following game for all j = 1, . . . , ρ:

– Sampling The challenger C jointly samples ωj ←W j . Then independently samples ω∗ $←W ∗.
– Generation C generates (Ωj , F j)← DerGen(ωj) and (Ω∗, F ∗)← DerGen(ω∗).
– Distinguishing The advantage of D consists in:

Adv(D)
def
= Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

−Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

(DerGen, DerRep) is said to be ρ-reusable if for all D ∈ Dssec and for all j = 1, . . . , ρ, the
advantage Adv(D) ≤ εsec.

3 From nonreusable to reusable Fuzzy Extractors

In this section, we introduce a new and generic way to address reusability. The idea is to first use a
RPI to randomize fuzzy secrets and then apply a nonreusable FE on the unrelated projected values.

3.1 Approach

Let (Gen’, Rep’) denote a (average-case) nonreusable FE. The generation procedure Gen’ implic-
itly draws a ball B(ω, t) centered on its input ω where the radius t consists in the error tolerance of
the fuzzy extractor. Whenever a noisy reading ω′ is given to procedure Rep’, the secret key will be
recovered as long as ω′ belongs to B(ω, t).

To address reusability, we randomly project the ρ fuzzy versions of ω onto unrelated values. By
using a ρ-RPI, the user gets unrelated values Ω1, . . . , Ωρ that will be each enrolled once, respec-
tively toward servers 1, . . . , ρ. Now whenever she wants to authenticate herself toward server j from
ω′, the user uses the aforesaid RPI to get Ω′j (where d(Ωj , Ω′j) ≤ d(ω, ω′)). This idea is illustrated
in Figure 1.

Let (DerGen, DerRep) be a ρ-RPI fromM1 toM2. Let (Gen’, Rep’) be an average-case FE
over M2 correcting t errors. The generation procedure Gen will first call DerGen to randomize
the input ω into Ω. The nonreusable FE is then applied on Ω. The RPI ensures that d2(Ω,Ω′) ≤
d1(ω, ω

′) while the correctness of the underlying nonreusable FE ensures that Rep’ recoversR from
Ω′ and the associated helper string as long as d2(Ω,Ω′) 6 t. Overall this leads to recovering R as
long as d1(ω, ω′) 6 t.

Note: Even in the nonreusable setting this approach has benefits. For distributions W where the
number of possible error patterns is larger than H∞(W ), the bounds of traditional fuzzy extrac-
tors provide little security (see [14, Theorem 5.1] and the discussion in [10]). However, it may be
possible to use a pseudoentropic isometric to avoid these bounds.

Theorem 1. Let (DerGen, DerRep) be a (M1,M2,W,m2, εRPI, sRPI)-RPI that is ρ-reusable and
(Gen’, Rep’) be an average-case (M2,m2, l, t)-FE that is (εFE, sFE)-hard. Then Figure 2 defines
a (M1,W, l, t)-FE that is (εsec, ρ, ssec)-reusable for εsec = 4εRPI + εFE and ssec = min{sRPI −
|Gen′|, sFE}.
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Fig. 1. Overview of reusability via RPI randomization

Generation procedure Gen
Input: ω ∈M1.
1. (Ω,F )← DerGen(ω).
2. (R,Q)← Gen’(Ω).
3. Set P = (F,Q).
4. Return (R,P ).

Reproduction procedure Rep
Inputs: ω′ ∈M1,

Helper data P ∈ {0, 1}∗.
1. Parse P = (F,Q)
2. Ω′ ← DerRep(ω′, F ).
3. R← Rep’(Ω′, Q).
4. Return R.

Fig. 2. A generic reusable FE

Proof. The correctness is straightforward and follows from aforesaid explanations. To ensure secu-
rity, we first show that R appears pseudorandom even in presence of P and then treat reusability.

Under notation of Definition 4, we have that Ω and F respectively come from distribution U
and V such as HHILL

εRPI,sRPI
(U |V ) > m2. We first show that fuzzy extractors work on distributions with

HILL entropy. The proof is delayed until Appendix A.

Lemma 1. Let U, V be a joint distribution where HHILL
εRPI,sRPI

(U |V ) > m2 and let (Gen’, Rep’) be
an average-case (M2,m2, l, t)-FE that is (εFE, sFE)-hard. Define R,P ← Gen′(U), then

δDs((R,P, V ), (Ul, P, V )) 6 ε.

for ε = 2εRPI + εFE and s = min{sRPI, sFE}.

Lemma 1 allows us to conclude that δDs((R,Q, F ), (Ul, Q, F )) 6 ε. That is,

δDs((R,P ), (Ul, P )) 6 ε

for P = (F,Q), and aforesaid parameters ε = 2εRPI + εFE, s = min{sRPI, sFE}.

Reusability Let W 1, . . . ,W ρ be correlated distributions overM1, where W j ∈ W for all j. The
following games consist in a challenger C trying to fool D for some distinguished i0:

G0 C honestly samples values as prescribed in Definition 3 and sends

(R1, F 1, Q1), . . . , (Ri0 , F i0 , Qi0), . . . , (Rρ, F ρ, Qρ)

to D.
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G1 In this game, there is one change compared to the previous one. C:
1. Samples the ωjs and then uses DerGen to obtain (Ω1, F 1), . . . , (Ωρ, F ρ).
2. Replaces ωi0 with random ω∗ ←W ∗ (where W ∗ as prescribed in Definition 5) .
3. Computes (Ω∗, F ∗)← DerGen(ω∗) and (R∗, Q∗)← Gen’(Ω∗)
4. Sets P ∗ = (F i0 , Q∗)
5. Gives D the actual Rjs and P js except for j = i0 for which he receives (R∗, P ∗).

If D can distinguish this game from the previous one, he would then be able to distinguish the
distribution with Ωi0 from the one with Ω∗. This breaks the reusability of the RPI. That is, G1
appears indistinguishable from G0 for ε = εRPI and s = sRPI − |Gen′|.

G2 In this game, after computing (R∗, Q∗) ← Gen’(Ω∗), C discards the value R∗ and replaces it

with some η $← {0, 1}l randomly sampled. SinceHHILL
εRPI,sRPI

(Ω∗|F ∗) ≥ m2 thenHHILL
εRPI,sRPI

(Ω∗|F i0)
≥ m2. Thus by Lemma 1, (Ul, P ∗) and (R∗, P ∗) are computationally indistinguishable. Hence,
this game is indistinguishable from the previous one for ε = 2εRPI+εFE and s = min{sRPI, sFE}.

G3 In the previous game,D was given (R1, F 1, Q1), . . . , (η, F i0 , Q∗), . . . , (Rρ, F ρ, Qρ) where η is
random and does not depend on P ∗. In this game, C sends the actualQi0 (obtained via computed
Gen’(Ωi0) instead of Q∗.
If D can distinguish that Qi0 has been given instead of Q∗ (obtained via computed Gen′(Ω∗),
he can in particular distinguish Ωi0 from Ω∗. Hence, he can distinguish

(Ω1, . . . , Ωi0 , . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ)

from
(Ω1, . . . , Ωi0−1, Ω∗, Ωi0+1, . . . , Ωρ, F 1, . . . , F i0 , . . . , F ρ).

This contradicts the reusability of the RPI. Thus, G3 is indistinguishable from G2 for ε = εRPI
and s = sRPI − |Gen′|.

In G3, D is given (R1, P 1), . . . , (η, P i0), . . . , (Rρ, P ρ) where η is randomly sampled. By tran-
sitivity, this latter game is indistinguishable from G0 . This latter indistinguishability is exactly the
one required by Definition 3.

3.2 A Set Difference-based RPI

In this subsection, we present a set difference-based RPI that will enable us to instantiate our
methodology described in previous subsection.

Environment and Notation Set difference based fuzzy extractors in [14] take as inputs subsets of a
universe U with n = |U|. We denote (MU , d), the metric spaceMU consisting of all the subsets
of U with the set difference metric d. LetMU ,s denote the restriction ofMU to s-elements subsets.
Mκ denotes (GF (2κ), d) equipped with the set difference metric d. Similarly Mκ,s denotes the
restriction to sets of sizes s. Let W be a probability distribution over U with min-entropy m.

To design our set difference-based RPI, we will use the hash function H : {0, 1}∗×{0, 1}l1 →
{0, 1}κ. When modeled as a non-programmable random oracle [28], its outputs appear uniformly
distributed and contain all the entropy of its input. Our set difference-based RPI, presented in Fig-
ure 3, essentially randomizes each set element using H.

Step 4 of Algorithm DerGen aims at avoiding collision. In such a case, a new seed salt is
chosen and the protocol starts again. Choosing κ big enough, one can be sure that the case with
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Algorithm DerGen
Input: ω = {ω1, . . . , ωs},

∀1 6 i 6 s, ωi ∈ U .

1. salt $← {0, 1}l1 .
2. For i = 1 . . . s,
xi ← H(ωi; salt).

3. Set Ω = {x1, . . . , xs}.
4. If |Ω| < s,

go to 1.
5. Return (salt, Ω).

Algorithm DerRep
Inputs: ω′ = {ω′1, . . . , ω′s},

∀1 6 i 6 s, ω′i ∈M,
salt ∈ {0, 1}∗.

1. For i = 1 . . . s,
x′i ← H(ω′i; salt).

2. Set Ω′ = {x′1, . . . , x′s′}.
3. While |Ω′| < s,

z
$← GF (2κ).

Ω′ ∪ {z}.
4. Return Ω′.

Fig. 3. A set difference-based RPI

no collision occurs with overwhelming probability. In the same vein, Step 3 of Algorithm DerRep
maintains distances between original values (ω and ω′) and randomly derived ones (Ω and Ω′).
Indeed, because of step 4 of DerGen, a collision occurring in DerRep can only be due to an element
ω′i that did not appear in ω. We defer our proofs and analysis of this construction to Appendix B.
The condition we require on distributions is that each set has superlogarithmic min-entropy.

Theorem 2. Let λ be a security parameter, let q = poly(λ), ρ = poly(λ), κ = ω(log λ), |salt| =
ω(log λ) and m2 = ω(log λ). Define W as the set of all joint distributions W where for any
i, H̃∞(W i|W−i) ≥ κ where W−i represents all other elements of W . Then Figure 3 defines a
(MU ,s,Mκ,W,m2, ε, q)-RPI for the set difference metric wherem2 = κ ·s for ε = q(q+1)2−κ+
q2−m2 = ngl(λ).

Notes: In the above theorem the running time of the adversary does not matter only the number
of oracle queries. So instead of listing the distinguisher size we list the number of queries q they
can make to the random oracle. Second, the proof only relies on an attacker finding a preimage to a
random oracle output so the reusability ρ does not effect security parameters.

Corollary 1. Using the RPI defined in Figure 3 for the familyW defined above one can construct
a reusable FE for any ssec = poly(λ), ρ = poly(λ) such that εsec = ngl(λ) and where t = Θ(n).

Discussion Our instantiation of an RPI for the set difference metric (large universe) allows con-
struction of the first reusable fuzzy extractor correcting a linear error rate that makes no assumption
about how individual readings are correlated. The previous work of Boyen [8] assumed that the
exclusive OR of two repeated enrollments leaked no information. The recent work of Canetti et
al. [10] only achieves a sublinear error rate (and works for Hamming or set difference in the small
universe setting).

Our construction also is very efficient due to the use of a nonreusable FE. Efficient information
theoretic FEs are proposed in [14] for which storage and time complexities are respectively of order
t log n (with equivalent entropy loss) and poly(s log n). Reaping benefits of such constructions, our
work then enjoys the same complexities.

In addition, we note that it is possible to view the second construction of Canetti et al. [10,
Construction 2] as the composition of a RPI and nonreusable fuzzy extractor. Their construction
is called Lock-and-Error-Correct. They first apply a digital locker to each dimension and then a
fuzzy extractor. If the input source W has high entropy in all dimensions, the digital locker serves
as an RPI. Interestingly, the digital locker projects the set difference metric directly to the binary
Hamming metric in contrast to our construction which remains in the large alphabet setting.
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4 Adaptive Fuzzy Extractors

As discussed in the Introduction, we consider browser and device fingerprints [16,2,24] as possible
authentication sources. Browser fingerprints naturally evolve over time leading to drift of values.
We define Adaptive Fuzzy Extractors to address this problem.

Given a fingerprint value ω′, the goal is to decide if this fingerprint value is a new user or a previ-
ously encountered one that has undergone variations. In the latter case, the user has to be recognized
and a new profile should not be created. Recent works have shown this can be accomplished using
matching techniques [2,16,24]. Considered in the context of authentication, it is a natural question
if a stable key can be derived from these values. In our context, this amounts to creating a fuzzy
extractor that can recover the actual key R even if the authentication value ω′ and the enrollment
one ω present more than t errors. The idea is to say that ω′ should have naturally drifted from ω.

Definition 6. Let (M, d) a metric space. Let ω1, . . . , ωφ elements of M and an integer u. We
say that (M, ω1, ωφ, u) is a u-drift of length φ on M if for all i = 1, . . . , φ − 1, we have that
d(ωi, ωi+1) 6 u.

A naive answer to the fingerprint drift issue could be frequent re-enrollments. In practice, enroll-
ment sessions constitute critical sessions that organizations want to avoid. Plus, FEs were designed
to enable the use of long term secrets. Frequent re-enrollment sessions annihilate their primary goal.

4.1 High Level Overview

We define Adaptive Fuzzy Extractors (AFEs) that add a third primitive Upd to classic FEs. Without
re-enrolling herself, a user should be able reproduce the same secret R as the one computed by
Gen as long as variations between the enrollment value ω and the authentication one ω′ follow
an expected u-drift (Definition 6). A classic FE is meant to recover a previously extracted key R
if and only if the reproduction value ω′ belongs to B(ω, t). In our context, we require an AFE to
recover the actual key R as long as the reproduction value ω′ has somewhat naturally drifted from
ω although ω′ does not belong B(ω, t). Given parameters 0 6 u 6 t, we propose AFEs to work
according to two zones:

– Updating Zone. It can update the helper string value P before too many errors occur i.e. while
ω′ is still close enough to ω (d(ω, ω′) 6 u).

– Recovering Zone. ω′ is close enough to ω to enable key recovery but too far away to enable any
helper string update (u < d(ω, ω′) 6 t).

An adaptive fuzzy extractor can recover R as long as the fuzzy values define an u-drift (if an
update is performed for each ωi). Without representing updating zones for the sake of clarity, the
philosophy of adaptive fuzzy extractors is depicted in Figure 4.

4.2 Definition and Security Model

Definition 7 (Adaptive Fuzzy Extractor). A triple of randomized procedures "generate" (Gen),
"update" (Upd), "reproduce" (Rep) is an (M,W, l, u, t, φ)-adaptive fuzzy extractor that is (εsec, ssec)
hard if the following holds:
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Fig. 4. Philosophy of Adaptive Fuzzy Extractors.

1. On input ω ∈M, Gen outputs an extracted string R ∈ {0, 1}l and helper string P ∈ {0, 1}∗.
2. On input ω′ ∈M and P ∈ {0, 1}∗, if either:

(a) (R,P )← Gen(ω) and d(ω, ω′) 6 u;
(b) there exists (ω∗, P ∗) such that P ← Upd(ω∗, P ∗), R← Rep(ω∗, P ∗) and (ω∗, ω′) 6 u,

then Upd outputs an updated helper string P ′.
3. The reproduction procedure Rep takes as inputs ω′ ∈ M and a bit string P ∈ {0, 1}∗. The

correctness guarantees that if either of conditions is satisfied:

(a) (R,P )← Gen(ω) and d(ω, ω′) 6 t;
(b) there exists (ω∗, P ∗) such that P ← Upd(ω∗, P ∗), R← Rep(ω∗, P ∗) and (ω∗, ω′) 6 t,

then Rep(ω′, P ) = R. In any other case, no guarantee is provided about the output of Rep.
4. The security property guarantees that for correlated distributions W 1, . . . ,W φ on M where
W i ∈ W , the string R is pseudorandom even for those whose observe the P is for i = 1 . . . φ,

generated through Gen or Upd from ωi
$←W i. That is,

δDssec ((R, {P i}φi=1), (Ul, {P
i}φi=1)) ≤ εsec.

Security Model We now define reusability of AFEs. By taking the previous scenario where a user
subscribes to ρ providers, this user should now be able to update φ times its profile on each server to
handle variations. Adapting reusability definition of [10] (Definition 3), we propose the following
definition for security of reusable AFEs.

Definition 8. Let (W 1,1,W 2,1, . . . ,W φ,ρ) be potentially correlated random variables overMwhere
each W i,j ∈ W . Let (Gen, Upd, Rep) be a (M,W, `, u, t, φ)-AFE that is (εsec, ssec) hard. Let D
an adversary. Let the following game for all 1 6 j 6 ρ:

– Sampling The challenger jointly samples ω1,k ←W 1,k for 1 ≤ k ≤ ρ, η ∈ {0, 1}l .
– Helper string Generation and Drifting The challenger computes helper strings via "generation"

and "update" procedures.
• (Rk, P 1,k)← Gen(ω1,k)

• for 2 6 i 6 φ : P i,k ← Upd(ωi,k, P i−1,k).
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– Distinguishing The advantage of D is

Adv(D) = Pr[D(R1, . . . , Rρ, {P i,k}i6φ,k6ρ) = 1]

− Pr[D(R0, . . . , Rj−1, η, Rj+1, . . . , Rρ, {P i,k}i6φ,k6φ) = 1]

(Gen, Upd, Rep) is ρ-reusable if for all D ∈ Dssec , the advantage is at most εsec.

Taking φ = 1 leads to the reusability game of classic FEs (Definition 3) while taking ρ = 1 leads to
the adaptive fuzzy extractor game (Definition 7).

5 From classic FE to Reusable AFE

To obtain a reusable AFE out of a classic FE, there are two key points to reach:

– computed helper strings should not leak information about user’s fuzzy secret(s). As already
seen in Section 3, RPIs address this point.

– a classic FE recovers an extracted R from ω′ as long as this latter is close enough to the en-
rollment value ω. To continuously recover a key in spite of fingerprint derivation, the key idea
is to generate a random stable key R that will be locked under keys with shorter lifespan. The
temporary keys will be the ones outputted by a classic (i.e. non adaptive) FE.

Let (Enc, Dec) be a symmetric encryption scheme (εCPA, sCPA)-FTG-CPA secure. Let (Der-
Gen, DerRep) be a (M1,M2,W,m2, εRPI, sRPI)-RPI that is 2ρ · φ reusable. Let (Genu,Repu)
be an average-case (M2,m2, l, u)-FE that is (εFE, sFE)-hard. Let (Gent,Rept) be an average-case
(M2,m2, l, t)-FE that is (εFE, sFE)-hard. Figure 5 depicts how to design a reusable AFE out of these
tools.

5.1 Generation procedure

Given an enrollment value ω, the first step of the generation algorithm is to use the RPI to randomly
project it onto two unrelated derived fingerprints Ωu and Ωt. Procedure Genu of the nonreusable
FE correcting u errors will then be applied on Ωu. Similarly, Gent is applied to Ωt. Two temporary
keys, Ku and Kt will be extracted. The first one will be used to detect if a fingerprint still belongs
to the updating zone while the second one will be used to lock the randomly generated stable key
R. In addition to helper strings, the overall helper string of our AFE contains encryptions of "1" and
of R, respectively under Ku and Kt.

5.2 Update procedure

The update procedure takes as inputs a fuzzy version ω′ and some helper data P ∈ {0, 1}∗ to be
updated into P ′. The first step consists in deriving ω′ into Ω′u and Ω′t. Successful decryption of cu
under Ku recovers 1 and indicates that ω′ is within distance u. It then makes sense to call update.
If so, R can be unlocked by re-generating Kt. DerGen then randomizes ω′ into Ψu and Ψt. Gen’
computes new temporary keys K ′u and K ′t along with new helper strings. R is finally re-encrypted
under K ′t.
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Generation procedure Gen
Input: ω ∈M1.

1. Derivation Step
(Ωu, Fu)← DerGen(ω).
(Ωt, Ft)← DerGen(ω).

2. Use of a classical FE
(Ku, Qu)← Gen’(Ωu, u).
(Kt, Qt)← Gen’(Ωt, t).

3. Key Generation

R
$← {0, 1}l.

4. Helper Data Generation
cu = Enc(Ku, 1),
ct = Enc(Kt, R),

Set P = (Fu, Qu, cu), (Ft, Qt, ct).
5. Return (R,P ).

Update procedure Upd
Inputs: ω′ ∈M1, P ∈ {0, 1}∗.

1. Fingerprint Check
Parse P = (Fu, Qu, cu), (Ft, Qt, ct).
Ω′u ← DerRep(ω′, Fu).
Ω′t ← DerRep(ω′, Ft).
Ku ← Rep’(Ω′u, Qu).
Kt ← Rep’(Ω′t, Qt).
b← Dec(Ku, cu)

If b 6= 1, return ⊥.
R← Dec(Kt, ct).

2. Helper Data Re-generation
(Ψu, F

′
u)← DerGen(ω′).

(Ψt, F
′
t )← DerGen(ω′).

(K′u, Q
′
u)← Gen’(Ψu, u).

(K′t, Q
′
t)← Gen’(Ψt, t).

c′u = Enc(K′u, 1), c′t = Enc(K′t,K).

3. Set P ′ = (F ′u, Q
′
u, c
′
u), (F

′
t , Q

′
t, c
′
t).

Return P ′.

Reproduction Procedure Rep
Inputs: ω′ ∈M1, P ∈ {0, 1}∗.

1. Parsing Helper Data
Parse P = (Fu, Pu, cu), (Ft, Pt, ct).
Ω′t ← DerRep(ω′, Ft).

2. Key Reproduction
Kt ← Rep’(Ω′t, Pt).
R← Dec(Kt, ct).

3. Return R.

Fig. 5. Generation, Update, and Reproduce procedures

5.3 Reproduction procedure

The reproduction procedure is straightforward. Taking as inputs ω′ and some P , DerRep gener-
ates the corresponding Ω′t as previously described. If Ω′t is within distance t of the previously and
implicitly enrolled Ωt, then Rep’ recovers Kt which enables to finally unlock R.

Theorem 3. With notation defined in 5, Figure 5 defines a (M1,W, `, u, t, φ)-AFE that is (εFE, ssec)
hard and ρ-reusable for ε = φ(6εRPI+εCPA+2εFE), ssec = min{sRPI−2(|Gen′|+|Enc|), sCPA, sFE}.

Remark 1. 2.ρ.φ reusability for a RPI means that there exists 2.ρ.φ balls of radius t that lead (or
have led during a certain period of time) to a successful authentication. Parameters have to be chosen
so that such values remain very unlikely to be randomly predicted by any adversary. Recall that each
of these balls is usually of exponential size in the distance parameter (either u or t).

Proof. Correctness is straightforward. Once again, we separate pseudorandomness and reusability
to deal with security. We begin by recalling that FTG-CPA security ensures that an adversary with
an encryption oracle cannot distinguish between encryptions of two chosen messages.

Pseudorandomness As exhibited by following games, pseudrandomness of R comes from security
of the encryption scheme (Enc,Dec).

G0 C samples ω $← W where W is a distribution fromW . He then generates (R,P ) ← Gen(w)
as prescribed in Figure 5. C gives (R,P ) to D.

G1 C instead of running DerGen on ω to get Ωt runs on ω∗ ← W ∗ (the distribution defined in
Definition 5). Denote (Ω∗t , F

∗) ← DerGen(ω∗). The value Ω∗t is substituted in the second
Gen′ process and the resulting encryption. This changes Q∗t and c∗t , all other values remain the
same. By the reusability of the RPI, this game is indistinguishable from G0 for ε = εRPI and
s = sRPI − 2(|Gen′|+ |Enc|).
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G2 In the previous game, D was givenR randomly sampled from {0, 1}l and P = (Fu, Qu, cu, Ft,
Q∗t , c

∗
t ). The only parts of P that are related to R are c∗t and Q∗t which are independent of the

other values. Now, C samples some µ $← {0, 1}l and computes c∗ = Enc(Kt, µ). C sets P ∗ =
(Fu, Qu, cu, Ft, Q

∗
t , c
∗) and sends (R,P ∗). If D can distinguish this game from the previous

one, he can in particular distinguish (R, c∗t = Enc(K∗t , R)) from (R, c∗ = Enc(Kt, µ)). First
note by Lemma 1, K∗t and Kt are both 2εRPI + εFE close to uniform. Hence, Kt and K∗t are
2(2εRPI + εFE) close. Finally, by FTG-CPA security of (Enc, Dec), G2 is indistinguishable from
G1 for ε = 2(2εRPI + εFE) + εCPA and s = min{sCPA, sRPI, sFE}.

G3 In the previous game, D is given R and (Fu, Qu, cu, Ft, Q
∗
t , c
∗). Then, C can also sample some

η
$← {0, 1}l to finally give (η, P ∗) to D. Since R and P ∗ are independent, this game is the same

as the previous one to D’s view.
G4 In the previous game, D was given η and P ∗ = (Fu, Qu, cu, Ft, Q

∗
t , c
∗) that are independent.

C can now replace c∗, Q∗t with the actual values, independent of η, by the same reasoning as in
G1. This indistinguishability holds for ε = εRPI and s = sRPI − 2(|Gen′|+ |Enc|)

By transitivity, G4 is indistinguishable from G0 which leads to the indistinguishability required by
Definition 7 for ε = 6εRPI + εCPA + 2εFE and s = min{sRPI − 2(|Gen′|+ |Enc|), sCPA, sFE}.

Reusability In the previous argument we first replaced the distribution Ωt with an uncorrelated
distribution, then replaced the ciphertext, the key R, and reverted back. Our strategy here is the
same but it involves a hybrid argument where each update for a single enrollment has those values
replaced. This leads to slightly worse parameters but the same overall structure.

Let W 1,1, . . . ,W φ,1,W 1,2, . . . ,W φ,ρ be correlated distributions over M1, where W i,k ∈ W
for all i, k. Consider some fixed 1 ≤ j ≤ ρ. The following games consists in a challenger C trying
to fool D.

G0 C honestly samples values as prescribed in Definition 3 and sends

(R1, P 1,1, . . . , P φ,1), . . . , (Rj , P 1,j , . . . , P φ,j), . . . , (Rρ, P 1,ρ, . . . , P φ,ρ)

to D. Throughout this argument we will not modify Ri or P k,i for any i 6= j. Thus, we write
this expression (reordering variables) as

(R−j , P−j , Rj , P 1,j , ..., P φ,j).

For all i, k, P i,k can be written P i,k = (F i,ku , Qi,ku , ci,ku , F i,kt , Qi,kt , ci,kt ) as specified in Figure 5.
G1 C instead of running DerGen on ωj to get Ωj

t runs on ω∗ ← W ∗ (the distribution defined in
Definition 5). Denote (Ω∗,jt , F ∗,j)← DerGen(ω∗). The value Ω∗,jt is substituted in the second
Gen′ process and the resulting encryption. This changes Q∗,jt and c∗,jt , all other values remain
the same. By the reusability of the RPI, this game is indistinguishable from G0 for ε = εRPI and
s = sRPI − 2(|Gen′|+ |Enc|).

G2,...φ In each of these games we replace ωi,j with independent samples from the distribution W ∗.
Ωi,j
t is updated to Ω∗,i,jt as in the game above. This replacement effects Q∗,i,jt and c∗,i,jt , and

not the other values. Each of these games is also indistinguishable for ε = εRPI and s = sRPI −
2(|Gen′|+ |Enc|).
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Gφ+1,...,2φ At this point we replace the encrypted value c∗,i,j one by one with random values. As in the
pseudorandomness argument each game is indistinguishable for ε = εCPA + 2(2εRPI + εFE) and
s = min{sCPA, sRPI, sFE}.

G2φ+1 The key R is now replaced with a random η. Since R and the modified P are independent this
game is statistically identical to the previous game.

G2φ+1,...,3φ+1 In each of these games a single pair of Q∗,i,jt and c∗,i,jt is replaced back with the actual values
which are independent of η. Each game is indistinguishable from the previous for ε = εRPI and
s = sRPI − 2(|Gen′|+ |Enc|).

By transitivity, this last game G3φ+1 is indistinguishable from G0 for εsec = φ(6εRPI + εCPA +
2εFE) and ssec = min{sRPI − 2(|Gen′|+ |Enc|), sCPA, sFE} fulfilling Definition 8.

Corollary 2. Using the RPI defined in Figure 3 for the familyW defined above one can construct
a reusable and adaptive FE for any ssec = poly(λ), ρ = poly(λ), φ = poly(λ) such that εsec =
ngl(λ) where t = Θ(n).

6 Conclusion and Future Works

In this work, we show the first reusable fuzzy extractor for the set difference metric. Our construction
is also the first reusable fuzzy extractor handling a linear error rate that makes no assumption about
how repeated readings are correlated. Our construction is for the large universe setting and is a
complement to the work Canetti et al. Their work can be extended to the small universe setting but
only for sublinear error rates.

Our set difference-based solution is an instantiation of a general framework in which we propose
to randomize fuzzy secrets before applying fuzzy extractors. Since fuzzy secrets may come from
correlated distributions, the idea is to decorrelate them while maintaining distances between original
and randomized values: we introduced the concept of Reusable Pseudoentropic Isometries (RPIs)
for such a purpose. We then designed Reusable Fuzzy Extractors out of any efficient nonreusable
Fuzzy Extractors and RPIs. We use the non-programmable random oracle in this work and the work
of Canetti et al. can be viewed as a RPI using a digital locker.

In addition to tackling reusability issue, we also propose the notion of Adaptive Fuzzy Extrac-
tors, which make sense for sources that drift over time including device and browser fingerprints.
Device fingerprinting is an expanding field for which values (e.g. favorite songs, installed applica-
tions, plug-ins, general settings, fonts, . . . ) often appear in the form of lists with elements coming
from a big universe. Adaptive Fuzzy Extractors are meant to capture these variations while still
enabling generation of a long-term stable key. We also construct a set difference adaptive fuzzy
extractor out of an RPI, a fuzzy extractor, and a symmetric encryption scheme. While defining
Adaptive Fuzzy Extractors increases the scope of Fuzzy Extractors, our definition of t-drift is a first
pass. Accurate modeling requires better understanding of such fingerprints.
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A Proof of Lemma 1

Proof (Proof of Lemma 1). Suppose not, that is suppose that there exists some D of size at most
s such that δs((R,P, V ), (Ul, P, V )) > ε. Let Xv be a set of distributions giving rise to a joint
distribution such that H̃∞(X|V ) ≥ m2. Consider a D1 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Output D(γ, ν, β).

Also consider a D2 that does the following:

1. Receive input α, β.
2. Run γ, ν ← Gen′(α).
3. Sample random string u← U`.
4. Output D(u, ν, β).

Denote R′, P ′ ← Gen′(X). By the triangle inequality we have the following:

δD1((U, V ), (X,V )) + δD2((U, V ), (X,V ))

= δD((R,P, V ), (R′, P ′, V )) + δD((U`, P, V ), (U`, P
′, V ))

≥ δD((R,P, V ), (U`, P, V ))− δD((U`, P ′, V ), (R′, P ′, V ))

≥ ε− εFE = 2εRPI

Thus, either D1 or D2 distinguishes U, V from X,V with advantage at least εRPI . Either of these
distinguishers contradict the HILL entropy of U, V . This completes the proof of Lemma 1.
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B Analysis of Set Difference Based RPI

Proposition 1. Let λ be the security parameter and fix ε > 0. Define W as the set of all joint
distributions W where for any i, H̃∞(W i|W 1, ...,W i−1,W i+1, ...,W s) ≥ κ+2 log(1/ε) +O(1).
Figure 3 defines a (MU ,s,Mκ,W,m2, ε,∞)-PI for the set difference metric wherem2 = κ ·s with
an unbounded number of queries to the random oracle where ε′ = ε+ (1− e−s2/2κ). In particular
if 2κ = ω(poly(λ)) then ε′ = ε+ ngl(λ).

Proof. We have to prove both isometric and security properties.

1. Isometry property. By design,Ω is of size s and for any ωi = ω′i, then xi = x′i. Thus, d(Ω,Ω′) ≤
d(ω, ω′).

2. Security. Treating H modeled as a random oracle, first consider the case where the condi-
tion in step 4 is not triggered. Then H is a good extractor for each individual enrollment.
With H a random oracle, the knowledge of the random salt does not impact any entropy loss:
∀ salt, H∞(X = xi|V = salt) = m. That is, for an individual enrollment

(Xi,W1, ...,Wi−1,Wi+1, ...,Ws, salt) ≈ε (Uk,W1, ..,Wi−1,Wi+1, ...,Ws, salt).

To show the statement of the proposition we measure the probability of the condition in step
four being triggered.

Pr[no collision] =
s∏
i=1

(1− i

2κ
)

≥
(
1− s

2κ

)s
=

((
1− s

2κ

)2k/s)s2/2κ
≥ (1/e)s

2/2κ = e−s
2/2κ

Adding reusability We now proceed to show reusability of the construction in this setting we need a
slightly more restrictive definition of the random oracle and the set of sourcesW . We need to ensure
that the output length of the random oracle is longer enough that collisions occur with negligible
probability and the entropy of each item is high enough that the adversary can query an input to
the random oracle with only negligible probability. In the below theorem, we bound the size of
an adversary by the number of random oracle queries it is permitted to make. In this theorem, the
adversary may have unlimited computational power only the number of queries affects security.

Proof (of Theorem 2). Fix some j that the adversary is trying to distinguish. The basic idea of the
proof is that the adversary should have no information about the output of the random oracle on ωj

unless they have been able to find an input to the random oracle that matches its output.
Outputs of algorithms DerGen and DerRep consist in sets of random elements belonging to

GF (2κ). By the use of H, these elements are uniformly distributed overMκ. Let W 1, . . .W ρ be
related distributions from which ω1, . . . , ωρ are respectively sampled (some or all ωjs could then be
equal). The adversary is given

(salt1, Ω1), . . . , (saltj−1, Ωj−1), (saltj , z), (saltj+1, Ωj+1), . . . , (saltρ, Ωρ)
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where (salti, Ωi) ← DerGen(ωj) and z is either Ωj or the output of DerGen on an unrelated
value.

The only way for an adversary D to learn about z is to find a input query ωi,∗ such that
H(ωi,∗, saltj) = zi for some 1 ≤ i ≤ s. Thus, we can consider strategies for generating input
queries. Consider some enrollment value k. Each input symbol to the random oracle has input min-
entropy ω(log λ). Furthermore, while the random oracle returns a string with each query the only
useful piece of information is whether the output value matches the provided output value inΩk. For
convenience we assume that when an adversary receives a single matching value, they completely
learn ω∗.

First note that the probability of a matching response on the first query is at most Pr[match] =
Pr[correct point] + Pr[collision] ≤ 2−κ + 2−m2 . The probability of a collision does not change as
D asks more queries but the probability of finding the correct point increases. For any ω1, ...., ωq
inputs to an oracle the adversary learns that at most one of these values matches (as they are assumed
to win when an oracle input matches). Thus we have Let A1, A2, . . . Aq be the random variables
representing whether the ωi was a correct value. Each Ai is just a bit, and at most one of them is
equal to 1. Thus, the total number of possible responses is q + 1. Thus, we have the following,

∀i, j, H̃∞(W i,j |V iew(D(·))) = H̃∞(W i,j |A1, . . . , Aq)

= H∞(W i,j)− |A1, . . . , Aq|
= κ− log(q + 1) ,

where the second line follows from the first by [14, Lemma 2.2]. Thus, after all its queries the
probability that of a match on the qth query is less than 2−κ−log(q+1)+2−m2 . Thus, by union bound
across all queries the total probability of a match is:

Pr[match] ≤ q(q + 1)2−κ + q2−m2 .

This probability is negligible with the parameters as specified in the theorem. We then have the
following:

Adv(D) =Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

−Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ) = 1]

= Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1|match] Pr[match]

+ Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1|no match] Pr[no match]

− (Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ|match)] Pr[match]

+ Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ|no match)] Pr[no match])

= Pr[match](Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1|match]

− (Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ|match)]))

+ Pr[no match](Pr[D(Ω1, . . . , Ωρ, F 1, . . . , F ρ) = 1|no match]

− Pr[D(Ω1, . . . , Ωj−1, Ω∗, Ωj+1, . . . , Ωρ, F 1, . . . , F ρ|no match)])

≤
(
q(q + 1)2−κ + q2−m2

)
· 1 + (1− q(q + 1)2−κ + q2−m2) · 0

= q(q + 1)2−κ + q2−m2 .
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